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Abstract

We investigate the Hall conductance of graphene with point defects within the Kubo
formalism, which allows us to calculate the Hall conductance without constraining the Fermi
energy to lie in a gap. For pure graphene, which we model using a tight-binding Hamiltonian,
we recover both the usual and the anomalous integer quantum Hall effects depending on the
proximity to the Dirac points. We investigate the effect of point defects on Hall conduction by
considering a dilute but regular array of point defects incorporated into the graphene lattice.
We extend our calculations to include next nearest neighbor hopping, which breaks the
bipartite symmetry of the lattice. We find that impurity atoms which are weakly coupled to the
rest of the lattice result in gradual disappearance of the high conductance value plateaus. For
such impurities, especially for vacancies which are decoupled from the lattice, strong
modification of the Hall conductance occurs near the £ = 0 eV line, as impurity states are
highly localized. In contrast, if the impurities are strongly coupled, they create additional Hall
conductance plateaus at the extremum values of the spectrum, signifying separate impurity
bands. Hall conductance values within the original spectrum are not strongly modified.

(Some figures may appear in colour only in the online journal)

1. Introduction

External magnetic field is a powerful tool to manipulate and
tune the properties of condensed matter systems. For example,
in applying magnetic field to two-dimensional (2D) electron
systems amazing properties such as the Hall effect or the
Landau level spectrum emerge. The effect of perpendicular
magnetic field on 2D Bloch electrons has been a very
active research field since the discovery of the Hofstadter
butterfly [1] for the square lattice. It has become a well
studied problem since then, and this self-similar structure
of energy spectrum is established for various types of 2D
lattice [2-9]. These unusual energy spectra gave rise to
new questions such as how the conductance and transport
properties evolve under magnetic field. In general, 2D systems
experiencing a perpendicular magnetic field display the Hall
effect. In 1982, it was reported that the Hall conductance
for a square lattice is quantized with ¢?/h, and it is value is
equal to Thouless—Kohmoto—Nightingale—den Nijs (TKNN)
integers multiplied by the conductance quantum when the
Fermi level lies in energy gaps [10, 11]. Within a gap, the
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Hall conductance is constant, forming a conductance plateau.
These TKNN integers are given by topological invariants
known as Chern numbers. For the square lattice these Chern
numbers satisfy a Diophantine equation, which can be used to
determine conductance in a gap uniquely. However, for other
lattices a Diophantine equation does not uniquely determine
the conductance. In general, conductance can be calculated by
the Streda [12] formula originating from the linear response
theory, or by the Kubo formalism.

Graphene, after isolation as a single layer by mechanical
exfoliation [13, 14], is one of the most studied systems in
recent years. Graphene exhibits several unusual properties
because of the Dirac points constituting its band structure.
For example, the unconventional quantum Hall effect was
predicted in earlier calculations [15, 16]. Soon after the
discovery of the anomalous integer quantum Hall effect
in graphene [17, 18], many theoretical studies discussing
Hall conductance in the low magnetic field regime were
reported [5, 19-22]. Hasegewa and Kohmoto calculated the
Hall conductance for the plateaus from the Streda formula [5].
They found the Hall conductances are given by oy, =

© 2013 IOP Publishing Ltd Printed in the UK & the USA
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Figure 1. (a) Magnetic unit cell of graphene, in which 44 atoms are connected. The unit cell with a basis of two atoms is indicated within
the smaller parallelogram. (b) Larger magnetic unit cell of graphene suitable for point defect calculations through which 32¢ atoms are
connected. The unit cell has eight atoms in the basis shown within the boundaries of the smaller parallelogram, and the atom labeled ‘e’ is

the defect atom.

2nez/h with n = ...,3,2,1,0, in the high magnetic field
regime, where the additional factor of 2 arises from the
spin degeneracy. In this paper, we follow the tight-binding
approximation for the honeycomb lattice in the presence of
magnetic field. After diagonalization of the Hamiltonian, we
use the corresponding eigenvalues and the eigenvectors in the
Kubo formula to calculate the Hall conductance. We come
up with oy, = 2ne*/h with n = ...,3,2,1,0 for the high
magnetic field limit. Similarly, in the lower magnetic field
regime, we observe the anomalous integer quantum Hall effect
given by oy = 2(2n+ 1) x e2/h withn=---,3,2,1,0. Our
results for pure graphene are in accordance with experiments
and previous calculations.

