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Hexagonal boron nitride (hBN) thin films were deposited on
silicon and quartz substrates using sequential exposures of
triethylboron and N,/H, plasma in a hollow-cathode plasma-
assisted atomic layer deposition reactor at low temperatures
(2450°C). A non-saturating film deposition rate was observed
for substrate temperatures above 250°C. BN films were charac-
terized for their chemical composition, crystallinity, surface
morphology, and optical properties. X-ray photoelectron spec-
troscopy (XPS) depicted the peaks of boron, nitrogen, carbon,
and oxygen at the film surface. B 1s and N 1s high-resolution
XPS spectra confirmed the presence of BN with peaks located
at 190.8 and 398.3 eV, respectively. As deposited films were
polycrystalline, single-phase hBN irrespective of the deposition
temperature. Absorption spectra exhibited an optical band edge
at ~5.25 eV and an optical transmittance greater than 90% in
the visible region of the spectrum. Refractive index of the hBN
film deposited at 450°C was 1.60 at 550 nm, which increased
to 1.64 after postdeposition annealing at 800°C for 30 min.
These results represent the first demonstration of hBN deposi-
tion using low-temperature hollow-cathode plasma-assisted
sequential deposition technique.

I

B oroN nitride (BN) and carbon are isoelectronic and iso-
structural analogues of each other. Similar to carbon
materials, BN can exist in the form of different phases such
as amorphous (aBN), turbostratic (tBN), hexagonal (hBN),
and cubic (cBN). Among the known two-dimensional materi-
als, hBN and graphene are isostructural, yet their physico-
chemical properties are different. Graphene is the most
prominent member of family of layered materials while hBN
is an inorganic analogue of graphene. hBN structure consists
of layers of hexagonal sheets, which establishes it as an insu-
lator with a direct band gap of ~5.9 eV in its single crystal
form.'”® Boron and nitrogen atoms are bonded together with
a strong covalent bond within each hBN sheet, while differ-
ent layers of hBN are bound by van der Waals forces along
the c-axis at a distance of 6.66 A. Different phases of BN
have been used as powders and coatings in their pure form
or as a composite. This versatile material has found applica-
tions in metallization, metal industry, high-temperature
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furnaces, cosmetics, and thermal management. hBN is mainly
used for high-temperature crucibles and evaporator boats,
and as a lubricant due to its layered structure. hBN offers a
significant advantage over conventional lubricants due to its
high-temperature stability and high oxidation resistance.'™
The interest in the fabrication of thin films and coatings of
either hBN or ¢cBN stems from their high structural strength,
high-temperature stability, high oxidation resistance, low sur-
face energy, and high thermal conductivity, which already
led to numerous technological applications. Application of
hBN as a dielectric layer for graphene-based electronics has
been reported.> UV lasing has also been demonstrated with
the production of high quality hBN flakes by Kubota et al.
Their high quality hBN flakes paved the way to demonstrate
applications of hBN in UV light emitting diodes.*’
Producing high quality BN thin films has proven to be
very challenging. BN films deposited by physical vapor de[o)o-
sition (PVD) suffer from poor adhesion and cracking,'®!!
whereas BN films deposited by chemical vapor deposition
(CVD) mi§ht result in a mixture of hBN, tBN, and ¢BN
phases.'>'* Boron/nitrogen precursors used to obtain hBN
films through CVD are reported as BF;/NH;, BCl3/NHs,
and B,Hg/NH;.">'7 Postdeposition annealing is routinely
utilized for structural enhancement, surface roughness con-
trol, and intrinsic stress elimination in thin films. Structural
ordering of hBN has been accomplished using proper anneal-
ing.’ Researchers have also employed atomic layer deposition
(ALD) technique for BN thin film deposition to obtain
highly conformal and uniform BN films with simple thick-
ness control. BN films obtained via ALD were either aBN or
tBN, in which BBr;/NH; and BCl;/NH; were utilized as
boron/nitrogen precursors, respectively.'®2° Substrate tem-
peratures for self-limiting growth was reported to be in the
range of 250°C-750°C. However, due to the nature of these
halide precursors, the bg}oroducts of surface reactions are
hazardous and corrosive.”’*> hBN deposition with borazine,
which is a nonhalide precursor, has been reported to result
in a monolayer limited deposition under ultra high vacuum
conditions on transition-metal surfaces.’*?* The deposition
terminated or became very slow after the formation of an ini-
tial monolayer of BN, therefore deposition was believed to
be surface inhibited due to the inert nature of boron nitride.
For modern electronic applications, it is imperative to
obtain high quality BN films on large area substrates with a
controlled thickness to fulfill the entire spectrum of hBN
applications. Also, a facile method is necessary to obtain BN
films at low temperatures compliant with the standards in
terms of having nontoxic byproducts. In this work, we dem-
onstrate for the first time the controlled deposition of hBN
films with the use of a hollow-cathode plasma source
integrated ALD reactor, which has recently been used to
deposit IT-nitride thin films.?® Depositions are carried out at
low substrate temperatures using sequential injection of
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nonhalide triethylboron (TEB) and N,/H, plasma as the
boron and nitrogen precursors, respectively. The deposition
process parameters such as pulse length of TEB and sub-
strate temperature, as well as the influence of postdeposition
annealing are studied. Thin film materials characterization
studies are carried out to reveal the structural and optical
properties of hBN films.

