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Error Rate Analysis of Cognitive Radio
Transmissions with Imperfect Channel Sensing

Gozde Ozcan, M. Cenk Gursoy, and Sinan Gezici

Abstract—This paper studies the symbol error rate performance
of cognitive radio transmissions in the presence of imperfect
sensing decisions. Two different transmission schemes, namely
sensing-based spectrum sharing (SSS) and opportunistic spectrum
access (OSA), are considered. In both schemes, secondary users
first perform channel sensing, albeit with possible errors.In SSS,
depending on the sensing decisions, they adapt the transmission
power level and coexist with primary users in the channel. On
the other hand, in OSA, secondary users are allowed to transmit
only when the primary user activity is not detected. Initially, for
both transmission schemes, general formulations for the optimal
decision rule and error probabilities are provided for arbi trary
modulation schemes under the assumptions that the receiveris
equipped with the sensing decision and perfect knowledge ofthe
channel fading, and the primary user’s received faded signals
at the secondary receiver has a Gaussian mixture distribution.
Subsequently, the general approach is specialized to rectangular
quadrature amplitude modulation (QAM). More specifically, the
optimal decision rule is characterized for rectangular QAM, and
closed-form expressions for the average symbol error probability
attained with the optimal detector are derived under both transmit
power and interference constraints. The effects of imperfect
channel sensing decisions, interference from the primary user
and its Gaussian mixture model, and the transmit power and
interference constraints on the error rate performance of cognitive
transmissions are analyzed.

Index Terms—Cognitive radio, channel sensing, fading channel,
Gaussian mixture noise, interference power constraint, PAM,
probability of detection, probability of false alarm, QAM, symbol
error probability.

I. I NTRODUCTION

Rapid growth in the use of wireless services coupled with
inefficient utilization of scarce spectrum resources has led to
much interest in the analysis and development of cognitive
radio systems. Hence, performance analysis of cognitive radio
systems is conducted in numerous studies to gain more insights
into their potential uses. In most of the previous work, trans-
mission rate is considered as the main performance metric. For
instance, the secondary user mean capacity was studied in [1] by
imposing a constraint on the signal-to-interference-noise ratio
(SINR) of the primary receiver and considering different chan-
nel side information (CSI) levels. The authors in [2] determined
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the optimal power allocation strategies that achieve the ergodic
capacity and the outage capacity of the cognitive radio channel
under various power and interference constraints. In [3], the
authors studied the optimal sensing time and power allocation
strategy to maximize the average throughput in a multiband
cognitive radio network. Recently, the work in [4] proposed
generic expressions for the optimal power allocation scheme
and the ergodic capacity of a spectrum sharing cognitive radio
under different levels of knowledge on the channel between
the secondary transmitter and the secondary receiver and the
channel between the secondary transmitter and the primary
receiver subject to average/peak transmit power constraints and
the interference outage constraint.

Although transmission rate is a common performance metric
considered for secondary users, error rate is another key per-
formance measure to quantify the reliability of cognitive radio
transmissions. In this regard, several recent studies incorporate
error rates in cognitive radio analysis [5]–[12]. For instance, the
authors in [5] characterized the optimal constellation size ofM -
QAM and the optimal power allocation scheme that maximize
the channel capacity of secondary users for a given target bit
error rate (BER), interference and peak power constraints.The
work in [6] mainly focused on the power allocation scheme
minimizing the upper bound on the symbol error probability
of phase shift keying (PSK) in multiple antenna transmissions
of secondary users. The authors in [7] proposed a channel
switching algorithm for secondary users by exploiting the
multichannel diversity to maximize the received SNR at the
secondary receiver and evaluated the transmission performance
in terms of average symbol error probability. The optimal
antenna selection that minimizes the symbol error probability
in underlay cognitive radio systems was investigated in [8].
Moreover, the recent work in [9] analyzed the minimum BER
of a cognitive transmission subject to both average transmit
power and interference power constraints. In their model, the
secondary transmitter is equipped with multiple antennas among
which only one antenna that maximizes the weighted difference
between the channel gains of transmission link from the sec-
ondary transmitter to the secondary receiver and interference
link from the secondary transmitter to the primary receiver
is selected for transmission. The authors in [10] obtained a
closed-form BER expression under the assumption that the
interference limit of the primary receiver is very high. Also,
the work in [11] focused on the optimal power allocation that
minimizes the average BER subject to peak/average transmit
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power and peak/average interference power constraints while
the interference on the secondary users caused by primary users
is omitted. Moreover, in [12], the opportunistic scheduling in
multiuser underlay cognitive radio systems was studied in terms
of link reliability.

In the error rate analysis of the above-mentioned studies,
channel sensing errors are not taken into consideration. Prac-
tical cognitive radio systems, which employ spectrum sensing
mechanisms to learn the channel occupancy by primary users,
generally operate under sensing uncertainty arising due tofalse
alarms and miss-detections. For instance, different spectrum
sensing methods for Gaussian [13], [14] and non-Gaussian
environments [15], [16] and dynamic spectrum access strategies
[17] have extensively been studied recently in the literature,
and as common to all schemes, channel sensing is generally
performed with errors and such errors can lead to degradation
in the performance.

With this motivation, we in this paper study the symbol
error rate performance of cognitive radio transmissions inthe
presence of imperfect channel sensing decisions. We assume
that secondary users first sense the channel in order to detect
the primary user activity before initiating their own transmis-
sions. Following channel sensing, secondary users employ two
different transmission schemes depending on how they access
the licensed channel: sensing-based spectrum sharing (SSS) and
opportunistic spectrum access (OSA). In the SSS scheme [18],
cognitive users are allowed to coexist with primary users inthe
channel as long as they control the interference by adaptingthe
transmission power according to the channel sensing results.
More specifically, secondary users transmit at two different
power levels depending on whether the channel is detected
as busy or idle. In the OSA scheme [19], cognitive users are
allowed to transmit data only when the channel is detected as
idle, and hence secondary users exploit only the silent periods in
the transmissions of primary users, called as spectrum opportu-
nities. Due to the assumption of imperfect channel sensing,two
types of sensing errors, namely false alarms and miss detections,
are experienced. False alarms result in inefficient utilization
of the idle channel while miss-detections lead to cognitive
users’ transmission interfering with primary user’s signal. Such
interference can be limited by imposing interference power
constraints.

In our error rate analysis, we initially formulate the optimal
decision rule and error rates for an arbitrary digital modulation
scheme. Subsequently, motivated by the requirements to effi-
ciently use the limited spectrum in cognitive radio settings, we
concentrate on quadrature amplitude modulation (QAM) as itis
a bandwidth-efficient modulation format. More specifically, in
our analysis, we assume that the cognitive users employ rectan-
gular QAM for data transmission, analysis of which, as another
benefit, can easily be specialized to obtain results for square
QAM, pulse amplitude modulation (PAM), quadrature phase-
shift keying (QPSK), and binary phase-shift keying (BPSK)
signaling.

