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Abstract—We study the compressive diffusion strategies over
distributed networks based on the diffusion implementation and
adaptive extraction of the information from the compressed dif-
fusion data. We demonstrate that one can achieve a comparable
performance to the full information exchange configurations,
even if the diffused information is compressed into a scalar or
a single bit, i.e., a tremendous reduction in the communication
load. To this end, we provide a complete performance analysis
for the compressive diffusion strategies. We analyze the transient,
the steady-state and the tracking performances of the configu-
rations in which the diffused data is compressed into a scalar
or a single-bit. We propose a new adaptive combination method
improving the convergence performance of the compressive dif-
fusion strategies further. In the new method, we introduce one
more freedom-of-dimension in the combination matrix and adapt
it by using the conventional mixture approach in order to enhance
the convergence performance for any possible combination rule
used for the full diffusion configuration. We demonstrate that our
theoretical analysis closely follow the ensemble averaged results
in our simulations. We provide numerical examples showing the
improved convergence performance with the new adaptive com-
bination method while tremendously reducing the communication
load.

Index Terms—Compressed diffusion, distributed network, per-
formance analysis.

I. INTRODUCTION

ISTRIBUTED network of nodes provides enhanced

performance for several different applications, such
as source tracking, environment monitoring and source lo-
calization [1]-[4]. In such a distributed network, each node
encounters possibly a different statistical profile, which pro-
vides broadened perspective on the monitored phenomena. In
general, we could reach the best estimate with access to all ob-
servation data across the whole network since the observation
of each node carries valuable information [5]. In the distributed
adaptive estimation framework, we distribute the processing
over the network and allow the information exchange among
the nodes so that the parameter estimate of each node converges
to the best estimate [4], [6].
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In the distributed architectures, one can use different ap-
proaches to regulate the information exchange among nodes
such as the diffusion implementations [6]-[11]. The generic
diffusion implementation defines a communication protocol
in which only the nodes from a certain neighborhood could
exchange information with each other [1], [6]-[11]. In this
framework, each node uses a local adaptive algorithm and im-
proves its parameter estimation by fusing its information with
the diffused parameter estimations of the neighboring nodes.
Via this information sharing, the diffusion approach provides
robustness against link failures and changing network topolo-
gies [6]. However, diffusion of the parameter vectors within the
neighborhoods results in high amount of communication load.
For example, in a typical diffusion network of N nodes the
overall communication burden is given by N x M where M is
the size of the diffused vector, which implies that the size of the
diffused information has a multiplicative impact on the overall
communication burden. Additionally, in a wireless network,
the neighborhood size also plays a crucial role on the overall
communication load since the larger the neighborhood is, the
more power is required in the transmission of the information
[1]1-{4].

We study the compressive diffusion strategies that achieve
a better trade-off in terms of the amount of cooperation and
the required communication load [12]. Unlike the full diffu-
sion configuration, the compressed diffusion approach diffuses
a single-bit of information or a reduced dimensional data vector
achieving an impressive reduction in the communication load,
i.e., from a full vector to a single bit or to a single scalar. The
diffused data is generated through certain random projections
of the local parameter estimation vector. Then, the neighboring
nodes adaptively construct the original parameter estimations
based on the diffused information and fuse their individual esti-
mates for the final estimate. In this sense, this approach reduces
the communication load in the spirit of the compressive sensing
[12], [13]. The compression is lossy since we do not assume
any sparseness or compressibility on the parameter estimation
vector [13], [14]. However, the compressive diffusion approach
achieves comparable convergence performance to the full dif-
fusion configurations. Since the communication load increases
far more in the large networks or the networks where the paths
among the nodes are relatively longer, the compressive diffusion
strategies play a crucial role in achieving comparable conver-
gence performance with significantly reduced communication
load.

There exist several other approaches that seek to reduce the
communication load in distributed networks. In [15], [16] and
[17], the authors propose the partial diffusion strategies where
the nodes diffuse only selected coefficients of the parameter es-
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timation vector. In [18], the dimension of the diffused informa-
tion is reduced through the Krylov subspace projection tech-
niques in the set-theoretic estimation framework. In [19], within
a predefined neighborhood, the parameter estimate is quantized
before the diffusion in order to avoid unlimited bandwidth re-
quirement. In [20], the nodes transmit the sign of the innovation
sequence in the decentralized estimation framework. In [21], in
a consensus network, the relative difference between the states
of the nodes is exchanged by using a single bit of information.
As distinct from the mentioned works, the compressive diffu-
sion strategies substantially compress the whole diffused infor-
mation and extract the information from the compressed data
adaptively [12].

In this paper, we provide a complete performance analysis for
the compressive diffusion strategies, which demonstrates com-
parable convergence performance of the compressed diffusion
to the full information exchange configuration. We note that
studying the performance of distributed networks with compres-
sive diffusion strategies is not straight-forward since adaptive
extraction of information from the diffused data brings in an
additional adaptation level. Moreover, such a theoretical anal-
ysis is rather challenging for the single-bit diffusion strategy due
to the highly nonlinear compression. However, we analyze the
transient, steady-state and tracking performance of the config-
urations in which the diffused data is compressed into a scalar
or a single-bit. We also propose a new adaptive combination
method improving the performance for any conventional com-
bination rule. In the compressive diffusion framework, we fuse
the local estimates with the adaptively extracted information
from substantially compressed diffusion data. The extracted in-
formation carries relatively less information than the original
data. Hence, we introduce “a confidence parameter” concept,
which adds one more freedom-of-dimension in the combina-
tion matrix. The confidence parameter determines how much we
are confident with the local parameter estimation. Through the
adaptation of the confidence parameter, we observe enormous
enhancement in the convergence performance of the compres-
sive diffusion strategies even for relatively long filter lengths.

Our main contributions include: 1) for Gaussian regressors,
we analyze the transient, steady-state and tracking performance
of scalar and single-bit diffusion techniques; 2) We demonstrate
that our theoretical analysis accurately models the simulated
results; 3) We propose a new adaptive combination method
for compressive diffusion strategies, which achieves a better
trade-off in terms of the transient and steady state performance;
4) We provide numerical examples showing the enhanced
convergence performance with the new adaptive combination
method in our simulations.

We organize the paper as follows. In Section II, we ex-
plain the distributed network and diffusion implementation. In
Section III, we introduce the compressive diffusion strategy,
i.e., reduced-dimension and single-bit diffusion. In Section IV,
we provide a global recursion model for the deviation pa-
rameters to facilitate the performance analysis. For Gaussian
regressors, we analyze the mean-square convergence per-
formance of the scalar and single-bit diffusion strategies in
Sections V and VI, respectively. In Sections VII and VIII we
analyze the steady-state and tracking performance of the scalar
and single-bit diffusion approaches. In Section IX, we introduce
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the confidence parameter and propose a new adaptive com-
bination method, improving the convergence performance of
the compressive diffusion strategies. In Section X, we provide
numerical examples demonstrating the match of theoretical
and simulated results, and enhanced convergence performance
with the new adaptive combination technique. We conclude the
paper in Section XI with several remarks.

Notation: Bold lower (or upper) case letters denote column
vectors (or matrices). For a vector a (or matrix A), a” (or A7)
is its ordinary transpose. || - || and || - || o denote the L3 norm and
the weighted L2 norm with the matrix A, respectively (provided
that A is positive-definite). We work with real data for nota-
tional simplicity. For a random variable 2 (or vector x), E[z]
(or E[x]) represents its expectation. Here, Tr(A) denotes the
trace of the matrix A. The operator col{-} produces a column
vector or a matrix in which the arguments of col{-} are stacked
one under the other. For a matrix argument, diag{ A} operator
constructs a diagonal matrix with the diagonal entries of A and
for a vector argument, it creates a diagonal matrix whose diag-
onal entries are elements of the vector. The operator & takes the
Kronecker tensor product of two matrices.