However, no real sample is defect free. Even in the
cleanest material there are point defects such as impurities or
vacancies. These defects might be introduced intentionally in
order to improve some materials property [23—29]. Therefore,
it is essential to understand the effect of these defects
on properties such as magnetoconductance [30]. Here, we
investigate in detail the evolution of conductance with respect
to presence of point defects such as vacancy and impurity
atoms in graphene. The effect of uniform on-site disorder
on the graphene quantum Hall effect was investigated on
a graphene ribbon [31]. A disorder model more relevant
to graphene can be constructed by explicitly introducing
impurities with modified hopping strength in a supercell
approach. In this paper, we present such a model, in which
we obtain a 12.5% concentration by treating one atom as
a point defect out of eight atoms in the enlarged unit
cell. By altering the hopping constant(s) of this impurity
atom we model different impurity atoms in graphene, and
by setting the hopping constant(s) to zero we model the
vacancy case. We show that the impurity atoms with smaller
hopping constant than the rest of the atoms result in highly
localized states, which do not provide any contribution to the
Hall conductance. However, the impurity atoms with higher
hopping constant produce delocalized states, which form their
own bands [32]. Previously, we have obtained the energy
spectrum in the presence of point defects and transverse

magnetic field by using the tight-binding method [32]; in this
study we investigated the topological nature of that spectrum
by evaluating the Hall conductance using the Kubo formula.

The paper is organized as follows: in section 2.1, we
summarize the Kubo formalism for the calculation of the
Hall conductance for pure graphene. We model graphene with
point defects in section 2.2. We discuss the Hall conductances
for perfect and imperfect graphene in section 3, then we
briefly conclude in section 4.

2. Methodology
2.1. Pure graphene

Graphene has a honeycomb lattice structure with two atoms
in its unit cell. The bond distance is 1.42 A, and each atom
has three nearest neighbors. We considered the isotropic case,
in which the hopping parameter for the p, orbitals interacting
with the nearest neighbors is equal to —2.66, and —0.1 eV for
the next nearest neighbors [33].

When the well known tight-binding method is applied
with the Peierls substitution [34] for the Landau gauge
A = (0, Bx, 0), we end up with Harper’s equation [35]. By
applying the Bloch condition, Harper’s equation is written as
an eigenvalue equation, where the 4g x 4g A, matrix is the
Hamiltonian. The elements of this matrix are composed of
the interactions over the entire magnetic unit cell, shown in
figure 1(a).

The amount of flux per unit cell is given by ¢ = §¢0,
where the flux quantum ¢og = h/e. We consider the cases
for which p and g are mutually prime integers. The system
has a new unit cell under the magnetic field, which is called
the magnetic unit cell. In this unit cell, due to the magnetic
periodicity and the basis, now 4g atoms are connected, as
shown in figure 1(a). We have new lattice vectors for this
case, which have lengths depending on the parameter gq.
As we increase ¢, our magnetic unit cell is enlarged as
opposed to the magnetic Brillouin zone. Increasing g has
another consequence, such that it yields lower magnitude
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for the magnetic field. Since we have to solve eigenvalue
equations among the whole Brillouin zone, increasing g
brings computational cost for the diagonalization; however,
our magnetic Brillouin zone scales down with ¢, requiring
summation over fewer k points. The eigenvalues of the Ap,
matrix are the energy eigenvalues, which yield the Hofstadter
butterflies for graphene as a function of flux o = p/q [1, 6].
The detailed description of the tight-binding method applied
to pure and defective graphene under magnetic field has been
published previously in [32].