In addition to the consideration of sensing errors and rel-
atively general modulation formats, another contributionof

this work is the adoption of a Gaussian mixture model for
the primary user’s received faded signals in the error-rate
analysis. The closed-form error rate expressions in aforemen-
tioned works [5]–[12] are obtained when primary user’s faded
signal at the secondary receiver is assumed to be Gaussian
distributed. However, in practice, cognitive radio transmissions
can be impaired by different types of non-Gaussian noise and
interference, e.g., man-made impulsive noise [20], narrowband
interference caused by the primary user [21], primary user’s
modulated signal [22], and co-channel interference from other
cognitive radios [23]. Therefore, it is of interest to investigate
the error rate performance of cognitive radio transmissions in
the presence of primary user’s interference which is modeled
to have a Gaussian mixture probability density function (pdf)
(which includes pure Gaussian distribution as a special case)
[24].

Main contributions of this paper can be summarized as fol-
lows. Under the above-mentioned assumptions, we first derive,
for both SSS and OSA schemes, the optimal detector structure,
and then we present a closed-form expression of the average
symbol error probability under constraints on the transmit
power and interference. Through this analysis, we investigate
the impact of imperfect channel sensing (i.e., the probabilities
of detection and false alarm), interference from the primary
user, and both transmit power and interference constraintson
the error rate performance of cognitive transmissions. Also,
the performances of SSS and OSA transmission schemes are
compared when primary user’s faded signal is modeled to have
either a Gaussian mixture or a purely Gaussian density.

The remainder of this paper is organized as follows: Sec-
tion II introduces the system model. In Section III, general
formulations for the optimal detection rule and average symbol
error probability in the presence of channel sensing errorsare
provided for SSS and OSA schemes. In Section IV, closed-
form average symbol error probability expressions for specific
modulation types, i.e., arbitrary rectangular QAM and PAM are
derived subject to both transmit power and interference con-
straints under the assumptions of Gaussian-mixture-distributed
primary user faded signal and imperfect channel sensing deci-
sions. Numerical results are provided and discussed in Section
V. Finally, Section VI concludes the paper.

II. SYSTEM MODEL

A. Channel Sensing

We consider a cognitive radio system consisting of a pair of
secondary transmitter-receiver and a pair of primary transmitter-
receiver1. The secondary user initially performs channel sens-
ing, which can be modeled as a hypothesis testing problem.
Assume thatH0 denotes the hypothesis that the primary users
are inactive in the channel, andH1 denotes the hypothesis

1As noted in the subsequent subsections, the analysis in the paper can
be extended to account for more than one primary transmitter-receiver pair
by 1) slightly modifying the interference constraints to limit the worst-case
interference on multiple primary receivers and 2) selecting a Gaussian mixture
density that reflects the distribution of the received fadedsum signal of multiple
primary transmitters.
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that the primary users are active. Various channel sensing
methods, including energy detection, cyclostationary detection,
and matched filtering, have been proposed and analyzed in
the literature. Regardless of which method is used, one com-
mon feature is that errors in the form of miss-detections and
false-alarms occur in channel sensing. The ensuing analysis
takes such errors into account and depends on the sensing
scheme only through the detection and false-alarm probabilities.
Assume thatĤ0 and Ĥ1 denote the sensing decisions that
the primary users are inactive and active, respectively. Then,
the detection and false-alarm probabilities can be expressed
respectively as the following conditional probabilities:

Pd = Pr{Ĥ1|H1}, (1)

Pf = Pr{Ĥ1|H0}. (2)

B. Power and Interference Constraints

Following channel sensing, the secondary transmitter per-
forms data transmission over a flat-fading channel. In the SSS
scheme, the average transmission power is selected depending
on the channel sensing decision. More specifically, the average
transmission power isP1 if primary user activity is detected in
the channel (denoted by the eventĤ1) whereas the average
power is P0 if no primary user transmissions are sensed
(denoted by the event̂H0). We assume that there is a peak
constraint on these average power levels, i.e., we have

P0 ≤ Ppk and P1 ≤ Ppk, (3)

wherePpk denotes the peak transmit power limit. We further
impose an average interference constraint in the followingform:

(1 − Pd)P0 E{|g|2}+ Pd P1 E{|g|2} ≤ Qavg (4)

wherePd is the detection probability andg is the channel fading
coefficient between the secondary transmitter and the primary
receiver. Note that with probabilityPd, primary user activity
is correctly detected and primary receiver experiences average
interference proportional toP1E{|g|2}. On the other hand,
with probability (1 − Pd), miss-detections occur, secondary
user transmits with powerP0, and primary receiver experiences
average interference proportional toP0E{|g|2}. Therefore,Qavg

can be regarded as a constraint on the average interference
inflicted on the primary user2.

In the OSA scheme, no transmission is allowed when the
channel is detected as busy and hence, we setP1 = 0. Now
with the peak power and average interference constraints, we
have

P0 ≤ Ppk and (1− Pd)P0 E{|g|2} ≤ Qavg (5)

2Note that the rest of the analysis can easily be extended to the case
of M primary receivers by replacing the constraint in (4) with(1 −
Pd)P0 max1≤i≤M E{|gi|

2} + PdP1 max1≤i≤M E{|gi|
2} ≤ Qavg, where

gi is the channel fading coefficient between the secondary transmitter and the
ith primary receiver. In this setting,Qavg effectively becomes a constraint on
the worst-case average interference.

which can be combined to write

P0 ≤ min

{

Ppk,
Qavg

(1− Pd)E{|g|2}

}

. (6)

Above, we have introduced the average interference con-
straint. However, if the instantaneous value of the fading co-
efficient g is known at the secondary transmitter, then a peak
interference constraint in the form

Pi|g|2 ≤ Qpk (7)

for i = 0, 1 can be imposed. Note that transmission power
P0 in an idle-sensed channel is also required to satisfy the
interference constraint due to sensing uncertainty (i.e.,due to the
consideration of miss-detection events). Hence, a rather strict
form of interference control is being addressed under these
limitations. Now, including the peak power constraint, we have

Pi ≤ min

{

Ppk,
Qpk

|g|2
}

(8)

for i = 0, 1 (while keepingP1 = 0 in the OSA scheme). Above,
Qpk denotes the peak received power limit at the primary
receiver.

C. Cognitive Channel Model

As a result of channel sensing decisions and the true nature
of primary user activity, we have four possible cases which
are described below together with corresponding input-output
relationships:

• Case (I): A busy channel is sensed as busy, denoted by the
joint event(H1, Ĥ1).

(Correct detection) y = hs+ n+ w. (9)

• Case (II): A busy channel is sensed as idle, denoted by the
joint event(H1, Ĥ0).

(Miss-detection) y = hs+ n+ w. (10)

• Case (III): An idle channel is sensed as busy, denoted by
the joint event(H0, Ĥ1).

(False alarm) y = hs+ n. (11)

• Case (IV): An idle channel is sensed as idle, denoted by
the joint event(H0, Ĥ0).

(Correct detection) y = hs+ n. (12)

In the above expressions,s is the transmitted signal,y is the
received signal, andh denotes zero-mean, circularly-symmetric
complex fading coefficient between the secondary transmitter
and the secondary receiver with varianceσ2

h. n is the circularly-
symmetric complex Gaussian noise with mean zero and variance
E{|n|2} = σ2

n, and hence has the pdf

fn(n) =
1

2πσ2
n

e
− |n|2

2σ2
n =

1

2πσ2
n

e
−n2

r+n2
i

2σ2
n . (13)

The active primary user’s received faded signal at the secondary
receiver is denoted byw. Notice that if the primary users are
active and hence the hypothesisH1 is true as in cases (I) and
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(II), the secondary receiver experiences interference from the
primary user’s transmission in the form ofw. We assume that
w has a Gaussian mixture distribution, i.e., its pdf is a weighted
sum of p complex Gaussian distributions with zero mean and
varianceσ2

l for 1 ≤ l ≤ p:

fw(w) =

p
∑

l=1

λl

2πσ2
l

e
− |w|2

2σ2
l (14)

where the weightsλl satisfy
∑p

l=1 λl = 1 with λl ≥ 0 for all
l.