II. DISTRIBUTED NETWORK

Consider a network of N nodes where each node + measures!
disandu,; € R™ related via the true parameter vector w,, €
RM through a linear model

T
dit =Wy + Vi,

where v; ; denotes the temporally and spatially white noise. We
assume that the regression vector u; ; is spatially and tempo-
rally uncorrelated with the other regressors and the observation
noise. If we know the whole temporal and spatial data overall
network, then we can obtain the parameter of interest w, by
minimizing the following global cost with respect to the param-
eter estimate w [6]:
N
Jglon (W) = Z El(dss — w'u;4)7]. (1
i=1
The stochastic gradient update for (1) leads to the global least-
mean square (LMS) algorithm as

N
Wiyl = W+ {1t Z u; ¢ ((li.t - uZtWt) ) 2
i=1

where ¢t > 0 is the step size [7]. Note that (2) brings a sig-
nificant communication burden by gathering the network-wise
information in a central processing unit. Additionally, central-
ized approach is not robust against link failures and changing
network statistics [4], [6]. On the other hand, in the diffusion
implementation framework, we utilize a protocol in which each
node ¢ can only exchange information with the nodes from its
neighborhood W; (with the convention ¢ € A5) [6], [7]. This
protocol distributes the processing to the nodes and provides
tracking ability for time-varying statistical profiles [6].

Although we assume a time invariant unknown system vector w,, we also
provide the tracking performance analysis for certain non-stationary models
later in the paper.
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Fig. 1. Distributed network of nodes and the neighborhood A/;.

Assuming the inner-node links are symmetric, we model the
distributed network as an undirected graph where the nodes and
the communication links correspond to its vertices and edges,
respectively (See Fig. 1). In the distributed network, each node
employs a local adaptation algorithm and benefits from the in-
formation diffused by the neighboring nodes in the construc-
tion of the final estimate [6]—[9]. For example, in [6], nodes dif-
fuse their parameter estimate to the neighboring nodes and each
node ¢ performs the LMS algorithm given as

w1 = (I- /lliui,tug:t) ®; ¢+ pidi Wiy, 3)

where 11; > 0 is the local step-size. The intermediate parameter
vector g, , is generated through

Yt = Z Vi i Wit

JEN;

with ; ;s are the combination weights such that Z}Ll Vi =1
foralli € {1,...,N}. For a given network topology, the com-
bination weights are determined according to certain combina-
tion rules such as uniform [22], the Metropolis [23], [24], rela-
tive-degree rules [8] or adaptive combiners [25].

We note that in (3) we could assign ¢, , as the final estimate in
which we adapt the local estimate through the local observation
data and then we fuse with the diffused estimates to generate
the final estimate. In [7], authors examine these approaches as
combine-than-adapt (CTA) and adapt-than-combine (ATC) dif-
fusion strategies, respectively. In this paper, we study the ATC
diffusion strategy, however, the theoretical results hold for both
the ATC and the CTA cases for certain parameter changes pro-
vided later in the paper.

We emphasize that the diffusion of the parameter estimation
vector also brings in high amount of communication load. In the
next section, we introduce the compressive diffusion strategies
enabling the adaptive construction of the required information
from the reduced dimensional diffused information.

III. COMPRESSIVE DIFFUSION

We seek to estimate the parameter of interest w,, through the
reduced dimension information exchange within the neighbor-
hoods. To this end, in the compressed diffusion approach, unlike
the full diffusion scheme, we exchange a significantly reduced
amount of information. The diffused information is generated
through a certain projection operator, e.g., a time-variant vector
c;, by linearly transforming the parameter vector, e.g., w; ;. In
particular, node ¢ diffuses cfwm instead of the whole parameter
vector w; 4 in the scalar diffusion scheme. We might also use a
projection matrix, e.g., C; € RM*?_such that dim{C/ w; ;} <
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diIn{Wi,t} or p € M. Then the neighboring nodes of ¢ can
generate an estimate a; ; of w; ; through the exchanged infor-
mation by using an adaptive estimation algorithm as explained
later in this chapter and in [12]. We emphasize that the estimates
a; ;s are the constructed information using the diffused infor-
mation, not the actual diffused information. Hence, the diffused
information might have far smaller dimensions than the param-
eter estimation vector, which reduces the communication load
significantly.

We note that the projection operator plays a crucial role in
the construction of a; ;. Hence we constrain the projection op-
erator to span the whole parameter space in order to avoid bi-
ased estimate of the original parameters [12]. Based on this
constraint, we can construct the projection operator through the
pseudo-random number generators (PRNG), which generates a
sequence of numbers determined by a seed to approximate the
properties of random numbers [26], or through a round-robin
fashion in the sequential selection scheme as in [16].

Remark 3.1: We point out that the randomized projection
vector could be generated at each node synchronously provided
that each node uses the same seed for the pseudo-random gener-
ator mechanism [26]. Such seed exchanges and the synchroni-
sation can be done periodically by using pilot signals without a
serious increase in the communication load [27]. In Section X,
we examine the sensitivity of the proposed strategies against
the asynchronous events, e.g., complete loss of diffused infor-
mation, in several scenarios through numerical examples.

Most of the conventional adaptive filtering algorithms can be
derived using the following generic update:

Wit = argmin{D(w. we) + pL(dpu W)}, (4)

where D(w, w;) is the divergence, distance or a priori knowl-
edge, e.g., the Euclidean distance ||w — w;||?, and L(d:, us, w)
is the loss function, e.g., the mean square error E[(d; — ul w)]
[28], [29]. Correspondingly, the diffusion based distributed es-
timation algorithms can also be generated through the update
(4). However, note that the compressive diffusion scheme pos-
sesses different side information about the parameter of interest
w, from the full diffusion configuration, i.e., the constructed
estimates instead of the original parameters. Although the con-
structed estimates a; ;’s track the original parameter estimation
vectors, they are also parameter estimates of w,, as the original
parameters. Particularly, in the proposed schemes, each node
has access to the a priori knowledge about the true parameter
vector w, as w;+ and a;;’s for j € N \ i. Hence, in the com-
pressive diffusion implementation, we update according to

Wil = afgﬁvlviﬂ Yiillwi — widl]” + Z vijllwi — a|?
FEN\i

+ 11 (di,t - UZtWi)Q ®)

such that in the update we also consider the Euclidean distance
with the local parameter estimation w;, and the constructed
estimates a; ; of the neighboring nodes. In order to simplify the
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optimization in (5) and to obtain an LMS update exactly, we can
replace the loss term (d; ; — uztwi)2 with the first order Taylor
series expansion around a; 4, i.e.,

2 _ _

(d’i,t — uZtWi) = eivt(aj,t)z — Ze,i,t(aj,t)ugjt(wi —aj,)
+O([[wil*).  (6)

where we denote &, ;(a; ;) 2 di+ — uftaﬁ. Similarly, the first

order Taylor series expansion around w; ; leads

2
(dix —uf,wi)” =ef, — 2¢; uf, (Wi — wiy) + O(||wi]|?),
(7
where ¢; 4 2 di+ —u],w;,. Since > jen. Yii = 1, the approx-
imations (6) and (7) in (5) yields

Witt1

= arg H‘}j_ﬂ Yiillwi — wiel[” + Z Yijllwi — aj|?
' FENNI

+ iYii [6?,1«, — 2€i,tuzt(wi - Wi,t)]

i Y i [Ea(ae)® - 2eiagul (Wi - ay,)]
jE/\f,‘,\’i
(®)
The minimized term in (8) is a convex function of w; and the

Hessian matrix 2I3; > O is positive definite. Hence, taking
derivative and equating zero, we get the following update

T
Witrl = @; 11 + il ¢ (di,t - ui,t‘Pz‘,t+1) ; &)

where

Pitr1 = YiiWig + Z Yij&yt, (10)

[/6./\[,, \L

which is similar to the distributed LMS algorithm (3). Note that
if we interchange ¢; , and w; ;, in other words, when we assign
the outcome of the combination as the final estimate rather than
the outcome of the adaptation, we have the following algorithm:

(11)
(12)

T
@iri1=Wis+ e (die — v/, wiy)

Wittl = YiiPs e41 T Z Vij&jt+1-
JENN\G

We point out that (9) and (10) are the CTA diffusion strategy
while (11) and (12) are the ATC diffusion strategy. Figs. 2 and
3 summarize the compressive diffusion strategy for the CTA
and ATC strategies where j;, € N;. We next introduce different
approaches to generate the diffused information (which are used
to construct a; ;41’s).

