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Abstract. Early development of spinodal instabilities and density correlation functions in asymmetric
nuclear matter are investigated in the stochastic extension of the Walecka-type relativistic mean field
including coupling with rho meson. Calculations are performed under typical conditions encountered in
heavy-ion collisions and in the crusts of neutron stars. In general, growth of instabilities occur relatively
slower for increasing charge asymmetry of matter. At higher densities around ρ = 0.4ρ0 fluctuations grow
relatively faster in the quantal description than those found in the semi-classical limit. Typical sizes of
early condensation regions extracted from density correlation functions are consistent with those found
from dispersion relations of the unstable collective modes.

1 Introduction

The stochastic mean-field (SMF) approach in either non-
relativistic or relativistic frameworks is different from the
standard mean-field theory due to the different initial con-
ditions employed. The standard mean-field theory with a
well-defined initial condition provides a deterministic de-
scription for the nuclear collision dynamics. On the other
hand, in the SMF approach quantal and thermal fluctua-
tions at the initial state are incorporated in a stochastic
manner by generating an ensemble of single-particle den-
sities according to the self-consistent mean-field evolution
of each event. Therefore the SMF approach provides a
probabilistic description of the nuclear collision dynam-
ics [1]. Once an ensemble of the single-particle density
matrices are generated, we can calculate the expectation
values and the variances of the observables by taking the
averages over the ensemble. It is demonstrated that the
SMF approach describes nuclear collision dynamics at low
energies including one-body dissipation and fluctuation
mechanisms in accordance with the quantal dissipation-
fluctuation relation [1]. It is shown that for small ampli-
tude fluctuations the SMF approach gives rise to the same
result as the one deduced from a variational approach for
dispersion of one-body observables [2]. Also, transport co-
efficients for macroscopic variables deduced from the SMF
approach have the same form with those familiar from
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the phenomenological nucleon-exchange model for deep-
inelastic collisions [3–5]. As a further testing, in a re-
cent work the approach is applied to the Lipkin-Meshkov
model, which has an exact quantal solution [6]. It is il-
lustrated that the SMF approach well describes the gross
properties of exact quantal evolution. All these demon-
strations support that the SMF approach provides a use-
ful tool for describing deep inelastic heavy-ion collisions,
heavy-ion fusion near barrier energies, spinodal decompo-
sition of nuclear systems in which mean-field fluctuation
mechanisms play a dominant role.

We recently investigated early development spinodal
dynamics [7] and baryon density correlation functions in
symmetric nuclear matter in the semi-classical [8,9], and
also in quantal frameworks [10]. We carried out these stud-
ies by employing stochastic extension of the Walecka-type
relativistic mean-field model including the self-interaction
of scalar mesons [10–14]. In these studies, we examined
the early development of spinodal instabilities and baryon
density correlation functions in the ideal case of charge-
symmetric nuclear matter for relevant values of initial
densities and temperatures. In the present study, we ex-
tend our investigations to examine the early development
of spinodal dynamics in charge-asymmetric nuclear mat-
ter employing the stochastic extension of the relativistic
mean-field theory by including coupling of baryon fields to
rho mesons. As in previous studies, we carry out these cal-
culations in both quantal and semi-classical frameworks of
the relativistic mean-field approach. We note that the for-
mal presentation of this work and notation are similar to
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the treatment presented in previous works [8–10]. There-
fore we provide a short description of the formalism here
and for details, please refer to refs. [8–10]. In sect. 2,
we briefly describe the stochastic extension of the rel-
ativistic mean-field approach including rho meson cou-
pling in the quantal framework and develop a linear re-
sponse treatment for spinodal instabilities. In sect. 3, we
present the results of calculations for early development
of baryon density correlation functions in different charge-
asymmetric nuclear matter. In sect. 4, conclusions are
given.

2 Relativistic mean field including rho mesons

For our purpose, it is most convenient to formulate the
relativistic mean-field theory in terms of single-particle
density matrix. Starting from a well-defined initial distri-
bution, we need to generate an ensemble of single-particle
density matrices, {ρ(n)

α (t)}, where n indicates the event
label. Time evolution of each member of the relativistic
single-particle density matrix is determined by its own
self-consistent mean field hα(ρ(n)) [13],

ih̄
∂

∂t
ρ(n)

α (t) =
[
hα(ρ(n)), ρ(n)

α (t)
]
. (1)

This equation is formally similar to the non-relativistic
TDHF equation for the single-particle density matrix.
However, we should note that here ρα(t) is a 4× 4 matrix
in the spinor space and hα(ρ(n)) denotes the relativistic
mean-field Hamiltonian in the event n. For simplicity, in
the rest of the paper, we ignore the event label n on the
density matrix, and label α = p, n denotes protons and
neutrons. In this work, we employ the Walecka model in-
cluding non-linear self-coupling terms of scalar meson and
coupling to charged rho mesons [15]. As a result, relativis-
tic mean-field Hamiltonians for protons and neutrons are
given by

hp(ρ) = �α ·
[
c�p − gv

�V − 1
2
gρ

�b3 − e �A

]

+β(Mc2 − gsφ) + gvV0 +
1
2
gρb3,0 + eA0, (2)

and

hn(ρ) = �α ·
[
c�p − gv

�V +
1
2
gρ

�b3

]

+β(Mc2 − gsφ) + gvV0 −
1
2
gρb3,0. (3)

Here �α and β are Dirac matrices, φ, Vμ ≡ (V0, �V ), Aμ ≡
(A0, �A) and B3μ ≡ (b3,0,�b3) scalar meson, neutral vec-
tor meson, electro-magnetic and z-component of charged
rho meson fields, and gs, gv and gρ are the corresponding
coupling constants, respectively. We note that the cou-
pling constants in these expressions are obtained from
the standard coupling constants as follows: gs → gs