II. Experimental Procedure

(1). Film Deposition

BN thin films were deposited on precleaned substrates at
temperatures ranging from 250°C to 450°C. Depositions were
carried out in a Fiji F200-LL ALD reactor (Cambridge
Nanotech Inc., Cambridge, MA), which is equipped with a
stainless steel hollow cathode plasma source (Meaglow Ltd.,
Thunder Bay, ON, Canada). The base pressure of the system
was 150 mTorr. TEB and N,/H, were carried from separate
lines using 30 and 100 sccm Ar, respectively. N,/H, gas flow
rates and plasma power were constant in all experiment as
50/50 sccm and 300 W, respectively. The system was purged
for 20 s after each precursor exposure. Before depositions,
Si (100) and double side polished quartz substrates were
cleaned by ultrasonic stirring in 2-propanol, acetone, metha-
nol, and DI-water, respectively. Solvent cleaned silicon sub-
strates were finally immersed into dilute HF solution for
~1 min, then rinsed with DI-water and dried with N».

(2) Film Characterization

Grazing-incidence X-ray diffraction (GIXRD) patterns were
recorded in an X’Pert PRO MRD diffractometer (PANalyti-
cal B.V., Almelo, Netherlands) using Cu K, radiation. Data
were obtained within the 2Theta range of 20°-80° by the
summation of ten scans, which were performed using 0.1°
step size and 10 s counting time. Interplanar spacing (dj,)
values for the (010) and (002) planes were calculated from
the corresponding peak positions using the well-known
Bragg’s law. Lattice parameters ¢ and ¢ were roughly calcu-
lated by substituting dy;9 and dygo values, respectively, in Eq.
(1), which relates the interplanar spacing (dj,;), miller indices
(hkl) and lattice parameters (a and ¢) for hexagonal crystals.
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By neglecting instrumental broadening and assuming that
the observed broadening is only related to the size effect,
crystallite size values for the as-deposited and annealed films
were estimated from the (010) reflection using Eq. (2), the
well-known Scherrer formula®®
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where A, B and 0 are the wavelength of the radiation used
(Cu K, = 1.5418 A), broadening (FWHM) and Bragg diffrac-
tion angle of the selected reflection, respectively.

Elemental composition and chemical bonding states of the
films were determined by X-ray photoelectron spectroscopy
(XPS) wusing Thermo Scientific K-Alpha spectrometer
(Thermo Fisher Scientific, Waltham, MA) with a monochro-
matized Al K, X-ray source. Sputter depth profiling was per-
formed with a beam of Ar ions having an acceleration
voltage and spot size of 1 kV and 400 um, respectively.

Scanning electron microscope (SEM) studies were carried
out using Quanta 200 FEG SEM (FEI, Hillsboro, OR). Sam-
ples were coated with ~5 nm Au/Pd alloy prior to SEM
imaging. Surface morphologies of the BN thin films were
revealed using an atomic force microscope (AFM) (XE-100E,
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PSIA, Suwon, Korea), operated in the contact mode. Tecnai
G2 F30 transmission electron microscope (TEM) (FEI, Hills-
boro, OR) was utilized for the high-resolution (HR) imaging
of the BN thin film sample, which was capped with a 20 nm
AIN layer prior to TEM sample preparation. AIN was
deposited at 200°C using hollow-cathode ylasma-assisted
ALD, details of which are given elsewhere.”> TEM sample
was prepared by a Nova 600i Nanolab focused ion beam
(FIB) system (FEI, Hillsboro, OR) at an acceleration voltage
of 30 kV using various beam currents ranging from 50 pA to
21 nA. Damage layer was removed by FIB milling at a beam
voltage of 5 kV. Elemental mapping was performed in TEM,
using an energy dispersive X-ray spectrometer (EDX). An
accelerating voltage of 300 keV, beam current of 1 nA, detec-
tor energy resolution of 134 eV, and detector angle of 14.6°
are the important parameters of EDX that were utilized for
elemental mapping.

