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� An all-ZnO microbolometer is proposed.
� ALD grown ZnO is employed as both the thermistor and the absorber material.
� The all-ZnO microbolometer is computationally analyzed.
� The optical and thermal effects are simultaneously considered.
� Absorptance, time constant and NETD of the all-ZnO microbolometer are extracted.
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Microbolometers are extensively used for uncooled infrared imaging applications. These imaging units
generally employ vanadium oxide or amorphous silicon as the active layer and silicon nitride as the
absorber layer. However, using different materials for active and absorber layers increases the fabrication
and integration complexity of the pixel structure. In order to reduce fabrication steps and therefore
increase the yield and reduce the cost of the imaging arrays, a single layer can be employed both as
the absorber and the active material. In this paper, we propose an all-ZnO microbolometer, where atomic
layer deposition grown zinc oxide is employed both as the absorber and the active material. Optical con-
stants of ZnO are measured and fed into finite-difference-time-domain simulations where absorption
performances of microbolometers with different gap size and ZnO film thicknesses are extracted. Using
the results of these optical simulations, thermal simulations are conducted using finite-element-method
in order to extract the noise equivalent temperature difference (NETD) and thermal time constant values
of several bolometer structures with different gap sizes, arm and film thicknesses. It is shown that the
maximum performance of 171 mK can be achieved with a body thickness of 1.1 lm and arm thickness
of 50 nm, while the fastest response with a time constant of 0.32 ms can be achieved with a ZnO thick-
ness of 150 nm both in arms and body.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Infrared (IR) imaging market is shifting from defense to civilian
sectors with the introduction of new commercial and high volume
markets such as automotive, surveillance, thermography, and IR
imaging in smartphones (see Fig.1) [1]. This trend created a
cost-driven market in favor of uncooled infrared imaging systems.
Unlike the cooled counterparts, which operate on photogenera-
tion and collection of electrons and holes, uncooled IR detectors
sense the temperature change due to the absorption of the IR
radiation. The cooled detectors offer higher performance (higher
resolution, higher signal-to-noise ratio, faster response) at a high
cost due to the need for cryogenic cooling [2]. On the other hand,
uncooled detectors offer cost effective solutions targeting the
competitive low-end high-volume user market. Among uncooled
detectors such as thermopiles, pyroelectric detectors, and microb-
olometers, the latter are more popular for infrared imaging pur-
poses [3].

A bolometer pixel consists of an absorber layer, an active detec-
tor material (thermistor), and the support arms as given in Fig. 2a
[4]. The absorber layer and the thermistor are free-standing for
thermal isolation. The absorption of the incident radiation causes
an increase in the temperature of the thermistor. This temperature
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Fig. 1. Global uncooled thermal camera market size forecast in units [1].
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increase changes the resistance of the thermistor, and this change
is converted to electrical signal by the read-out integrated circuit
(ROIC). The percentage of change in the resistance of the thermis-
tor per kelvin is given by the temperature coefficient of resistance
(TCR) of the thermistor material.

The key figure of merit indicating the performance of a microb-
olometer is the noise equivalent temperature difference (NETD) [5]
and it is given by

NETD ¼ 4F2Vn

soADRV ðDP=DTÞk1�k2

where Vn is the total RMS noise voltage, so is the transmission of the
optics, AD is the active detector area, RV is the voltage responsivity
of the detector, ðDP=DTÞk1�k2

is the change of power per unit area
radiated by a blackbody at temperature T, measured within the
spectral band of k1 � k2, and F is a function of distance from the
optics to the target. The voltage responsivity, RV can be expressed
as

RV ¼
DV
P0
¼ gIdaRd

Gth

where g is the absorption coefficient, Id is the detector current, a is
the TCR, Rd is the detector resistance, Gth is the thermal conduc-
tance. Another important parameter affected by the thermal con-
ductance is the time constant of the detector which is given by

s ¼ Cth

Gth

where Cth is the thermal capacitance. The time constant is a mea-
sure of the response time of the microbolometer, and a smaller time
constant is desirable for faster sensors. For imaging applications
based on 30 Hz frame rate, a time constant of 10 ms is tolerable
and that for 60 Hz frame rate should be less than 7 ms [6].
Fig. 2. (a) Schematic of a conventional microbolometer an
In order to maximize the responsivity of the microbolometer
and reduce the NETD, new materials or sensors architectures that
provide higher TCR and absorptivity and lower thermal conductiv-
ity are desirable. However, when thermal conductance, Gth, is
lower, the time constant increases. Due to the trade-off between
NETD and time constant, a new figure of merit is defined [7],
NETD-thermal time constant product