√
h̄c,

gv → gv

√
h̄c, gρ → gρ

√
h̄c, and also g2 → g2/

√
h̄c,

g3 → g3/h̄c, for coupling constants of non-linear terms in
the scalar meson field. Since the nuclear system has well-
defined electric charge only the third component of the rho
meson field appears in the equation of motion. The meson
field obeys the usual Klein-Gordon equations with source
terms determined by fluctuating scalar ρs

α(�r, t), baryon
ρb

α(�r, t) and current �ρv
α(�r, t) densities [12]. These fluctuat-

ing densities are defined by
⎛
⎜⎝

�ρv
α(�r, t)

ρb
α(�r, t)

ρs
α(�r, t)

⎞
⎟⎠ =

∑
ij

Ψ †
α,j(�r, t)

⎛
⎜⎝

c�α

1

β

⎞
⎟⎠ Ψα,i(�r, t)ρij(α), (4)

where summations i, j run over a complete set of spinors
Ψα,i(�r, t) and ρij(α) indicates the time-independent ele-
ments of the single-particle density matrix. According to
the SMF approach, the elements of the density matrix are
uncorrelated Gaussian random numbers with mean values
ρij(α) = δijnj(α), and variances are given by

δρij(α)δρj′i′(α′) =
1
2
δαα′δii′δjj′

{
ni(α)[1 − nj(α)]

+nj(α)[1 − ni(α)]
}
, (5)

where nj(α) are the occupation numbers of single-particle
spinors.

For investigation of the early growth of density fluc-
tuations in the spinodal region, it is sufficient to consider
the linear response treatment of dynamical evolution. The
small-amplitude fluctuations of the single-particle density
matrix around an equilibrium initial state with proton and
neutron density matrices, (ρ0

p, ρ
0
n) ≡ ρ0, are determined by

the linear limit of the relativistic mean-field eq. (1). The
linearized mean-field equation for the fluctuating density
matrices for protons and neutrons δρα(t) = ρα(t) − ρ0

α

becomes

ih̄
∂

∂t
δρα(t) = [hα(ρ0), δρ(t)] + [δh(t), ρ0

α], (6)

where

hp(ρ0) = �α · c�p + β(Mc2 − gsφ0) + gvV0 +
1
2
gρb3,0 (7)

and

hn(ρ0) = �α · c�p + β(Mc2 − gsφ0) + gvV0 −
1
2
gρb3,0 (8)

represent the mean-field Hamiltonian for protons and neu-
trons in the initial state, respectively. Since, in the initial
state, average baryon and scalar densities are assumed to
be uniform, there are the following relations between ini-
tial densities and the meson fields:

μ2
sφ0 = gs(ρs

p,0 + ρs
n,0) + 2g2φ0 + 3g3φ

2
0, (9)

μ2
vV0 = gv(ρb

p,0 + ρb
n,0) (10)

and
μ2

ρb
0
3,0 = gρ(ρb

p,0 − ρb
n,0). (11)
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In these expressions ρs
p,0, ρs

n,0, ρb
p,0 and ρb

n,0 are scalar and
baryon densities for protons and neutrons in the initial
state, respectively, and �V 0 = 0, �b0

3 = 0, A0
0 = 0. The fluc-

tuating parts of the mean-field Hamiltonian for protons
and neutrons in eq. (6) are given by

δhp(t) = −�α ·
[
gvδ�V (�r, t) +

1
2
gρδ�b3(�r, t) + eδ �A(�r, t)

]

−βgsδφ(�r, t) + gvδV0(�r, t)

+
1
2
gρδb3,0(�r, t) + eδA0(�r, t) (12)

and

δhn(t) = −�α ·
[
gvδ�V (�r, t) − 1

2
gρδ�b3(�r, t)

]
− βgsδφ(�r, t)

+gvδV0(�r, t) −
1
2
gρδb3,0(�r, t). (13)

The small-amplitude fluctuation of meson fields evolves
according to the linearized Klein-Gordon equation, for de-
tails please see [10].

The analysis of the linear response treatment of the
instabilities in nuclear matter is relatively simple and it
can be carried out in a nearly analytical framework. In this
case, the plane wave representation of spinors for protons
and neutrons, α = p, n, provides a suitable representation
for the quantal investigation of the instabilities. Positive-
energy (λ = +1) and negative-energy (λ = −1) plane
wave spinors with spin quantum number s = ±1/2 can be
expressed as

|ψα,λ(�p, s)〉 = Nα,λ(�p)

(
χα,s

�σ·c�p
Mc2+λe∗(p)χα,s

)
|ei�p·�r/h̄〉. (14)

Here, χα,s = ( 1
0
), ( 0

1
) denote spin states for protons and

neutrons, the normalization factor is given by

Nα,λ(�p) =
√

[Mc2 + λe∗(�p)]/2λe∗(p). (15)

The quantity e∗(p) =
√

�p2c2 + M∗2c4 denotes the ef-
fective single-particle energies in the initial state which
is determined by the effective nucleon mass M∗c2 =
Mc2 − gsφ0. These plane wave spinors are eigenstates of
the mean-field Hamiltonian in the uniform initial state,

hα(ρ0)|ψα,λ(�p, s)〉 = Eα,λ(�p)|ψα,λ(�p, s)〉, (16)

with the eigenvalues Ep,λ(p) = gvV0 + ΔE + λe∗(�p) for
protons and En,λ(p) = gvV0 − ΔE + λe∗(�p) for neutrons,
where ΔE = (gρ/2mρ)2(ρ0

p,b − ρ0
n,b) denotes the single-

particle energy shift due to the asymmetry energy. We
expand the fluctuating density matrix in terms of plane
wave spinor representation as follows:

δρα(t) =
∑

λλ′s2s1

∫
d3p1d3p2

(2πh̄)6
|Ψα,λ′(�p2, s2)〉δρs2s1

α,λ′λ

×(�p2, �p1, t)〈Ψα,λ(�p1, s1)|. (17)

We analyze the density fluctuations in the no-sea ap-
proximation. In the spinor space there are four differ-
ent energy sectors (λ, λ′) = (+,+), (−,+), (+,−), (−,−)

corresponding to positive-energy particle hole excitations
above the Fermi level, negative-energy particle positive-
energy hole, negative-energy hole positive-energy particle
and particle hole excitations within the Dirac sea, respec-
tively. Thus in the no-sea approximation, occupation num-
bers of unoccupied states at zero temperature are zero
and are very small at low temperatures. In ref. [13], it was
shown that particle hole excitations corresponding to the
(−,+) and (+,−) sectors make sizable contributions on
the excitation strength of giant collective vibrations. Ac-
cording to our previous study, for symmetric matter, we
found that, at low temperatures, contributions to unstable
collective modes arising from the (−,+) and (+,−) sec-
tors for early density fluctuations are less than 10%. Since
magnitude of these contributions tends to increase for in-
creasing charge asymmetry of the system, we include the
(−,+) and (+,−) sectors in our calculations. We further
simplify the description by considering the spin-averaged
matrix elements of the fluctuating single-particle density
matrix δρα,λ′λ(�p2, �p1, t) = 1

2

∑
s δρss

α,λ′λ(�p2, �p1, t). Calcu-
lating the matrix element of eq. (6) between the spinors,
we find for the fluctuating density matrix of protons and
neutrons,

ih̄
∂

∂t
δρp,λ′λ(�p2, �p1, t) =

[λ′e∗(p2) − λe∗(p1)] δρp,λ′λ(�p2, �p1, t)

+[npλ(p1) − npλ′(p2)]

{
− �ξv

λ′λ ·
[
gvδ�V (�k, t)

+
1
2
gρδ�b3(�k, t) + eδ �A(�k, t)

]
− ξs

λ′λgsδφ(�k, t)

+ξb
λ′λ

[
gvδV0(�k, t) +

1
2
gρδb3,0(�k, t) + eδA0(�k, t)

] }
(18)

and

ih̄
∂

∂t
δρn,λ′λ(�p2, �p1, t) =

[λ′e∗(p2) − λe∗(p1)]δρn,λ′λ(�p2, �p1, t) + [nnλ(p1)

−nnλ′(p2)]

{
− �ξv

λ′λ ·
[
gvδ�V (�k, t) − 1

2
gρδ�b3(�k, t)

]

−ξs
λ′λgsδφ(�k, t) + ξb

λ′λ

[
gvδV0(�k, t) − 1

2
gρδb3,0(�k, t)

] }
.

(19)

In these expressions, nα,λ(p) = 1/[exp(e∗ − λμ∗
α)/T +

1] denotes baryon occupation factors for positive- and
negative-energy states with μ∗

α = μα,0 − (gv/μv)2ρb
α,0

where μα,0 and ρb
α,0 are the chemical potential and baryon

density of protons and neutrons α = p, n at the ini-
tial state, respectively, and μv is the mass parameter
of the vector meson. The quantities δ�V (�k, t), δV0(�k, t),
δ �A(�k, t), δA0(�k, t), δφ(�k, t), δ�b3(�k, t), and δb3,0(�k, t) de-
note the space Fourier transforms of fluctuating vector and
scalar meson fields, respectively, with h̄�k = �p2 − �p1. The
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, (27)

quantities �ξv
λ′λ(�p2, �p1), �ξs

λ′λ(�p2, �p1) and �ξb
λ′λ(�p2, �p1) are de-

rived in the appendix A of [16] and given by eqs. (14)–
(16) in this reference. We neglect a slight difference of
these quantities for proton and neutron due to their effec-
tive masses. Also as seen from the same appendix A, it is
possible to express the space Fourier transforms of spin-
isospin–averaged baryon density, scalar density and vector
density fluctuations for protons and neutrons in terms of
the density matrix as

⎛
⎜⎜⎝

δ�ρα,v(�k, t)

δρα,s(�k, t)

δρα,b(�k, t)

⎞
⎟⎟⎠ = γ

∑
λλ′

∫
d3p

(2πh̄)3

⎛
⎜⎝

�ξv
λ′λ(�p2, �p1)

ξs
λ′λ(�p2, �p1)

ξb
λ′λ(�p2, �p1)

⎞
⎟⎠

×δρα,λ′λ(�p2, �p1, t), (20)

where γ = 2 is the spin factor, �p2 = �p + �̄hk/2 and �p1 =
�p − �̄hk/2 .

We solve eqs. (18) and (19) by employing the stan-
dard method of the one-sided Fourier transform in time
to obtain [16]

δρ̃p,λ′λ(�p2, �p1, ω)−Xp,λ′λ(�k, ω)
[

np,λ′(�p2)−np,λ(�p1)
h̄ω−[λ′e∗(p2)−λe∗(p1)]

]

= ih̄
δρp,λ′λ(�p2, �p1, 0)

h̄ω − [λ′e∗(p2) − λe∗(p1)]
(21)

and

δρ̃n,λ′λ(�p2, �p1, ω)−Xn,λ′λ(�k, ω)
[

nn,λ′(�p2)−nn,λ(�p1)
h̄ω−[λ′e∗(p2)−λe∗(p1)]

]

= ih̄
δρn,λ′λ(�p2, �p1, 0)

h̄ω − [λ′e∗(p2) − λe∗(p1)]
. (22)

