
EQUILIBRIUM CANTOR-TYPE SETS

ALEXANDER P. GONCHAROV

Abstract. Equilibrium Cantor-type sets are suggested. This allows to obtain
Green functions with various moduli of continuity and compact sets with preas-
signed growth of Markov’s factors.

1. Introduction

If a compact set K ⊂ C is regular with respect to the Dirichlet problem then the
Green function gC\K of C\K with pole at infinity is continuous throughout C. We are
interested in analysis of a character of smoothness of gC\K near the boundary of K. For
example, if K ⊂ R then the monotonicity of the Green function with respect to the set
K implies that the best possible behavior of gC\K is Lip1

2
smoothness. An important

characterization for general compact sets with gC\K ∈ Lip1
2

was found in [17] by
V.Totik. The monograph [17] revives interest in the problem of boundary behavior of
Green functions. Various conditions for optimal smoothness of gC\K in terms of metric
properties of the set K are suggested in [7], and in papers by V.Andrievskii [2]-[3].
On the other hand, compact sets are considered in [1], [8] such that the corresponding
Green functions have moduli of continuity equal to some degrees of h, where the
function h(δ) = (log 1

δ
)−1 defines the logarithmic measure of sets. For a recent result

on smoothness of gC\K0 , where K0 is the classical Cantor set, see [13].
Here the Cantor-type set K(γ) is constructed as the intersection of the level domains

for a certain sequence of polynomials depending on the parameter γ = (γn)∞n=1 (Section
2). In favor of K(γ), in comparison to usual Cantor-type sets, it is equilibrium in the
following sense.

Let λs denote the normalized Lebesgue measure on the closed set Es, where K(γ) =
∩∞s=0Es. Then λs converges in the weak∗ topology to the equilibrium measure of K(γ)
(Section 5). This is not valid for geometrically symmetric, though very small Cantor-
type sets with positive capacity.

Different values of γ provide a variety of the Green functions with diverse moduli
of continuity (Section 7).

In Section 8 we estimate Markov’s factors for the set K(γ) and construct a set with
preassigned growth of subsequence of Markov’s factors.

In Section 9 a set K(γ) is presented such that the Markov inequality on K(γ) does
not hold with the best Markov’s exponent m(K(γ)). This gives an affirmative answer
to the problem (5.1) in [4].

For basic notions of logarithmic potential theory we refer the reader to [10], [12],
and [15].
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We use the notation | · |K for the supremum norm on K, log denotes the natural
logarithm, 0 · log 0 := 0.

2. Construction of K(γ)

Suppose we are given a sequence γ = (γs)
∞
s=1 with 0 < γs < 1/4. Let r0 = 1 and

rs = γs r2
s−1 for s ∈ N. We define inductively a sequence of real polynomials: let

P2(x) = x(x− 1) and P2s+1 = P2s(P2s + rs) for s ∈ N. It is easy to check by induction
that the polynomial P2s has 2s−1 points of minimum with equal values P2s = −r2

s−1/4.
By that we have a geometric procedure to define new (with respect to P2s) zeros of
P2s+1 : they are abscissas of points of intersection of the line y = −rs with the graph
y = P2s . Let Es denote the set {x ∈ R : P2s+1(x) ≤ 0}. Since rs < r2

s−1/4, the
set Es consists of 2s disjoint closed basic intervals Ij,s. In general, the lengths lj,s of
intervals of the same level are different, however, by the construction of K(γ), we have
max1≤j≤2s lj,s → 0 as s →∞. Clearly, Es+1 ⊂ Es. Set K(γ) = ∩∞s=0Es.

Let us show that the sequence of level domains Ds = {z ∈ C : |P2s(z) + rs/2| <
rs/2}, s = 1, 2, · · · , is a nested family.

Lemma 1. Given z ∈ C and s ∈ N, let ws = 2 r−1
s P2s(z) + 1. Suppose |ws| = 1 + ε

for some ε > 0. Then |ws+1| > 1 + 4 ε.

Proof : We have ws+1 = (2 γs+1)
−1 (w2

s − 1 + 2 γs+1). Therefore, |ws+1| attains its
minimal value if ws ∈ R, so |ws+1| > (2 γs+1)

−1 (2 ε + ε2 + 2 γs+1) > 1 + ε
γs+1

> 1 + 4 ε.
2

Theorem 1. We have Ds ↘ K(γ).