In the compressive diffusion approach, instead of the full
vector and irrespective of the final estimate, we always diffuse
the linear transformation of the outcome of the adaptation, e.g.,
we diffuse z; ; = ctTwi,,t in the CTA strategy and z; ; = cfcpiyt
in the ATC strategy. At each node, with the diffused information
2;.+, we update the constructed estimate a; ; according to

",

RN 2 T
2,141 = argmin {||ai —a;||° + | Zit — € a
:
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Fig. 3. ATC strategy in the scalar diffusion framework.

where we choose the diffused data as the desired signal and try
to minimize the mean-square of the difference between the es-
timate £, ; = ctTai and z; ;. Here, a; ;’s are the estimates of
the w; ;’s or ¢, ,’s in the CTA and the ATC strategies, respec-
tively. The first order Taylor series approximation of the loss
term ||z; ; — 2; ¢||* around a; ; yields the following update

A ¢4+1 = A; ¢ + MiCt (Zi,t - C?ai,t) (13)
where n; > 0 is the construction step size. We note that in [12]
the reduced dimension diffusion approach constructs a; ;41’s
through the minimum disturbance principle and resulted update
involves [eTc;] ! as the normalization term. The constructed
estimates a; 441 ’s are combined with the outcome of the local
adaptation algorithm through (10) or (12).

We next introduce methods where the information exchange
is only a single bit [12]. When we construct a; ; at node ¢, as-
suming a; ,’s are initialized with the same value, node j € N;
has knowledge of the constructed estimate a; .. Hence, we can
perform the construction update at each neighboring node via

the diffusion of the estimation error, i.e., €; ; 2 zi1 — Z;y. Note
that this does not influence the communication load, however,
through the access to the exchange estimate a; ;.1 we can fur-
ther reduce the communication load. Using the well-known sign
algorithm [5], we can construct a; ;1 as
a; 41 = a; + mcsignle; ). (14)
Hence, we can repeat (14) at each neighboring node via the dif-
fusion of z; 4 = sign(e, ;) only and then we combine with the
local estimate by using (10) or (12).
In Table I, we tabulate the description of the proposed algo-

rithms. We note that as seen in the Table I, the construction
of a;; requires additional updates at each neighboring nodes.
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TABLE 1
THE DESCRIPTION OF THE COMPRESSIVE DIFFUSION SCHEMES
WITH THE ATC STRATEGY

Algorithm 1: Scalar Diffusion Strategies - ATC
Initialization:
For i =1 to N do

u;0=co=w;0=2a;0=10,--
End for
Do fort >0

For i =1 to N do

Adaptation:

.07

eit = dit — U;f'?th',t
Vi1 = Wit + U4 ¢€4.¢
Diffuse z;; = cfapm to neighboring nodes
Construction:
For all j € AV; \ i do
€t = Zj,t — ] Ay
a5 ¢4+1 = @4t + 1 Ct€j ¢
End for
Combination:
Wit+l = Vi,iPi 41 T 2ojen;\i V6i85,t4+1
End for
Algorithm 2: Single-bit Diffusion Strategies - ATC
Initialization:
For i =1 to N do
u;0 =Cco=w;0=ajo=[0,-"
End for
Do fort >0
Fori=1to N do
Adaptation:

7O]T

eit =dit — ufth‘,t
€t =cf (P —ai)
a;,141 = a;,¢ + Micesign (€;,¢)
i1 = Wit + U4 ¢€4 ¢
Diffuse z;,; = sign (e;,¢) to neighboring nodes
Construction:
For all j € A; \ i do
aj¢+1 = ;¢ +1;Ct2j¢
End for
Combination:
Wi t4l = V6,041 T 2jen;\i Va8 t+1
End for

However, in the following, we propose an approach signifi-
cantly reducing this computational load provided that all nodes
use the same projection operator. We note that (9) and (11) re-
quire the linear combination of the constructed estimates. To
this end, we define
Wizt = Z Yij At
JEN;\i

so that for the same step size, i.e., 7 = 71 = --- = 71y, the
following relations

_ T
a1 41 = a1 + 71Ct (21,t —C; al,t) )

) T
ay 11 = an,;: +1NCt (4N,t —C; aN,t)
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can be rewritten in a single update as

T
E ViiZit — Cr Wit
JENG

(15)

Wittl = Wit +7C

In that sense, as an example, instead of (12), we can construct
the final parameter estimate w; ;41 through

(16)

thanks to the linear error function in the LMS update. Hence, we
can significantly reduce the computational load, i.e., to only an
additional LMS update, in the scalar diffusion strategies through
(15) and (16). On the other hand, if the sign algorithm is used at
each node in the construction of a; ;, each node should construct
a;,’s separately since the sign algorithm has a nonlinear error
update, i.e., sign(e; ). However, the sign algorithm is known
for its low complexity implementation and can be implemented
through shift-registers provided that the step-size is chosen as a
power of 2 [5]. In this sense, the single-bit diffusion strategy sig-
nificantly reduces the communication load, i.e., from continuum
to a single bit, with a relatively small computational complexity
increase. We point out that the single-bit diffusion also over-
comes the bandwidth related issues especially in the wireless
networks due to the significant reduction in the communication
load and the inherently quantized diffusion data.

In the sequel, we introduce a global model gathering all net-
work operations into a single update.

Witt1 = Vi 41 T Wit41,

IV. GLOBAL MODEL

We can write the scalar (13) and single bit (14) diffusion ap-
proaches for the ATC diffusion strategy in a compact form as

Pitt1 = Wit + Hilkir€ir, an
a1 = a5 + 15¢:h(€5t),
Witt1 = Yi,i®isq1 T Z ViRt (1)
FEN\T
A A
where e;; = d;; —ul,w;; and¢;; = cf(q;jf — a;;). For

scalar and single bit diffusion approaches, h{e;;) = €, and
h{e;+) = sign(e;+), respectively.