Once the eigenvalues and corresponding eigenstates are
obtained, the Hall conductance can be calculated from the
Kubo formula [10]:

ie? N N
oy = >0 D @H/0k))ap(9H [0k2) g
Ao Eo <Ef Eg>Ef
— (0H/3k2)op (VH /3k1) po 1[(Ew — Ep)*17 . (1)

The derivative expressions are the velocity matrix elements.
The sums over energies above and below the Fermi energy
also imply a summation over the magnetic Brillouin zone.
The energy eigenvalues are grouped into occupied (o) and
unoccupied (B) states. So, by changing the Fermi energy
we can calculate the Hall conductance for a given system.
This sweep of Fermi energy corresponds to the change in the
gate voltage in the usual quantum Hall experiments. Similar
calculations based on this approach have been carried out for
other lattice geometries [36, 37].

2.2. Graphene with point defects

In section 2.1 we assume that graphene has a defect free
structure. However, in the real world any material has defects
such as impurity atoms and vacancies. These imperfections
may appear in the crystal structure naturally, but also might
be deliberately introduced [38—42]. Types of disorder in
graphene vary widely; however, experimentally point defects
are most easily induced [27-29]. We model a defect atom
by changing its hopping constant(s). If one of the atoms in
the usual basis of graphene with two atoms is modified, we
end up with a composite structure such as an alloy with a
concentration of 50%. In order to reduce this concentration
to reasonable values, we use a 2 x 2 unit cell as shown in
figure 1(b). Thus with this enlargement we obtain a defect
concentration of 12.5%. The defects in our system are well
separated (~10 A) but form a regular lattice. The edge states
have an important role in quantum Hall physics and it would
be interesting to carry out similar calculations for a finite
system such as a graphene nanoribbon. The tight-binding
formalism is well suited for such calculations because of
the short hopping range of electrons. The termination of
graphene at the edges, such as armchair or zigzag, will
determine the nature of the edge states. However, such states
will be localized to within a few lattice constants, similar to
the impurity states considered in this paper. So, the effect
of the edge states on magnetotransport is subtle. Whenever
the Fermi energy lies in a gap, longitudinal conductivity is
zero and Hall conductivity is topologically protected [10].

Thus, as long as there is no scattering between edge states
from opposite ends of the ribbon, the Hall conductivity will
not change. Significant scattering between edge states is not
possible unless the ribbon is only a few lattice constants
thick. Thus, our results regarding Hall conductivity in this
paper are robust with respect to the boundary conditions, i.e.
termination of graphene at the edges.

The natural defects are of course randomly scattered
throughout the sample. However, as long as the defect
concentration is low, the main effect of defects on transport
is through their action as individual scatterers. Thus, in this
paper, we model the impure system by considering a regular
lattice of point defects as explained above. As long as the
point defects create states which are well localized, they can
be modeled by enlarging the unit cell [43]. Furthermore, the
Hall conductance is a very robust physical quantity, as it can
be related to certain topological invariants [10, 20, 44, 45].
We expect that our model closely represents the properties of
randomly scattered impurities as long as the conditions above
are met.

The enlarged unit cell is shown in figure 1(b). The smaller
parallelogram in which the atoms are labeled a, b,c, ..., h
and index 1 is the enlarged unit cell. The tight-binding
procedure is similar to the usual unit cell of graphene;
however, since we have eight atoms, our Hamiltonian is now
an 8 x 8 matrix. All the elements of this matrix contain
the p, orbital interactions between the first nearest neighbors
and the second order neighbors, if necessary. The magnetic
field is introduced to the system via Peierls substitution with
the Landau gauge. Different from the previous calculation
in section 2.1, the magnetic phase factors are now 4q
periodic. As a result of this and having eight atoms in
the basis, we end up with a 32g x 32g A, matrix. The
eigenvalues of the A, matrix give the Hofstadter butterfly
spectrum of defective graphene. The detailed description of
the tight-binding method applied to defective graphene under
magnetic field can be found in [32]. When the Kubo formula is
applied to the eigenvalues and eigenvectors of the A, matrix,
which is now our magnetic Hamiltonian, we get the Hall
conductance as a function of Fermi energy and magnetic field.
We define o as @ = p/q = ¢/¢o, where ¢y is the flux quantum
and ¢ is the amount of flux per enlarged unit cell. We calculate
the Hall conduction in the presence of point defects up to
second nearest neighbors for p, orbitals.

