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We report GaN thin film transistors (TFT) with a thermal budget below 250 �C. GaN thin films

are grown at 200 �C by hollow cathode plasma-assisted atomic layer deposition (HCPA-ALD).

HCPA-ALD-based GaN thin films are found to have a polycrystalline wurtzite structure with

an average crystallite size of 9.3 nm. TFTs with bottom gate configuration are fabricated with

HCPA-ALD grown GaN channel layers. Fabricated TFTs exhibit n-type field effect characteristics.

N-channel GaN TFTs demonstrated on-to-off ratios (ION/IOFF) of 103 and sub-threshold swing of

3.3 V/decade. The entire TFT device fabrication process temperature is below 250 �C, which is the

lowest process temperature reported for GaN based transistors, so far. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4884061]

GaN has earned an unrivaled popularity for high power

applications and operation in harsh environments. GaN is a

well-known, transparent semiconducting material with a

band-gap of 3.4 eV. It is the material of choice in various

applications such as high-electron-mobility transistors

(HEMTs),1 ultraviolet light emitting devices (UV LEDs),2

chemical sensors,3 UV photo detectors,4 and power ampli-

fiers.5 Currently, there are mainly two deposition techniques

most widely used for the utilization of epitaxial GaN films,

namely, metal organic chemical vapor deposition (MOCVD)

and molecular beam epitaxy (MBE). Both of these techni-

ques offer single crystalline films; however, both necessitate

high deposition temperatures.6,7 In order to utilize GaN in

settings with limited thermal budget, such as back end of

line (BEOL) and flexible substrates, utilization of alternative

deposition techniques carries vital importance. With this

aim, low-temperature deposition of GaN has been reported,

where different methods such as, sputtering,8 pulsed laser

deposition (PLD),9 and atomic layer deposition (ALD)10

were employed. Differing from other techniques, ALD offers

the most uniform and conformal deposition even at sub-

nanometer thickness levels.11

TFTs are the driving elements of the liquid crystal dis-

play technology.12 Most commonly used active material in

TFT-based technologies is amorphous Si (a-Si).13 However,

due to low carrier mobility in a-Si, high fabrication thermal

budget, and strong absorption of visible light, a-Si is not suit-

able for flexible and transparent electronics applications.

Therefore, a-Si has been challenged by several transparent

metal oxides, of which the most famous one is ZnO.14,15

TFTs with ZnO active layers have been reported to have

electrical characteristics similar to or even better than those

with a-Si.16 However, stability problem of the ZnO TFTs

still remains as an important issue. To overcome this prob-

lem by the use of an alternative material as the active layer

of TFTs, Chen and colleagues8 demonstrated devices with

sputtered GaN channels, having a maximum process temper-

ature of 1100 �C, which is prohibitively high for flexible

electronics. Apart from their work, there are few other recent

reports on the use of low-temperature deposited GaN in

TFTs; however, all include high device processing tempera-

tures, making them unsuitable for low temperature

electronics.17,18

Here, we present hollow-cathode plasma-assisted atomic

layer deposition (HCPA-ALD)-grown GaN based TFT with

the lowest reported thermal budget so far, keeping the entire

layer growth and device fabrication steps below 250 �C.

Physical properties of GaN thin films and the electrical char-

acteristics of the fabricated TFTs are discussed.

GaN thin films are deposited by HCPA-ALD, using tri-

methylgallium (GaMe3) as the Ga precursor and N2/H2 gas

mixture (50/50 sccm) with 300 W of plasma power as the N

precursor at a process temperature of 200 �C. Grazing-

incidence X-ray diffraction (GIXRD) measurements were

carried out in a PANalytical X’Pert PRO MRD diffractome-

ter using Cu Ka radiation, where the crystallite size of the

thin film is calculated by the line profile analysis (LPA)

method. Chemical composition of the GaN thin film is deter-

mined by X-ray photoelectron spectroscopy (XPS) using

Thermo Scientific K-Alpha spectrometer with a monochrom-

atized Al Ka X-ray source.