FOM ¼ NETD � s

In terms of thermistor materials, most of the commercially
available microbolometers employ vanadium oxide (VOx) and
amorphous silicon (a-Si) with TCR values between �2%/K and
�3%/K [3,4]. In addition, alternative active materials reported
include but are not limited to thin film metals such as titanium
(0.35%/K) [8] and platinum (0.14%/K) [9], YBaCuO (�3.3%/K) [10]
and poly crystalline silicon germanium, poly-SiGe (�1%/C) [11].
Besides these, there are also reports on the usage of electronic
devices such as Si based diodes (�2 mV/K) [12], thin film transis-
tors (6.5%/K) [13] and SiGe quantum wells (�5.8%/K) [14]. Note
that the values provided for Si diodes and thin film transistors
are temperature coefficient of voltage and temperature coefficient
of channel current, respectively. Also, recently, researchers in our
group demonstrated atomic layer deposition (ALD) grown ZnO as
a candidate thermistor material with a TCR value of �10.4%/K
[15]. While the most widely used absorber layer is Si3N4 [16–19]
there are also reports on the use of alternative CMOS compatible
dielectrics [20] and thin metals [5,9] as the absorber layer.

The material complexity and process steps of microbolometers
could be reduced if the thermistor layer and the absorber layer
were consolidated in a single layer. Recently, Yoneoka et al. sug-
gested replacing the thermistor and absorber layers with a thin
ALD grown Pt layer [9]. In this work, we propose an all-ZnO mic-
robolometer, where ALD grown ZnO layer is employed as both
the thermistor and the absorber as shown in Fig. 2b. We first pres-
ent optical characterization of ZnO followed by the computational
analysis of a basic microbolometer structure using finite-differ-
ence-time-domain (FDTD) method in order to calculate the absorp-
tivity in the long-wave infrared (LWIR) region (8–12 lm). In
addition, thermal simulations of the microbolometer structure
are conducted using finite-element-method, and time constant
and NETD values are extracted. The results show that, when a
1.1 lm thick ZnO layer with a gap size of 0.8 lm is used, the
absorptivity can be as high as 95.6% yielding an NETD value of
171 mK and a time constant of 6.6 ms. Such a time constant is suit-
able for imaging applications at 60 Hz frame rate. Such a detector
could be used for low-end applications such as thermography
and pedestrian security in automotive. On the other hand, when
the ZnO film thickness is 150 nm with a gap of 2.1 lm, the time
constant decreases to 0.32 ms while absorptivity reduces to
50.6% and NETD increases up to 940 mK. Such a high speed
d (b) single layer all-ZnO microbolometer structure.
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detector could be used for infrared missile seeker applications
where a very low time constant is required but a high NETD is tol-
erable since the object (a hot nozzle) is much hotter than the scene.

2. ZnO optical properties

ALD growth of ZnO is carried out at 120 �C using a Cambridge
Savannah 100 Thermal ALD system using diethylzinc (DEZ) and
milli-Q water (H2O) as precursors on n-type (100) Si wafers. Opti-
cal characterization of as-grown films is conducted using commer-
cial spectroscopic ellipsometer IR-Vase from J.A. Woollam. The
dielectric permittivity of ZnO is modelled using a Drude oscillator
combined with a Lorentz oscillator. Dielectric constants of ALD
grown ZnO is given in Fig. 3a and refractive indices in the LWIR
band are given in Fig. 3b.

3. Optical simulations

In order to extract the absorption properties and optimize the
proposed all-ZnO single layer microbolometer, electromagnetic
simulations are conducted using finite-difference-time-domain
(FDTD) technique on a commercial software (FDTD Simulations
by Lumerical Inc.). For simplicity, a 2D simulation setup is chosen
in which the legs and anchors features of a standard bolometer are
Fig. 3. (a) Real (e0) and imaginary (e00) parts of relative permittivity of ZnO grown at 120
LWIR region. On the right axis, wavelength of incident light in ZnO (k = ko/n).