3. Results and discussion

By changing the ratio ¢ by means of changing g, one can
work in either the low or high magnetic field regimes. For
the high magnetic field regime, we see a similar behavior of
the Hall conductance to the square lattice case. The value of
Hall conductance is given by the Chern numbers, which come
as the solutions for the Diophantine [10, 46] equation when
the Fermi energy lies in the gaps. For the square lattice the
hall conductance oy, is given as n x &2 /h, withn =41, —1,0
when g = 3 for the Fermi energy is in a gap. The case for the
graphene is slightly different from this; for the single value of
g = 3, the Hall conductance is given by oy, = n x €% /h with
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Figure 2. (a) The Hall conductance spectrum for graphene with ¢ = 3 and p = 1. The plateaus have constant conductances proportional to
nx et /h, where n = +2, —2, +2, —2, 0. (b) The Hall conductance spectrum for graphene with ¢ = 5 and p = 1. The plateaus have constant
conductances proportional to n x €2 /h, where n = +2, +4, 46, =2, +2, —6, —4, —2, 0. (c) The Hall anomalous conductance spectrum for
graphene with ¢ = 15 and p = 1. The plateaus around Er = 0 have constant conductances proportional to n x e2/h, where
n=—6,—-2,42, 4+6. The steps have conductance values as a set of even integers. (d) The Hall anomalous conductance spectrum for
graphene with ¢ = 25 and p = 1. The plateaus around Er = 0 have constant conductances proportional to n x e2/h, where

n=—10,—6, -2, 42, +6, +10. The insets are the density of states data.

n=+42,—-2,42, —2,0. The Hall conductance in major gaps
of the spectrum is displayed in figure 2(a) in units of > /A.

Similarly, when we have ¢ = 5 given in figure 2(b), we
have the conductances as n = +2, +4, +6, —2, +2, —6, —4,
—2,0. This behavior of Hall conductance is similar to the
results of the square lattice except for the extra factor of 2
originating due to the spin degeneracy in graphene. However,
the most interesting case arises when the magnetic field
is reduced in magnitude. For both ¢ = 3 and 5, we are
still working with really high order magnetic field. In the
experiments performed in 2005 [17, 18], the anomalous
quantum Hall effect was observed for magnetic fields of the
order of 10 T.

This strange behavior of conductance is that it is equal
to 2(2n + 1)e?/h, where n is 0, 1,2, 3, .... We see that this
anomalous quantum Hall regime can be probed even with g =
15. The corresponding conductance is displayed in figure 2(c).
On setting g to 15 we observe two plateaus around —3 eV <
Er < 0 eV with the conductances given by —2(2n + 1)e?/h,
with n = 0, 1. A similar structure appears within 0 eV <

Er < 3 eV, with Hall conductances 2(2n + l)ez/h, where
n = 0, 1. These plateaus are surrounded by scattered-like
conductance values, due to the van Hove singularities in the
density of states. As we look from the bottom limit of the
Er, we see the step-like increasing conductance, which is
the electron-like conductance behavior. Each step increases
the conductance by a factor of two in this region, where the
gaps are wider than the bands [20]. The same behavior has
a mirror image for the Fermi energies on the positive axis
as a result of bipartite symmetry of the lattice, since we are
just considering the first order interactions. For this case,
the observed behavior is the hole-like conductance behavior.
A similar spectrum can be seen for ¢ = 25 displayed in
figure 2(d), where the anomalous quantum Hall conductance
plateaus have constant conductances with —2(2n+1)e?/h and
22n + 1)62/h where n = 0, 1, 2. It is also reported that the
Hall conductances are given by multiples of Chern numbers
when the Fermi energy lies in a gap [20]. In that study, they
divide Fermi energy axis into intervals with respect to the
magnitude of the hopping constant. They give the value of
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the Hall conductance as different functions of Dirac—Landau
level indices depending on which interval the Fermi energy
lies within (x2 due to the spin degeneracy). Although they
calculate the Hall conductances for the entire energy region,
they are able to find the value of the Hall conductance only
when the Fermi energy lies in a gap. However, the Kubo
formula allows us to calculate the Hall conductance regardless
of the position of the Fermi energy. As reported in [20],
the Hall conductance displays qualitatively different behavior
in the energy range between the van Hove singularities.
(See figure 2(d).) The change of electron-like conduction
into anomalous integer quantum Hall conduction (anomalous
integer quantum Hall conduction into hole-like conduction
on the positive Fermi energy axis) occurs in the region
of van Hove singularities. In those regions, calculation of
Hall conductance requires very fine meshing of k points, as
a result of which our conduction values show a scattered
structure. However, two main regimes of Hall conduction,
integer quantum Hall effect and anomalous integer quantum
Hall effect, can still be observed clearly. We achieve the
anomalous integer quantum Hall effect for graphene when the
magnitude of the magnetic field is reduced; also, we observe
‘even’ integer quantum Hall effect through higher magnetic
fields. When the magnetic field magnitude is reduced by
means of increasing the value of g, we see five different
behavior regions. Starting from the smallest value of the EF,
the first region is the electron-like conduction region, the
second one is the scattered conductance region due to the van
Hove singularities for the corresponding region of the density
of states, then comes the anomalous quantum Hall effect
region, with the neighbor of the other van Hove singularities
region, and last comes the hole-like conduction region.