Remark 1: Primary user’s received faded signal has a Gaus-
sian mixture distribution, if we, for instance, have

w = hpsu (15)

wherehps, which is the channel fading coefficient between the
primary transmitter and the secondary receiver, is a circularly
symmetric, complex, zero-mean, Gaussian random variable,and
u is the primary user’s modulated digital signal. Note that
w is conditionally Gaussian givenu. Now, assuming that the
modulated signalu can takep different values with prior
probabilities given byλl for 1 ≤ l ≤ p, w has a Gaussian
mixture distribution as in (14). In the case of multiple primary
transmitters for which we have

w =
∑

i

hps,iui, (16)

the above argument can easily be extended if all channel fading
coefficients{hps,i} are zero-mean Gaussian distributed.

Remark 2: Gaussian mixture model is generally rich enough
to accurately approximate a wide variety of density functions
[31, Section 3.2]. This fact indicates that the applicability
of our results can be extended to various other settings in
which w has a distribution included in this class of densities.
Additionally, in the special case ofp = 1, the Gaussian mixture
distribution becomes the pure complex Gaussian distribution.
Hence, the results obtained for the Gaussian mixture distribution
can readily be specialized to derive those for the Gaussian
distributedw as well.

As observed from the input-output relationships in (9)–(12),
when the true state of the primary users is idle, corresponding
to the cases (III) and (IV), the additive disturbance is simply
the background noisen. On the other hand, in cases (I) and (II)
in which the channel is actually busy, the additive disturbance
becomes

z = n+ w if H1 is true (17)

whose distribution can be obtained through the convolutionof
density functions of the background Gaussian noisen and the
primary user’s received faded signalw. Using the result of
Gaussian convolution of Gaussian mixture given by [25], the
distribution ofz can be obtained as

fz(z) =

p
∑

l=1

λl

2π(σ2
l + σ2

n)
e
− |z|2

2(σ2
l
+σ2

n) . (18)

Note that z also has a Gaussian mixture distribution. Note
further that the pdf ofz can be expressed in terms of its real
and imaginary components as

fzr,zi(zr, zi) =

p
∑

l=1

λl

2π(σ2
l + σ2

n)
e
− (zr+zi)

2

2(σ2
l
+σ2

n) . (19)

Moreover, the marginal distributions of each component are
given by

fzr(zr) =

p
∑

l=1

λl
√

2π(σ2
l + σ2

n)
e
− z2r

2(σ2
l
+σ2

n) , (20)

fzi(zi) =

p
∑

l=1

λl
√

2π(σ2
l + σ2

n)
e
− z2

i

2(σ2
l
+σ2

n) . (21)

It is easily seen that the pdf ofz in (19) cannot be factorized into
the product of the marginal pdf’s of its real and imaginary parts
fzr(zr)fzi(zi), given in (20) and (21), respectively. Therefore,
the real and imaginary parts of the additive disturbancez are
dependent. Whenp = 1, i.e., in the case of a pure Gaussian
distribution, the joint distribution can written as a product of its
real and imaginary components since they are independent.

III. G ENERAL FORMULATIONS FOR THEOPTIMAL

DECISION RULE AND ERROR PROBABILITIES

In this section, we present the optimal decision rule and the
average symbol error probability for the cognitive radio system
in the presence of channel sensing errors. We provide general
formulations applicable to any modulation type under SSS and
OSA schemes. More specific analysis for arbitrary rectangular
QAM and PAM is conducted in Section IV.

A. The Optimal Decision Rule

In the cognitive radio setting considered in this paper, the
optimal maximuma posteriori probability (MAP) decision rule
given the sensing decision̂Hk and the channel fading coefficient
h can be formulated for any arbitraryM -ary digital modulation
as follows:

ŝ = argmax
0≤m≤M−1

Pr{sm|y, h, Ĥk} (22)

= argmax
0≤m≤M−1

pmf(y|sm, h, Ĥk) (23)

= argmax
0≤m≤M−1

pm
(

Pr{H0|Ĥk}f(y|sm, h, Ĥk,H0)

+ Pr{H1|Ĥk}f(y|sm, h, Ĥk,H1)
)

, (24)

wherepm is the prior probability of signal constellation point
sm andk ∈ {0, 1}. Above, (23) follows from Bayes’ rule and
(24) is obtained by conditioning the density function on the
hypothesesH0 andH1. Note thatf(y|sm, h, Ĥk,Hj) in (24)
is the conditional distribution of the received real signaly given
the transmitted signalsm, channel fading coefficienth, channel
sensing decision̂Hk, and true state of the channelHj , and can
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be expressed as

f(y|sm, h, Ĥk,Hj) =











1
2πσ2

n
e
− |y−smh|2

2σ2
n , j = 0

∑p
l=1

λl

2π(σ2
l
+σ2

n)
e
− |y−smh|2

2(σ2
l
+σ2

n) , j = 1

(25)

for m = 0, . . . ,M − 1. Note that the sensing decision̂Hk

affects the density function through the power of the transmitted
signal sm. Moreover, the conditional probabilities in (24) can
be expressed as

Pr{Hj |Ĥk} =
Pr{Hj}Pr{Ĥk|Hj}

∑1
j=0 Pr{Hj}Pr{Ĥk|Hj}

j, k ∈ {0, 1},

wherePr{H0} andPr{H1} are the prior probabilities of the
channel being idle and busy, respectively, and the conditional
probabilities in the formPr{Ĥk|Hj} depend on the channel
sensing performance. As discussed in Section II-A,Pd =
Pr{Ĥ1|H1} is the detection probability andPf = Pr{Ĥ1|H0}
is the false alarm probability. From these formulations, wesee
that the optimal decision rule in general depends on the sensing
reliability.

B. Average Symbol Error Probability

The average symbol error probability (SEP) for the MAP
decision rule in (22) in the SSS scheme can be computed as

SEP= 1−
M−1
∑

m=0

pm Pr{ŝ = sm|sm}

= 1−
M−1
∑

m=0

1
∑

k=0

pm Pr{Ĥk}Pr{ŝ = sm|sm, Ĥk}

= 1−
M−1
∑

m=0

1
∑

j,k=0

pm Pr{Ĥk}Pr{Hj|Ĥk}Pr{ŝ = sm|sm, Ĥk,Hj}.

(26)

The above average symbol error probability can further be
expressed as in (27) whereDm,0 andDm,1 are the decision re-
gions of each signal constellation pointsm for 0 ≤ m ≤M−1
when the channel is sensed to be idle and busy, respectively.