Spectral transmission measurements were performed with
a UV-VIS spectrophotometer (HR4000CG-UV-NIR, Ocean
Optics Inc., Dunedin, FL) in the wavelength range of 220—
1000 nm relative to air, and the optical constants of the films
were determined using a variable angle spectroscopic ellips-
ometer (V-VASE, J.A. Woollam Co. Inc., Lincoln, NE)
which is equipped with rotating analyzer and xenon light
source. The ellipsometric spectra were collected at three
angles of incidence (65°, 70°, and 75°) to yield adequate sen-
sitivity over the full spectral range. Optical constants and
film thicknesses were extracted by fitting the spectroscopic
ellipsometry data. The numerical iteration was performed to
minimize the mean-square error function using WVASE32 soft-
ware (J.A. Woollam Co. Inc., Lincoln, NE). The homogeneous
Tauc-Lorentz (TL) function was used as an oscillator. In addi-
tion, data fitting was improved using the Bruggeman effective
medium approximation at the film-air interface assuming 50%
film and 50% voids. The absorption coefficient,

4nk(N)
a(x) - 7\’ I
was calculated from the k(L) values determined from the
ellipsometry data. Optical band gap (E,) is expressed by the
following equation for direct band gap materials,>’ which
can be analytically extracted via extragolation of the linear
part of the absorption spectrum to (aF)” = 0.

oE = A(E — E)'? ©)

The estimated film thickness values were also confirmed
by cross-sectional TEM. Growth per cycle (GPC) values was
calculated by dividing film thicknesses to the number of
growth cycles.

The effect of annealing on the optical properties of BN
films was investigated by annealing the BN films at 800°C
for 30 min in N, environment. Postdeposition annealing was
performed using a rapid thermal annealing system (Unitherm
RTA SRO-704, ATV Technologie GmbH, Vaterstetten, Ger-
many). N, flow and heating rate were 200 sccm and 10°C/s,
respectively. Samples were taken out of the system after they
cooled down to 80°C.

III. Results and Discussion

Deposition experiments of BN were carried out within the
temperature range of 250°C-450°C by the sequential injec-
tion of TEB and N»/H, plasma, where one cycle consisted of
TEB pulse/20 s Ar purge/40 s, 50/50 scem N,/H, plasma
(300 W)/20 s Ar purge. Dependency of GPC of BN on TEB
pulse length at different temperatures is given in Fig. 1. At
350°C, GPC was 0.10 A for 0.06 s of TEB pulse length,
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Fig. 1. Effect of TEB dose on GPC at different temperatures. N,
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and H, flow rates, plasma power and purge time were kept constant.

which went up to 0.15 A after increasing the TEB pulse
length to 0.12 s. Reasonable GPC values were achieved at
substrate temperatures higher than 350°C, whereas surface-
inhibited growth was observed at 250°C. At 450°C, GPC was
0.26 A for 0.06 s of TEB pulse length, which increased to
0.47 A for 0.12 s of TEB pulse length. GPC increases almost
linearly with increasing TEB pulse length at 350°C and
450°C with no saturation, which points towards the possibil-
ity of thermal decomposition of TEB at temperatures higher
than 250°C. Thus, no self-limiting growth behavior has been
observed, indicating a CVD-like deposition mode with sub-
strate temperatures above the possible ALD window. To fur-
ther investigate this issue and understand the decomposition
temperature, controlled experiments, where Si substrates have
been exposed to 100 TEB pulses, were performed within the
250°C-450°C range and the resulting surfaces were analyzed
with XPS. High-resolution B 1s scan is given in Fig. 2, which
has been analyzed for the possible bonding schemes of
boron. B 1s HR-XPS spectrum gathered from the Si (100)
surface exposed to 100 cycles of TEB at 350°C was fitted by
single peak with a binding energy of 189.3 eV, which indi-
cates the presence of boron suboxide (B40).*® While B 1s
HR-XPS spectrum gathered from the Si (100) surface
exposed to 100 cycles of TEB at 450°C was fitted by two
subpeaks with binding energies of 187.5 and 192.1 eV, which
correspond to B-B* and B-O* bonds of boronoxide (B,05),
respectively. On the other hand, for the Si substrate exposed
to TEB precursor at 250°C, only B-C bond®' is detected.
TEB is an alkyl precursor which contains direct metal to car-
bon bond. B-C bond detection confirms that TEB is stable at
250°C (i.e., no decomposition) and decomposition initiates at
temperatures higher than 250°C.