We examine the effects of point defects on the Hall
conductance for two cases: first with only the nearest neighbor
interactions are considered, and second when next nearest
hopping is also included. The results for the first nearest
neighbors are given as a set of impurity hopping constant
strengths in figure 3. The conductance values are distributed
symmetrically over right and left hand sides of the entire
region of Fermi energy as a result of lattice bipartite
symmetry [6]. Since the Hall conduction is calculated for a
single value of «, we set it to « = p/q = 7/3. We tried to
keep g as small as possible because it is a parameter that
defines the size of Ay, matrix (32g x 32¢) to be diagonalized.
We model several scenarios for the atom labeled ‘e’ being
different atoms or just a vacancy located at the atomic position
of one of the carbon atoms. Part (a) corresponds to the case
where the atom ‘e’ is an impurity with twice the usual hopping
constant. The integer quantum Hall effect with even steps
can be observed. Part (c) is the pure case where all the
atoms including the atom ‘e’ are carbon atoms. One of the
differences between parts (a) and (c) is that the widths of the
plateaus are narrowed down in part (a) with respect to the pure
case. Also, this impurity atom modifies the conduction at the
bottom and top regions of the Fermi energy scale. This larger
hopping constant impurity brings out new conduction plateaus
ataround Ef >~ —10 eV and Ef >~ 10 eV with Hall conductance
of —2¢?/h and 2¢? /h separated from the ones in the pure case

with plateaus of zero Hall conductance, respectively. A similar
behavior still survives when the hopping constant of atom ‘e’
is reduced to %prn, given in part (b). This additional Hall
plateaus occur due to an increase in the interaction of the
impurity atom with the neighboring atoms. The states due
to this kind of impurity appear to be delocalized and they
contribute to Hall conduction.

The rest of the parts in figure 3 constitute a second set
where the atom ‘e’ is again an impurity, but this time its
hopping constant is reduced to several fractions of the rest
of the atoms. Part (d) represents the case of an impurity with
ngn = %prn. We see that there are still plateaus with zero
Hall conduction for —5 eV < Ef < —2.5eV (and 2.5 eV <
Er < 5 eV), but this time they are not followed by #2¢2/h
conduction plateaus. In addition, the plateaus with conduction
values of —662//’1 and 6e2/h in the regions —7.5 eV < Ef <
—5 eV and 5 eV < Ef < 7.5 eV are reduced to —4e2/h
and 4¢2/h. Moreover, the constant conduction of —2¢?/h and
2¢%/h lying in the regions —6.4 eV < Ef < —4.6 eV and
4.6 eV < Ef < 6.4 eV for the pure case now split with a
plateau of zero conductance. This splitting increases as we
keep reducing the hopping parameter of atom ‘e’ seen in parts
(e) and (f), and it has its maximum width in part (g), where
atom ‘e’ is the vacancy. When we look at the general trend of
Hall conduction in parts (e) and (f), we see that the conduction
is suppressed with respect to the pure case. As we end up with
the vacancy case shown in the last part, there remain only the
plateaus with —2¢2/h, 2¢/h and zero conductance. We can
state that, by reducing the hopping constant of atom ‘e’, we are
interrupting the conduction mechanism. The states due to this
kind of impurity appear to be highly localized on the defect
atoms in the entire magnetic unit cell, as a result of which they
have no contribution to the conductance; rather, they suppress
the Hall conduction mechanism. As the impurity states are
highly localized, our results should not be modified by the
random distribution of defects.

