
A NEW MAPPINGHEURISTIC BASED ONMEAN FIELD ANNEALING1
Tev�k Bultan and Cevdet AykanatDepartment of Computer Engineering and Information Science,Bilkent University, 06533 Bilkent, Ankara, Turkey

1This work is partially supported by Intel Supercomputer Systems Division under Grant SSD100791-2 andTurkish Science and Research Council under Grant EEEAG-5.1

A NEW MAPPING HEURISTIC BASED ON MFA
AbstractA new mapping heuristic is developed, based on the recently proposed Mean FieldAnnealing (MFA) algorithm. An e�cient implementation scheme, which decreasesthe complexity of the proposed algorithm by asymptotical factors, is also given. Per-formance of the proposed MFA algorithm is evaluated in comparison with two well-known heuristics; Simulated Annealing and Kernighan-Lin. Results of the exper-iments indicate that MFA can be used as an alternative heuristic for solving themapping problem. Inherent parallelism of MFA is exploited by designing an e�cientparallel algorithm for the proposed MFA heuristic.

2

1 IntroductionToday, with the aid of VLSI technology, parallel computers not only exist in research labora-tories, but are also available on the market as powerful, general purpose computers. Wide useof parallel computers in various compute intensive applications makes the problem of mappingparallel programs to parallel computers more crucial. The mapping problem arises while devel-oping parallel programs for distributed-memory, message-passing parallel computers which areusually named as multicomputers. In multicomputers, processors have neither shared memorynor shared address space. Each processor can only access its local memory. Synchronizationand coordination among processors are achieved through explicit message passing. Processorsof a multicomputer are usually connected by utilizing one of the well-known direct intercon-nection network topologies such as ring, mesh, hypercube, etc. These architectures have thenice scalability feature due to the lack of shared resources and the increasing communicationbandwidth with the increasing number of processors. However, designing e�cient parallel al-gorithms for such architectures is not straightforward. An e�cient parallel algorithm shouldexploit the full potential power of the architecture. Processor idle time and the interprocessorcommunication overhead may lead to poor utilization of the architecture, hence poor overallsystem performance.Parallel algorithm design for multicomputers can be divided into two steps. First step isthe decomposition of the problem into a set of interacting sequential sub-problems (or tasks)which can be executed in parallel. Second step is mapping each one of these tasks to anindividual processor of the parallel architecture in such a way that the total execution time isminimized. The second step, named as the mapping problem [4], is very crucial in designinge�cient parallel programs. In general, the mapping problem is known to be NP-hard [12, 13].Hence, heuristics giving sub-optimal solutions are used to solve the problem [1, 4, 7, 12, 13,21]. Two distinct approaches have been considered in the context of mapping heuristics; onephase and two phase [7]. In one phase approaches, referred as many-to-one mapping, tasks ofthe parallel program are directly mapped onto the processors of the multicomputer. In twophase approaches, clustering phase is followed by one-to-one mapping phase. In the clusteringphase, tasks of the parallel program are partitioned into as many equal weighted clusters as thenumber of processors of the multicomputer, while minimizing the total weight of the interactions3

among clusters [21]. The problem solved in the clustering phase is identical to the multi-waygraph partitioning problem. In the one-to-one mapping phase, each cluster is assigned to anindividual processor of the multicomputer such that the total inter-processor communication isminimized [21]. Kernighan-Lin (KL) [8, 14] and Simulated Annealing (SA) [15] heuristics aretwo attractive algorithms widely used for solving the mapping problem [7, 19, 21, 22].Heuristics proposed to solve the mapping problem are compute intensive. Solving the mappingproblem can be considered as a preprocessing performed before the execution of the parallelprogram on the parallel computer. Sequential execution of the mapping heuristic may introduceunacceptable preprocessing overhead, limiting the e�ciency of the parallel implementation.E�cient parallel mapping heuristics are needed in such cases. The KL and SA heuristics areinherently sequential, hence hard to parallelize. E�cient parallelizations of these algorithmsremain as important issues in parallel processing research.In this work, a recently proposed algorithm, called Mean Field Annealing (MFA) [18, 24, 25] isformulated for the many-to-one mapping problem. MFA combines the collective computationproperty of Hop�eld Neural Networks (HNN) with the annealing notion of SA. It is originallyproposed for solving traveling salesperson problem, as a working alternative to HNN [23].MFA is also a general strategy as SA, and can be applied to di�erent problems with suitableformulations. Previous works on MFA [5, 6, 17, 18, 24, 25] show that it can be successfullyapplied to various combinatorial optimization problems. MFA has the inherent parallelism thatexists in most of the neural network algorithms.Section 2 presents a formal de�nition of the mapping problem by modeling parallel programdesign process. In Section 3, general formulation of the MFA heuristic is presented. Section 4presents the proposed formulation of the MFA algorithm for the mapping problem. An e�cientimplementation scheme for the proposed algorithm is also described in this section. Section 5presents the performance evaluation of the MFA algorithm for the mapping problem in com-parison with two well known mapping heuristics; SA and KL. Finally, e�cient parallelizationof the MFA algorithm for the mapping problem is proposed in Section 6.4

2 The Mapping ProblemIn various classes of problems, interaction pattern among the tasks is static. Hence, the de-composition of the algorithm can be represented by a static task graph. Vertices of this graphrepresent the atomic tasks and the edge set represents the interaction pattern among the tasks.Relative computational costs of atomic tasks can be known or estimated prior to the executionof the parallel program. Hence, weights can be associated with the vertices in order to denotethe computational costs of the corresponding tasks.Two di�erent models, Task Precedence Graph (TPG) and Task Interaction Graph (TIG), areused for modeling static task interaction patterns[13, 20]. TPG is a directed graph wheredirected edges represent execution dependencies. Each edge denotes a pair of tasks; source anddestination. The destination task can only be executed after the completion of the executionof the source task. In general, only the subsets of tasks which are unreachable from each otherin TPG can be executed independently.In the TIG model, interaction patterns are represented by undirected edges between vertices.In this model, each atomic task can be executed simultaneously and independently. Each edgedenotes the need for the bidirectional interaction between corresponding pair of tasks at thecompletion of the execution of these tasks. Edges may be associated with weights which denotethe amount of bidirectional information exchange involved between pairs of tasks. TIG usuallyrepresents the repeated execution of the tasks with intervening task interactions denoted bythe edges.The TIG model may seem to be unrealistic for general applications since it does not considerthe temporal interaction dependencies among the tasks [20]. However, there are various classesof problems which can be successfully modeled with the TIG model. For example, iterativesolution of systems of equations arising in �nite element applications [2, 20] and power systemsimulations [3, 16], and VLSI simulation programs [22] are represented by TIGs. In this paper,problems which can be represented by the TIG model are addressed.In order to solve the mapping problem, parallel architecture must also be modeled in a waythat represents its architectural features. Parallel architectures can easily be represented by a5