If cognitive user transmission is not allowed in the case of
the channel being sensed as occupied by the primary users, we
have the OSA scheme for which the average probability of error
can be expressed as

SEP= 1−
M−1
∑

m=0

1
∑

j=0

pm

(

Pr{Hj |Ĥ0}Pr{ŝ = sm|sm, Ĥ0,Hj}
)

= 1−
M−1
∑

m=0

1
∑

j=0

pm

(

Pr{Hj|Ĥ0}
∫

Dm,0

f(y|sm, h, Ĥ0,Hj)

)

.

(28)

IV. ERROR RATE ANALYSIS FORM -ARY RECTANGULAR

QAM

In this section, we conduct a more detailed analysis by
considering rectangular QAM transmissions to demonstratethe

key tradeoffs in a lucid setting. Correspondingly, we determine
the optimal decision regions by taking channel sensing errors
into consideration and identify the error rates for SSS and OSA
schemes. We derive closed-form minimum average symbol error
probability expressions under the transmit power and interfer-
ence constraints. Note that the results for QAM can readily be
specialized for PAM, QPSK, and BPSK transmissions.

A. Optimal decision regions under channel sensing uncertainty

The signal constellation pointsi,q in MI ×MQ rectangular
QAM signaling can be expressed in terms of its real and
imaginary parts, respectively, as

sn,q = sn + jsq, (29)

where the amplitude level of each component is given by

sn = (2n+ 1−MI)
dmin,k

2
for n = 0, . . . ,MI − 1, (30)

sq = (2q + 1−MQ)
dmin,k

2
for q = 0, . . . ,MQ − 1. (31)

Above,MI andMQ are the modulation size on the in-phase
and quadrature components, respectively, anddmin,k denotes
the minimum distance between the signal constellation points
and is given by

dmin,k =

√

12Pk

M2
I +M2

Q − 2
k ∈ {0, 1} (32)

wherePk is the transmission power under sensing decisionĤk.
It is assumed that the fading realizations are perfectly known

at the receiver. In this case, phase rotations caused by the fading
can be offset by multiplying the channel outputy with e−jθh

whereθh is the phase of the fading coefficienth. Hence, the
modified received signal can be written in terms of its real and
imaginary parts as follows:

ȳ = ȳr + jȳi = ye−jθh

=

{

sn|h|+ n̄r + j(sq|h|+ n̄i), underH0

sn|h|+ n̄r + w̄r + j(sq|h|+ n̄i + w̄i), underH1

where the subscriptsr and i are used to denote the real and
imaginary components of the signal, respectively. Note that n̄ =
n̄r+jn̄i andw̄ = w̄r+jw̄i have the same statistics asn andw,
respectively, due to their property of being circularly symmetric.
Hence, given the transmitted signal constellation pointsn,q, the
distribution of the modified received signalȳ is given by

fȳr,ȳi
(ȳr, ȳi|sn,q, h, Ĥk,Hj)

=











1
2πσ2

n
e
− (ȳr−sn|h|)2+(ȳi−sq|h|)2

2σ2
n , j = 0

∑p
l=1

λl

2π(σ2
l
+σ2

n)
e
− (ȳr−sn|h|)2+(ȳi−sq|h|)2

2(σ2
l
+σ2

n) , j = 1

.

(33)

Moreover, the real and imaginary parts of noise, i.e.,n̄r andn̄i

are independent zero-mean Gaussian random variables, and the
real and imaginary parts of primary users’ faded signal, i.e., w̄r

and w̄i, are Gaussian mixture distributed random variables.
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SEP= 1−
M−1
∑

m=0

pm

[

Pr{Ĥ0}
(

Pr{H1|Ĥ0}
∫

Dm,0

f(y|sm, h, Ĥ0,H1) dy + Pr{H0|Ĥ0}
∫

Dm,0

f(y|sm, h, Ĥ0,H0) dy

)

+Pr{Ĥ1}
(

Pr{H1|Ĥ1}
∫

Dm,1

f(y|sm, h, Ĥ1,H1) dy + Pr{H0|Ĥ1}
∫

Dm,1

f(y|sm, h, Ĥ1,H0) dy

)

] (27)

In the following, we characterize the decision regions of the
optimal detection rule for equiprobable QAM signaling in the
presence of sensing uncertainty.

Proposition 1: For cognitive radio transmissions with
equiprobable rectangular M -QAM modulation (with
constellation points expressed as in (29)–(31)) under channel
sensing uncertainty in both SSS and OSA schemes, the optimal
detection thresholds under any channel sensing decision are
located midway between the received signal points. Hence,
the optimal detector structure does not depend on the sensing
decision.

Proof : See Appendix A.

B. The average symbol error probability under channel sensing
uncertainty

In this subsection, we present closed-form average symbol
error probability expressions under both transmit power and
interference constraints for SSS and OSA schemes. Initially,
we express the error probabilities for a given value of the
fading coefficienth. Subsequently, we address averaging over
fading and also incorporate power and interference constraints.
We note that in the presence of peak interference constraints,
the transmitted power level depends on the fading coefficient g
experienced in the channel between the secondary and primary
users as seen in (8). Therefore, we in this case consider an
additional averaging of the error rates with respect tog.

1) Sensing-based spectrum sharing (SSS) scheme: Under the
optimal decision rule given in the previous subsection, the
average symbol error probability ofequiprobable signals for
a given fading coefficienth can be expressed as

SEP(P, h)

=

M
∑

m=1

1
∑

j,k=0

Pr{Ĥk}
M

Pr{Hj|Ĥk}Pr{e|sn,q, h, Ĥk,Hj},

(34)

wherePr{e|sn,q, h,Hj , Ĥk} denotes the conditional error prob-
ability given the transmitted signalsn,q, channel fadingh,
sensing decision̂Hk, and true state of the channelHj .

We can group the error patterns of rectangularM -QAM
modulation into three categories. Specifically, the probability of
error for the signal constellation points on the corners is equal
due to the symmetry in signaling and detection. The same is
also true for the points on the sides and the inner points.

The symbol error probability for the four corner points is

given by

SEP1,k(P, h) = 1−
∫ ∞

a1

∫ ∞

a1

(

Pr{H0|Ĥk}fnr,ni
(nr,ni)dnrdni

+Pr{H1|Ĥk}fzr,zi(zr, zi)dzrdzi
)

(35)

where a1 = − dmin,k|h|
2 and k ∈ {0, 1}. The distributions

of the Gaussian noisefnr,ni
(nr, ni) and the primary user’s

interference signal plus noisefzr,zi(zr, zi) are given in (13)
and (19), respectively. After evaluating the integrals, the above
expression becomes

SEP1,k(P, h)

= Pr{H0|Ĥk}
{

2Q

(

√

d2min,k|h|2
4σ2

n

)

−Q
2

(

√

d2min,k|h|2
4σ2

n

)

}

+ Pr{H1|Ĥk}
p
∑

l=1

λl

{

2Q

(

√

d2min,k|h|2
4(σ2

l + σ2
n)

)

−Q
2

(

√

d2min,k|h|2
4(σ2

l + σ2
n)

)

}

(36)

whereQ(x) =
∫∞
x

1√
2π
e−t2/2dt is the GaussianQ-function.