The crystal structures of the as-deposited and annealed BN
films were characterized by GIXRD. Figure 3(a) shows the
GIXRD patterns of ~47 and ~15 nm thick BN films deposited
on Si (100) substrates at 450°C and 350°C, respectively. The
results revealed that BN films were polycrystalline with hexag-
onal structure (ICDD reference code: 98-002-7986). As seen
from Fig. 3(a), the (010) reflection of the hexagonal phase is
dominant, while the other two reflections of hexagonal phase,
i.e., (002) and (111), are weakly pronounced. The relatively
broad diffraction peaks obtained suggest that BN films are
composed of small crystallites. From 20 position of the (002)
reflection, the lattice parameter ¢ was calculated for the film
deposited at 450°C. Interplanar spacing (d;) of (002) planes
was calculated from Bragg’s law and it was inserted in Eq. (1)
to obtain the c-axis lattice parameter, which came out to be
0.71 nm. This value is fairly close to 0.67 nm, which is the
ideal value for hBN.?? Previous ALD studies of BN growth,
however, reported c-axis lattice parameters above 0.70 nm,
which deviate from the ideal value of hBN and attributed to
the existence of turbostratic BN phase.'®?° Since (010) peak in
the GIXRD pattern [Fig. 3(a)] is well-defined, a-axis lattice
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Fig. 2. High-resolution B 1s scans obtained from Si surfaces, which
have been exposed to 100 pulses of TEB at different temperatures.

parameter estimation would be more accurate as compared to
c-axis lattice parameter estimation. From 20 position of the
(010) reflection, the lattice parameter a was calculated for the
film deposited at 450°C. Interplanar spacing (dj,;) for the (010)
plane was calculated from Bragg’s law and it was inserted in
Eq. (1) to obtain the a-axis lattice parameter, which came out
to be 0.25 nm. This value matches well with the ideal value
(0.25 nm) of g-axis lattice parameter for hBN.>? This shows
the superiority of HCPA-ALD over thermal ALD for obtain-
ing a predominantly hexagonal phase in BN films.

Figure 3(b) shows a comparison of the GIXRD patterns
of the as-deposited and annealed BN thin films deposited at
450°C. One can conclude that the intensity of (010) reflection
increases and the full width at half maximum (FWHM)
becomes slightly narrower after the postdeposition annealing.
FWHM of the hBN film deposited at 450°C was measured
as 123 arc-minutes, which decreased to 106 arc-minutes after
annealing. By neglecting instrumental broadening and assum-
ing that the observed broadening is only related to the size
effect, crystallite size values for the as-deposited and annealed
films were estimated from corresponding (002) reflections
using the well-known Scherrer formula.?® The crystallite size
was found to be 4.4 nm for the film deposited at 450°C,
which slightly increased to 4.7 nm after annealing process at
800°C for 30 min.

To investigate the elemental compositions, chemical bond-
ing states and impurity contents of the films, XPS was con-
ducted on hBN films deposited on Si (100) substrates. Survey
scans indicated the presence of boron, carbon, nitrogen, and
oxygen with B 1s, C 1s, N 1s, and O Is peaks located at
190.6, 284.6, 398.0, and 532.6 eV, respectively. Table I pro-
vides a comparison of the elemental compositions and the
corresponding B/N ratios for as-deposited and annealed BN
films. It illustrates that films are almost stoichiometric with
B/N ratios of ~1.05 to 1.12. An increase of 2-3 at.% was
observed in the oxygen concentrations of films after anneal-
ing, which might be due to initiation of oxidation at the sur-
faces of BN films. Figure 4(a) is the compositional depth
profile of hBN thin film, which indicates the variation in
atomic concentrations of boron, nitrogen, carbon, and oxy-
gen along the etching direction from the air/hBN interface
towards the hBN/Si (100) interface. Boron and nitrogen
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Fig. 3. (a) GIXRD patterns of ~47 and ~15 nm thick BN films
deposited on Si (100) substrates at 450°C and 350°C, respectively. (b)
GIXRD pattern of the ~47 nm thick BN film deposited on Si (100)
substrate at 450°C: annealed versus as-deposited.