In these expressions δρα,λ′λ(�p2, �p1, 0) denotes fluctuations
of proton and neutron density matrices at the initial state,
and the quantities Xp,λ′λ(�k, ω) and Xn,λ′λ(�k, ω) are given
by

Xp,λ′λ(�k, ω) = G2
s ξ

s
λ′λδρ̃s(�k, ω)

−G2
v

[
ξb
λ′λδρ̃b(�k, ω) − �ξv

λ′λ · δ�̃ρv(�k, ω)
]

−G2
ρ

[
ξb
λ′λδρ̃3,0(�k, ω) − �ξv

λ′λ · δ�̃ρ3(�k, ω)
]

−G2
γ

[
ξb
λ′λδρ̃p,b(�k, ω) − �ξv

λ′λ · δ�̃ρp,v(�k, ω)
]

(23)

and

Xn,λ′λ(�k, ω)=G2
s ξ

s
λ′λδρ̃s(�k, ω)

−G2
v

[
ξb
λ′λδρ̃b(�k, ω)−�ξv

λ′λ ·δ�̃ρv(�k, ω)
]

−G2
ρ

[
ξb
λ′λδρ̃3,0(�k, ω)−�ξv

λ′λ ·δ�̃ρ3(�k, ω)
]
. (24)

By carrying out one-sided Fourier transforms of lin-
earized meson field equations, it is possible to eliminate
fluctuating meson fields by expressing them in terms of
fluctuating scalar, current and baryon density fluctua-
tions. As a result, the effective coupling constants that
appear in eqs. (23) and (24) are defined as
⎛
⎜⎜⎜⎜⎝

G2
v

G2
s

G2
ρ

G2
γ

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

g2
v/[−(ω/c)2 + k2 + μ2

v]

g2
s /[−(ω/c)2 + k2 + μ2

v − 2g2φ0 − 3g3φ
2
0]

g2
ρ/4[−(ω/c)2 + k2 + μ2

ρ]

e2/[−(ω/c)2 + k2]

⎞
⎟⎟⎟⎟⎠

.

(25)
Multiplying both sides of eqs. (21) and (22) by ξb

λ′λ(�p2, �p1),
ξs
λ′λ(�p2, �p1) and �ξv

λ′λ(�p2, �p1) and integrating over the mo-
mentum �p, we obtain six coupled algebraic equations for
the Fourier transforms of the fluctuating baryon density,
the scalar density and the vector density of protons and
neutrons, which can be expressed in a convenient matrix
form as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ap
1 Ap

2 Ap
3 An

1 An
2 An

3

Bp
1 Bp

2 Bp
3 Bn

1 Bn
2 Bn

3

Cp
1 Cp

2 Cp
3 Cn

1 Cn
2 Cn

3

Dp
1 Dp

2 Dp
3 Dn

1 Dn
2 Dn

3

Ep
1 Ep

2 Ep
3 En

1 En
2 En

3

F p
1 F p

2 F p
3 Fn

1 Fn
2 Fn

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δρ̃v
p(�k, ω)

δρ̃s
p(�k, ω)

δρ̃b
p(�k, ω)

δρ̃v
n(�k, ω)

δρ̃s
n(�k, ω)

δρ̃b
n(�k, ω)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

ih̄

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S̃b
p (�k, ω)

S̃s
p(�k, ω)

S̃v
p (�k, ω)

S̃b
n(�k, ω)

S̃s
n(�k, ω)

S̃v
n(�k, ω)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (26)

In this expression the coefficient matrix is given by

see eq. (27) above
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with P = G2
v + G2

ρ + G2
γ , Q = G2

s , G = G2
v − G2

ρ and
R = G2

v +G2
ρ. The quantities χ’s and χ̃’s are the relativis-

tic quantal Lindhard functions associated with baryon,
scalar, vector mesons and cross-terms. These expressions
are given in [10] for symmetric matter. For clarity of
presentation, we also reproduce them here for charge-
asymmetric nuclear matter as

⎛
⎜⎜⎜⎝

χv
α(�k, ω)

χs
α(�k, ω)

χb
α(�k, ω)

⎞
⎟⎟⎟⎠ = γ

∑
λλ′

∫
d3p

(2πh̄)3

⎛
⎜⎝

ξb
λ′λξv

λ′λ

ξb
λ′λξs

λ′λ

ξb
λ′λξb

λ′λ

⎞
⎟⎠

× nα,λ′(�p + h̄�k/2) − nα,λ(�p − h̄�k/2)

h̄ω − [λ′e∗(�p + h̄�k/2) − λe∗(�p − h̄�k/2)]
(28)

and
⎛
⎜⎜⎝

χ̃v
α(�k, ω)

χ̃s
α(�k, ω)

χ̃b
α(�k, ω)

⎞
⎟⎟⎠ = γ

∑
λλ′

∫
d3p

(2πh̄)3

⎛
⎜⎝

ξs
λ′λξv

λ′λ

ξs
λ′λξs

λ′λ

ξv
λ′λξv

λ′λ

⎞
⎟⎠

× nα,λ′(�p + h̄�k/2) − nα,λ(�p − h̄�k/2)

h̄ω − [λ′e∗(�p + h̄�k/2) − λe∗(�p − �k/2)]
.