For the state-space representation that collects all net-
work operations into a single update, we define ¢, =

col{(pu, e (,oN,t}7 a, = col{aiy,....,an,}, W, =
col{wig, ..., Wi}, W, = col{we. ..., wo} with
MN x 1 dimensions and e, = col{e1y,...,en},
€ = COl{el‘t,...,EN’t}, dt COl{st,...,dN’t},
vi = col{vis,...,on+} with N x 1 dimensions. For a

given combination matrix I' = [v; ;], we denote G ST ol
Additionally, the regression and projection vectors yields the
following M N x N global matrices

ul,t 0 Cl,t 0

e
e

Ut Ct

0 o UNg 0 CNt

Indeed, we can model the network with compressive diffusion
strategy as a larger network in which each node ¢ has an imagi-
nary counterpart which diffuses a; ; to the neighbors of ¢, which
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is similar to the full diffusion configuration. The real nodes only
get information from the imaginary nodes and do not diffuse
any information. In that case, the network can be modelled as a
directed graph with asymmetric inner node links and the com-
bination matrix is given by

= |I'p T¢
-l

where I'p = diag{T'} andT¢ =
w; in terms of ¢, and a; as

I' — T'p. Then, we can write

w, = Gpg, + Goay, (19)

where Gp = T'p & I and Gg 2 I'c ® Is. The state-space
representation is given by

Y1 = wi + MU ey,
Ary1 = A + NCth(Et),

Wit1 = Gpwy g + Geary, (20)

e

where h(e,) = col{h(e1,), h(FQ ), hleny)}, M

diag{[p1, .-, pun]}®Ip, and N = dlag{[m ..... cnn] @ Iar.
We obtain the global deviation vectors as

A

@ 2w, —p,anda, 2w, —a,. Q1)
SinceT'l =1,
Gw, =w, (22)
then the global deviation update yields
¢t+1 = GD(,bt + GCét - MUtet: (23)
ét-}—l = ét — NCTh(ef) (24)
In (25),
’lpt—l X ’{p/
r—~/\—-\ /—/_\z—f\\
I
ay41 0 Iun|| &
D Y h(e;.€;)
—_—N——
_ M 0 Ut 0 ey (25)
0 N|| 0 C]|h(e)

we represent the global deviation updates (23) and (24) in a
single equation or equivalently
T/Jt+1 = X¢t DY.h (em 6t)7 (26)
where 1, = col{p,,a;}. We next use the following assump-
tions in the analyses of the weighted-energy recursion of (26):
Assumption 1:
The regressor signal u; ; is zero-mean independently and
identically distributed (i.i.d.) Gaussian random vector
process and spatially and temporally independent from
the other regressor signals, the randomized projection
operator and the observation noise. Each node uses spa-
tially and temporally independent projection vector, i.e.,
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c; +. The projection operator is zero-mean i.i.d. Gaussian
random vector process and the observation noise v; ; is
also a zero-mean i.i.d. Gaussian random variable. Note
that such assumptions are commonly used in the analysis
of traditional adaptive schemes [5], [30].

Assumption 2:

The a priori estimation error vector in the construction up-
date (20), i.c., €.+ 2 CT(a; — ¢,), has Gaussian distribu-
tion and it is jointly Gaussian with the weighted a priori
estimation error vector, i.c., C{ £(a, — ¢,), for any con-
stant matrix 3. This assumption is reasonable for long fil-
ters, i.e., M is large, sufficiently small step size 7;’s and
by the Assumption 1 [31]. We adopt the Assumption 2 in
the analyses of the single-bit diffusion schemes due to the
nonlinearity in the corresponding construction update.

We point out that the Assumptions 1 and 2 are impractical
in general, however, widely used in the adaptive filtering litera-
ture to analyze the performance of the schemes analytically due
to the mathematical tractability and the analytical results match
closely with the ensemble averaged simulation results. In the
next sections, we analyze the mean-square convergence perfor-
mance of the proposed approaches separately.

V. SCALAR DIFFUSION WITH GAUSSIAN REGRESSORS

For the one-dimension diffusion approach, (26) yields
'»th+1 = X'{pt -

where e, 2 col{es, € }. By (19), (21) and (22), we note that e;
is given by

DY,e,, @27)

e; = Ul (Gpp, + Geay) + v (28)
Similarly, we have
¢ = Cf (- + ay). (29)

Hence, through (28) and (29), we obtain the global estimation
error e, as

o5 2l [ ]R3

— =
—YTZ, + .. (30)
Through (30), we rewrite (27) as
¥iy1 = X9, — DY, (YtTZ":bt + nt)
= (X -DY,Y/Z) ¢, - DYn,. 31)

We utilize the weighted-energy relation relating the energy of
the error and deviation quantities in the performance analyzes
through a weighting matrix 3. Then, we obtain

~T ~ ~T T ~
$e13%,1 =¥, (X-DY,Y[Z) =(X-DY,Y/Z)9,
—-2n] Y/DX (X - DY, Y Z) 9,
+n! Y'DIDY;n;.
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By the Assumption 1, the observation noise v; is independent
from the network statistics and the weighted energy relation for
(31) is given by

Ell41l% = Ell#, |3 + E [nf Y/DEDY,n,],  (32)
where
> 2XTsX - ZTY, YIDEX - XTEDY, Y7 Z
+Z7Y, Y/ DEDY,Y!Z.

Apart form the weighting matrix ¥, 3’ is random due to the
data dependence. By the Assumption 1, Y; is independent of
3, and we can replace X’ by its mean value, i.e., X' = E[3|
[5], [6]. Hence, the weighting matrix is given by

Y =X"2X-Z"E|Y,Y/]DEX - X"EDE [Y, Y]] Z
+Z"DE [Y, Y/ 2Y, Y] DZ. (33)

Note that in the last term of the right hand side (RHS) of (33),
we take D’s out of the expectation thanks to the block diagonal
structure of D and Y, Y7

In order to calculate certain data moments in (32) and (33),
by the Assumption 1, we obtain

Ay 2 E[UUT] = diag {[021,025,...,02 5]} @ I

A. 2 E[C,CT] = diag {[021,0%0, ..o 5]} © L.

Then, we obtain

2

A

E[Y:Y/] = [A“ 0 }

0 A,

In the performance analysis, convenient vectorisation nota-
tion is used to exploit the diagonal structure of matrices [5], [32].
In (32) and (33), matrices have block diagonal structures, thus
we use the block vectorisation operator bvec{-} [6] such that
given an NM x N M block matrix

[ Y Yin "
S= E
[ N1 NN J
where each block X, is a M x M block, o;; = vec{%;,} with
standard vec{-} operator and o; = col{o1;,09....,0N;},

then

bvee{E} = ¢ = col{o1,09,....0x}. (34)

We also use the block Kronecker product of two block matrices
A and B, denoted by A @ B. The ij-block is given by

A ®Bny A ®Binx

[A ©BJ;; = : (35)

A;; @Bn A,; By

The block vectorisation operator bvec{-} (34) and the block
Kronecker product (35) are related by

bvec{AZB} = (BT © A)o (36)
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and
Tr{ATB} = (bvec{A})T bvec{B}. (37)
The term in the RHS of (32) yields
E [n] Y/DEDYn,] = Tr (AD’E [n;n] | X)
and let
B nf] =R = |5 0.
where Ry 2 diag{o2,....02 v} @ In. Then by (37),
E[n{Y/DEDYn,] =b"0,
where
b £ byvec{RaD?A}. (38)
The last term on the RHS of (33) yields A =

E[Y,)Y/2Y,Y}], where the M x M block is given
by

[Al;; = {Ai (Ew + EZ) A+ AT (ZEGA) i=3

T LAEA, i#]

by the Assumption 1 [5]. The matrix A could be denoted as
A = diag{A4,..., Aon} where A; fori = {1,2,...,2N} is
M x M block matrix, e.g., A1 = 02 Ins or Ayy1 = 02 1.
The M x M ijth block of X is denoted by ;. '

Remark 5.1: We note that if each node used the same projec-
tion operator, c; ;’s would be spatially dependent. In that case,
[Al;; is defined as

[A]i;

A (B + D) A+ ATH(ZA) =,

A; (EU—i-EZ) Aj-f—AL‘Tr(EijAj) i>NANjJ>N,
AGA otherwise.