Processor Organization Graph (POG), where nodes represent the processors and edges repre-sent the communication links. In fact, POG is a graphical representation of the interconnectiontopology utilized for the organization of the processors of the parallel architecture. In general,nodes and edges of a POG are not associated with weights since most of the commerciallyavailable multicomputer architectures are homogeneous with identical processors and commu-nication links.In a multicomputer architecture, each adjacent pair of processors communicate with each otherover the communication link connecting them. Such communications are referred as single-hopcommunications. However, each non-adjacent pair of processors can also communicate witheach other bymeans of software or hardware routing. Such communications are referred asmulti-hop communications. Multi-hop communications are usually routed in a static manner over theshortest path of links between the communicating pairs of processors. Communications betweennon-adjacent pairs of processors can be associated with relative unit communication costs.Unit communication cost is de�ned as the communication cost per unit of information. Unitcommunication cost between a pair of processors will be a function of the shortest path betweenthese processors and the routing scheme used for multi-hop communications. For example, insoftware routing, the unit communication cost is linearly proportional to the shortest pathdistance between the pair of communicating processors. Hence, the communication topology ofthe multicomputer can be modeled by an undirected complete graph, referred here as ProcessorCommunication Graph (PCG). The nodes of PCG represent the processors and the weightsassociated with the edges represent the unit communication costs between pairs of processors.As is mentioned earlier, PCG can easily be constructed using the topological properties of POGand the routing scheme utilized for inter-processor communication.The objective in mapping TIG to PCG is the minimization of the expected execution time ofthe parallel program on the target architecture. Thus, the mapping problem can be modeled asan optimization problem by associating the following quality measures with a good mapping :(i) interprocessor communication overhead should be minimized, (ii) computational load shouldbe uniformly distributed among processors in order to minimize processor idle time.A mapping problem instance can be formally represented with two undirected graphs, TaskInteraction Graph (TIG) and Processor Communication Graph (PCG). The TIG GT (V;E),6

has jV j = N vertices labeled as (1; 2; : : : ; i; j; : : : ; N). Vertices of the GT represent the atomictasks of the parallel program. Vertex weight wi denotes the computational cost associated withtask i for 1 � i � N . Edge weight eij denotes the volume of interaction between tasks i and jconnected by edge (i; j) 2 E. The PCG GP (P;D), is a complete graph with jP j = K nodes andjDj = (K2) edges. Nodes of the GP , labeled as (1; 2; : : : ; p; q; : : : ;K), represent the processorsof the target multicomputer. Edge weight dpq, for 1 � p; q � N and p 6= q, denotes the unitcommunication cost between processors p and q.Given an instance of the mapping problem with the TIG GT (V;E) and the PCG GP (P;D),the question is to �nd a many-to-one mapping function M : V ! P , which assigns each vertexof the graph GT to a unique node of the graph GP , and minimizes the total interprocessorcommunication cost (CC) CC = X(i;j)2E;M(i)6=M(j)eijdM(i)M(j) (1)while maintaining the computational load (CLp : computational load of processors p)CLp = Xi2V;M(i)=pwi; 1 � p � K (2)of each processor balanced. Here,M(i) = p denotes the label (p) of the the processor that task iis mapped to. In Eq. (1), each edge (i; j) of theGT contributes to the communication cost (CC),only if vertices i and j are mapped to two di�erent nodes of the GP , i.e. M(i) 6= M(j). Theamount of contribution is equal to the product of the volume of interaction eij between thesetwo tasks and the unit communication cost dpq between processors p and q where p =M(i) andq =M(j). The computational load of a processor is the summation of the weights of the tasksassigned to that processor. Perfect load balance is achieved if CLp = (PNi=1 wi)=K for each p,1 � p � K. Computational load balance of the processors can be explicitly included in the costfunction using a term which is minimized when all processor loads are equal. Another schemeis to include load balance criteria implicitly in the algorithm. Figure 1 illustrates a samplemapping problem instance. Figure 1(a) shows a TIG with N = 8 tasks. Figure 1(b) shows POGof a 2-dimensional hypercube with K = 4 processors, and Figure 1(c) shows the correspondingPCG. In Figure 1, numbers inside the circles denote the vertex labels, and numbers within theparenthesis denote the vertex or edge weights. Binary labeling of the 2-dimensional hypercubeis also given in Figure 1(b). Note that, unit communication cost assignment to edges of PCG7

1 2

3

6 7

54

8

4

1 2

3 4

1 2

3

(1) (2) (1)

(2)

(2) (1)

(2)

(1)

(2)

(1)

(1)

(3)(2)

(2)

(1)

(3)

(1)

(1) (1)

(1)

(2)

(2)

10 11

00 01

(a)

(b)

(c)Figure 1: A mapping problem instance, with (a) TIG, (b) POG (which represents a 2-dimensional hypercube) and (c) PCG.is performed assuming software routing protocol for multi-hop communications. A solution tothe mapping problem instance shown in Figure 1 isi 1 2 3 4 5 6 7 8M(i) 4 4 2 1 3 2 1 3Communication cost of this solution can be calculated as CC = 8. Computational loads ofthe processors are CLp = 3 for 1 � p � 4. Hence, perfect load balance is achieved, since(P8i=1 wi)=4 = 3.3 Mean Field AnnealingMean Field Annealing (MFA) merges collective computation and annealing properties of Hop-�eld Neural Networks (HNN) [9, 10, 11] and Simulated Annealing (SA) [15], respectively, toobtain a general algorithm for solving combinatorial optimization problems. HNN is used for8

solving various optimization problems and reasonable results are obtained for small size prob-lems [9]. However, simulations of this network reveals the fact that it is hard to obtain feasiblesolutions for large problem sizes. Hence, the algorithm does not have a good scaling property,which is a very important performance criterion for heuristic optimization algorithms. MFA isproposed as a successful alternative to HNN [18, 23, 24, 25]. In the MFA algorithm, problemrepresentation is identical to HNN [9, 23, 24], but iterative scheme used to relax the systemis di�erent. MFA can be used for solving a combinatorial optimization problem by choosing arepresentation scheme in which the �nal states of the spins can be decoded as a solution to thetarget problem. Then, an energy function is constructed whose global minimum value corre-sponds to the best solution of the problem to be solved. MFA is expected to compute the bestsolution to the target problem, starting from a randomly chosen initial state, by minimizingthis energy function.The MFA algorithm is derived by making an analogy to Ising spin model which is used toestimate the state of a system of particles or spins in thermal equilibrium. This method was�rst proposed for solving the traveling salesperson problem [23] and then it is applied to thegraph partitioning problem [5, 6, 17, 25]. Here, general formulation of the MFA algorithm [25]is given for the sake of completeness. In the Ising spin model, the energy of a system with Sspins has the following form: H(s) = 12 SXk=1Xl6=k �klsksl + SXk=1 hksk (3)Here, �kl indicates the level of interaction between spins k and l, and sk 2 f0; 1g is the valueof spin k. It is assumed that �kl = �lk and �kk = 0 for 1 � k; l;� S. At thermal equilibrium,spin average hski of spin k can be calculated using Boltzmann distribution as follows [23]hski = 11 + e��k=T (4)Here, �k = hH(s)ijsk=0 � hH(s)ijsk=1 represents the mean �eld e�ecting on spin k, where theenergy average hH(s)i of the system ishH(s)i = SXk=1Xl6=k �klhsksli+ SXk=1 hkhski (5)The complexity of computing �k using Eq. (5) is exponential [25]. However, for large number9

1. Get the initial temperature T0, and set T = T02. Initialize the spin averages hsi = [hs1i; : : : ; hski; : : : ; hsSi]3. While temperature T is in the cooling range DO3.1 While system is not stabilized for current temperature DO3.1.1 Select a spin k at random.3.1.2 Compute �k, �k = �Pl6=k �klhsli � hk3.1.3 Update hski, hski = f1 + e��k=Tg�13.2 Update T according to the cooling scheduleFigure 2: The Mean Field Annealing algorithm.of spins, mean �eld approximation can be used to compute the energy average ashH(s)i = 12 SXk=1Xl6=k �klhskihsli + SXk=1hkhski (6)Since hH(s)i is linear in hski, mean �eld �k can be computed using the following equation.�k = hH(s)ijsk=0 � hH(s)ijsk=1 = �@hH(s)i@hsii = �0@Xl6=k �klhsli + hk1A (7)Thus, the complexity of computing �k reduces to O(S).At each temperature, starting with initial spin averages, the mean �eld e�ecting on a randomlyselected spin is computed using Eq. (7). Then, spin average is updated using Eq. (4). Thisprocess is repeated for a random sequence of spins until the system is stabilized for the currenttemperature. The general form of the MFA algorithm derived from this iterative relaxationscheme is shown in Figure (2). The MFA algorithm is used to �nd the equilibrium point of asystem of S spins using an annealing process similar to SA.HNN and SA have a major di�erence; SA is an algorithm implemented in software, whereasHNN is derived with a possible hardware implementation in mind. MFA is somewhere inbetween, it is an algorithm implemented in software, having potential for hardware realiza-tion [24, 25]. In this work MFA is treated as a software algorithm. Performance of MFA iscomparable to other software algorithms as SA and KL, conforming this point of view.10