The Hall conductance in the presence of the second order
interactions is depicted in figure 4 as a complementary set to
figure 3. Due to the breaking of the bipartite symmetry of
the lattice by introducing the second order interactions, the
conductance values are no longer symmetrically distributed
over the whole region of Fermi energy. Similar to the previous
calculation, the value of « is equal to 7/3. We observe that
the Hall conductance values are robust with respect to the
second order interactions in graphene. However the widths
of the plateaus are changed as the widths of the gaps and
bands are modified. The larger hopping constant impurity
results in new nonzero Hall conduction values, by modifying
conduction values around the bottom and the top regions
of the Fermi energy. Similar to the first order calculations,
the impurity atoms with smaller hopping constants do not
contribute to Hall conduction. Their presence suppresses the
conduction, and as we keep reducing the hopping constants
we only get conduction plateaus with —2¢2/h, 2¢*/h and zero
conductance.

In figure 5, portions of Hofstadter butterflies for imperfect
graphene are displayed with Hall conductances indicated in
the major gaps. In figure 5(a), only the first order interactions
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are assumed to exist. The x-axis has the values for o =
p/q = ¢/po, where ¢ is the amount of magnetic flux per
enlarged unit cell. The atom ‘e’ has a hopping strength gaps with Hall conduction +6e?/h, +4¢?/h are observed in
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one fourth of that of the other atoms. The corresponding
Hall conduction is given in figure 3(f) for « = 7/3. The
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Figure 4. Integer quantum Hall conductance for graphene with point defects; both the first and the second order interactions are
2E)
H

considered. For all of the calculations « = p/q = 7/3; (a) H, ppn = 2H,7 and
Hy o = Hppr and HyE = Hzpn, (d) Hy, = 3 Hppr and Hppx = iHop @ H

5 2
Hp[(,g) = lepﬂ;, and (g) ppn =0and le()i) =0.

the neighborhood of Ef = 0 eV, which is not observed in
figure 3(f) as only a single « value is considered. Figure 5(b)
is the case when the second order interactions are involved.

ppt T

PPT[

=2H?,.. (b) He,\ = 3Hypr and
{Hypr and B3R = 12,0 (O

HZ(E)

ppt T

ppn_ 1

case is the case which has the impurity atoms with H

3H2 . (©)

prn and

The breaking of bipartite symmetry results in shifting of gaps
and bands with respect to the £ = 0 eV line. This Speciﬁc

PPT[
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Figure 5. Portion of Hofstadter butterflies for graphene with point defects. The Hall conduction values of main gaps are marked on the

graphs. (a) First order interactions; the atom labeled ‘e’ has ngn =
the atom labeled ‘e’ has Hy, = 1 Hpp and HSE,? = %ngn.

2E
%prn and Hpr(m) = %Hz

opn- The same +6¢?/h, +4e* /h valued
conduction gaps are still there. Regardless of the effect
of second order interactions, the widths of these gaps are
larger in comparison with figure 5(a). Hence, our claim that
suppression of the Hall conductance—by means of narrowing
of the plateaus—increases with the reduction of the hopping
constant of the impurity atom is once again verified.