Through (35), (37), we obtain bvec{A} = Ao with A =
diag{Ah e ?./42]\,’}, .Aj = diag{Alj, Caey AQ]\":,‘} and

A= {2M@ A+ AN =
o lAeay ]

where A; = vec{A,;}.
Hence, the block vectorization of the weighting matrix X’
(33) yields
bvec{®} = (XT 0 XT — (XT 0 Z") Iy n © AD)
—(ZT o XT)(AD © Inasw)
+(Z" o Z")(D @ D)Ao.
For notational simplicity, we change the weighted-norm nota-

tion such that ||@,||2 refers to ||@,||% where o = bvee{Z}. As
a result, we obtain the weighted-energy recursion as

El$.s1l2 = Bl )3e +b"e (39)
FEXToXT+(ZT0Z")DoD)A
— (XT 0 ZTY Iy n ® AD)
—(Z" © XTYAD © Loyn). (40)
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TABLE II
INITIAL CONDITIONS AND WEIGHTING MATRICES FOR DIFFERENT CONFIGURATIONS

Framework || Bllbull3; | Elldbollsy » Eldlg | Eldol x
- Iyn O B Ay, O
CTA || FEIB 2 | A llw,l? ¥ LB, | lwoly, 1
0 0 0 0
_ GpTGp GpTGc _ GpTAuGp GpTALGc
ATC || B ? | Flwol® | & | B NEIR | Ml | | i
GcTGp GeTGe GcTALGD GcTALGe

Through (39) and (40), we can analyze the learning, con-
vergence and stability behavior of the network. Iterating the
weighted-energy recursion, we obtain

E”{bt—i-lnz = EH"]’fH%‘a +b’o
E|¢lee = Ell$; 1l5:6 + b Fo

E”’Ll”%”o‘ = E||"710”%‘/+10- + bTFia.

Assuming the parameter estimates ¢, , and a; ; are initialized

. ~ A
with zeros, E||1,]|? = Hgoﬂ2 where w_ = col{w,, w,}. The
iterations yield

t
El$piallz = 1w, g + BT (Z Fk) o (4D

k=0

By (41), we reach the following final recursion:

El$y1l5 = El$llz + b"Flo — [lw 5 q-po-  (42)

Remark 5.2: We note that (42) is of essence since through
the weighting matrix ¥ we can extract information about
the learning and convergence behavior of the network. In
Table II, we tabulate the initial conditions (we assume the ini-
tial parameter vectors are set to 0) and the weighting matrices
corresponding to various conventional performance measures.

Remark 5.3: In this paper, (42) provides a recursion for the
weighted deviation parameter where we assign g, , as the final
estimate instead of w; ;, which implies the CTA strategy, how-
ever, the recursion also provides the performance of the ATC
strategy with appropriate combination matrix ¥ and the initial
condition (See Table II).

Next, we analyze the mean-square convergence performance
of the single-bit diffusion approach for Gaussian regressors.

VI. SINGLE-BIT DIFFUSION WITH GAUSSIAN REGRESSORS

The weighted-energy relation of (26) yields
~ T ~ ~T -
E [‘/’t+12"/"t+1} =K |:¢f XTEX'%}
~ B [, X"EDY,h(er,e)|
- B [0 (e, ) Y/ DEXe),|

+ Eh” (e, &) YTDEDY h(e;, &)].
(43)

We evaluate RHS of (43) term by term in order to find the vari-
ance relation. We first partition the weighting matrix as follows:

s=[2 2]

= (44)

Through the partitioning (44), we obtain
E [, X"SDY h(e, ¢:)]
= E [, XISMU U Z3h,
v E [zﬁxﬁ 3, NC,sign (cfzdzi;t)]
+ F [/ XTSMUUT Z3h
~T T . T ~

+E [qpt XT5,NC,sign (ct zd«pt)] . (45)
where we partition X and Z such that X = col{Xy, Xq} and
Z = col{Z,, Zq}. We note that the second and fourth terms in
the RHS of (45) include the nonlinear sign( - ) function. It is not
straight-forward to evaluate the expectations with this nonlin-
earity, thus we introduce the following lemma.

Lemma 1: Under the Assumption 2, the Price’s theorem [5]
leads to

E [«];f X7 $,NC,;sign (C? zdaijt)]
-y [«Lf XTs,NQ,C,CT zd{pt} , (46)
E [, X T:NCysign (CT Zat, )|
- E [«Lf X7%,NQ,C,CT zd{pt} , (47)
where €2; is defined as

E'El,f‘
E[Fft]

Ty 0

(>

2 ;

Eleny]

Bl

Proof: The proof is given in Appendix A. O

By (45), (46), (47), the second term on the RHS of (43) is
given by

0 I

E[$, X"SDY:h| = E |¢, X"SDQ,Y,Y{Z4,|, (48)

where we drop the arguments of h(e;. €;) for notational sim-
plicity and £2, denotes

AIyny O
0" o)
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Similarly, the third term on the RHS of (43) is evaluated as
E [hTYf DEX«%] = E [ﬂ;tTZTYthT QtDEXﬁ;t} . (49)
Through partitioning, the last term on the RHS of (43) yields
B [b7(er, ) Y/ DEDY h(er, )|
=E [e] UTMZ;MU,e,|

+ E [ef U MZ,NCsign(e;)]

+ E [sign(et)TCtTNE;;MUtet]

+ E [sign(et)TCfNE4NCtsig11(et)} .

Corollary 1: Since U; and C; are independent from each
other, similar to the Lemma 1, we obtain

E [llT(et, )Y DEDY h(e,, et)]
= E [e] U/MXZ;MU,¢e]
+ E [e; U ME,NQ,Ce ]
+ E [¢ C] 4 NE;MUse,]
+ E [sign(e;)TCI NE,NC;sign(e;)] . (50)
By the Assumption 1, the first term on the RHS of (50) yields
E [etTU;MEIMUtet] =FE [VtTU?MleUtvt]
+E [ 20U UTMS MU UTZ,8,] . 61)
For the last term on the RHS of (50), we introduce the following

lemma.
Lemma 2: Through the Price’s theorem, we obtain

E [sign(e;)" CY NZ4NC;sign(e;)]
= E [, 2LC,CTNQ,S{Q,NC.C] Zap,|

+ E[1PCcINEINC,1] , (52)
where Ef is the block diagonal matrix of 34 such that
[ O 0 '|
=7 = [ : : J
O Onn
with ®; is the ii’th A/ x M block of £4 and £§ = B, — =P,
Proof: The proof is given in Appendix B. ]

As aresult, by (48), (49), (50), (51) and (52), the relation (43)
leads to

E||"7)f+1“§] = EH"]’f”%}’ +E [V?UzleMUtvt]
+ E[1TCINZPNC,1] (53)
and
Y =X'EX -X'E¥DQ,Y,Y/Z
-ZTY, YT DEX
+Z'DQ, Y, YI'YY, YIQ,DZ,

RN
2‘[23 22‘]‘

where ¥ denotes
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We again note that by the Assumption 1, we get ¥’ = E[X]
which results

Y =XT'EX - XTEDQ,AZ - Z'AQ,DEX
+ZTDQ,E [YtYf SY, YT } Q,DZ (54)

and define B £ E[Y,Y?SY,Y7].