For the2(MI +MQ − 4) points on the sides, except the corner
points, the symbol error probability is

SEP2,k(P, h) = 1−
∫ ∞

a1

∫ a2

a1

(

Pr{H0|Ĥk}fnr,ni
(nr, ni)dnrdni

+Pr{H1|Ĥk}fzr,zi(zr, zi)dzrdzi
)

(37)

wherea2 =
dmin,k|h|

2 . After performing the integrations, we can
express SEP2,k(P, h) as

SEP2,k(P, h)

= Pr{H0|Ĥk}
{

3Q

(

√

d2min,k|h|2
4σ2

n

)

− 2Q2

(

√

d2min,k|h|2
4σ2

n

)

}

+Pr{H1|Ĥk}
p
∑

l=1

λl

{

3Q

(

√

d2min,k|h|2
4(σ2

l + σ2
n)

)

− 2Q2

(

√

d2min,k|h|2
4(σ2

l + σ2
n)

)

}

.

(38)

Finally, the symbol error probability forM − 2(MI +MQ)+ 4
inner points is obtained from

SEP3,k(P, h) = 1−
∫ a2

a1

∫ a2

a1

(

Pr{H0|Ĥk}fnr,ni
(nr, ni)dnrdni

+Pr{H1|Ĥk}fzr,zi(zr, zi)dzrdzi
)

(39)
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which can be evaluated to obtain
SEP3,k(P, h)

= Pr{H0|Ĥk}
{

4Q

(

√

d2min,k|h|2
4σ2

n

)

− 4Q2

(

√

d2min,k|h|2
4σ2

n

)

}

+Pr{H1|Ĥk}
p
∑

l=1

λl

{

4Q

(

√

d2min,k|h|2
4(σ2

l + σ2
n)

)

− 4Q2

(

√

d2min,k|h|2
4(σ2

l + σ2
n)

)

}

.

(40)

Overall, we can express SEP(P, h) in (34) by combining
SEP1,k(P, h), SEP2,k(P, h) and SEP3,k(P, h) as follows

SEP(P, h) =
1
∑

k=0

Pr{Ĥk}
M

(

4SEP1,k(P, h)

+ 2(MI +MQ − 4)SEP2,k(P, h)

+ (M − 2(MI +MQ) + 4)SEP3,k(P, h)
)

.

(41)

After rearranging the terms, the final expression for the average
symbol error probability SEP(P, h) is given by (42) shown at
the top of next page. This expression can be specialized to
square QAM signaling by settingMI =MQ =

√
M .

We observe above that while the optimal decision rule
does not depend on the sensing decisions, the error rates are
functions of detection and false alarm probabilities. Notealso
that the expressions above are for a given value of fading. The
unconditional symbol error probability averaged over fading can
be evaluated from

SEP(P ) =
∫ ∞

0

SEP(P, x)f|h|2(x)dx. (43)

In the special case of a Rayleigh fading model for which the
fading power has an exponential distribution with unit mean,
i.e., f|h|2(x) = e−x, the above integral can be evaluated by
adopting the same approach as in [27] and using the indefinite
integral form of the GaussianQ-function [28] and square of the
GaussianQ-function [29], given, respectively, by

Q(x) =
1

π

∫ π
2

0

e

(

− x2

2sin2φ

)

dφ, (44)

Q2(x) =
1

π

∫ π
4

0

e

(

− x2

2sin2φ

)

dφ for x ≥ 0. (45)

The resulting unconditional average symbol error probability
over Rayleigh fading is given by (46) at the top of next page

where β0,k =
√

1 + 2
3Pk

(MI
2
+MQ

2 − 2)σ2
n and β1,k =

√

1 + 2
3Pk

(MI
2 +MQ

2 − 2)(σ2
l + σ2

n) for 1 ≤ l ≤ p. The
average symbol error probability for rectangular QAM signal-
ing in the presence of Gaussian-distributedw can readily be
obtained by lettingl = 1 in (46). Although the SEP expression
in (46) seems complicated, it is in fact very simple to evaluate.

Furthermore, this SEP(P ) can be upper bounded as

SEP(P )≤
(

2− 1

MI

− 1

MQ

) 1
∑

k=0

Pr{Ĥk}
{

Pr{H0|Ĥk}
(

1− 1

β0,k

)

+ Pr{H1|Ĥk}
p
∑

l=1

λl

(

1− 1

β1,k

)

}

.

(47)

This upper bound follows by removing the negative terms that
includeQ2(·) on the right-hand side of (42) and then integrating
with respect to fading distribution. Note also that the upper
bound in (47) withMQ = 1 is the exact symbol error probability
for PAM modulation.

Note further that the SEP expression in (46) is a function
of the transmission powersP0 andP1. The optimal choice of
the power levels under peak power and average interference
constraints given in (3) and (4) and the resulting error rates can
be determined by solving

SEP(Ppk, Qavg) = min
P0≤Ppk, P1≤Ppk

(1−Pd)P0 E{|g|2}+Pd P1 E{|g|2}≤Qavg

SEP(P0, P1).

(48)

As discussed in Section II-B, if the fading coefficientg
between the secondary transmitter and the primary receiveris
known and peak interference constraints are imposed, then the
maximum transmission power is given by

P ∗
i = min

{

Ppk,
Qpk

|g|2
}

for i = 0, 1. (49)

After inserting theseP ∗
0 andP ∗

1 into the SEP upper bound in
(47) and evaluating the expectation over the fading coefficient
g, we obtain

SEP≤
∫ b1

0

SEPu(Ppeak)f|g|2(y)dy +
∫ ∞

b1

SEPu

(

Qpk

y

)

f|g|2(y)dy

(50)

whereb1 =
Qpk

Ppk
and SEPu denotes the upper bound in (47).

If |g|2 is exponentially distributed with unit mean, then by
using the identity in [30, eq. 3.362.2], we can evaluate the
second integral on the right-hand side of (50) and express
the upper bound as in (51) given on the next page where
γ0 =

3b1Ppk

2(M2
I
+M2

Q
−2)σ2

n

, γ1 =
3b1Ppk

2(M2
I
+M2

Q
−2)(σ2

l
+σ2

n)
.

It should be noted that we can easily obtain theexact symbol
error probability expressions for PAM modulation by replacing
MI =M andMQ = 1 in (42), (46), (51).

2) Opportunistic spectrum access (OSA) scheme: In the OSA
scheme, secondary users are not allowed to transmit when the
primary user activity is sensed in the channel. Therefore, we
only consider error patterns under̂H0 given in (36), (38), (40).
Hence, following the same approach adopted in Section IV-B1,
the average symbol error probability under the OSA scheme is
obtained as in (52) given on the next page. Similarly, the SEP

7



SEP(P, h) =
1
∑

k=0

Pr{Ĥk}
{

Pr{H0|Ĥk}
[

2

(

2− 1

MI

− 1

MQ

)

Q

(

√

d2min,k|h|2
4σ2

n

)

− 4

(

1− 1

MI

)(

1− 1

MQ

)

Q
2

(

√

d2min,k|h|2
4σ2

n

)]

+Pr{H1|Ĥk}
[

2

(

2− 1

MI

− 1

MQ

) p
∑

l=1

λlQ

(

√

d2min,k|h|2
4(σ2

l + σ2
n)

)

− 4

(

1− 1

MI

)(

1− 1

MQ

) p
∑

l=1

λlQ
2

(

√

d2min,k|h|2
4(σ2

l + σ2
n)

)]}

.