(29)

Since in our analysis we consider the longitudinal unstable
modes, in these expressions we retain only the component
of the vector density fluctuations in the propagation di-
rection and use the notation, δρ̃v

α(�k, ω) = δ�̃ρ
v

α(�k, ω) ·�k and
ξ̃v
α = �ξv

α · �k. The source terms in eq. (26) are given by
⎛
⎜⎜⎝

S̃v
α(�k, ω)

S̃s
α(�k, ω)

S̃b
α(�k, ω)

⎞
⎟⎟⎠ = γ

∑
λλ′

∫
d3p

(2πh̄)3

⎛
⎜⎝

ξv
λ′λ

ξs
λ′λ

ξb
λ′λ

⎞
⎟⎠

× δρα,λ′λ(�p + h̄�k/2, �p − h̄�k/2)

h̄ω − [λ′e∗(�p + h̄�k/2) − λe∗(�p − h̄�k/2)]
,

(30)

where δρα,λ′λ(�p + h̄�k/2, �p− h̄�k/2) = δρα,λ′λ(�p + h̄�k/2, �p−
h̄�k/2, 0) denotes the initial fluctuations of the single-
particle density matrix. We note that the semi-classical
limits of eqs. (28)–(30) are obtained by retaining only the
positive-energy sector (λ, λ′) = (+,+) and keeping the
lowest-order terms in the integrands in the wave number
�k [8–10]. We can solve the algebraic equation (26) for the
proton and neutron baryon density fluctuations to give

δρ̃b
α(�k, ω) =

ih̄

ε(�k, ω)

[
Nα

1 S̃b
p − Nα

2 S̃s
p + Nα

3 S̃v
p

−Nα
4 S̃b

n − Nα
5 S̃s

n + Nα
6 S̃v

n

]
, (31)

where the quantity ε(�k, ω) denotes the susceptibility. The
expressions for the susceptibility and the expansion coef-
ficients Nα

j , for j = 1, 2, 3, 4 are given in appendix A.

3 Early growth of density fluctuations

We can determine the time development of baryon den-
sity fluctuations by taking the inverse Fourier transform
of eq. (31) in time. We can calculate the inverse Fourier
transform with the help of residue method. According to
the residue method, we need to consider the poles arising
from the susceptibility and source terms S̃b

α, S̃s
α and S̃v

α in
eq. (31). Non-collective poles are important for specifying
density fluctuations at the initial state, however density
fluctuations arising from these poles do not grow in time.
Therefore, we neglect non-collective poles of the suscepti-
bility and poles of the source terms, and retain dominant
contributions to the growth of instabilities due to the col-
lective poles of the susceptibility. By including only the
growing and decaying collective unstable modes, we find

δρ̃b
α(�k, t) = δρ+

α (�k)e+Γkt + δρ−α (�k)e−Γkt, (32)

where the quantities

δρ∓α (�k) = −h̄ ×{
Nα

1 S̃b
p −Nα

2 S̃s
p+Nα

3 S̃v
p−Nα

4 S̃b
n−Nα

5 S̃s
n+Nα

6 S̃v
n]

∂ε(�k, ω)/∂ω

}

ω=∓iΓk

(33)

denote Fourier transforms of density fluctuations asso-
ciated with the growing and decaying collective modes
at the initial state. Growth and decay rates of the col-
lective modes are determined by the dispersion relation,
ε(�k, ω) = 0 → ∓iΓk. Figure 1 shows quantal disper-
sion relations and the comparison with the semi-classical
calculations for charge-asymmetric matter with asymme-
try I = (ρb

n,0 − ρb
p,0)/(ρb

n,0 + ρb
p,0) = 0.5 at tempera-

ture T = 1MeV in the upper panel (a) and at temper-
ature T = 5MeV in the lower panel (b) at two differ-
ent densities ρ = 0.2ρ0 and ρ = 0.4ρ0. In the figure,
solid lines are the results of quantal calculations while
dashed lines are obtained in the semi-classical limit. In
this figure and in the rest of the paper we employ the rel-
ativistic Walecka model with non-linear self-interactions
of the scalar meson with NL3 parameters, which provides
a consistent description for static and dynamical global
nuclear properties [15]. We observe that the behavior of
the dispersion relation of unstable modes at both tem-
peratures is similar to those obtained in symmetric mat-
ter [10]. In semi-classical calculations for smaller densi-
ties, ρ = 0.2ρ0, unstable modes extend over a broader
range of wavelengths as compared to the results of quan-
tal calculations for both temperatures. On the other hand,
at higher densities, ρ = 0.4ρ0, semi-classical and quantal
calculations give nearly the same results at both tempera-
tures. We notice that dispersion relations have a cut-off at
long wavelengths which arise from the long-range electro-
magnetic interactions. Figure 2 shows quantal dispersion
relations and the comparison with the semi-classical cal-
culations for neutron-rich matter with charge asymmetry
I = 0.8 under the similar conditions of fig. 1. As matter
becomes more neutron rich, the range of unstable modes
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Fig. 1. Inverse growth rates of unstable modes as a func-
tion of the wave number for asymmetry I = 0.5 in quantal
(solid lines) and semi-classical calculations (dashed lines) at
T = 1 MeV (upper panel) and at T = 5MeV (lower panel) for
initial baryon densities ρ = 0.2ρ0 and ρ = 0.4ρ0.

becomes narrower and growth rates of the most unstable
modes are reduced. We note that the conditions in the
upper panel of fig. 2, for ρ = 0.4ρ0, approximately cor-
responds to the nuclear matter in the inner crust of neu-
tron stars. Figure 3 illustrates the inverse growth rates of
the most unstable collective modes in asymmetric matter
with I = 0.5 and I = 0.8, respectively, as a function of
the initial baryon density at two different temperatures
T = 1MeV and T = 5 MeV. Solid lines and dashed lines
are the results of quantal calculations and semi-classical
calculations, respectively. At temperature T = 5MeV, in
both quantal and semi-classical calculations most unstable
modes occur at densities in the vicinity of ρ = 0.3ρ0. At
the lower temperature of T = 1MeV, quantal and semi-
classical results exhibit similar behavior and most unsta-
ble modes shift toward lower densities around ρ = 0.2ρ0.
Also, we note that, at the densities and temperatures we
consider, except small cut-off at the long wavelength edge,
electro-magnetic interactions do not give any sizable con-
tribution to the behavior of the dispersion relation and
growth rates of unstable collective modes. Figure 4 shows
phase boundaries of instabilities in neutron-rich matter
of charge asymmetry I = 0.8 for a set of wavelengths in

Fig. 2. The same as fig. 1 for charge asymmetry I = 0.8.

the temperature baryon density plane. Neutron-rich mat-
ter with I = 0.8 and T = 1MeV, approximately corre-
sponds to the structure of the crust of neutron stars. Un-
der these conditions, limiting spinodal boundary occurs
at baryon density ρ = 0.5ρ0, which is consistent with the
result found in [17].