Fig. 4. (a) Simulation setup for the all-ZnO microbolometer structure and (b) average per
thickness and gap height.
neglected as can be seen in Fig. 4a. On the x-axis, periodic bound-
ary conditions are assumed. On the y-axis, boundary condition at
the bottom is chosen as a perfect reflector, to represent the metal-
lic reflector beneath the gap. Metal boundary conditions are per-
fectly reflecting and do not allow electromagnetic energy to
escape the simulation area. On the top, a perfectly matched layer
(PML) is assumed. The structure is illuminated with a normally
incident plane wave where the wavelength range of the light is
3–15 lm. A field monitor is placed behind the plane wave source
in order to calculate the absorption in the microbolometer struc-
ture. Since all energy incident on the bottom boundary is reflected
back, total absorption can be calculated using Pabs = (1 � Pref) where
Pref is the ratio of the power transmitted through the field monitor
to the power radiated by the plane wave source. Therefore, Pabs

gives the ratio of absorbed energy to incident energy. The ZnO film
is modeled using the experimental optical constants found in the
previous section.

A parameter sweep is conducted to find the optimum structure
for which the average absorption in the 8–12 lm band is maxi-
mized. The thickness of the ZnO film (t) is varied from 50 nm to
2 lm and the gap height (g) is varied from 100 nm to 4 lm. Aver-
age absorption in the LWIR band (8–12 lm) is calculated (Fig. 4b)
by equally weighing absorption at all wavelengths in the 8–12 lm
band. In general, as t increases, the average absorption increases as
�C. (b) On the left axis, real (n) and imaginary (k) parts of refractive index of ZnO in

cent absorption in the LWIR (8–12 lm) band vs simulation parameters i.e. ZnO film
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expected. Average absorption is maximized when t is between 1.25
and 2 lm. This is due to the Fabry–Perrot resonance inside the ZnO
film. The resonance condition for the Fabry–Perrot cavity is ful-
filled when the cavity length is one fourth of the wavelength of
the incident light. When the incident light is in the LWIR band
(8 lm < ko < 12 lm), its wavelength inside the ZnO film is in the
4.5–8 lm range since k = ko/n where n is the refractive index of
ZnO at the corresponding wavelength (Fig. 3b). Therefore when
the film thickness is in the 1.25–2 lm range, the resonant wave-
length is between 8 and 12 lm and this leads to an efficient
absorption.

Besides the film itself, the resonant cavity can be formed by the
gap beneath. Here, the medium is vacuum and therefore the reso-
nance occurs when the gap height is between 2 and 3 lm (ko/4).
Adjusting the gap height between 2 and 3 lm, more than 40%
absorption is achieved even with ZnO films as thin as 100 nm. In
Fig. 4, note that, absorption is almost zero for very thin
Fig. 5. The thermal simulation results for all-ZnO microbolometers. The thermal condu
simulated as 1.1 � 10�6 W/K.

Table 1
NETD and thermal time constant calculation for different pixels using the results of the op
with a body thickness of 1.1 lm and an arm thickness of 50 nm. The fastest detector is achie
achieves a very low FOM (NETD-thermal time constant product).

Arm thickness (lm) Body thickness (lm) Gap thickness (lm)

1.1 1.1 0.8
0.05 1.1 0.8
0.15 0.15 2.1
0.05 0.4 1.7
0.05 0.25 2
0.05 0.15 2.1

Table 2
The detector parameters used for the NETD calculation.