Table 1. Elemental Compositions and B/N Ratios Obtained
from XPS Survey Spectra

Elemental composition (at.%)

Deposition temperature B N o C B/N ratio

350°C (as-deposited) 42.70 40.81 4.55 5.55 1.05
350°C (annealed) 46.27 42.15 7.29 4.29 1.09
450°C (as-deposited) 44.06 3847 446 6.05 1.14
450°C (annealed) 4799 4285 6.18 2098 1.12

Data were collected from bulk of the films.

atomic concentrations were found to be constant in the bulk
film. 15 at.% oxygen was detected at the film surface, which
decreased to ~2 at.% in the bulk of the film, while carbon
content was also around 2 at.% in the bulk of the BN film.
The carbon impurity contents in the films might be originat-
ing from the ethyl groups of TEB, which did not react with
the N,/H, plasma and therefore remained in the growing
film.

The high-resolution scans of B 1s and N Is are given in
Figs. 4(b) and (c), respectively, which refer to the bulk film
(feten = 720 5). FWHM and asymmetry of the peaks suggest
that there are more than one type of bonding scheme for
boron and nitrogen. The high-resolution XPS spectra were
therefore analyzed to inspect the possible bonding schemes
of the deposited hBN. B 1s HR-XPS spectrum gathered from
the surface of a ~47 nm thick BN sample deposited on Si
(100) substrate was fitted by two subpeaks with binding ener-
gies of 190.8 and 189.0 eV. In literature it has been reported
that the Bls HR spectrum exhibits binding energies of
190.8** and 189**%* for BN and B-C bond in boroncarbonit-
ride (BCN) films, respectively. Therefore, the subpeak
detected at 190.8 eV can be safely attributed to the B-N

193 192 191 190 189 188 187
Binding energy (eV)

(c) o data points
subpeak #1
N 1S ---- subpeak #2

{ — sum

Intensity (cps)

401 400 399 398 397 396 395 394
Binding energy (eV)

Fig. 4. (a) Compositional depth profile of ~47 nm thick BN thin
film deposited on Si (100) at 450°C. (b, c¢) High-resolution B 1s and
N Is scans of the same sample. Data were collected after 720 s of Ar
ion etching.

bond, while the peak at 189.0 eV possibly indicates the pres-
ence of B-C bonding state of BCN. N 1s HR-XPS spectrum
given in Fig. 4(c) was fitted by two subpeaks located at 398.3
and 399.1 eV. In literature it has been reported that N Is
HR spectrum exhibits a binding energy of 399 eV*** for
N-C bond in boroncarbonitride (BCN) films. The subpeak at
398.3 eV3® confirms the presence of BN, while the subpeak
at 399.1 eV again indicates the formation of BCN.

Figure 5(a) shows plan-view SEM image of hBN film
deposited on Si (100) substrate at 450°C, while Fig. 5(b)
shows the SEM image of the same sample after it has been
annealed at 800°C for 30 min. SEM analysis of the as-depos-
ited sample reveals that the surface of the hBN thin film
sample is not uniform with a rough, compact, and three-
dimensional (3D) curly surface morphology. It shows a
branching feature with peculiar 3D nano-scale structures.
SEM image of annealed sample [Fig. 5(b)], on the other
hand, reveals that branched 3D nanostructures have mostly
coalesced to form a more continuous and larger-grained but
still nonuniform film surface. The presence of this branching
feature is not well understood yet; however, one possible
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Fig. 5. SEM images of ~47 nm thick BN thin film deposited on Si
(100) substrate at 450°C: (a) as-deposited, and (b) annealed.

mechanism is that abundant deposition vapor in CVD mode
might have created new deposition steps on the preceding
BN nanosheets, which could have resulted in the outgrowth
of this branching structure. At some later stage during the
deposition, the branched nanostructure might have termi-
nated upon colliding with other branches, resulting in a
highly 3D nanostructured surface.?’