In the following, we resort to the vector notation, i.c., the
block vectorisation operator bvec{-} and the block Kronecker
product. Hence, the block vectorization of the weighting matrix
3 (54) yields

bvee{®'} = (X? 0 XT — (XT 0 Z")(Tyuy © ADR,)
— (2T o XT)(ADR, ¢ Liyn))o
+ (2" & Z7)(D © D)(Q, © Q,)bvec{B}. (55)

Block vectorisation of the matrix B is given by bvec{B} =
Abvee{X}. In order to denote bvec{X} in terms of o, we in-

troduce K1 é COI{OA/[N, Iﬂ/[N}, Kg é CO]{IA,[N, OA[N}, and
JANN ;
Tk = dlag{O(k,l)M, Lw, O(N,k)]\/]’}. Then, we get

N
2P =) TWKIZK,Ty, (56)
k=1
=3 - K,=PKI. (57)

By (56) and (57), we obtain

bvec{X} = (I - (K2 ©Ky) E(Tk O Ti) (K3 © KQT)) o

k=1 .
K
= Ko. (58)
The '¢~p-free terms in (53) are evaluated as
E[vIUTMZMU,v;| = b (K] ©K])o, (59
E[1TCINEDINC,1] = bl (K 0K} )o,  (60)

where by £ bvec{R,M?A,} and by 2 bvec{117N?A,}.
As a result, by (55), (58), (59) and (60), the weighted-energy
relation is given by

E||"711+1||c2x = EHI‘]}tH%‘t(T +b’o (61)
F,=X"oX" - (X" 0 Z")(I2m~ © ADSQ,)
—(Z" o X")(AD®, © Lary)
+(ZT o ZT) (Do D), 0 2,)AK  (62)
b= (K oK) b+ (KL oKL by (63)

Iterating the weighted-energy recursion (61), (62) and (63), we
obtain

E||"~pf+1||c2r = E”,‘?)tH%‘fﬂ +blo
EH"/}t”%‘/O' = E”‘/’t—l”%‘/,lma + bTFtU

E||1/11||12?1...F10 = E||¢0”%‘0...Ft0 +b"F;.. . Fo.
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TABLE III
INITIAL CONDITIONS AND WEIGHTING MATRICES FOR THE PERFORMANCE
MEASURE OF THE CONSTRUCTION UPDATE FOR THE SINGLE-BIT DIFFUSION
APPROACH (FOR THE SCALAR DIFFUSION APPROACH, SET { = (}) AND THE
GLOBAL MSD OF THE ATC DIFFUSION STRATEGY FOR THE SINGLE-BIT
DIFFUSION APPROACH (FOR THE SCALAR DIFFUSION APPROACH, SEE TABLE II)

Ell,)IZ Elldol% >
1 = |12 1 2 0 0
~Elal wllweo — <1l
0 AIyn
Ac —Ac
agt = E[e?et] C1T A1
—Ae  Ac
- cpTa [T e
RBISR | e, — Gl | (%P 00 O o

In this part of the analyzes, we do not assume that the param-
eter vectors are initialized with zeros since such an assumption
results in infinite terms in the £2; matrix. Hence, we initialize a;
with ¢ 175 x1 where ¢ has a small value (See Table III).

The iterations yield

E||’¢71t+1”¢2r = ||17’0||%1La +bT Ao,
El,) = ||"/’0||%[t,la +b"A, 0,

(64)
(65)

where II; 2 HE:O F, and A, 2 I+F,+F, F, + -+
F,...F;,. WenotethatII, = II,_;F;and A; = A;_F, +1.
By (64) and (65), we have the following recursion

= Ell9,]15 -

Ellg,11ll2 Wollfr, a-r o

+bT (I - A, ;(I-F,))o. (66)
We point out that IT_; = I(Qj\/[j\f)? and A _; = O(QMN)Z .

Remark 6.1: The iterations of (66) require the recalculation
of F; for each time instants since F'; changes with time because
of £2, (62). Evaluating the expectations, €2, yields

S 0
9 | 7
Q=4/-1 : A X SV (67)
T 0o -.- Ul
EN

where af = E[¢?]. For analytical reasons, we approximate (67)
as

Q ~ \/; WIW (68)
with 62 = Elel'e] = E||1/)f||5 and
][ M),
Hence, we can calculate F; by iterating the following
Bl = B2~ bl o g
+b"(I— A, 1 (T-F))E (69
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where E||4h|Z = (17 A.1. In Table III, we tabulate the initial
condition and the weighting matrix necessary for the recursion
iterations (69) of 07, = Ele] &].

VII. STEADY-STATE ANALYSIS

At the steady-state, (39) yields

E”TZ’OOH?IfF)a =b’a.

In order to calculate the steady-state performance measure
E||%..||%/, we choose the weighting matrix as o' = (I — F)a,
then the steady-state performance measure is given by

Bl g = bT(I-F)~'o’. (70)
Similar to (70), the steady state mean square error E[el ¢;] for
the single bit diffusion strategy is given by

Ellocll¢ = b7 (I~ Foo) & (71)
We point out that F, depends on E||4__ ||§ Once we calculate
F .. numerically by (71) or through approximations, we can ob-
tain the steady state performance by (70).

VIII. TRACKING PERFORMANCE

The diffusion implementation improves the ability of the net-
work to track variations in the underlying statistical profiles [6].
In this section, we analyze the tracking performance of the com-
pressive diffusion strategies in a non-stationary environment.
We assume a first-order random walk model, which is com-
monly used in the literature [5], for w, ; such that

Wo i+l = Wo,t + d,

where ¢, € RM denotes a zero-mean vector process inde-
pendent of the regression data and observation noise with co-
variance matrix E[q;qf] = Q. We introduce the global time-

. A
variant parameter vectors as w, ; = Col{Wo,t, e 7W0,t} and

we have the global deviation vectors as ¢, = w,; — ¢ and
a; 2 W, — a;. Then, by (26), we obtain
¢T+1 - X"/)f DYf (etv et) + qt, (72)

where q; = col{qf ..... ,q:} with2M N x 1 dimensions. Since
we assume that g is independent from the regression data u; ¢,
¢;; and the observation noise v; ; foralli € {1,..., N}, (72)
yields the following weighted-energy relation

E [@fﬂzﬂ;m} —FE [-J;tTXTEX{pt}
_E [@TXTEDYth(et, et)]
[hT ere)Y! D2X¢Ti|
+ E [0 (er,¢) Y/ DEDY her. ;)]
+8

fTEQf

(73)
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We note that (73) is similar to (43) except for the last term
E[q:"%q,]. We denote 2N x 2N matrix whose terms are 1 as

1. 2 [1,...,1]. Then, the last term in (73) is given by p’ o
where p = bvee{L, . ® Q}. Through (73), we get

E”¢t+l||¢27 = EH"ptH%‘tU +b'a+ PT‘7~ (74)
We define F; in (40) and (62) for scalar and single-bit diffu-
sion strategies, respectively. Similarly, b is introduced in (38)
and (63) for the scalar (time-invariant) and single-bit diffusion
strategies. We point out that (74) is different from (39) and (61)
only for the term pT'o. As a result, at steady state, (70) and (74)
leads

Elgpoclly = (b+p) I~ Fu) o (75)
Through (75) and Table II, we can obtain the tracking perfor-
mance of the network for the conventional performance mea-
sures. We point out that in the full diffusion configuration, p =
bvec{l, ® Q}.

In the next section, we introduce the confidence parameter
and the adaptive combination method, which provides a better
trade-off in terms of the transient and the steady-state perfor-
mances.