(42)

SEP(P ) =
1
∑

k=0

Pr{Ĥk}
{

Pr{H0|Ĥk}
[

(

2− 1

MI

− 1

MQ

)(

1− 1

β0,k

)

− 2

(

1− 1

MI

)(

1− 1

MQ

)(

2

π

1

β0,k
tan−1

(

1

β0,k

)

− 1

β0,k
+

1

2

)

]

+ Pr{H1|Ĥk}
[

(

2− 1

MI

− 1

MQ

) p
∑

l=1

λl

(

1− 1

β1,k

)

− 2

(

1− 1

MI

)(

1− 1

MQ

) p
∑

l=1

λl

(

2

π

1

β1,k
tan−1

(

1

β1,k

)

− 1

β1,k
+

1

2

)

]}

.

(46)

SEP≤ (1− e−b1)SEP(Ppk) +

(

2− 1

MI

− 1

MQ

) 1
∑

k=0

Pr{Ĥk}
{

Pr{H0|Ĥk}
[

eb1 − 2
√
γ0πe

γ0Q
(
√
2(b1 + γ0)

)

]

+Pr{H1|Ĥk}
p
∑

l=1

λl

[

eb1 − 2
√
γ1πe

γ1Q
(
√
2(b1 + γ1)

)

]

} (51)

SEP(P0) = Pr{H0|Ĥ0}
[

(

2− 1

MI

− 1

MQ

)(

1− 1

β0,0

)

− 2

(

1− 1

MI

)(

1− 1

MQ

)(

2

π

1

β0,0
tan−1

(

1

β0,0

)

− 1

β0,0
+

1

2

)

]

+Pr{H1|Ĥ0}
[

(

2− 1

MI

− 1

MQ

) p
∑

l=1

λl

(

1− 1

β1,0

)

− 2

(

1− 1

MI

)(

1− 1

MQ

) p
∑

l=1

λl

(

2

π

1

β1,0
tan−1

(

1

β1,0

)

− 1

β1,0
+

1

2

)

]

.

(52)

upper bound becomes

SEP(P ) ≤
(

2− 1

MI

− 1

MQ

){

Pr{H0|Ĥ0}
(

1− 1

β0,0

)

+Pr{H1|Ĥ0}
p
∑

l=1

λl

(

1− 1

β1,0

)}

.

(53)

Note that under average interference constraints, the maximum
allowed transmission power in an idle-sensed channel is given
by

P ∗
0 = min

{

Ppk,
Qavg

(1− Pd)E{|g|2}

}

. (54)

On the other hand, if the peak interference power constraintis
imposed, the maximum allowed transmission power is

P ∗
0 = min

{

Ppk,
Qpk

|g|2
}

. (55)

After inserting thisP ∗
0 into (53), assuming again that|g|2 is

exponentially distributed with unit mean, and evaluating the
integration in a similar fashion as in Section IV-B1, an upper
bound on the average symbol error probability can be obtained
as in (56) on the next page whereψ0 =

3Qpk

2(M2
I
+M2

Q
−2)σ2

n

and

ψ1 =
3Qpk

2(M2
I
+M2

Q
−2)(σ2

l
+σ2

n)
.

V. NUMERICAL RESULTS

In this section, we present numerical results to demonstrate
the error performance of a cognitive radio system in the
presence of channel sensing uncertainty for both SSS and
OSA schemes. More specifically, we numerically investigate
the impact of sensing performance (e.g., detection and false-
alarm probabilities), different levels of peak transmission power
and average and peak interference constraints on cognitive
transmissions in terms of symbol error probability. Theoretical
results are validated through Monte Carlo simulations. Unless
mentioned explicitly, the following parameters are employed in
the numerical computations. It is assumed that the varianceof
the background noise isσ2

n = 0.01. When the primary user
signal is assumed to be Gaussian, its variance,σ2

w is set to
0.5. On the other hand, in the case of primary user’s received
signalw distributed according to the Gaussian mixture model,
we assume thatp = 4, i.e., there are four components in the
mixture,λl = 0.25 for all 1 ≤ l ≤ 4, and the variance is still
σ2
w = 0.5. Also, the primary user is active over the channel with

a probability of0.4, hencePr{H1} = 0.4 andPr{H0} = 0.6.
Finally, we consider a Rayleigh fading channel between the
secondary users with fading power pdf given byf|h|2(x) = e−x

for x ≥ 0, and also assume that the fading power|g|2 in the
channel between the secondary transmitter and primary receiver
is exponentially distributed withE{|g|2} = 1.
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SEP≤
(

1− e
Qpk
Ppk

)

SEP(Ppk) +

(

2− 1

MI

− 1

MQ

)

{

Pr{H0|Ĥ0}
[

e
Qpk
Ppk − 2

√

ψ0πe
ψ0Q

(√
2

(

Qpk

Ppk
+ ψ0

))]

+ Pr{H1|Ĥ0}
p
∑

l=1

λl

[

e
Qpk
Ppk − 2

√

ψ1πe
ψ1Q

(√
2

(

Qpk

Ppk
+ ψ1

))]

} (56)

A. SEP under Average Interference Constraints

We initially consider peak transmit and average interference
constraints as given in (3) and (4), respectively. In the following
numerical results, for the SSS scheme, we plot the error
probabilities and optimal transmission power levels obtained
by solving (48). In the case of OSA, we plot the average error
probability expressed in (52) with maximum allowed powerP ∗

0

given in (54).
In Fig. 1, we display the average symbol error probability

(SEP) and optimal transmission powersP0 andP1 as a function
of the average interference constraint,Qavg, in the SSS scheme.
Pd and Pf are set to0.9 and 0.05, respectively. The peak
transmission power isPpk = 4 dB. We assume that the
secondary users employ 2-PAM, 4-QAM, 8-PAM and8 × 2-
QAM modulation schemes for data transmission. We have
considered both Gaussian and Gaussian-mixture distributed w.
In addition to the analytical results obtained by using (46)
and solving (48), we performed Monte Carlo simulations to
determine the SEP. We notice in the figure that analytical and
simulation results agree perfectly. Additionally, it is seen that for
all modulation types, error rate performance of secondary users
improves as average interference constraint becomes looser (i.e.,
asQavg increases), allowing transmission power levelsP0 and
P1 to become higher as illustrated in the lower subfigures.
Saturation seen in the plot ofP0 is due to the peak constraint
Ppk. Other observations are as follows. As the modulation size
increases, SEP increases as expected. It is also interesting to
note that lower SEP is attained in the presence of Gaussian-
mixture distributedw when compared with the performance
whenw has a pure Gaussian density with the same variance.

In Fig. 2, average SEP and transmission powerP0 are plotted
as a function of the average interference constraint,Qavg, for the
OSA scheme. We again setPpk = 4 dB, Pd = 0.9 andPf =
0.05, and consider 2-PAM, 4-QAM, 8-PAM and8 × 2-QAM
schemes. It is observed from the figure that asQavg increases,
error probabilities initially decrease and then remain constant
due to the fact that the secondary users can initially affordto
transmit with higher transmission powerP0 as the interference
constraint becomes less strict, but then get limited by the peak
transmission power constraint and send data at the fixed power
level of Ppk. Again, we observe that lower error probabilities
are attained when the primary user’s received signalw follows
a Gaussian mixture distribution.