Surface morphologies of the hBN thin films were further
examined by AFM. Figures 6(a) and (b) show the surface
scans of the ~47 nm thick BN thin film sample before and
after annealing at 800°C for 30 min, respectively. Root mean
square (rms) roughness of the as-deposited film was mea-
sured as 0.70 nm from a 1 ymx1 pm scan area. Film rough-
ness increased to 0.83 nm after annealing.

TEM experiments were carried out on a BN sample, which
was prepared separately by the deposition of 2000 cycles on
a Si (100) substrate at 450°C with 0.12 s of TEB pulse length.
Before TEM sample preparation, an AIN capping layer was
deposited on top of the BN layer to preserve its crystal struc-
ture by providing a barrier layer against the damage of high-
energy Ga ions of the FIB system. The average thickness of
BN was measured as ~90 nm from cross-sectional TEM mea-
surements, which is in close agreement with the data
obtained from spectroscopic ellipsometery. Figure 7(a) is the
cross-sectional TEM image of BN thin film. It can be
observed that the interface between AIN and BN is not dis-
tinct, which confirms the nonuniform surface morphology of
BN layer. Figure 7(b) shows the HR-TEM image indicating
the polycrystalline structure and lattice fringes of hBN film.
It is seen that hBN is composed of nanometer-sized crystal-
lites.

Figure 8(a) shows EDX elemental maps of B, Al, and Si
obtained from the AIN-capped BN thin film sample depos-
ited on Si (100) at 450°C. The elemental distribution is
clarified by selecting a cross-sectional portion in the specimen
and rastering the electron beam point by point over the
selected portion of interest. The colorized maps show strong
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Fig. 6. (a) Surface morphologies of ~47 nm thick BN thin film
deposited on Si (100) substrate at 450°C: (a) as-deposited, and (b)
annealed.

contrast among B, Al, and Si, and they reveal the elemental
distribution along the scanned area. The interface between
Al and B is fuzzy, which confirms the intermixing of Al and
B at the interface due to the nonuniform surface morphology
of BN, which was noticed by high-magnification SEM and
HR-TEM imaging as well. Figure 8(b) shows the selected
area electron-diffraction (SAED) pattern of the same AIN/
BN sample. Polycrystalline diffraction rings can be seen from
this pattern. The analysis of SAED pattern has been summa-
rized in Table II, which compares measured and theoretical
values for h-BN and h-AIN crystallographic planes. Reflec-
tions from (010) and (111) crystallographic planes are
detected for h-BN, which agree well with the data obtained
from GIXRD measurements; while (100) and (102) reflec-
tions of the h-AIN phase are detected from the capping layer.
Theoretical and experimental interplanar spacing (d,,) values
are fairly close to each other for the corresponding crystallo-
graphic planes of h-BN and h-AIN.

Normal incidence transmission spectra of BN thin film
samples deposited on double side polished quartz substrates
in the UV-VIS and NIR regions are presented in Fig. 9. The
average transmittance was measured to be in the 91%-93%
range within the visible spectrum, very close to bare quartz
transmission performance, which indicates that films are
almost fully transparent in this wavelength region. Signifi-
cant decrease in transmission was observed at UV wave-
lengths less than 280 nm, which is believed to be caused by
the main band gap absorption. Optical band gap value was
estimated from absorption edge of the films using Eq. (3).
The value of E, was calculated from the inset of Fig. 9,
which shows (a/iv)*> vs. hv plot. The optical band gap was
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Fig. 7. (a) Cross-sectional TEM image of AIN-capped ~90 nm
thick BN thin film deposited at 450°C on Si (100) substrate.
(b) Cross-sectional HR-TEM image of the same sample.