A 3-dimensional depiction of the proposed TFT is

shown in Fig. 1(a), and a scanning electron microscope

(SEM) image of the top view of the device is shown in

Fig. 1(b). Fabrication of the bottom gate TFT starts with the

RCA cleaning of the highly doped (1–5 mX-cm) p-type Si

wafer. Plasma-enhanced chemical vapor deposition of a

200–nm-thick SiO2 is performed at 250 �C. The SiO2 film is

patterned to define the active device areas. An HF-last clean

is immediately followed by the growth of 77-nm-thick

Al2O3 and 11-nm-thick GaN subsequently deposited at a sin-

gle ALD process in a modified Fiji F200-LL ALD Reactor

(Ultratech/Cambridge NanoTech Inc.), where the process

temperature is kept at 200 �C. Active device areas are iso-

lated by Ar-based dry etching of the GaN layer. Source and
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drain contacts are formed by sputtering a multilayer metal

stack consisting of Ti/Al/Ti/Al/Ti/Au (30/30/30/30/30/

60 nm) as suggested in Ref. 19. In order to keep the thermal

budget of the device fabrication as low as possible, no

annealing is applied after the contact metallization step.

Fabricated TFTs have W/L¼ 1 with L¼ 50 lm. Electrical

measurements of the devices are performed using Keithley

4200 semiconductor parameter analyzer.

The GIXRD pattern of the HCPA-ALD-grown GaN is

shown in Fig. 2. Diffraction peaks obtained from the mea-

surement, which correspond to wurtzite (hexagonal) crystal

structure, reveal the polycrystalline nature of the deposited

GaN thin film. The average crystallite size of the polycrystal-

line wurtzite GaN film is extracted from the (002) reflection

and found to be 9.3 nm.10 Chemical composition of the GaN

thin film is obtained by making use of XPS with depth profile

analysis, and 42.24 at. % Ga, 54.57 at. % N, 1.65 at. % O,

and 1.54 at. % Ar are detected in the film after 60 s of Ar ion

etching. Overestimation of the N content is observed due to

the contribution of the Ga Auger peaks, which overlap with

the N 1 s peak.10

Output electrical characteristics of the HCPA-ALD-

based GaN TFTs are shown in Fig. 3(a). Fabricated devices

have clear pinch-off and saturation characteristics, and they

exhibit n-type field effect transistor behavior. Transfer char-

acteristics of the devices with VDS¼ 1 V applied are shown

in Fig. 3(b). Fabricated TFT has an ION/IOFF ratio of 2 � 103.

The advantage of using a thick gate insulator is that the gate

leakage current was kept below 0.5 pA for all the bias condi-

tions. The threshold voltage of the device is extracted from

the transfer characteristics (using
ffiffiffiffiffiffi
IDS

p
), and it is found to be

11.8 V. Sub-threshold swing (SS) of the device is generally

influenced by trap states located in the forbidden gap.

Extracted SS of the fabricated device is 3.3 V/decade.

Charge mobility in the channel is extracted in the linear

region of the device operation (VGS¼ 20 V and VDS¼ 1 V)

by using the equation given in (1), where Cox is the gate ox-

ide capacitance per unit area. Relative permittivity of the

ALD based Al2O3, required to calculate Cox, is obtained

from a previous study.20 Calculated effective charge mobil-

ity in the channel is 0.025 cm2/V-sec. This particularly low

mobility can be attributed to the nanocrystalline structure of

the HCPA-ALD based GaN thin films, and the surface states

at the semiconductor insulator interface

l ¼ IDS � L

W � COX � VGS � VTHð Þ � VDS �
V2

DS

2

� � : (1)

FIG. 1. (a) 3D schematic of the HCPA-ALD-based GaN TFT, (b) SEM

image of the fabricated device.

FIG. 2. GIXRD pattern of the HCPA-ALD-grown GaN thin film, which

reveals a polycrystalline wurtzite crystal structure.

FIG. 3. (a) Output, and (b) transfer

characteristics of the HCPA-ALD-

based GaN TFTs.
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To further analyze the effect of trapped charges in the opera-

tion of the devices, effect of the positive gate bias stress on

the threshold voltage is investigated, and the results are

shown in Fig. 4. Prior to each stress cycle, devices are char-

acterized by acquiring their transfer curves. A 2.5 MV/cm

field is applied between the gate and source/drain of the

TFTs while both drain and the source are kept at 0 V.