Proof : The embedding Ds+1 ⊂ Ds is equivalent to the implication

|P2s(z) + rs/2| > rs/2 =⇒ |P2s+1(z) + rs+1| > rs+1/2,

which we have by Lemma 1.
For each j ≤ 2s the real polynomial P2s is monotone on Ij,s and takes values 0 and

−rs at its endpoints. Therefore, Es ⊂ Ds and K(γ) ⊂ ∩∞s=0Ds.
For the inverse embedding, let us fix z /∈ K(γ). We need to find s with z /∈ Ds.

Suppose first z ∈ R. Since Ds ∩ R = Es, the condition z /∈ Es gives the desired s.
Let z = x + i y with y 6= 0, x /∈ K(γ). By the above, x /∈ Ds for some s. All

zeros (xj)
2s

j=1 of the polynomial P2s + rs/2 are real. Therefore, |P2s(z) + rs/2| >

|P2s(x) + rs/2| > rs/2 and z /∈ Ds.
It remains to consider the case z = x + i y with y 6= 0, x ∈ K(γ). There is no loss

of generality in assuming |y| < 2. Let us fix s with max1≤j≤2s lj,s < y2/2 and k with
x ∈ Ik,s = [a, b]. Here, |P2s(a) + rs/2| = rs/2. Let us show that |P2s(z) + rs/2| >
|P2s(a) + rs/2| by comparison the distances from z and from a to the zero xj.

If j < k then |a− xj| ≤ |a− x|, which is less than the hypotenuse |z − xj|.
If j = k then |a− xk| ≤ lk,s < y2/2 < |y| ≤ |z − xk|.
If j > k then |a − xj| = xj − b + lk,s. Therefore, |a − xj|2 < |xj − b|2 + 2 lk,s <

|xj − b|2 + y2 ≤ |z − xj|2. 2
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Corollary 1. The set K(γ) is polar if and only if lims→∞ 2−s log 2
rs

= ∞. If this limit

is finite and z /∈ K(γ), then

gC\K(γ)(z) = lim
s→∞

2−s log |P2s(z)/rs|.

Proof : Clearly, gC\Ds
(z) = 2−s log |2 r−1

s P2s(z) + 1|. The sequence of the corre-

sponding Robin constants Rob(Ds) = 2−s log 2
rs

increases. If its limit is finite, then,

by the Harnack Principle (see e.g. [15], Th.0.4.10), gC\Ds
↗ gC\K(γ) uniformly on

compact subsets of C \K(γ). Suppose z /∈ K(γ). Then for some q ∈ N and ε > 0 we
have |wq| = 1 + ε. By Lemma 1, |ws| > 1 + 4s−q ε, so, for large s, the value |P2s(z)/rs|
dominates 1. This gives the desired representation of gC\K(γ). 2

The next corollary is a consequence of the Kolmogorov criterion (see e.g. [9],
T.3.2.1). Recall that a monic polynomial Qn is a Chebyshev polynomial for a compact
set K if the value |Qn|K is minimal among all monic polynomials of degree n.

Corollary 2. The polynomial P2s +rs/2 is the Chebyshev polynomial for the set K(γ).

Example 1. Let us consider the limit case, when γs = 1/4 for all s, so rs = 41−2s
.

Since here K(γ) = [0, 1], the n−th Chebyshev polynomial is Qn(x) = 2−n Tn(2x− 1),
where Tn is the monic Chebyshev polynomial for [−1, 1], that is Tn(t) = 21−n cos(n arccos t)
for n ∈ N. Therefore, in this case, P2s(x) + rs/2 = 2−2s

T2s(2x− 1) for s ∈ N.

3. Location of zeros

We decompose all zeros of P2s into s groups. Let X0 = {x1, x2} = {0, 1},
X1 = {x3, x4} = {l1,1, 1−l2,1}, · · · , Xk = {x2k+1, · · · , x2k+1} = {l1,k, l1,k−1−l2,k, · · · , 1−
l2k,k}, so Xk = {x : P2k(x)+rk = 0} contains all zeros of P2k+1 that are not zeros of P2k .
Set Ys = ∪s

k=0Xk. Then P2s(x) =
∏

xk∈Ys−1
(x− xk). Since P ′

2s = P ′
2s−1(2 P2s−1 + rs−1)

for s ≥ 2, we have

P ′
2s(y) = rs−1 P ′

2s−1(y), y ∈ Ys−2; P ′
2s(x) = −rs−1P

′
2s−1(x), x ∈ Xs−1. (1)

After iteration this gives

|P ′
2s(x)| = rs−1 rs−2 · · · rq |P ′

2q(x)| for x ∈ Xq with q < s. (2)

From here, for example, |P ′
2s(0)| = rs−1 rs−2 · · · r1.