The dispersion relation provides useful information
about initial growth rates unstable modes, which are char-
acterized by wave numbers or wavelengths. However, we
can extract more useful information about dynamical evo-
lution of the unstable system in the spinodal region from
the equal time auto-correlation function of baryon den-
sity fluctuations. Here we consider only the baryon den-
sity correlation function. We define the equal time baryon
density correlation functions between protons, neutrons
and protons-neutrons in nuclear matter σαβ(|�r − �r ′|, t),
α, β = p, n, as follows:

σαβ(|�r − �r ′|, t) = δρb
α(�r, t)δρb

β(�r, t)

=
∫

d3k

(2π)3
ei�k·�xσ̃αβ(�k, t). (34)

Here x = �r−�r ′ denotes the distance between two space lo-
cations and σ̃αβ(�k, t) is the spectral intensity of the baryon
correlation functions. Spectral intensities are defined as
the second moment of the Fourier transform of the baryon
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Fig. 3. Inverse growth rates of the most unstable collective
modes in asymmetric matter with I = 0.5 (upper panel) and
I = 0.8 (lower panel), respectively, as a function of the initial
baryon density at two different temperatures T = 1 MeV and
T = 5 MeV. Solid lines and dashed lines are quantal and semi-
classical calculations, respectively.

Fig. 4. Phase boundaries of instabilities in neutron-rich matter
with I = 0.8 for a set of wavelengths in the temperature T and
baryon density ρb plane.

density fluctuations according to

δρ̃b
α(�k, t)(δρ̃b

β(�k ′, t))∗ = (2π)3δ(�k − �k ′)σ̃αβ(�k, t), (35)

where the bar denotes the ensemble averaged over the
events generated in the SMF approach. Employing the ex-
pression (5) for the initial fluctuations in the plane wave
representation, we can determine the spectral intensity of
density correlation functions as follows [10]:

σ̃αβ(�k, t) = h̄2
E+

αβ(�k)

|[∂ε(�k, ω)/∂ω]ω=iΓk
|2

(e+2Γkt + e−2Γkt)

+
2h̄2E−

αβ(�k)

|[∂ε(�k, ω)/∂ω]ω=iΓk
|2

, (36)

where the quantities symmetric E±
αβ = E∓

αβ for α = p, n
are

E±
αα = K±p

bb |Nα
1 |2 − 2K±p

bs (Nα
1 Nα

2 ) + K±p
ss |Nα

2 |2

+K±p
vv |Nα

3 |2 + K±n
bb |Nα

4 |2 − 2K±n
bs (Nα

4 Nα
5 )

+K±n
ss |Nα

5 |2 + K±n
vv |Nα

6 |2 (37)

and, for α = p, β = n,

E±
pn = E±

np = K±p
bb (Np

1 Nn
1 ) + K±p

bs (Np
2 Nn

1 + Np
1 Nn

2 )

−K±p
ss (Np

2 Nn
2 ) − K±p

vv (Np
3 Nn

3 ) − K±n
bb (Np

4 Nn
4 )

+K±n
bs (Np

4 Nn
5 N5pNn

4 ) − K±n
ss (Np

5 Nn
5 )

−K±n
vv (Np

6 Nn
6 ). (38)

In expressions (37) and (38) all Nα
j = Nα

j (+iΓk) factors
for j = 1, 2, 3, 4 are evaluated at ω = +iΓk and quantities
K±α are defined as

⎛
⎜⎜⎜⎜⎝

K±α
bb

K±α
ss

K±α
vv

K±α
bs

⎞
⎟⎟⎟⎟⎠

= γ2
∑
λλ′

∫
d3p

(2πh̄)3

⎛
⎜⎜⎜⎜⎝

ξb
λ′λξb

λ′λ

ξs
λ′λξs

λ′λ

ξv
λ′λξv

λ′λ

ξb
λ′λξs

λ′λ

⎞
⎟⎟⎟⎟⎠

× (h̄Γk)2 ± [λ′e∗(�p2) − λe∗(�p1)]2

{(h̄Γk)2 + [λ′e∗(�p2) − λe∗(�p1)]2}2

×nαλ′(�p2)[1 − nαλ(�p1)]. (39)

The initial value of the collective pole approximation
for the density correlation function does not match the
initial condition given in eq. (5). In fact, there are large
deviations between the exact initial value and the initial
value of the expression obtained by pole approximation,
in particular for short wavelengths, since the approximate
expression diverges as Γk goes to zero. As shown in [18],
the exact expression of initial fluctuations can be repro-
duced by including non-collective poles in the evaluation
of the inverse Fourier transform of expression (31) by the
residue method. It is also shown, in the same reference,
that fluctuations due to non-collective poles do not grow
in time. Since the dominant contribution to baryon corre-
lation functions for k integration in eq. (34) arises from the
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Fig. 5. Baryon density correlation functions for I = 0.5 at
temperature T = 1 MeV as function of the distance x = �r −
�r ′ between two space locations at initial densities ρ = 0.2ρ0

(upper panel) and ρ = 0.4ρ0 (lower panel). The correlation
functions in quantal (solid lines) and semi-classical (dashed
lines) calculations are indicated at initial time t = 0 and at
time t = 40 fm/c, respectively.

most unstable regions in figs. 1 and 2, we carry out the in-
tegration in eq. (34) up to a kcut. This cut-off value is taken
sufficiently below the singular behavior of σ̃αβ(�k, t = 0).