In Fig. 3, the average SEPs of 4-QAM (in the upper subfigure)
and 8-PAM signaling (in the lower subfigure) are plotted as
a function of the detection probabilityPd. Pf is set to0.05.
We consider both SSS and OSA schemes. It is assumed that
Ppk = 4 dB and Qavg = −10 dB. We observe that SEP
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Fig. 1:Average symbol error probability SEP, and transmission powers
P0 andP1 vs. average interference constraint,Qavg in SSS scheme.
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Fig. 2:Average symbol error probability SEP and transmission powers
P0 vs. average interference constraint,Qavg in OSA scheme.

for both modulation types in both SSS and OSA schemes
decreases asPd increases. Hence, performance improves with
more reliable sensing. In this case, the primary reason is that
more reliable detection enables the secondary users transmit
with higher power in an idle-sensed channel. For instance, if
Pd = 1, then the transmission powerP0 is only limited byPpk

in both SSS and OSA. In the figure, we also notice that lower
SEP is achieved in the OSA scheme, when compared with the
SSS scheme, due to the fact that OSA avoids transmission over
a busy-channel in which interference from the primary user’s
transmission results in a more noisy channel and consequently
higher error rates are experienced. At the same time, it is
important to note that not transmitting in a busy-sensed channel
as in OSA potentially reduces data rates.

In Fig. 4, the average SEPs of 4-QAM and 8-PAM signaling
are plotted as a function of the false alarm probabilityPf

for both SSS and OSA. It is assumed thatPd = 0.9. It is
further assumed thatPpk = 4 dB andQavg = −10 dB, again
corresponding to the case in which average interference power
constraint is dominant compared to the peak transmit power
constraint. In both schemes, SEP increases with increasingfalse
alarm probabilityPf . Hence, degradation in sensing reliability
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Fig. 3: Average symbol error probability SEP of 4-QAM (upper sub-
figure) and 8-PAM (lower subfigure) signaling vs. detection probability
Pd for SSS and OSA schemes.

leads to performance loss in terms of error probabilities. In
OSA, the transmission powerP0 = min

{

Ppk,
Qavg

(1−Pd)E{|g|2}

}

does not depend onPf and hence is fixed in the figure. The
increase in the error rates can be attributed to the fact that
secondary users more frequently experience interference from
primary user’s transmissions due to sensing uncertainty. For
instance, in the extreme case in whichPf = 1, the probability
terms in (52) becomePr{H0|Ĥ0} = 0 andPr{H1|Ĥ0} = 1,
indicating that although the channel is sensed as idle, it is
actually busy with probability one and the additive disturbance
in OSA transmissions always includesw. In the SSS scheme,
higher Pf leads to more frequent transmissions with power
P1 which is generally smaller thanP0 in order to limit the
interference on the primary users. Transmission with smaller
power expectedly increases the error probabilities. On theother
hand, we interestingly note that asPf approaches 1,P1 becomes
higher thanP0 when (48) is solved, resulting in a slight decrease
in SEP whenPf exceeds around 0.9.
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Fig. 4: Average symbol error probability SEP of 4-QAM (upper
subfigure) and 8-PAM (lower subfigure) signaling vs. probability of
false alarmPf for SSS and OSA schemes.

B. SEP under Peak Interference Constraints

We now address the peak interference constraints by assum-
ing that the transmission powers are limited as in (8). In this
section, analytical error probability curves are plotted using the
upper bounds in (51) in the case of SSS and in (56) in the
case of OSA since we only have closed-form expressions for
the error probability upper bounds when we need to evaluate
an additional expectation with respect to|g|2. Note that these
upper bounds provide exact error probabilities when PAM is
considered. Additionally, the discrepancy in QAM is generally
small as demonstrated through comparisons with Monte Carlo
simulations which provide the exact error rates in the figures.

In Fig. 5, we plot the average SEP as a function of the peak
transmission power,Ppk, for the SSS scheme in the presence of
Gaussian distributed and Gaussian-mixture distributed primary
user’s received faded signalw in the upper and lower subfigures,
respectively. The secondary users again employ 2-PAM, 4-
QAM, 8-PAM and8× 2-QAM schemes. The peak interference
power constraint,Qpk is set to 4 dB. It is seen that Monte Carlo
simulations match with the analytical results for PAM and are
slightly lower than the analytical upper bounds for QAM. As
expected, the average SEP initially decreases with increasing
Ppk and a higher modulation size leads to higher error rates at
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Fig. 5: Average symbol error probability SEP vs. peak transmission
power Ppk in dB for SSS scheme when the primary user signal
is modeled by Gaussian distribution (upper subfigure) and Gaussian
mixture distribution (lower subfigure).

the same transmission power level. We again observe that lower
error rates are experienced whenw has a Gaussian mixture
distribution rather than a Gaussian distribution with the same
variance. It is also seen that asPpk increases, the SEP curves in
all cases approach some error floor at which point interference
constraints become the limiting factor.

Another interesting observation is the following. In Fig. 5,
SEPs are plotted for two different pairs of detection and false
alarm probabilities. In the first scenario, channel sensingis
perfect, i.e.,Pd = 1 andPf = 0. In the second scenario, we have
Pd = 0.9 andPf = 0.05. In both scenarios, we observe the same
error rate performance. This is because the same transmission
power is used regardless of whether the channel is detected as
idle or busy, i.e.,P ∗

i = min
{

Ppk,
Qpk

|g|2
}

for both i = 0, 1.
The interference constraints are very strict as noted in Section
II-B. Hence, averaging over channel sensing decisions becomes
averaging over the prior probabilities of channel occupancy,
which does not depend on the probabilities of detection and
false alarm. Indeed, spectrum sensing can be altogether omitted
under these constraints.

In Fig. 6, we plot the average SEP as a function ofPpk
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Fig. 6: Average symbol error probability SEP vs. peak transmission
power Ppk in dB for OSA scheme in the presence of Gaussian and
Gaussian mixture primary user’s interference signal underimperfect
sensing result (upper subfigure) and perfect sensing result(lower
subfigure).

for the OSA scheme. As before, 2-PAM, 4-QAM, 8-PAM and
8 × 2-QAM are considered. Imperfect sensing withPd = 0.9
and Pf = 0.05 is considered in the upper subfigure whereas
perfect sensing (i.e.,Pd = 1 and Pf = 0) is assumed in the
lower subfigure. In both subfigures, it is seen that increasing
Ppk initially reduces SEP which then hits an error floor as the
interference constraints start to dominate. It is also observed that
perfect channel sensing improves the error rate performance of
cognitive users. Note that if sensing is perfect, secondaryusers
transmit only if the channel is actually idle and experienceonly
the background noisen. On the other hand, under imperfect
sensing, secondary users transmit in miss-detection scenarios as
well, in which they are affected by both the background noise
and primary user interferencew, leading to higher error rates.
Cognitive radio transmission impaired by Gaussian mixture
distributedw again results in lower SEP compared to Gaussian
distributedw. But, of course, this distinction disappears with
perfect sensing in the lower subfigure since the secondary users
experience only the Gaussian background noisen as noted
above. Finally, the gap between the analytical and simulation

results for QAM is due to the use of upper bounds in the
analytical error curves as discussed before.
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Fig. 7: Average symbol error probability SEP of 4-QAM (upper sub-
figure) and 8-PAM (lower subfigure) signaling vs. detection probability
Pd for SSS and OSA schemes.