The identity P2s+1(y) = P2s(y)
∏

xk∈Xs
(y−xk) = P2s(y) (P2s(y)+rs) implies P2s(y)+

rs =
∏

xk∈Xs
(y − xk). Thus,

∏
xk∈Xs

(y − xk) = rs for y ∈ Ys−1. (3)

Our next goal is to express the values of xk ∈ Xs in terms of the function u(t) =
1
2
− 1

2

√
1− 4t with 0 < t < 1

4
. Clearly, u(t) and 1 − u(t) are the solutions of the

equation P2(x) + t = 0. Let us consider the expression

x = f1(γ1 · f2(γ2 · · · fs−1(γs−1 · fs(γs)) · · · ), (4)

where fk = u or fk = 1 − u for 1 ≤ k ≤ s, so fk(t)(1 − fk(t)) = t. We have
P2(x) = −γ1 · f2(γ2 · · · ) with γ1 = r1. Hence, P4(x) = P2(x)(P2(x) + r1) = −r2

1f2(1−
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f2) = −r2
1γ2f3 = −r2 f3(γ3 · · · ). We continue in this fashion to obtain eventually

P2s(x) = −r2
s−1γs = −rs, which gives x ∈ Xs.

The formula (4) provides 2s possible values x. Let us show that they are all dif-
ferent, so any xk ∈ Xs can be represented by means of (4). Since u increases
and u(a) < 1 − u(b) for a, b ∈ (0, 1

4
), we have u(γ1 · u(γ2 · · · γmu(a)) · · · ) < u(γ1 ·

u(γ2 · · · γm(1−u(b)) · · · ). In general, let xi = u(γ1 ·u(γ2 · · · γk1(1−u(γk1+1 ·u(· · · γk2(1−
u(γk2+1 · · · γkm(1 − u(a)) · · · ) and xj = u(γ1 · u(γ2 · · · γk1(1 − u(γk1+1 · u(· · · γk2(1 −
u(γk2+1 · · · γkm · u(b)) · · · ), that is the first km functions fk for both points are identi-
cal, whereas fkm+1 = 1−u for xi and u for xj. The straightforward comparison shows
that xi > xj for odd m and xi < xj otherwise.

Lemma 2. Let s ∈ N and 1 ≤ j ≤ 2s. Then l1,s ≤ lj,s.

Proof : Assume without loss of generality that j is odd. Then Ij,s = [y, x] with
x ∈ Xs, y ∈ Xm where 1 ≤ m ≤ s − 1. The case m = 0 can be excluded, since
then y = 0 and j = 1. Consider the function F (t) = f1(γ1 · f2(γ2 · · · fm−1(γm−1 ·
fm(t)) · · · ), where fk ∈ {u, 1 − u} are chosen in a such way that y = F (γm). Then
x = F (γm · (1 − u(γm+1 · u(γm+2 · · · u(γs)) · · · ). By the Mean Value Theorem, lj,s =
x− y = |F ′(ξ)| · γm · u(γm+1 · · · u(γs)) · · · ) with γm − γm · u(γm+1 · · ·u(γs)) · · · ) < ξ <
γm ·u(γm+1 · · · u(γs)) · · · ). To simplify notations, we write tk = γk ·fk+1(γk+1 · · · γm−1 ·
fm(ξ)) · · · ) and τk = γk · u(γk+1 · · · γm−1 · u(ξ)) · · · ) for 1 ≤ k ≤ m − 1. By the
above, τk ≤ tk. Therefore, |f ′k(tk)| = 1√

1−4tk
≥ 1√

1−4τk
= u′k(τk). On the other hand,

u(t)
√

1− 4t < t for 0 < t < 1
4
, as is easy to check. This gives |F ′(ξ)| = |f ′

1 (t1)| ·
γ1 · · · |f ′

m−1(tm−1)| · γm−1 · |f ′
m(ξ)| > γ1 · · · γm−1 · u(τ1)

τ1
· u(τ2)

τ2
· · · u(τm−1)

τm−1
· u(ξ)

ξ
. Since τk =

γk · u(τk+1) for k ≤ m− 2 and τm−1 = γm−1 · u(ξ), we obtain |F ′(ξ)| > u(τ1)
ξ

and

lj,s >
u(τ1)

ξ
· γm · u(γm+1 · · · u(γs)) · · · ).