The total baryon density correlation function is given
as the sum of proton, neutron correlation functions and
the cross-correlations according to

σ(|�r − �r ′|, t) = σpp(|�r − �r ′|, t) + σnn(|�r − �r ′|, t)
+2σpn(|�r − �r ′|, t). (40)

Figures 5 and 6 illustrate the baryon density correla-
tion functions for I = 0.5 at two different temperatures,
T = 1MeV, T = 5MeV, as a function of the distance
x = �r − �r ′ between two space locations at two different
initial densities ρ = 0.2ρ0 (upper panels) and ρ = 0.4ρ0

(lower panels). The correlation functions are calculated
at the initial time t = 0 and at time t = 50 fm/c, and
the results of the quantal and semi-classical calculations
are indicated by solid and dashed lines, respectively. Fig-
ure 7 shows a similar graph for neutron-rich matter with
I = 0.8 at temperature T = 1MeV, which approximately

Fig. 6. The same as fig. 5 for temperature T = 5 MeV.

corresponds to the conditions in the crust of neutron stars.
The evolution of the baryon density correlation function
provides useful information about the size of initial con-
densation regions and the time scale of the condensation
mechanism. We define the typical size of the initial con-
densation region as the width of the correlation function
at half maximum, which is referred to as the correla-
tion length xcor. Qualitative behavior of baryon corre-
lation function for asymmetric matter presented here is
rather similar to the symmetric matter presented in [10].
However, we notice that the baryon density fluctuations
grow slower for increasing charge asymmetry of the mat-
ter. For example, at T = 1Mev and ρ = 0.4ρ0, fluc-
tuations grow four times slower in neutron-rich matter
I = 0.8 than in I = 0.5. Although it somewhat depends
on the kcut introduced in the integration in eq. (34), we
observe at low temperature T = 1MeV in figs. 5 and 7,
a large quantal effect in the initial growth of the den-
sity correlation function. We can understand this effect
by noticing that at zero temperature, the semi-classical
expression vanishes nαλ(�p)[1 − nαλ(�p ′)] = 0. Therefore
the initial density correlation functions vanish and they
do not grow in time at all σbb(|�r − �r ′|, t) = 0. On the
other hand, in quantal framework even at zero temper-
ature, as a result zero point fluctuations of collective
modes, nαλ(�p + h̄�k/2)[1 − nαλ(�p − h̄�k/2)] �= 0, the den-
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Fig. 7. The same as fig. 5 for charge asymmetry I = 0.8.

sity correlation function remains finite and grows in time.
From these figures, the correlation lengths, which pro-
vide a measure for radius of the correlation volume, have
a slight dependence on the temperature and the initial
baryon density. In asymmetric matter with I = 0.5, the
correlation length increases from about xcor = 2.5 fm
at temperature T = 1MeV to about xcor = 3.0 fm at
temperature T = 5MeV for both densities ρ = 0.2ρ0

and ρ = 0.4ρ0. In neutron-rich matter with I = 0.8
and temperature T = 1MeV, it increases from about
xcor = 2.0 fm at ρ = 0.2ρ0 to xcor = 3.0 fm at ρ = 0.4ρ0.
The magnitudes of correlation radii extracted from the
correlation functions are consistent with the quarter wave-
lengths of the most unstable modes in the dispersion re-
lations with corresponding values of density and temper-
ature.

4 Conclusion

In this work, we examine the early development of spin-
odal instabilities and baryon density correlation func-
tions in charge-asymmetric nuclear matter employing the
stochastic extension of the Walecka-type relativistic mean-
field theory and including the coupling of baryon fields to

the rho meson. We carry out these calculations in linear re-
sponse frameworks of the relativistic mean-field theory in
both quantal and semi-classical limits with NL3 param-
eterization of the model. We find that, at temperatures
T = 1MeV and T = 5MeV, and relatively low densities
in the vicinity of ρ = 0.2ρ0, for charge asymmetries I = 0.5
and 0.8 in quantal calculations, most unstable collective
modes are shifted towards relatively longer wavelengths
and concentrated over a narrower range, while, in semi-
classical calculations, the modes extend over a broader
range in the dispersion relation. On the other hand, we ob-
serve that at relatively higher densities, around ρ = 0.4ρ0,
quantal dispersion relations nearly coincide with those ob-
tained in the semi-classical calculations at both tempera-
tures and charge asymmetries. This result is different from
the calculations we found in the non-relativistic approach
using an effective Skyrme interaction [19], in which the
quantal inverse growth rates of unstable modes remain
below the semi-classical results even for relatively large
baryon densities. We believe this is a relativistic effect, and
it arises from the fact that in the dispersion relations the
effects of the (−,+) and (+,−) sectors, which do not have
a counterpart in the semi-classical calculations, become
gradually more important in matter at larger densities and
larger charge asymmetries. Consequently, quantal disper-
sion relations become very close to the those found in the
semi-classical limit. Most unstable behavior of matter de-
pends strongly on the temperature. In charge-asymmetric
matter with I = 0.5 at temperature T = 5MeV (typical
conditions during the expansion phase of heavy-ion col-
lisions at energies around Fermi energy per nucleon) the
fastest growth of instabilities occurs at densities around
ρ = 0.3ρ0. In neutron-rich matter with I = 0.8 at tem-
perature T = 1MeV (typical conditions in the crust of
neutron stars) the fastest growth of instabilities occurs at
lower densities around ρ = 0.2ρ0. The growth of baryon
density correlation provides further information on the
condensation mechanism during the early stages of liquid-
gas transformation of the matter. There are two compet-
ing effects during the early growth of density fluctuations.
At low temperatures around T = 1MeV, the magnitude of
initial density fluctuations is larger in the quantal calcula-
tions than in the semi-classical calculations, while at rel-
atively higher temperatures, around T = 5MeV, the ini-
tial fluctuations have nearly the same magnitude. On the
other hand, the semi-classical inverse growth rates at low
densities, around ρ = 0.2ρ0, are larger than the quantal
rates, while the growth rates are nearly the same at higher
densities, around ρ = 0.4ρ0, at both temperatures. As a
result of these competing effects, baryon density fluctua-
tions grow relatively faster in the quantal description than
in the semi-classical approach at conditions considered in
the calculations, except at low densities, around ρ = 0.2ρ0,
and higher temperatures, around T = 5MeV, where the
quantal growth occurs at a slower rate. We also note that
typical sizes of early condensation regions extracted from
baryon density correlation functions are consistent with
those found from dispersion relations of the unstable col-
lective modes. In this work we carry out investigations of
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growth of the spin-averaged baryon density fluctuations
in nuclear matter. We should note that spin instabilities
may play a crucial role in the condensation mechanism
especially in the inner crust of neutron stars.
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Appendix A.