IX. CONFIDENCE PARAMETER AND ADAPTIVE COMBINATION

The cooperation among the nodes is not beneficial in general
unless the cooperation rule is chosen properly [1]. For example,
the uniform [22], the Metropolis [23], the relative-degree rules
[8] and the adaptive combiners [25] provide improved conver-
gence performance relative to the no-cooperation configuration
in which nodes aim to estimate the parameter of interest wy,
without information exchange. However, the compressive dif-
fusion strategies have a different diffusion protocol than the full
diffusion configuration. At each node ¢, we combine the local
estimates ¢, , with the constructed estimates a; ; that track the
local estimates ¢, , of the neighboring nodes, i.e., 7 € N:\z. Bs-
pecially at the early stages of the adaptation, the constructed es-
timates carry far less information than the local estimates since
they are not sufficiently close to the original estimates in the
mean square sense. Hence, we can consider the constructed es-
timates as noisy version of the original parameter vectors. Then
the overall network operation is akin to the full diffusion scheme
with noisy observation. In [11], [33], [34], the authors demon-
strate that for imperfect cooperation cases a node should place
more weight on the local estimate in the combination step even
if the node has worse quality of measurement than its neighbors.
To this end, we add one more freedom of dimension to the up-
date by introducing a confidence parameter ¢. The confidence
parameter determines the weight of the local estimates relative
to the constructed estimates such that the new combination ma-
trix T is given by

I =6Iy+(1-6)T (76)
where 0 < 4 < 1. We note that § = 1, in which case we
are confident with the local estimates, yields the no-cooperation
scheme and ¢ = 0 is the full diffusion configuration where we
thrust the diffused information totally.
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For the new combination matrix (76), the combination of the
local estimate and the constructed estimates (12) yields

Wirrr = (1= 8) [vii®i01 + Z ViR 41
[ JEN\E J

(pi,t+1
+0@; 141- (T7)

We note that (77) is a convex combination of the parameter vec-
tors @, ;11 and ¢, ,; . Hence, we can adapt the convex combi-
nation weight ¢ using a stochastic gradient update [35]-[38].
Then, (77) yields

Wil = 0419 001 (1= 0ies1)Pipyr. (78)
In [36], authors update all combination weights y; ;’s indirectly
through a sigmoidal function. Similarly, we re-parameterize the
confidence parameter ¢, ; using the sigmoidal function [39] and
an unconstrained variable «; ; such that

1
Oit

e (79)

We train the unconstrained weight «; ; using a stochastic gra-
dient update minimizing ¢}, = (d; ; — u},w;,)* as follows

2
1 6ci,f
Q41 = Ot — i,u'cvxﬁ
2.t

= i+ fevsCi 0 (9 — §i)0i (1= 6i4). (80)
As a result, we combine the local and constructed estimates via
(78), (79) and (80).

In the next section, we provide numerical examples showing
the match of the theoretical derivations and simulated results,
and the improved convergence performance with the adaptive

confidence parameter.

X. NUMERICAL EXAMPLES

In this section, we examine two distinct network scenarios
where we demonstrate that the theoretical analysis accurately
model the simulated results and the confidence parameter pro-
vides significantly improved convergence performance. In the
first example, we have a network of N = 5 nodes where at
each node ¢, we observe a stationary data d; » = u?;two + v 4
fori € {1,2,..., N}. The regression data u; ; is a zero-mean
i.i.d. Gaussian with randomly chosen standard deviation o,
ie., oy, = 0.1(+/10 — 1)b; + 0.1 where b; ~ U[0,1] is a uni-
form random variable. The variance of the observation noise is
o2, = 102, Hence, the signal-to-noise ratio over the network
varies between 10 to 100. The standard deviation of the projec-
tion operator is 0., = 1. The parameter of interest w, € R4
is randomly chosen. Note that we examine a relatively small
network with a short filter length since the computational com-
plexity of the theoretical performance relations (42) and (66) in-
creases exponentially with the filter length M and the network
size N. We point out that the overall communication burden
(N x M) in the scalar diffusion strategy is 25% of the full dif-
fusion configuration and the overall communication load in the
single-bit diffusion strategy is given by 5-bits per iterations.
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Time evolution of the global MSD
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Fig.4. Comparison of global MSD curves 1/N E||@, ||? where the single-bit-1
and the scalar-1 schemes use 6 = 0 while the single-bit-2 and the scalar-2
schemes have & = 0.9.

In the no-cooperation configuration, the combination matrix
is given by I'y = Ix. We use the Metropolis combination rule
[23] for the full diffusion configuration where the adjacency ma-
trix of the network is given by

o
—

e R e =]
—

—_ o O = O

In the Metropolis rule [24], the combination weights are chosen
according to
max{'rlzi,nj} 1f«7 € '/\/'l \ i?
V=140 if j & N,
1= jenni Y Fi=],

where n; and n; denote the number of neighboring nodes for ¢
and 7. For the single-bit and the one-dimension diffusion strate-
gies we examine the convergence performance for the confi-
dence parameter & = 0 and § = 0.9 in Fig. 4. We choose
the step sizes the same for the distributed LMS update (17) of
all configurations at all nodes, i.e., ;#; = 0.042. At each node,
the step sizes for the construction update (18) are 7; = 0.0015
(for single-bit approach) and 7; = 0.25 (for one-dimension dif-
fusion approach). For the single-bit diffusion approach, we set
¢ = 0.001 to initialize a, ;. In Fig. 4, we show the global MSD
curves, i.e., E||@,||?, of the single-bit and scalar diffusion ap-
proaches and compare the performance for different § values.
The confidence parameter 6 = 0.9 implies that we give ten
times more weight to the local estimate g, , than the constructed
estimates a;,, where j € N\ i. The F1g 4 demonstrates that
the confidence parameter 6 = 0.9 improves the convergence
performance of the compressive diffusion strategies.

In the same example, Figs. 5 and 6 compare the convergence
performance of the single-bit and the scalar diffusion strate-
gies with the no-cooperation and full diffusion configurations
for & = 0.9, which shows the match of the theoretical and en-
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Fig. 5. Comparison of the global MSD and EMSE curves in the CTA strategy.
(a) Global MSD curves. (b) Global EMSE curves.
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Fig. 6. Comparison of the global MSD curves in the ATC diffusion strategy.

semble averaged performance results (we perform 200 indepen-
dent trials). The Fig. 5 shows the time-evolution of the MSD and
EMSE curves in the CTA diffusion strategy while the Fig. 6 dis-
plays the time-evolution of the MSD curves in the ATC diffu-
sion strategy in which the theoretical curves (42) and (66) are
iterated according to the Tables II and III. We note that we ob-
tain similar MSD curves in the CTA and ATC strategies since
we set § = 0.9 and the outcomes of the adaptation and combina-
tion operations contain relatively close amount of information.

In Fig. 7, we demonstrate the convergence of the constructed
estimates a; ;’s to the parameter of interest w, in the mean-
square sense. We point out that the recursions (42) and (66) also
provide the global mean-square deviation of the constructed es-
timates for the certain combination weight 3 in Table II and the
theoretical recursion matches with the simulated results.

In Fig. 8, we examine the impact of the synchronization is-
sues on the estimation performance in several different sce-
narios. As an example, we utilize pilot signals for the re-syn-
chronization at every 10 or 100 samples. In the asynchronous
events we assume that the diffused information is completely
lost and each neighboring node loses the synchronization of the
projection operator until the arrival of the next pilot signal, i.e.,
a severe synchronization event. We point out that the single-bit
diffusion strategy requires the synchronization of the construc-
tion updates in addition to the synchronization of the projec-
tion operator. Hence, the pilot signals in the single-bit diffusion
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Fig. 8. Impact of asynchronous events on the learning curves. (a) Single-bit
diffusion strategy. (b) Scalar diffusion strategy.

scheme also re-synchronize the construction updates in each
node within the neighborhood. In the Fig. 8, we observe 2 asyn-
chronous events at 5001st and 6001st time instants, however,
through the pilot signals at 5100th and 6100th (pilot signaling
per 100 iterations) or at 5010th and 6010th (pilot signaling per
10 iterations) time instants each node can re-synchronize again.
We note that single-bit diffusion strategy has performed less
sensitive to the asynchronous events thanks to the relatively
small learning rate of the construction update.

Fig. 9 shows the time evolution of the global MSD of the pro-
posed schemes, i.e., both ensemble averaged and theoretical re-
sults, in a non-stationary environment. We consider a first order
random walk model and choose E[q:q’] = 107°I,; in the
same configuration of the first example. In the Fig. 9, we ob-
serve the match of the ensemble averaged and the theoretical
results.