Parameter Valu

Pixel area 35 l
Resistance 135 k
Active det. area/fill factor 620 l
TCR �10.
Thermal conductance 3.8 �
DC responsivity 5.2 �
Absorptance (absorption efficiency) 95.6%
FPA size 384 �
Integration time @30 fps 100 l
Electrical bandwidth 5 kH
Detector noise 27 l
NETD (f/1 lens, 30 fps frame rate) 171 m
(<100 nm) film absorbing layers if the gap height is below 2 lm.
Finally, the results show that maximum absorption (95.6%) occurs
when t = 1.1 lm and g = 0.8 lm.
4. Thermal simulations

In order to evaluate the NETD of the all-ZnO microbolometer, it
is necessary to know the thermal conductance of the detector
besides the parameters given in previous sections. Thermal simu-
lations are conducted in order to estimate the thermal conductance
of the detector using the Coventorware simulation tool. For the
simulations, the density of ZnO is taken as 5.6 g/cm3 [21], specific
heat as 40.25 J/mol K [22] and thermal conductivity is used as
90 W/m K [23]. Also, the structural parameters of the simulated
pixels are as follows: pixel pitch is 35 lm � 35 lm, arm width is
2 lm and the fill factor is 50.5%. Several simulations are performed
ctance of the first detector is simulated as 3.8 � 10�7 W/K while the second one is

tical and thermal simulations. The ultimate performance of 171 mK can be obtained
ved with a ZnO thickness of 150 nm both on the body and the arms. This detector also

NETD (mK) Time constant (ms) FOM (mK ms)

3575 0.33 1180
171 6.6 1129
940 0.32 301
198 2.5 495
239 1.7 406
325 0.92 299

e

m � 35 lm
O
m2/50.5%

4%/K
10�7 W/K
105 V/W (@ 2 V voltage bias including a reference detector in a potential ROIC)

288
s

z
Vrms including the effect of a reference detector in a potential ROIC

K
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to understand the effect of the ZnO thickness on the thermal con-
ductance. Fig. 5a gives the thermal simulation result for the ZnO
thickness of 1.1 lm on the body and 50 nm on the arms while
Fig. 5b shows the result for ZnO thickness of 150 nm for both body
and the arms. In the first simulation 100 nW heat is generated on
the pixel while in the second one 1000 nW heat is generated. The
thermal conductance of the first detector is simulated as
3.8 � 10�7 W/K while the second one is simulated as
1.1 � 10�6 W/K. Table 1 shows the NETD calculation and simulated
thermal time constant for different pixels using the results of the
optical and thermal simulations. The fastest detector is achieved
with a ZnO thickness of 150 nm both on the body and the arms.
As can be seen from the table the ultimate performance of
171 mK can be obtained with a body thickness of 1.1 lm and an
arm thickness of 50 nm. Also, this pixel structure is the one that
achieves the highest absorption rate, 95.6%. Using the TCR and
thermal conductance values given above (10.4% and 3.8 � 10�7,
respectively) and assuming a voltage drop of 2 V over the pixel
(a reference detector with identical resistance value is assumed
to exist in the system in order to cancel bias heating effect),
responsivity can be calculated as 5.2 � 105 V/W (the resistance of
the pixel is 135 kO [15]). Also, noise spectral density of ZnO is given
in [15] and an RMS voltage noise of 27 lVrms is assumed accord-
ingly. The transmission of optics (so) is assumed as 0.93 [24]. A list
of parameters including some readout related variables assumed
for the NETD calculation is given in Table 2.

5. Conclusion

In conclusion, we have introduced all-ZnO microbolometer and
present two distinct pixel designs: The detector design with the
highest absorption offers an NETD value of 171 mK with a thermal
time constant of 6.6 ms, and FOM (NETD-time constant product) of
1129 mK ms. Although the thermal time constant is compatible
with 60 Hz frame rate imaging, this detector is outperformed by
the highest performance microbolometers available in today’s
technology that achieve <50 mK NETD. Nevertheless, such a mic-
robolometer can be used in low-end applications such as thermog-
raphy and automotive.

Our fastest detector design shows 0.32 ms thermal time con-
stant with an NETD of 940 mK and FOM of 301 mK ms. This detec-
tor is suitable for applications where the speed is of the primary
importance such as missile tracking. This application does not
require a very low NETD value since the object to be tracked (a
missile nozzle in this case) is a lot hotter than the scene.

Consolidating absorber and thermistor layers within a single
ZnO layer, the main advantage of the all-ZnO microbolometer is
the reduced material complexity and number of fabrication steps.
This advantage leads to higher yield and taking into account the
simple growth technology offered by ALD, all-ZnO microbolometer
appears as a low cost alternative.
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