4 Mean Field Annealing for the Mapping ProblemIn this section, we propose a formulation of the Mean Field Annealing (MFA) algorithm forthe mapping problem. The TIG and PCG models described in Section 2 are used to representthe mapping problem. The formulation is �rst presented for problem instances modeled bydense TIGs. The modi�cations in the formulation for the mapping problem instances that canbe modeled by sparse TIGs are presented later. In this section, we also present an e�cientimplementation scheme for the proposed formulation.4.1 FormulationA spin matrix, which consists of N task-rows and K processor-columns, is used as the repre-sentation scheme. That is, N �K spins are used to encode the solution. The output sip of aspin (i; p) denotes the probability of mapping task i to processor p. Here, sip is a continuousvariable in the range 0 � sip � 1. When the MFA algorithm reaches to a solution, spin valuesconverge to either 1 or 0 indicating the result. If sip converges to 1, this means that task iis mapped to processor p. For example, a solution to the mapping problem instance given inFigure 1 can be represented by the following N �K spin matrix.K Processorsz }| {1 2 3 4N Tasks8>>>>>>>>>>>>><>>>>>>>>>>>>>: 1 0 0 0 12 0 0 0 13 0 1 0 04 1 0 0 05 0 0 1 06 0 1 0 07 1 0 0 08 0 0 1 0Note that, this solution is identical to the solution given at the end of Section 2.Following energy (i.e., cost) function is proposed for the mapping problemH(s) = 12 NXi=1Xj 6=i KXp=1Xq 6=p eijsipsjqdpq + r2 NXi=1Xj 6=i KXp=1 sipsjpwiwj (8)11

Here, eij denotes the edge weight between the pair of tasks i and j, and wi denotes the weightof task i in TIG. Edge weight between processors p and q in PCG is represented by dpq. Underthe mean �eld approximation, the expression hH(s)i for the expected value of the cost functionwill be similar to the expression given for H(s) in Eq. (8). However, in this case, sip, siq andsjp should be replaced with hsipi, hsiqi and hsjpi respectively. For the sake of simplicity, sip isused to denote the expected value of spin (i; p) (i.e., spin average hsipi).In Eq. (8), the term sip � sjq denotes the probability that task i and task j are mapped totwo di�erent processors p and q, respectively. Hence, the term eij � sip � sjq � dpq representsthe weighted interprocessor communication overhead introduced due to the mapping of tasks iand j to di�erent processors. Note that, in Eq. (8), the �rst quadruple summation termcovers all processor pairs in PCG for each edge pair in TIG. Hence, this term denotes the totalinterprocessor communication cost for a mapping represented by an instance of the spin matrix.Then, minimization of the �rst quadruple summation term corresponds to the minimization ofthe interprocessor communication overhead.Second triple summation term in Eq. (8) computes the summation of the inner products ofthe weights of the tasks mapped to individual processors. Global minimum of this term occurswhen equal amount of task weights are mapped to each processor. If there is an imbalancein the mapping, second triple summation term increases with the square of the amount ofthe imbalance, penalizing imbalanced mappings. The parameter r in Eq. (8) is introduced tomaintain a balance between the two optimization objectives of the mapping problem.Using the mean �eld approximation described in Eq. (7), the expression for the mean �eld �ipexperienced by spin (i; p) is�ip = �@H(s)@sip = � NXj 6=i KXq 6=p ei;jsjqdpq � r NXj 6=i sjpwiwj (9)In a feasible mapping, each task should be mapped exclusively to a single processor. However,there exists no penalty term in Eq. (8) to handle this feasibility constraint. This constraint isexplicitly handled while updating the spin values. As is seen in Eq. (4), individual spin averagesip is proportional to e�ip=T , i.e. sip � e�ip=T . Then, sip can be normalized assip = e�ip=TPKq=1 e�iq=T (10)12

This normalization enforces the summation of each row of the spin matrix to be equal to unity.Hence, it is guaranteed that all rows of the spin matrix will have only one spin with outputvalue 1 when the system is stabilized.Eq. (9) can be interpreted in the context of the mapping problem as follows. First double sum-mation term represents the increase in the total interprocessor communication cost by mappingtask i to processor p. Second summation term represents the increase in the computational loadbalance cost associated with processors p by mapping task i to processor p. Hence, ��ip maybe interpreted as the decrease in the overall solution quality by mapping task i to processor p.Then, in Eq. (10), sip is updated such that the probability of task i being mapped to processor pincreases with increasing mean �eld �ip experienced by spin (i; p). Hence, the MFA heuristiccan be considered as a gradient-descent type algorithm in this context. However, it is also astochastic algorithm, similar to SA, due to the random spin update scheme and the annealingprocess.In the general MFA algorithm given in Figure 2, a randomly chosen spin is updated at a time.However, in the proposed formulation of MFA for the mapping problem, K spins of a randomlychosen row of the spin matrix are updated at a time. Mean �elds �ip, (1 � p � K) experiencedby the spins at the i-th row of the spin matrix are computed using Eq. (9) for p = 1; 2; : : : ;K.Then, the spin averages sip; 1 � p � K are updated using Eq. (10) for p = 1; 2; : : : ;K. Eachrow update of the spin matrix is referred as a single iteration of the algorithm.The system is observed after each spin-row update in order to detect the convergence to anequilibrium state for a given temperature [24]. If energy function H does not decrease after acertain number of consecutive spin-row updates, this means that the system is stabilized forthat temperature [24]. Then, T is decreased according to the cooling schedule, and iterationprocess is re-initiated. Note that, the computation of the energy di�erence �H necessitates thecomputation of H (Eq. (8)) at each iteration. The complexity of computing H is O(N2�K2),which drastically increases the complexity of one iteration of MFA. Here, we propose an e�cientscheme which reduces the complexity of energy di�erence computation by an asymptoticalfactor.The incremental energy change �Hip due to the incremental change �sip in the value of an13

individual spin (i; p) is �H = �Hip = �ip�sip (11)from Eq. (7). Since, H(s) is linear in sip (see Eq. (8)), above equation is valid for any amountof change �sip in the value of spin (i; p), that is�H = �Hip = �ip�sip (12)At each iteration of the MFA algorithm, K spin values are updated in a synchronous manner.Hence, Eq. (12) is valid for all spin updates performed in a particular iteration. Thus, energydi�erence due to the spin-row update operation in a particular iteration can be computed as�H = KXp=1�ip�sip (13)where �sip = snewip � soldip . The complexity of computing Eq. (13) is only O(K) since mean �eld(�ip) values are already computed for the spin updates.The formulation of the MFA algorithm for the mapping problem instances with sparse TIGs isas follows. The expression given for �ip (Eq. (9)) can be modi�ed for sparse TIGs as�ip = � Xj2Adj(i) KXq 6=p ei;jsjqdpq � r NXj 6=i sjpwiwj (14)Here, Adj(i) denotes the set of tasks connected to task i in the given TIG. Note that, sparsityof TIG can only be exploited in the mean �eld computations since spin update operations givenin Eq. (10) are dense operations which are not e�ected by the sparsity of TIG.Figure 3 illustrates the MFA algorithm proposed for solving the mapping problem. Complex-ity of computing �rst double summation terms in Eq. (9) and Eq. (14) are O(N � K) andO(davg �K) for dense and sparse TIGs respectively. Here, davg denotes the average vertexdegree in the sparse TIG. Second summation operations in Eq. (9) and Eq. (14) are bothO(N) for dense and sparse TIGs. Then, complexity of a single mean �eld computation isO(N �K) and O(davg �K + N) for dense (Eq. (9)) and sparse (Eq. (14)) TIGs respectively.Hence, complexity of mean �eld computations for a spin row is O(N � K2) for dense TIGs,and O(davg �K2+N �K) for sparse TIGs (step 3.1.2 in Figure 3). Spin update computations(steps 3.1.3, 3.1.4 and 3.1.6) and energy di�erence computation (step 3.1.5) are both O(K)operations. Hence, the overall complexity of a single MFA iteration is O(N � K2) for denseTIGs, and O(davg �K2 +N �K) for sparse TIGs.14