In Fig. 7, we display the average SEP of 4-QAM and 8-PAM
signaling as a function of the detection probabilityPd. Pf is set
to 0.05. Both SSS and OSA schemes are considered. Here, we
also assume thatPpk = 4 dB,Qpk = 0 dB. It is seen that error
rate performances for SSS scheme for both modulation types
do not depend on detection probability because of the same
reasoning explained in the discussion of Fig. 5. On the other
hand, the error rate performance for the OSA scheme improves
with increasing detection probability since the secondaryuser
experiences less interference from the primary user activity. It
is also seen that OSA scheme outperforms SSS scheme.

In Fig. 8, we analyze the average SEP of 4-QAM and 8-
PAM signaling as a function of the false alarm probabilityPf .
Detection probability isPd = 0.9. Similarly as before,Ppk = 4
dB andQpk = 0 dB. Again, error rate performance does not
depend onPf in the SSS scheme. It is observed that SEP in
OSA scheme increases with increasing false alarm probability.
Hence, degradation in the sensing performance in terms of
increased false alarm probabilities leads to degradation in the
error performance. As discussed in Section V-A regarding the
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Fig. 8: Average symbol error probability SEP of 4-QAM (upper
subfigure) and 8-PAM (lower subfigure) signaling vs. probability of
false alarmPf for SSS and OSA schemes.

error rates in Fig. 4, deterioration in the performance is due
to more frequent exposure to interference from primary user’s
transmissions in the form ofw. One additional remark from the
figure is that SSS scheme gives better error rate performance
compared to OSA scheme at higher values ofPf .

VI. CONCLUSION

We have studied the error rate performance of cognitive radio
transmissions in both SSS and OSA schemes in the presence of
transmit and interference power constraints, sensing uncertainty,
and Gaussian mixture distributed interference from primary user
transmissions. In this setting, we have proved that the midpoints
between the signals are optimal thresholds for the detection of
equiprobable rectangular QAM signals. We have first obtained
exact SEP expressions for given fading realizations and then
derived closed-form average SEP expressions for the Rayleigh
fading channel. We have further provided upper bounds on
the error probabilities averaged over the fading between the
secondary transmitter and primary receiver under the peak
interference constraint. The analytical SEP expressions have
been validated through Monte-Carlo simulations.

In the numerical results, we have had several interesting
observations. We have seen that, when compared to SSS,
lower error rates are generally attained in the OSA scheme.
Also, better error performance is achieved in the presence of
Gaussian-mixture distributedw in comparison to that achieved
when w is Gaussian distributed with the same variance. We
have also addressed how the error rates and transmission powers
vary as a function of the power and interference constraints.
Finally, we have demonstrated that symbol error probabilities
are in general dependent on sensing performance through the
detection and false alarm probabilities. For instance, we have
observed that as the detection probability increases, the error
rate performance under both schemes improves in interference-
limited environments. Similarly, SEP is shown to decrease with
decreasing false-alarm probability. Hence, we conclude that
sensing performance is tightly linked to error performanceand
improved sensing leads to lower error rates.

APPENDIX

A. Proof of Proposition 1

Since the signals areequiprobable, the maximum likelihood
(ML) decision rule is optimal in the sense that it minimizes the
average probability of error [26]. Since cognitive transmission
is allowed only when the channel is sensed as idle under OSA
scheme, it is enough to evaluate the ML decision rule under
sensing decision̂H0, which can be expressed as

m̂ = argmax
0≤m≤M−1

f(ȳ|sn,q, h, Ĥ0). (57)

The above decision rule can further be expressed as

m̂ = argmax
0≤m≤M−1

(

Pr{H0|Ĥ0}f(ȳ|sn,q, h, Ĥ0,H0)

+Pr{H1|Ĥ0}f(ȳ|sn,q, h, Ĥ0,H1)
)

.

(58)

Above maximization simply becomes the comparison of the
likelihood functions of the received signals given the transmitted
signalssn,q. Without loss of generality, we consider the signal
constellation pointsn,q. Then, the decision region for the in-
phase component of this signal constellation point is givenby
(59). The right-side boundary of the corresponding decision
region, which can be found by equating the likelihood functions
in (59)–(60) shown at the top of next page. Gathering the
common terms together, the expression in (59) can further be
written as in (61) given on the next page.

We note that all the terms on the left-hand side of (61)
other than the terms inside the parentheses are nonnegative. Let
us now consider these difference terms. Inside the first set of
parentheses, we have

1− e

(

2(ȳr−sn|h|)dmin,0|h|−d2
min,0|h|2

2σ2
n

)

(62)

which can easily be seen to be greater than zero ifȳr−sn|h| <
dmin,0|h|

2 and is zero ifȳr−sn|h| = dmin,0|h|
2 . The same is also

true for the term inside the second set of parentheses given by

1− e

(

2(ȳr−sn|h|)dmin,0|h|−d2
min,0|h|2

2(σ2
l
+σ2

n)

)

. (63)
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1
∑

j=0

Pr{Hj |Ĥ0}f(ȳ|sn,q, h, Ĥ0,Hj) ≥
1
∑

j=0

Pr{Hj|Ĥ0}f(ȳ|sn+1,q, h, Ĥ0,Hj) (59)

1
∑

j=0

Pr{Hj |Ĥ0}f(ȳ|sn,q, h, Ĥ0,Hj) ≥
1
∑

j=0

Pr{Hj|Ĥ0}f(ȳ|sn−1,q, h, Ĥ0,Hj) (60)

Pr{H0|Ĥ0}
2πσ2

n

e
− (ȳr−sn|h|)2+(ȳi−sq|h|)2

2σ2
n

(

1− e
2dmin,0|h|(ȳr−sn|h|)−d2

min,0|h|2

2σ2
n

)

+ Pr{H1|Ĥ0}
p
∑

l=1

λl

2π(σ2
l + σ2

n)
e
− (ȳr−sn|h|)2+(ȳi−sq|h|)2

2(σ2
l
+σ2

n)

(

1− e

2dmin,0|h|(ȳr−sn|h|)−d2
min,0|h|2

2(σ2
l
+σ2

n)

)

≥ 0. (61)

Therefore, the inequality in (61) can be reduced to

ȳr − sn|h| ≤
dmin,0|h|

2
. (64)

Similarly, (60) simplifies to

ȳr − sn|h| ≥ −dmin,0|h|
2

. (65)

From these observations, we immediately conclude that the
decision rule to detectsn involves comparinḡyr with thresholds
located at midpoints between the received neighboring signals.

Following the same approach, we can determine the decision
region for the quadrature component of the signal constellation
point sn,q by comparing the likelihood functions in (66) – (67)
shown on the next page, which similarly reduce toȳi−sq|h| ≤
dmin,0|h|

2 and ȳi − sq|h| ≥ − dmin,0|h|
2 , respectively. Hence, we

again have the thresholds at midpoints between the neighboring
received signals.

Under the SSS scheme, the secondary users are allowed to
transmit in busy-sensed channel (i.e., under sensing decision
Ĥ1) as well. Since the simplified decision rules in (64) and
(65) do not depend on the sensing decisionĤi, the same set
of inequalities are obtained for the ML detection rule under
sensing decision̂H1, leading to the same conclusion regarding
the decision rule and thresholds. �
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