In Fig. 10, we compare the time evolution of the proposed
schemes with the partial diffusion strategy, where each node dif-
fuses only one coefficient of the parameter vector. For the pro-
jection operator, we utilize a sequential selection scheme based
on the round robin fashion such that

col{0,0,1,1}  if t =0 mod(4),

o = col{1,-1,0,0} ift=1mod(4),
* 7 col{1,1,0,0}  if t = 2 mod(4),
col{0,0,—1,1} if ¢t =3 mod(4).
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Fig. 9. Tracking performance of the proposed schemes in a non-stationary en-
vironment.
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Fig. 10. Comparison of the global MSD curves of the proposed schemes with
the partial diffusion configuration.

Note that this scheme satisfies the constraint to span the whole
parameter space. Correspondingly, we use a sequential partial-
diffusion scheme such that each node shares the same coeffi-
cients in order. In the proposed schemes, we choose § = 0.9 and
the step sizes of the all schemes are y; = .042. For the con-
struction updates, 77; = 0.0035 and 7;; = 0.75 in the single-bit
and scalar diffusion strategies, respectively. The Fig. 10 shows
that sequential selection scheme provides enhanced estimation
performance also for the compressive diffusion strategies. In the
Fig. 10, we also observe that both scalar diffusion and partial
diffusion approaches achieve comparable performance.

We can enhance the performance of the scheme through
the adaptation of the confidence parameter irrespective of the
cooperation rule. As an example, in Fig. 11, we compare the
time evolution of the MSD of the scalar diffusion scheme for
the adaptive and fixed confidence parameter cases with the
Metropolis and uniform combination rules. We use the same
configuration with the example 1, initialize cv; ; = 2, and set
teve = 10. Additionally, in Fig. 12, we also plot the time-evo-
lution of the scalar diffusion scheme for 6 = 0.95. Note that the
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Fig. 12. Comparison of the adaptive and fixed confidence parameter for the
scalar diffusion scheme.

adaptive scheme converges as fast as 6 = 0.95 scheme while
achieving smaller steady-state error similar to 6 = 0.9 scheme.
Hence, through the confidence parameter we can enhance the
performance of the compressive diffusion scheme for certain
scenarios.

In the second example, we examine the convergence per-
formance of the adaptive confidence parameter in a relatively
large network N = 20 with a long filter length A/ = 100.
We again observe a stationary data d; ; = u%r'tw0 + v;; for
¢ € {1,2,...,N}. The regressor data u;, is zero-mean i.i.d.
Gaussian whose standard deviation is around 0.4. The observa-
tion noise v, ; is zero-mean i.i.d. Gaussian whose variance is
072” = 10~!. We note that the signal-to-noise ratio is around
1.55 over the network, which is relatively lower than the
signal-to-noise ratio for the example 1. The variance of the
projection operator ¢;; is 02 = 102 (¢ = 10 %) for the
scalar (single-bit) diffusion scheme. The parameter of interest
w, € R0 is randomly chosen from a Gaussian distribution

and normalized such that ||w,|| = 1. We point out that in this
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Fig. 13. The global MSD curves in relatively large network and long filter
length while the confidence parameter is adapted in time.

example, the overall communication burden in the scalar diffu-
sion strategy is 1% of the full diffusion configuration while the
overall communication load in the single-bit diffusion strategy
is given by 20-bits per iterations.

We again use the Metropolis rule as the combination rule,
however, in this example, we adapt the confidence parameter
through (79) and (80) where we resort to the convex mixture of
the adaptive filtering algorithms [35]-[38]. We also choose the
step sizes the same for the distributed LMS update (17) of all
configurations at all nodes, i.c., ¢; = 0.01. In example 2, the
step sizes for the construction update (18) are n; = 0.01 (for the
single-bit diffusion approach) and n; = 0.5 (for the scalar diffu-
sion approach). We set ficyx = 250 in (80). The Fig. 13 shows
the global MSD curves of the no-cooperation, single-bit, scalar
and full diffusion strategies. We observe that the adaptive confi-
dence parameter improves the convergence performance of the
compressive diffusion strategies far more such that they achieve
comparable performance while the reduction of the communi-
cation load is tremendous.

XI. CONCLUSION

In the diffusion based distributed estimation strategies, the
communication load increases far more in the large networks
or highly connected network of nodes. Hence, the compressive
diffusion approach plays an essential role in achieving compa-
rable convergence performance to the full diffusion configura-
tions while reducing the communication load tremendously. We
provide a complete performance analysis for the compressive
diffusion strategies. We analyze the mean-square convergence,
the steady-state behavior and the tracking performance of the
scalar and single-bit diffusion approaches. The numerical ex-
amples show that the theoretical analysis model the simulated
results accurately. Additionally, we introduce the confidence pa-
rameter concept, which adds one more freedom of dimension to
the combination rule in order to improve the convergence per-
formance. When we adapt the confidence parameter using the
well-known adaptive mixture algorithms, we observe enormous
enhancement in the convergence performance of the compres-
sive diffusion strategies even for relatively long filter lengths.
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APPENDIX A
PROOF FOR LEMMA 1

We first show the equality of (46) for the two-node case. Then
the extension for a larger network is straight forward. We can
rewrite the term on the left hand side (LHS) of (46) as

E "Z’:XZEQNCtSign(Et)}

=F 'JthXS [:; :i}NCtsign(q) . (8D

_——
PP

After some algebra, (81) yields
E [{ptTXSEQNCtSign(et)}
= E [(v1191, + 71283 ;) samicrsign(er )]
+F [("/11<,~01T,t + "/1251;) §2772C2,t51gn(€2,t)]
+E [("/22<70§¢ + "/2151&) camcy sign(e )]
+ B [(v2:93, + 72181 ;) campcaasign(ea )] . (82)
In order to evaluate the expectations on the RHS of (82), by the
Assumption 2 and the Price’s result [40]-[42], we obtain
E {{p?XZEQNCtSign(Q)]
Eleq 4
FE [e%,t]
Eles 4|

L E [(’Yll‘z’{t +71252T’t) g’2’/]2C2,t€2,t] m

Eley 4
E [eit]
Elea s
Eleg,]
Rearranging (83) into a matrix product form leads (46).

Following the same way, we can also get (47) and the proof is
concluded. ]

=E [('711‘70{t + 'VIQézT,t) (17’1(:171561,15]

+E [('722‘702T,t + ’72151T,t) C3771C1,t€1,t]

+ £ [(sz‘?’g,t + 72151T,t) CarCa,r€n ] (83)

APPENDIX B
PROOF FOR LEMMA 2

We derive the RHS of (52) for the two-node case for nota-
tional simplicity, however, the derivation holds for any order of
network. For the two-node case, the LHS of (52) yields

E [sign(e;)” C/ NX4NC,sign(e,)]
=F [Sign(eltt)c{t'r}lgl’r}lclvtsign(eltt)]
+ E [sign(eu)cft7}1g27)2027tsign(627t)]
+ F [Sign(elt)cgtngggmcl,tsign(el?t)]
+ E [sign(ez,)cg ;m26amze2 sign(ez )] -

We re-emphasize that the regressor c;, is spatially and tem-
porarily independent. Hence, we obtain

E [sign(e;)" Cf NX4NC;sign(e;)]
=F [C£t771§1771C1,t] +FE [Cgtﬁ2§47}2C2,t]
+ B ey ssign(er)]” misans B [casign(es 1))

+ B [casign(es,)]” masam Elcy sign(er )], (84)
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Using the Price’s result, we can evaluate the last two terms on
the RHS of (84) fori € {1,2} as

3 E €;
Bl: ssign(e:,)] = EH
it

E [Ci,t Ei,t] .

We point out that the terms involving the diagonal entries of the
weighting matrix 34 in (84) do not include the deviation terms.
As aresult, rearranging (84) into a compact form results in (52).
This concludes the proof. O
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