1. Get the initial temperature T0, and set T = T02. Initialize the spin averages s = [s11; : : : ; sip; : : : ; sNK]3. While temperature T is in the cooling range DO3.1 While H is decreasing DO3.1.1 Select a task i at random.3.1.2 Compute mean �elds of the spins at the i-th row�ip = �PNj 6=iPKq 6=p ei;jsjqdpq � rPNj 6=i sjpwiwj for 1 � p � K3.1.3 Compute the summationPKp=1 e�ip=T3.1.4 Compute new spin values at the i-th rowsnewip = e�ip=T=PKp=1 e�ip=T for 1 � p � K3.1.5 Compute the energy change due to these spin updates�H =PKp=1 �ip(snewip � sip)3.1.6 Update the spin values at the i-th rowsip = snewip for 1 � p � K3.2 T = �� TFigure 3: The proposed MFA algorithm for the mapping problem.4.2 An E�cient Implementation SchemeAs is mentioned earlier, the MFA algorithm proposed for the mapping problem is an iterativeprocess. The complexity of a single MFA iteration is mainly due to the mean �eld computations.In this section, we propose an e�cient implementation scheme which reduces the complexity ofthe mean �eld computations, and hence the complexity of the MFA iteration, by asymptoticalfactors.Assume that, i-th spin-row is selected at random for update in a particular iteration. Theexpression given for �ip (Eq. (9)) can be rewritten by changing the order of the �rst double15

summation as �ip = � KXq 6=p dpq NXj 6=i ei;jsjq � r NXj 6=i sjpwiwj = � KXq 6=p dpq�iq � r ip (15)where �iq = NXj 6=i ei;jsjq (16) ip = NXj 6=i sjpwiwj (17)Here, �iq represents the increase in the interprocessor communication by mapping task i toa processor other then q (for the current mapping on processor q), assuming uniform unitcommunication cost between all pairs of processors in PCG. Similarly, ip represents the increasein the computational load balance cost associated with processor p, by mapping task i toprocessors p (for the current mapping on processor p).For an e�cient implementation, the overall mean �eld computations involved in a single itera-tion can be computed using the following matrix equation�i = �D��i � r	i = ��i � r	i (18)Here, D is a K �K adjacency matrix representing PCG (i.e. Dpq = dpq), and �i, �i 	i and�i = D��i are column vectors with K elements, where�i = [�i1; : : : ; �ip; : : : ; �iK]T �i = [�i1; : : : ; �ip; : : : ; �iK]T	i = [i1; : : : ; ip; : : : ; iK]T �i = [�i1; : : : ; �ip; : : : ; �iK]T (19)The complexity analysis of the proposed implementation scheme for dense TIGs is as follows.Complexity of computing �iq and ip are both O(N). Complexity of constructing �i and 	ivectors are both O(N�K), since both vectors containK such entries. Complexity of computingthe matrix-vector product required in Eq. (18) is O(K2). Hence, the overall complexity ofcomputing the �i vector (Eq. (18)) reduces to O(N �K +K2) = O(N �K), since N � Kin general. The complexity of K spin updates and the computation of �H are both O(K).Thus, the proposed scheme reduces the computational complexity of a single MFA iteration toO(N �K) for dense TIGs with N � K. 16

The complexity analysis of the proposed implementation for sparse TIGs is as follows. Notethat, the sparsity of TIG can only be exploited in the computation of �iq values since�iq = NXj2Adj(i) ei;jsjq (20)for sparse TIGs. Hence, the complexity of computing an individual �iq is only O(davg). Thus,the complexity of constructing the �i vector reduces to O(davg � K). The complexity ofcomputing the �i vector in Eq. (18) reduces to O(davg �K +K2). However, the complexity ofconstructing the	i vector required in Eq. (18) is O(N�K), dominating the overall complexityof the mean �eld computations. The complexity of computing the 	i vector can be reduced ifthe computation of ip in Eq. (17) is re-formulated as ip = NXj 6=i sjpwiwj = wi NXj 6=i wjsjp = wi(NXj=1wjsjp � wisip) ip = wi(p � wisip) (21)where p = PNj=1wjsjp. Here, p represents the computational load of processor p, for thecurrent mapping on processor p. Note that, computationally, p represents the weighted sumof spin values of the p-th column of the spin matrix. At the beginning of the MFA algorithm,initial p value for each column p (1 � p � K) can be computed for the initial spin values.Then, p values can be updated at the end of each iteration (i.e. after spin updates) usingnewp = oldp � wisoldip + wisnewip for 1 � p � K (22)The computation of initial p values can be excluded from the complexity analysis since they arecomputed only once at the very beginning of the algorithm. In this scheme, the computationof an individual ip using Eq. (21) is an O(1) operation. Hence, the construction of the 	ivector required in Eq. (18) becomes an O(K) operation. Thus, the complexity of mean �eldcomputations involved in a single iteration reduces to O(davg�K+K2). Note that, the updateof an individual p value (using Eq. (22)) at the end of each iteration is an O(1) operation.Hence, the overall complexity of p updates is O(K) since K weighted column sums shouldbe updated at each iteration. Complexity of spin updates and energy di�erence computationare also O(K) for sparse TIGs. Hence, the implementation scheme proposed for sparse TIGsreduces the complexity of a single MFA iteration to O(davg �K +K2).17

5 Performance of Mean Field Annealing AlgorithmThis section presents the performance evaluation of the Mean Field Annealing (MFA) algorithmfor the mapping problem, in comparison with two well-known mapping heuristics; SimulatedAnnealing (SA) and Kernighan-Lin (KL). Each algorithm is tested using randomly generatedmapping problem instances. Following sections briey present the implementation details ofthese algorithms.5.1 MFA ImplementationThe MFA algorithm (Figure 3) described in Section 4 is implemented in order to evaluate itsperformance. Cooling process is started from an initial temperature which is found experi-mentally. It is not feasible to search for an initial temperature for each problem instance, asthis process may take more time than solving the original problem. In order to avoid this, weperformed experiments for only a small number of instances and chose an initial temperaturewhich works for each one. For the mapping problem instances used in these experiments, initialtemperature was found to be T0 = 5:0. This value for T0 is used for all 26 mapping probleminstances involved in the experiments.Coe�cient r, which determines the balance between two optimization criteria of the mappingproblem, is computed at the beginning of the MFA algorithm. After the spins are initializedrandomly, r is computed using these initial spin values asr = PNi=1Pj 6=iPKp=1Pq 6=p eijsipsjqdpqK �PNi=1Pj 6=iPKp=1 sipsjpwiwj (23)As is seen from the equation, r is used for balancing of the two summation terms in the costfunction. Note that, r is inversely proportional to the number of processors.At each temperature, iterations continue until �H < � for L consecutive iterations whereL = N initially. Parameter � is chosen to be 0:5. Cooling process is realized in two phases;slow cooling followed by fast cooling, similar to the cooling schedules used for SA [18]. In theslow cooling phase, temperature is decreased using � = 0:9 until T is less than T0=1:5. Then,in the fast cooling phase, L is set to L=4 and � is set to 0:5 and cooling is continued until T isless then T0=5:0. At the end of this cooling process, maximum spin values at each row are set18