The susceptibility ε(�k, ω) can be expressed as 6 × 6 de-
terminant with elements determined by eqs. (20) and (21)
as

ε(�k, ω) =
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. (A.1)

The expansion coefficients Nα
j for j = 1, 2, 3, 4, in eq. (23),

can be given as 5 × 5 determinants as
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1 En
2

F p
1 F p

2 F p
3 Fn

1 Fn
2

∣∣∣∣∣∣∣∣∣∣∣∣

, (A.4)

Nn
4 =

∣∣∣∣∣∣∣∣∣∣∣∣

Ap
1 Ap

2 Ap
3 An

1 An
2

Bp
1 Bp

2 Bp
3 Bn

1 Bn
2

Cp
1 Cp

2 Cp
3 Cn

1 Cn
2

Ep
1 Ep

2 Ep
3 En

1 En
2

F p
1 F p

2 F p
3 Fn

1 Fn
2

∣∣∣∣∣∣∣∣∣∣∣∣

, Nn
5 =

∣∣∣∣∣∣∣∣∣∣∣∣

Ap
1 Ap

2 Ap
3 An

1 An
2

Bp
1 Bp

2 Bp
3 Bn

1 Bn
2

Cp
1 Cp

2 Cp
3 Cn

1 Cn
2

Dp
1 Dp

2 Dp
3 Dn

1 Dn
2

F p
1 F p

2 F p
3 Fn

1 Fn
2

∣∣∣∣∣∣∣∣∣∣∣∣

,

Nn
6 =

∣∣∣∣∣∣∣∣∣∣∣∣

Ap
1 Ap

2 Ap
3 An

1 An
2

Bp
1 Bp

2 Bp
3 Bn

1 Bn
2

Cp
1 Cp

2 Cp
3 Cn

1 Cn
2

Dp
1 Dp

2 Dp
3 Dn

1 Dn
2

Ep
1 Ep

2 Ep
3 En

1 En
2

∣∣∣∣∣∣∣∣∣∣∣∣

. (A.5)

Elements of these determinants Nα
j are also deter-

meined by eqs. (20) and (21).

References

1. S. Ayik, Phys. Lett. B 658, 174 (2008).
2. R. Balian, M. Veneroni, Phys. Lett. B 136, 301 (1984).
3. S. Ayik, K. Washiyama, D. Lacroix, Phys. Rev. C 79,

054606 (2009).
4. K. Washiyama, S. Ayik, D. Lacroix, Phys. Rev. C 80,

031602 (2009).
5. S. Ayik, B. Yilmaz, D. Lacroix, Phys. Rev. C 81, 034605

(2010).
6. D. Lacroix, S. Ayik, B. Yilmaz, Phys. Rev. C 85, 041602

(2012).
7. Ph. Chomaz, M. Colonna, J. Randrup, Phys. Rep. 389,

263 (2004).
8. S. Ayik, O. Yilmaz, N. Er, A. Gokalp, P. Ring, Phys. Rev.

C 80, 034613 (2009).
9. S. Ayik, O. Yilmaz, F. Acar, B Danisman, N. Er, A.

Gokalp, Phys. Rev. C 80, 034613 (2011).
10. O. Yilmaz, S. Ayik, A. Gokalp, Eur. Phys. J. A 47, 123

(2011).
11. P. Ring, Prog. Part. Nucl. Phys. 37, 193 (1996).
12. B.D. Serot, J.D. Walecka, Int. J. Mod. Phys. E 6, 515

(1997).



Eur. Phys. J. A (2013) 49: 33 Page 11 of 11

13. P. Ring, Zhong-yu Ma, Nyguyen Van Giai, D. Vretenar,
A. Wandelt, Li-gang Cao, Nucl. Phys. A 694, 249 (2001).

14. D. Vretenar, A.V. Afanasjev, G.A. Lalazissis, P. Ring,
Phys. Rep. 409, 101 (2005).

15. G.A. Lalazissis, J. Konig, P. Ring, Phys. Rev. C 55, 540
(1997).

16. E.M. Lifshitz, L.P. Pitaevskii, Physical Kinetics (Perga-
mon, 1981).

17. J. Xu, C.M. Ko, Phys. Rev. C 82, 044311 (2010).
18. P. Bozek, Phys. Rev. Lett. B 383, 121 (1996).
19. S. Ayik, N. Er, O. Yilmaz, A. Gokalp, Nucl. Phys. A 812,

44 (2008).