Following the stress cycle, the transfer characteristics of the

devices are obtained again. The difference in the threshold

voltages between these measurements is recorded as the

threshold voltage shift. Threshold voltage shift reveals the

presence of charge trap states at the insulator semiconductor

interface and or within the Al2O3 dielectric layer. As seen in

Fig. 4, threshold voltage shifts to higher values with longer

applied positive gate bias stress. This is due to increased

number of trapped electrons which screen the applied gate

field resulting in an increased threshold voltage. However,

the increase in the threshold voltage after 1000 s of bias

stress is smaller than that of high performance TFTs based

on ZnO channels.21

In conclusion, GaN TFTs, with the lowest thermal

budget to date, are fabricated with the utilization of

HCPA-ALD method. Deposited GaN thin film is shown to

have polycrystalline wurtzite structure with a crystallite size

of 9.3 nm using GIXRD and LPA, respectively. Elemental

analysis of the films revealed the low amount of oxygen in

HCPA-ALD based GaN thin films. Output characteristics of

the TFTs are obtained which show that the fabricated devices

exhibit n-type enhancement mode field effect transistor

behavior with clear pinch-off and saturation characteristics.

Transfer characteristics of the devices show that the fabri-

cated transistors have on-to-off ratios of 2 � 103. Finally, the

effect of the positive gate bias stress on threshold voltage of

the devices is studied, and reasonable threshold voltage shifts

for a device with a considerably thick gate insulator are

obtained. This study demonstrates the possibility of using

low-temperature ALD-grown GaN layers for alternative and

stable flexible/transparent TFT devices upon further materi-

als and process optimization.
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Gonçalves, A. J. S. Marques, L. M. N. Pereira, and R. F. P. Martins,

“Fully transparent ZnO thin film transistor produced at room temperature,”

Adv. Mater. 17(5), 590–594 (2005).
16R. L. Hoffman, B. J. Norris, and J. F. Wager, “ZnO-based transparent thin-

film transistors,” Appl. Phys. Lett. 82(5), 733–735 (2003).
17R. Chen, W. Zhou, M. Zhang, and H. S. Kwok, “Bottom-gate thin-film

transistors based on GaN active channel layer,” IEEE Electron Device

Lett. 34(4), 517–519 (2013).
18C. Liu, S. Liu, S. Huang, and K. J. Chen, “Plasma-enhanced atomic layer

deposition of AlN epitaxial thin film for AlN/GaN heterostructure TFTs,”

IEEE Electron Device Lett. 34(9), 1106–1108 (2013).
19L. Pang and K. Kim, “Improvement of Ohmic contacts to n-type GaN

using a Ti/Al multi-layered contact scheme,” Mater. Sci. Semicond.

Process. (published online).
20M. D. Groner, F. H. Fabreguette, J. W. Elam, and S. M. George, “Low-

temperature Al2O3 atomic layer deposition,” Chem. Mater. 16(4),

639–645 (2004).
21R. B. M. Cross and M. M. De Souza, “Investigating the stability of zinc

oxide thin film transistors,” Appl. Phys. Lett. 89(26), 263513 (2006).

FIG. 4. Threshold shift vs. positive gate bias stress (2.5 MV/cm).

243505-3 Bolat et al. Appl. Phys. Lett. 104, 243505 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

139.179.2.116 On: Tue, 09 Jun 2015 13:40:17

http://dx.doi.org/10.1109/JPROC.2002.1021567
http://dx.doi.org/10.1109/LPT.2002.805852
http://dx.doi.org/10.1088/0953-8984/16/29/R02
http://dx.doi.org/10.1063/1.123303
http://dx.doi.org/10.1063/1.105239
http://dx.doi.org/10.1063/1.365575
http://dx.doi.org/10.1063/1.3676447
http://dx.doi.org/10.1063/1.2433758
http://dx.doi.org/10.1039/c3tc32418d
http://dx.doi.org/10.1002/adma.200803211
http://dx.doi.org/10.1063/1.1992666
http://dx.doi.org/10.1002/adma.200400368
http://dx.doi.org/10.1063/1.1542677
http://dx.doi.org/10.1109/LED.2013.2244556
http://dx.doi.org/10.1109/LED.2013.2244556
http://dx.doi.org/10.1109/LED.2013.2271973
http://dx.doi.org/10.1016/j.mssp.2013.10.011
http://dx.doi.org/10.1016/j.mssp.2013.10.011
http://dx.doi.org/10.1021/cm0304546
http://dx.doi.org/10.1063/1.2425020