to 1 and all other spin values are set to 0. Then the result is decoded as described in Section 4,and the resulting mapping is found. Note that, all parameters used in this implementation areeither constants or found automatically. Hence, there is no parameter setting problem.5.2 Kernighan-Lin ImplementationKernighan-Lin heuristic is not directly applicable to the mapping problem since it was originallyproposed for graph bipartitioning. The two phase approach is used to apply the KL heuristic tothe mapping problem. In the �rst phase, TIG is partitioned into K clusters, where K is equalto the number of processors. These K clusters are then mapped to PCG using a one-to-onemapping heuristic in the second phase. One-to-one mapping heuristic used in this work is avariant of the KL heuristic.For the clustering phase, Kernighan-Lin heuristic is implemented e�ciently as described byFiduccia and Mattheyses [8]. Two di�erent schemes are utilized to apply KL to K-way graphpartitioning. First scheme, partitioning by recursive bisection (KL-RB), recursively partitionsthe initial graph into two partitions untilK partitions are obtained. Other scheme, partitioningby pairwise min-cut (KL-PM), starts with an initial K-way partitioning and then iterativelyminimizes the cutsizes between each pair of partitions until no improvement can be achieved.In the KL heuristic, computational load balance is maintained implicitly by the algorithm.Vertex (task) moves causing intolerable load imbalances are not considered.In the beginning of the second phase, K clusters formed in the �rst phase are mapped to theK processors of the multicomputer randomly. After this initial mapping, communication costis minimized by performing a sequence of cluster swaps between processor pairs.5.3 Simulated Annealing ImplementationThe SA algorithm, implemented for solving the mapping problem, uses the one phase approachto map TIG onto PCG. In simulated annealing, starting from a randomly chosen initial con�g-uration, con�guration space is searched for the best solution using a probabilistic hill climbingalgorithm. A con�guration of the mapping problem is a mapping between TIG and PCG,which assigns each task in TIG to a processor in PCG. In order the search the con�guration19

space, neighborhood of a con�guration must be de�ned. For the implementation in this work,neighborhood of a con�guration consists of all con�gurations which results with moving onevertex (task) of TIG from the maximum loaded node (processor) of PCG to any other nodeof PCG. At each iteration of the simulated annealing algorithm, one of the possible moves ischosen randomly as a candidate move. Then, the resulting decrease in the total communica-tion cost caused by the candidate move is calculated without changing the con�guration. Ifthe candidate move decreases the cutsize, it is realized. If it increases the cutsize, then it isrealized with a probability which decreases with the amount of increase in the total cutsize.Acceptance probabilities of the moves that increase the cost are controlled with a temperatureparameter T which is decreased using an annealing schedule. Hence, as the annealing proceedsacceptance probabilities of uphill moves decrease. An automatic cooling schedule is used in theimplementation of the SA algorithm [18].5.4 Experimental ResultsIn this section, performance of the MFA algorithm is discussed in comparison with the SA andKL algorithms. These heuristics are experimented by mapping randomly generated TIGs ontomesh and hypercube connected multicomputers.Six test TIGs are generated with N = 200 and 400 vertices. Vertices of these TIGs are weightedby assigning a randomly chosen integer weight between 1 and 10 to each vertex (1 � wi � 10,for 1 � i � N). Interaction patterns among the vertices of these TIGs are constructed asfollows. A maximum vertex degree, dmax, is selected for each test TIG (dmax = 8; 16; 32), anddegree di of each vertex i is randomly chosen between 1 and dmax (i.e. 1 � di � dmax, for1 � i � N). Then, each vertex i of TIG is connected to di randomly chosen vertices. Resultingedges are weighted randomly with integer values varying between 1 and 10. These TIGs aremapped to 3-, 4-, 5-dimensional hypercubes and 4 � 4, 4 � 8 two dimensional meshes. PCGscorresponding to these interconnection topologies are constructed assuming software routing asis described in Section 2.Tables 1, 2 and 3 illustrate the performance results of the KL-RB, KL-PM, SA and MFAheuristics for the generated mapping problem instances. In these tables, N and jEj denotethe number of vertices and edges in the test TIGs, respectively, and K denotes the number20

Table 1: Total communication cost averages (and standard deviations) of the solutions foundby the KL-RB, KL-PM, SA and MFA heuristics, for randomly generated mapping probleminstances.PROBLEM SIZE AVERAGE COMMUNICATION COSTN jEj K T KL-RB KL-PM SA MFA200 544 8 H 1807:4 (68:7) 1846:0 (56:2) 1595:1 (28:1) 1701:6 (45:7)200 544 16 H 2819:9 (67:1) 2747:1 (83:5) 2180:0 (16:3) 2318:2 (35:3)200 544 32 H 4098:8 (123:3) 4710:4 (102:0) 2881:1 (32:4) 2971:6 (43:4)200 1120 8 H 5421:9 (56:2) 5494:7 (62:9) 4946:4 (34:7) 5215:8 (83:2)200 1120 16 H 7742:4 (104:5) 7816:1 (86:4) 6699:1 (54:9) 7013:8 (25:5)200 1120 32 H 10377:1 (136:7) 11280:2 (153:6) 8495:7 (99:0) 8893:1 (67:4)200 2152 8 H 12721:6 (152:3) 12959:0 (101:0) 12018:5 (62:1) 12349:0 (208:0)200 2152 16 H 17828:9 (142:5) 17959:9 (132:6) 16197:0 (79:6) 16519:4 (173:6)200 2152 32 H 23127:6 (109:8) 24260:3 (131:3) 20393:7 (183:6) 20607:3 (220:1)400 1227 8 H 4360:6 (69:9) 4444:5 (51:3) 3772:3 (21:9) 4526:9 (66:9)400 1227 16 H 6096:0 (98:3) 6073:2 (55:8) 5086:4 (33:1) 6046:5 (101:2)400 1227 32 H 8420:2 (109:1) 7999:9 (100:9) 6466:4 (47:6) 7641:3 (98:4)400 2283 8 H 11247:1 (126:3) 11491:5 (129:8) 10152:1 (67:6) 10838:7 (60:2)400 2283 16 H 15566:7 (142:1) 15896:9 (159:2) 13629:6 (46:9) 14591:6 (142:1)400 2283 32 H 20543:8 (154:8) 20527:1 (203:1) 17199:1 (42:4) 18365:2 (99:5)400 4298 8 H 25318:3 (164:9) 25832:1 (219:8) 23506:9 (82:9) 25052:7 (147:5)400 4298 16 H 34590:6 (230:6) 35395:4 (173:9) 31417:7 (84:8) 33597:3 (215:4)400 4298 32 H 45053:8 (286:2) 45098:1 (300:3) 39507:2 (105:3) 42249:0 (175:8)200 544 16 M 3364:2 (122:0) 3318:7 (83:4) 2658:5 (53:2) 2726:6 (67:7)200 544 32 M 5618:7 (217:8) 6822:5 (147:3) 4260:5 (34:4) 4134:3 (101:1)200 1120 16 M 9234:2 (161:6) 9318:2 (176:1) 8432:3 (135:7) 7875:1 (65:6)200 1120 32 M 14659:9 (163:4) 16485:4 (104:1) 13556:0 (221:0) 11710:6 (188:2)400 1227 16 M 7341:4 (105:5) 7357:0 (174:6) 6295:3 (86:3) 7401:6 (131:2)400 1227 32 M 12207:4 (246:6) 11758:6 (240:5) 9909:5 (80:0) 11619:0 (162:0)400 2283 16 M 18670:9 (177:8) 19133:0 (200:6) 17484:4 (143:7) 16845:9 (48:9)400 2283 32 M 29827:0 (375:9) 30156:3 (280:7) 28308:7 (251:5) 25208:3 (174:6)of processors in the target PCG. Interconnection topology of the target POG is denoted byT , where H denotes the hypercube interconnection topology and M denotes the mesh inter-connection topology. Each algorithm is executed 10 times for each problem instance startingfrom di�erent, randomly chosen initial con�gurations. Averages and standard deviations of theresults are illustrated in Tables 1, 2 and 3.Tables 1 and 2 illustrate the quality of the solutions obtained by the KL-RB, KL-PM, SA andMFA heuristics. Total communication cost averages (and standard deviations) of the solutionsare displayed in Table 1, and percent computational load imbalance averages (and standarddeviations) are displayed in Table 2. Percent load imbalance for each solution is computed21