= (b)

Fig. 8. (a) Elemental map of the AlIN-capped ~90 nm thick BN
thin film deposited on Si (100) substrate at 450°C. (b) SAED pattern
of the same sample.
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Table II. SAED Pattern Analysis of AIN-Capped ~90 nm
Thick BN Thin Film Deposited on Si (100) Substrate at
450°C: Comparison Between Measured and Theoretical Values
of Interplanar Spacing (dj,;) with Corresponding
Crystallographic Planes

Interplanar spacing, dj;

Diameter * Corresponding Corresponding
(nm™h Calculated Theoretical material plane, (hkl)
7.358 2.7181 2.6950" AIN 100
9.180 2.1786  2.1737* BN 010
11.056 1.8089 1.82907 AIN 102
16.127 1.2401 1.2334% BN 111

+Hexagonal AIN, ICDD reference code: 00-025-1133.
“Hexagonal BN, ICDD reference code: 98-002-7986.
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Fig. 9. (a) Optical transmission, and (inset) absorption spectra of
the ~47 nm thick BN thin film deposited on double side polished
quartz. (b) Optical constants (refractive index and extinction
coefficient) of the same sample.

determined by extrapolating the straight line segment of the
plot to abscissa as described earlier, and found to be
~5.25 eV. No change in optical bang gap is observed for the
annealed counterpart. The existence of a single slope in the
graph is an indication that hBN features direct optical tran-
sitions. The value of E, obtained in our work matches well
with the E, value measured for polycrystalline hBN films by
Hoffman ez al.*® However, there is huge discrepancy in mea-
sured values of E,. In literature, E, value of hBN is largely
dispersed in the range of 4.0-7.1 eV, which is explained by
the differences in experimental methods used and quality of
deposited hBN.* Tnitially, single crystal hBN was reported
as a direct band gap material with an E, value of 5.9 eV,
but recently for polycrystalline hBN, it was demonstrated to
be an indirect band gap material with an E, value of
6.5eV."* In view of numerous different reports, more
experimental results regarding optical band gap of hBN are
required.
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Table III. Refractive Indices of the hBN Films Deposited on
Si (100) Substrates at Different Temperatures

Deposition temperature Refractive index, » at 550 nm

350°C (as-deposited) 1.55
350°C (annealed) 1.61
450°C (as-deposited) .

450°C (annealed) 1.64

Optical constants of the BN film were obtained by model-
ing the ellipsometric spectra in the wavelength range of
200-1000 nm. Figure 9(b) shows the variation in the refrac-
tive index as a function of incident photon wavelength. The
refractive index decreases from 1.65 to 1.56 in the visible
spectrum. Similar results have been reported in the literature
for polycrystalline hBN films.*"**> Furthermore, the extinc-
tion coefficient (k) decreased swiftly within the UV range and
became almost zero at higher wavelengths, indicating the
near-ideal transparency of the films in the visible spectrum.
Refractive index value at 550 nm for the films deposited at
350°C and 450°C are summarized in Table III. Refractive
index value at 550 nm was measured as 1.55 for the BN film
deposited at 350°C, which increased to 1.61 after annealing
the film. While, for the films deposited at 450°C, refractive
index values at 550 nm increased from 1.60 to 1.64 after
annealing treatment. This slight increase might be attributed
to structural enhancement (i.e., increase in grain size and/or
film densification) upon annealing.

IV. Summary and Conclusions

hBN thin films were deposited on silicon and quartz sub-
strates using TEB and N,/H, plasma in an hollow cathode
plasma-assisted atomic layer deposition (HCPA-ALD) reac-
tor. Appreciable GPC values were only observed at substrate
temperatures above 350°C. At 350°C, GPC was 0.15 A for
TEB pulse length of 0.12 s, while it was 0.47 A at 450°C for
the same TEB pulse length. GPC did not saturate with
increasing TEB doses, indicating the thermal decomposition
of the boron precursor. BN thin films synthesized in CVD
regime at 350°C and 450°C were polycrystalline with hexago-
nal structure as determined by GIXRD and HR-TEM. B Is
and N Is HR-XPS scans further confirmed the presence of
BN with peaks located at 190.8 and 398.3 eV, respectively.
Rms surface roughness of the as-deposited BN thin film at
450°C was measured as 0.70 nm from a 1 umx1 pm scan
area. Films exhibited an optical band edge at ~5.25 eV and
high transparency (>90%) in the visible region of the spec-
trum. Postdeposition annealing resulted in a slight improve-
ment in crystallinity and led to an increase in crystallite size,
refractive index and surface roughness of BN thin films
deposited at 450°C. This study represents the first demonstra-
tion of controlled deposition of hBN films within a HCPA-
ALD reactor at relatively low substrate temperatures using
sequential injection of nonhalide triethylboron (TEB) and
N,/H, plasma as the boron and nitrogen precursors, respec-
tively.
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