The effect of impurity atoms on the energy can be
visualized in figure 6. We take @« = p/q = 80/31 >~ 2.58, and
consider both the first and the second order interactions. We
can keep track of the conduction values for the gaps roughly
from figure 4 for the vertical dotted lines. Since the Hall
conductance is a topological invariant within a gap, its value
does not change unless the bands cross. Thus the conductance
value within the major gaps can be easily discerned from
the calculation at a single ¢/t value. The impurities with
smaller hopping constants modify the Hofstadter butterfly
mostly around the E = 0 eV line. As the impurity hopping
strengths are increased to Hppn =1t = ', we see new gap
and band formation around that region. In addition, the
width of the spectrum is constant for /¢ < 1. However, the
spectrum displays unusual behavior beyond this point. For

%prn. (b) Both the first and the second order interactions are involved;

the impurities with greater hopping constants, some bands
are separated from the rest of the energy spectrum around
the minimum and the maximum. The original spectrum
mostly remains intact. As we increase the hopping strength
to higher values, we see that these bands gain their own
self-similar structure separated by zero conductance gaps
from the original spectrum. This separation happens roughly
around 7'/t = 1.2. Beyond 7'/t > 1.5, the bulk of the spectrum
remains unchanged while two impurity bands further separate,
increasing the zero conductance gaps. The Hall conduction
plateaus with oy, = +2¢?/h presented in figure 4 are located
within these bands. As a result, we observe that the higher
hopping constant impurities produce their own self-similar
band by modifying the energy spectrum around the top and
the bottom values of the energy. A shortcoming of our
model is the periodic arrangement of the defect atoms. This
periodic arrangement results in well defined oy, = +2¢2/h
conduction plateaus within these separated bands and their
overall self-similar behavior. However, in a real sample the
impurities would be distributed over the system randomly.
Although this randomness would disturb the self-similar
structure of these bands, it is not expected to significantly
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Figure 6. The change in the band structure of impure graphene as a
function of impurity hopping strength. p = 80 and ¢ = 31; both the
first and the second neighbor interactions are considered. The
conduction values along the vertical dotted lines can be inspected
from figure 4. The impurity bands leave the bulk of the spectrum
and create their own self-similar structure with the critical value of
the impurity hopping strength #' /¢ > 1.2. The higher hopping
constant impurities are responsible for the gaps with nonzero Hall
conductance values beyond this point.

modify their energies. As beyond ¢/t > 1.5 the impurity
bands are separated from the bulk of the spectrum by large
gaps, their behavior should be mostly independent. These
independent bands would still survive under randomness;
however, one would not expect Hall conduction plateaus
within these bands, or any well defined self-similarity with
regard to defect states.

The anomalous integer quantum Hall effect can be
observed for impure graphene, too. However, modeling
graphene with point defects of reasonable concentration
requires high computational cost. We model defects with
12.5% concentration, which needs a 32g x 32¢ matrix
diagonalization. In order to see the anomalous quantum Hall
effect which happens at large g > 15 (figure 2), we should
have larger values for g, which automatically increases the
computation time enormously with a sufficient amount of
k-point meshing.

4. Conclusions

In conclusion, we applied the Kubo conductance formula
to graphene in order to investigate the magnetoconductance
properties. For pure graphene our results clearly display
the usual and the anomalous quantum Hall effects, even
though our magnetic fields are much higher than the
usual experimental values. This physical limitation for
the magnitude of the magnetic field can be overcome
by some other indirect methods. For example, it was
reported [47] that the shear strain applied to graphene results
in a pseudomagnetic field. There is an extra phase factor
arising due to the shear strain, which makes the problem
identical to the magnetic field application from the point

of view of the tight-binding method. Our calculations show
that, even when the magnetic field is large enough to
preclude a continuum Dirac equation description of electronic
conduction, anomalous and normal integer quantum Hall
effects are present for graphene. The anomalous Hall effect
is always sandwiched between the usual Hall effect regions
with van Hove singularities marking the boundaries between
them.

The point defects which are natural ingredients of
graphene have interesting effects on the Hall conduction.
The defect atoms with smaller hopping constants do not
make major contributions to Hall conductance. The states
originating from these weakly coupled impurity atoms are
highly localized on the defect atoms. This localization is at
its maximum for the vacancy case. On the other hand, by
increasing the hopping constant of the impurity atoms we
increase the interaction of these sites with the neighboring
ones. Hence, the states corresponding to strongly coupled
impurities are delocalized. Such delocalized states form
separate bands at the extrema of the spectrum, creating
large, zero Hall conductance gaps. The bulk of the spectrum
and corresponding magnetoconductance properties are not
modified by these impurity states.
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