Table 2: Percent computational load imbalance averages (and standard deviations) of thesolutions found by the KL-RB, KL-PM, SA, MFA heuristics, for randomly generated mappingproblem instances.PROBLEM SIZE AVERAGE PERCENT LOAD IMBALANCEN jEj K T KL-RB KL-PM SA MFA200 544 8 H 10:2 (1:9) 8:4 (0:8) 2:7 (1:3) 4:5 (1:5)200 544 16 H 15:1 (1:9) 8:4 (0:4) 7:5 (1:3) 9:4 (1:9)200 544 32 H 18:8 (1:9) 8:9 (1:4) 16:2 (4:1) 18:8 (3:4)200 1120 8 H 12:4 (1:4) 9:0 (0:3) 3:1 (1:0) 3:9 (0:5)200 1120 16 H 16:1 (1:0) 8:4 (0:6) 7:9 (3:3) 9:2 (1:4)200 1120 32 H 19:7 (2:7) 11:0 (4:6) 21:1 (4:5) 16:3 (3:8)200 2152 8 H 13:3 (0:7) 9:2 (0:2) 3:7 (1:3) 5:9 (1:5)200 2152 16 H 17:7 (0:5) 8:7 (0:0) 9:2 (1:7) 14:9 (2:3)200 2152 32 H 22:5 (2:5) 8:7 (0:0) 18:3 (3:4) 28:5 (3:5)400 1227 8 H 12:0 (1:2) 9:4 (0:3) 1:6 (0:4) 1:6 (0:5)400 1227 16 H 14:1 (1:9) 9:6 (0:3) 3:7 (0:9) 2:5 (0:5)400 1227 32 H 18:8 (1:0) 9:5 (0:3) 7:5 (1:3) 5:4 (0:9)400 2283 8 H 13:0 (1:3) 9:5 (0:2) 1:7 (1:0) 2:2 (0:8)400 2283 16 H 16:0 (1:6) 9:3 (0:3) 4:0 (0:9) 4:8 (1:1)400 2283 32 H 20:4 (1:5) 8:6 (0:3) 8:5 (1:7) 7:8 (1:0)400 4298 8 H 13:3 (1:2) 9:9 (0:2) 2:1 (0:8) 1:7 (0:4)400 4298 16 H 16:4 (1:7) 9:4 (0:3) 4:8 (1:5) 4:0 (0:6)400 4298 32 H 20:3 (2:2) 9:6 (0:2) 7:7 (2:5) 8:4 (1:3)200 544 16 M 15:2 (1:2) 8:4 (0:4) 8:4 (2:2) 13:0 (2:1)200 544 32 M 18:3 (2:0) 8:7 (0:0) 15:1 (2:7) 33:9 (3:9)200 1120 16 M 16:3 (1:5) 8:5 (0:4) 8:5 (1:5) 16:6 (1:4)200 1120 32 M 19:4 (2:0) 9:4 (2:2) 20:7 (4:2) 37:0 (2:4)400 1227 16 M 16:1 (1:7) 9:6 (0:2) 3:4 (0:7) 3:4 (0:6)400 1227 32 M 18:7 (1:7) 9:7 (0:2) 12:0 (4:1) 7:1 (0:7)400 2283 16 M 16:0 (1:6) 9:4 (0:1) 5:3 (1:1) 10:6 (1:3)400 2283 32 M 20:1 (1:6) 8:6 (0:2) 10:4 (1:5) 22:6 (1:9)proportional to the computational load di�erence between maximum and minimum loadedprocessors. Table 3 displays the execution time averages of the KL-RB, KL-PM, SA and MFAheuristics. Table 4 is constructed for a better illustration of the overall performance of the MFAalgorithm in comparison with the KL and SA heuristics. For each problem instance, resultsgiven in Tables 1, 2 and 3 are normalized with respect to the results of the MFA algorithm. Theaverages of the normalized results of Table 1, Table 2 and Table 3 constitute the �rst, secondand fourth rows of Table 4, respectively. The average solution quality for each algorithm iscomputed using SOL'N QUALITY = 1 = (COMM. COST + LOAD IMBALANCE) (24)Third row of Table 4, illustrates solution quality value of each algorithm normalized with respect22

Table 3: Execution time averages (in seconds) of the KL-RB, KL-PM, SA and MFA heuristics,for randomly generated mapping problem instances.PROBLEM SIZE AVERAGE EXECUTION TIMESN jEj K T KL-RB KL-PM SA MFA200 544 8 H 1:1 5:7 67:3 2:3200 544 16 H 1:5 13:7 127:2 5:6200 544 32 H 3:3 29:6 245:1 15:6200 1120 8 H 1:6 7:6 64:1 2:5200 1120 16 H 2:2 14:6 144:0 6:6200 1120 32 H 5:1 40:5 282:7 16:6200 2152 8 H 2:5 10:9 64:2 2:2200 2152 16 H 3:5 23:7 156:7 5:5200 2152 32 H 7:6 45:4 373:9 14:0400 1227 8 H 2:2 10:1 168:9 5:2400 1227 16 H 3:0 29:7 310:7 12:0400 1227 32 H 6:4 68:0 681:1 34:0400 2283 8 H 3:3 16:0 167:1 5:6400 2283 16 H 4:4 39:8 383:2 15:2400 2283 32 H 8:6 88:9 632:8 42:0400 4298 8 H 5:4 25:5 155:3 6:3400 4298 16 H 7:1 64:9 403:0 15:4400 4298 32 H 12:6 125:1 604:9 32:2200 544 16 M 1:5 13:7 135:0 5:7200 544 32 M 3:3 29:6 258:7 16:5200 1120 16 M 2:3 14:8 124:2 5:7200 1120 32 M 5:6 38:4 293:1 13:4400 1227 16 M 3:1 26:7 280:5 10:9400 1227 32 M 6:7 60:4 565:1 30:0400 2283 16 M 4:4 41:7 363:8 13:3400 2283 32 M 8:7 82:8 573:5 35:0Table 4: Average performance measures of the KL-RB, KL-PM and SA heuristics normalizedwith respect to the MFA heuristic. KL-RB KL-PM SA MFACOMM. COST 1:114 1:148 0:957 1:0LOAD IMBALANCE 2:718 1:714 0:875 1:0SOL'N QUALITY 0:522 0:699 1:092 1:0EXECUTION TIME 0:407 2:800 23:308 1:023

to the MFA algorithm.As is seen in Tables 1, 2 and 4, the quality of solutions obtained by the MFA and SA heuristicsare superior to those of the KL-RB and KL-PM heuristics. Solutions produced by SA areslightly better compared with the solutions produced by MFA, whereas the MFA algorithm issigni�cantly faster (23 times on the average). As is seen in Table 3 and 4, average executiontime of the MFA algorithm is comparable with that of the e�cient KL heuristic. The MFAalgorithm is 2:8 times faster than the KL-PM heuristic and 2:5 times slower than the KL-RBheuristic on the average. These results indicate that the proposed MFA algorithm is a promisingalternative heuristic for solving the mapping problem.6 Parallelization of Mean Field Annealing AlgorithmAs is mentioned earlier, heuristic used for solving the mapping problem is a preprocessingoverhead introduced for the e�cient implementation of a given parallel program on the targetmulticomputer. If the mapping heuristic is implemented sequentially, this preprocessing can beconsidered in the serial portion of the parallel program which limits the maximum e�ciency ofthe parallel program on the target machine. For a �xed parallel program instance, the executiontime of the parallel program is expected to decrease with increasing number of processors inthe target multicomputer. However, as is seen in Table 3, for a �xed TIG, the executiontime of all mapping heuristics increase with increasing number of processors in the targetmulticomputer. Hence, the serial fraction of the parallel program will increase with increasingnumber of processors. Thus, this preprocessing will begin to constitute a drastic limit on themaximum e�ciency of the overall parallelization due to Amdahl's Law. Hence, parallelizationof these mapping heuristics on the target multicomputer is a crucial issue for e�cient parallelimplementations.Unfortunately, parallelization of the mapping heuristics introduces another mapping problem.The computations of the mapping heuristics should be mapped to the processors of the sametarget architecture. However, in this case, the parallel algorithm for the mapping heuristicshould be such that its mapping can be achieved intuitively. Furthermore, the intuitivemappingshould lead to an e�cient parallel implementation of the mapping heuristic. For these reasons,24

the target mapping heuristic to be parallelized should involve regular and inherently parallelcomputations. The MFA algorithm proposed in Section 4 for the general mapping problem hassuch nice properties for an e�cient parallelization. Following paragraphs discuss the e�cientparallelization of the proposed mapping heuristic for multicomputers.Assume that, the MFA algorithm is used to map a given parallel program represented witha TIG having N vertices on a target multicomputer with K processors. The MFA algorithmwill use an N �K spin matrix for the mapping operation. The question is to map the com-putations of the MFA algorithm to the same target multicomputer (with the same number ofK processors). As is mentioned earlier, the MFA algorithm is an iterative algorithm. Hence,the mapping scheme can be devised by analyzing the computations involved in a particulariteration of the algorithm. Atomic task can be considered as the computations required forupdating an individual spin. Note that, K spin averages at a particular row of the spin matrixare updated at each iteration. Hence, these K spin updates can be computed in parallel bymapping each spin in a row of the spin matrix to a distinct processor of the target architecture.Thus, the N �K spin matrix is partitioned column-wise such that each processor is assignedan individual column of the spin matrix. That is, column p of the spin matrix is mappedto processor p of the target architecture. Each processor is responsible for maintaining andupdating the spin values in its local column. Assume that, task-i is selected at random in aparticular iteration. Then, each processor is responsible for updating the probability of task ibeing mapped to itself.A single iteration of the MFA algorithm can be considered as a three phase process, namely,mean �eld computation phase, spin update phase, and energy di�erence computation phase.Each processor p should compute its local mean �eld value �ip (Eq. (9) or Eq. (14)) in the�rst phase, in order to update its local spin value sip (Eq. (10)) in the second phase. Asis mentioned earlier, mean �eld computation phase is the most time consuming phase of theMFA algorithm. Fortunately, mean �eld computations are inherently parallel since there are nointeractions among the mean �eld computations involved in a particular iteration. However, aclose look to Eq. (9) reveals that each processor needs most recently updated values of all spinsexcept the ones in the i-th row in order to compute its local mean �eld value. Recall that, eachprocessor maintains only a single column of updated spin values due to the proposed mappingscheme. Hence, this computational interaction necessitates global interprocessor communication25

just prior to the distributed mean �eld computation at each iteration. The volume of globalinterprocessor communication is proportional to O(N � K) for dense TIGs. As is seen inEq.(14), the volume of global interprocessor communication is proportional to O(davg �K) forsparse TIGs. The volume of global interprocessor communication can be reduced to O(K) forboth dense and sparse TIGs by considering the parallelization of the matrix equation given inEq. (18).Eq. (18) involves the following operations : construction of the �i and 	i vectors, dense matrixvector product �i = D��i and vector addition �i = ��i � r	i. Note that, each processorp only needs to compute the p-th entry �ip of the �i vector, and the p-th entry ip of the 	ivector in order to compute its local mean �eld value �ip in parallel. The matrix vector productcan be performed in parallel by employing the scalar accumulation (SA-MVP) scheme. In thisscheme, each processor needs only the p-th row dp of the dense D matrix and the whole columnvector �i.Each processor p can concurrently compute the p-th entry �ip of the �i vector using Eq. (16)or Eq. (20) without any interprocessor communication. Note that, q in these equations shouldbe replaced by p in these computations. Then, a global collect (GCOL) operation is requiredfor each processor to obtain a local copy of the �i vector. The GCOL operation is essentiallyappending K local scalars, in order, into a vector of size K and then duplicating this vectorin the local memory of each processor. The GCOL operation requires global interprocessorcommunication. Note that, only K local spin values should be collected globally thus reducingthe volume of communication during the GCOL operation by an asymptotical factor.After the GCOL operation, each processor has a local copy of the global �i vector. Hence, eachprocessor p can concurrently compute its local �ip by performing the inner-product �ip = dp��i.Then, each processor p should compute the p-th entry ip of the 	i vector. Note that, eachprocessor p already maintains the oldp value. Hence, each processor can concurrently compute ip using Eq. (21). Then, each processor p can concurrently compute its local mean �eld value�ip by performing the local computation �ip = ��ip � r ip. Note that, these computations arecompletely local computations and involve no interprocessor communication.The second phase of an individual MFA iteration is highly sequential since global interactionexists among spin updates due to the normalization process indicated by Eq. (10). Fortunately,26

this global interaction can be relieved by noting the independent exponentiation operationsinvolved in the numerator of Eq. (10). Hence, each processor p can concurrently compute itslocal e�ip=T value. Then, a global sum (GSUM) operation is required for each processor toobtain a local copy of the global sum of the local exponentiation results. The GSUM operationrequires global interprocessor communication. After the GSUM operation each processor p canconcurrently update its local spin value by computing Eq. (10). After computing snewip , eachprocessor p should concurrently update its local p values according to Eq. (22) for the use inthe next iteration.In the third phase, each processor should compute the same local copy of the global energydi�erence �H for global termination detection. Each processor p can concurrently compute itslocal energy di�erence �Hip = �ip�sip = �ip(snewip � soldip) due to its local spin update. Then,a GSUM operation, which requires global interprocessor communication, is required for eachprocessor to compute a local copy of the global sum �H = PKp=1�Hip.Hence, the proposed parallel MFA algorithm necessitates three global communication opera-tions due to the GCOL operation involved during the �rst phase and two GSUM operationsinvolved in the second and third phases. In �ne grain multicomputers, the volume of interpro-cessor communication is the important factor in predicting the complexity of the interprocessorcommunication overhead. However, in medium grain multicomputers, the number of communi-cations is also important since high set-up time overhead is associated with each communicationstep. The set-up time is the dominating factor for short messages in such architectures. Notethat, only a single oating-point variable, representing the running sum, is communicated dur-ing the GSUM operations involved in the last two phases of the parallel MFA algorithm.Reducing the number of GSUM operations required in the MFA algorithm will be a valuableasset in achieving e�cient implementations on medium grain multicomputers. As seen inEq. (13), there is an execution dependency between the computation of the energy di�erence�H and spin-row updates. This execution dependency between the second and the third phasecomputations can be relieved by rewriting the expression for �H as follows27

�H = KXp=1 �ip(snewip � soldip) = KXp=1�ipsnewip � KXp=1�ipsoldip= KXp=1 �ip e�ip=TPKq=1 e�iq=T � KXp=1 �ipsoldip = 1Ai KXp=1�ipe�ip=T � Ci = BiAi � Ci (25)where Ai = PKp=1 e�ip=T = PKp=1 aip, Bi = PKp=1 �ipe�ip=T = PKp=1 bip and Ci = PKp=1 �ipsoldip =PKp=1 cip. Hence, after each processor p computes its local aip = e�ip=T , bip = �ipe�ip=T andcip = �ipsoldip values, three global summations Ai = PKp=1 aip, Bi = PKp=1 bip and Ci = PKp=1 cipcan be accumulated in a single GSUM operation. After this single GSUM operation, eachprocessor p can concurrently update its local spin value and compute the same local copy ofthe global energy di�erence as sip = aip=Ai and �H = Bi=Ai�Ci, respectively. Note that, thisscheme reduces the number of GSUM operation from two to one. Three oating point variables,representing the running sums Ai, Bi, and Ci, are communicated during the communicationsinvolved in the GSUM operation.The node program (of processor p, for 1 � p � K) for a single iteration of the parallel MFAalgorithm proposed for solving the mapping problem is given in Figure 4. Note that, variableswith \ip" and \p" subscripts denote the local variables. Variables with \i" subscripts denotethe global variables which are constructed and duplicated at the local memory of each processorafter performing the indicated global operations. As is seen in Figure 4, the proposed parallelMFA algorithm exhibits very regular computational structure even for mapping arbitrarilyirregular TIGs. The communication structure is also very regular since it necessitates onlyGSUM and GCOL operations. Hence, the proposed parallel MFA algorithm can easily beimplemented on both MIMD and SIMD types of multicomputers.The parallel communication complexity of a single MFA iteration can be analyzed as follows.The interconnection schemes used in the processor organization of the multicomputers are usu-ally symmetric in nature (i.e. POG is symmetric). Hence, GSUM and GCOL type globaloperations in such architectures are usually performed by a sequence of concurrent communi-cation steps. Each communication step, involves concurrent single-hop communications. Thenumber of concurrent single-hop communications is proportional to the diameter of POG forboth GSUM and GCOL operations. For example, diameters of hypercube and mesh POGs arelog2K and K1=2, respectively. The overall volume of concurrent interprocessor communications28

1. Select a task i at random.2. Compute �ip =Pj2Adj(i) eijsjp3. Perform GCOL operation to obtain a local copy of�i = [�i1; : : : ; �ip; : : : ; �iK]T4. Compute the inner product �ip = dpT � �i5. Compute ip = wi(p � wisip)6. Compute the local mean �eld value �ip = ��ip � r ip7. Compute aip = e�ip=T , bip = �ipe�ip=T and cip = �ipsip8. Perform GSUM to compute the local copies ofAi =PKp=1 aip Bi =PKp=1 bip and Ci =PKp=1 cip9. Compute snewip = aip=Ai and then �sip = snewip � sip10. Compute �H = Bi=Ai � Ci11.Update p = p + wi�sip12.Update sip = snewipFigure 4: Node program (of processor p, for 1 � p � K) for one iteration of the parallel MFAalgorithm for the mapping problem.is proportional to the diameter and the number of processors (K) of POG for GSUM andGCOL operations, respectively.As is seen in Figure 4, the proposed parallel MFA algorithm achieves perfect load balance.The parallel computational complexity of a single MFA iteration can be obtained as follows.During the parallel computation of �ip values (step 2) each processor performs N � 1 (di)multiplication/addition operations for dense (sparse) TIGs. Here, di denotes the degree ofvertex i in TIG. During the parallel SA-MVP computation (step 4), each processor performsK multiplication/addition operations for both dense and sparse TIGs since the D matrix is adense matrix. Each processor performs the same constant amount of arithmetic operations inthe remaining steps (steps 5-7 and steps 9-12). Hence, the parallel computational complexity of29

the proposed algorithm is O(N +K) and O(davg +K) for dense and sparse TIGs respectively.Hence, linear speed-up can easily be achieved if communication overhead remains negligible.Note that, the number of concurrent communications increases with the diameter of POG (e.g.log2K, K1=2), whereas, computational granularity per processor increases with the number ofprocessors (K) of POG. Hence, percent communication overhead will reduce with increasingnumber of processors. Thus, the proposed parallel algorithm is expected to scale even onmedium-to-coarse grain multicomputers.7 ConclusionIn this paper, recently proposed Mean Field Annealing (MFA) algorithm is formulated forthe mapping problem. An e�cient implementation scheme is also developed for the proposedalgorithm. The performance of the proposed algorithm is evaluated in comparison with twowell known heuristics (Simulated Annealing (SA) and Kernighan-Lin (KL)) for a number ofrandomly generated mapping problem instances. The qualities of the solutions obtained by theMFA and SA heuristics are found to be superior to the qualities of the solutions obtained bythe KL heuristic. Execution time of the MFA algorithm is comparable to that of the e�cientKL heuristic. The SA heuristic produces slightly better solutions than the MFA algorithm,whereas MFA is signi�cantly faster. An e�cient parallel algorithm is also developed for theproposed MFA heuristic.References[1] Arora, R. K., and Rana, S. P., Heuristic algorithms for process assignment in distributedcomputing systems. Information Processing Letters, vol. 11, no. 4-5, pp. 199-203, 1980.[2] Aykanat, C., �Ozg�uner, F., Er�cal, F., and Sadayappan, P. Iterative algorithms for solution oflarge sparse systems of linear equations on hypercubes. IEEE Transactions on Computers,vol. 37, no. 12, pp. 1554-1567, 1988.[3] Behnam-Guilani, K. Fast decoupled load ow: the hybrid model. IEEE Transactions onPower Systems, vol. 3, no. 2, pp. 734-739, 1988.30

[4] Bokhari, S. H. On the mapping problem. IEEE Trans. Comput., vol. 30, no. 3, pp. 207-214,1981.[5] Bultan, T., and Aykanat, C. Parallel mean �eld algorithms for the solution of combinatorialoptimization problems. Proc. ICANN-91, vol. 1, pp. 591-596, 1991.[6] Bultan, T., and Aykanat, C. Circuit Partitioning Using Parallel Mean Field AnnealingAlgorithms. Proc. 3rd IEEE Symposium on Parallel Processing, 1991.[7] Er�cal, F., Ramanujam, J., and Sadayappan, P. Task allocation onto a hypercube by recur-sive mincut bipartitioning. J. Parallel Distrib. Comput. vol. 10, pp. 35-44, 1990.[8] Fiduccia, C. M., and Mattheyses, R. M. A linear heuristic for improving network partitions.Proc. Design Automat. Conf., pp. 175-181, 1982.[9] Hop�eld, J. J., and Tank, D. W. `Neural' Computation of Decisions in Optimization Prob-lems. Biolog. Cybern., vol. 52, pp. 141-152, 1985.[10] Hop�eld, J. J., and Tank, D. W. Computing with neural circuits: a model. Science, Vol.233, pp. 625-633, August 1986.[11] Hop�eld, J. J., and Tank, D. W. Collective computation in neuronlike circuits, Scienti�cAmerican, vol. 257, no. 6, pp. 104-114, 1987.[12] Indurkhya, B., Stone H. S., and Xi-Cheng, L. Optimal partitioning of randomly generateddistributed programs. IEEE Trans. Software Engrg., vol. 12, no. 3, pp. 483-495, 1986.[13] Kasahara, H., and Narita, S. Practical multiprocessor scheduling algorithms for e�cientparallel processing. IEEE Trans. Comput., vol. 33, no. 11, pp. 1023-1029, 1984.[14] Kernighan, B. W., and Lin, S. An e�cient heuristic procedure for partitioning graphs. BellSyst. Tech. J., vol. 49, pp. 291-307, 1970.[15] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. Optimization by simulated annealing.Science, vol. 220, pp. 671-680, 1983.[16] Lee, S. Y., Chiang, H. D., Lee, K. G., and Ku, B. Y. Parallel power system transientstability analysis on hypercube multiprocessors. IEEE Transactions on Power Systems,vol. 6, no. 3, pp. 1337-1343. 31

[17] Peterson, C., and Anderson, J. R. Neural networks and NP-complete optimization prob-lems; a performance study on the graph bisection problem. Complex Syst. vol. 2, pp. 59-89,1988.[18] Peterson, C., and Soderberg, B. A new method for mapping optimization problems ontoneural networks. Int. J. Neural Syst., vol. 1, no. 3, 1989.[19] Ramanujam, J., Er�cal, F., and Sadayappan, P. Task allocation by simulated annealing.Proc. International Conference on Supercomputing. Boston, MA, May 1988, vol. III, Hard-ware & Software, pp. 475-497.[20] Sadayappan, P., and Er�cal, F.Nearest-neighbour mapping of �nite element graphs ontoprocessor meshes. IEEE Trans. Comput. vol. 36, no. 12, pp. 1408-1424, 1987.[21] Sadayappan, P.,Er�cal, F., and Ramanujam, J. Cluster partitioning approaches to mappingparallel programs onto a hypercube. Parallel Computing. vol. 13, pp. 1-16, 1990.[22] Shield, J. Partitioning concurrent VLSI simulation programs onto a multiprocessor bysimulated annealing. IEEE Proc. Part G, vol. 134, no. 1, pp. 24-28, 1987.[23] Van den Bout, D. E., and Miller, T. K. A Traveling Salesman Objective Function ThatWorks. IEEE Int. Conf. Neural Nets, vol. 2, pp. 299-303, 1988.[24] Van den Bout, D. E., and Miller, T. K. Improving the performance of the Hop�eld-Tankneural network through normalization and annealing. Biolog. Cybern., vol. 62, pp. 129-139,1989.[25] Van den Bout, D. E., and Miller, T. K. Graph partitioning using annealed neural networks.IEEE Trans. Neural Networks, vol. 1, no. 2, pp. 192-203, 1990.
32