Taking into account the representation u(t) = 2t
1+
√

1−4t
, we have u(α t) < α u(t) for

0 < α < 1. The value α = 1
ξ
· γm · u(γm+1 · · · u(γs)) · · · ) satisfies this condition.

Therefore, l1,s = u(γ1 · u(γ2 · · · γm−1 · u(ξ α)) · · · ) < α u(τ1), that is l1,s < lj,s for
j ∈ {3, 5, · · · , 2s − 1}, which is the desired conclusion. 2

4. Auxiliary results

From now on we make the assumption

γs ≤ 1/32 for s ∈ N. (5)

Each Ij,s contains two adjacent basic subintervals I2j−1,s+1 and I2j,s+1. Let hj,s =
lj,s − l2j−1,s+1 − l2j,s+1 be the distance between them.

Lemma 3. Suppose γ satisfies (5). Then the polynomial P2s is convex on Ij,s−1 and
l2j−1,s + l2j,s < 4 γs lj,s−1 for 1 ≤ j ≤ 2s−1. Thus, hj,s > 7

8
lj,s for s ≥ 0, 1 ≤ j ≤ 2s.

Proof : We proceed by induction. If s = 1 then P2 is convex on I1,0 = [0, 1]. Let
us show that l1,1 + l2,1 < 4 γ1. The triangle ∆ with the vertices (0, 0), (1, 0), (1

2
,−1

4
) is

entirely situated in the epigraph {(x, y) ∈ R2 : P2(x) ≤ y}. The line y = −r1 intersects
∆ along the segment [A, B]. By convexity of P2, we have h1,0 = 1− l1,1− l2,1 > |B−A|.
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The triangle ∆1 with the vertices A,B, (1
2
,−1

4
) is similar to ∆. Therefore, 1

4
|B−A| =

1
4
− r1. Here, r1 = γ1, and the result follows.
Suppose we have convexity of P2k |Ij,k−1

and the desired inequalities for
k = 1, 2, · · · , s − 1. Fix j ≤ 2s−1 and x ∈ Ij,s−1 = [a, b]. Then P2s(x) = (x − a)(x −
b) g(x), where g(x) =

∏n
k=1(x− zk) with n = 2s − 2. Hence,

P ′′
2s(x) = g(x)

[
2 + 2

n∑

k=1

2x− a− b

x− zk

+
n∑

k=1

n∑

i=1,i6=k

(x− a)(x− b)

(x− zk)(x− zi)

]
.

Clearly, the polynomial g is positive on Ij,s−1, |2x−a−b| ≤ lj,s−1, and |(x−a)(x−b)| ≤
1
4
l2j,s−1. For convexity of P2s|Ij,s−1

we only need to check that 8 ≥ 8 lj,s−1

∑n
k=1 |x −

zk|−1 + l2j,s−1

∑n
k=1

∑
i6=k |x− zk|−1|x− zi|−1.

Let us consider the basic intervals containing x : Ij,s−1 ⊂ Im,s−2 ⊂ Iq,s−3 ⊂ · · · ⊂
I1,0. The interval Im,s−2 contains two zeros of g. For them |x − zk| ≥ hm,s−2 >

(1 − 4γs−1) lm,s−2 and
lj,s−1

|x−zk| < 4γs−1

1−4γs−1
, by inductive hypothesis. The last fraction

does not exceed 1/7. Similarly, Iq,s−3 contains another four zeros of g with
lj,s−1

|x−zk| <
4γs−1 4γs−2

1−4γs−2
≤ 1

7
· 1

8
. We continue in this fashion to obtain lj,s−1

∑n
k=1 |x − zk|−1 <∑s−1

k=1 2k · 1
7
· (1

8
)k−1 < 8

21
.

In the same way, l2j,s−1

∑n
k=1

∑
i6=k |x−zk|−1|x−zi|−1 < ( 8

21
)2, which gives P ′′

2s|Ij,s−1
>

0. Arguing as above, by means of convexity of P2s|Ij,s−1
, it is easy to show the second

statement of Lemma. 2

Let δs = γ1γ2 · · · γs, so r1r2 · · · rs−1 δs = rs.

Lemma 4. If γ satisfies (5) then for any xk ∈ Ys−1 with s ∈ N

exp(−16
s∑

k=1

γk) · rs/δs < |P ′
2s(xk)| ≤ |P ′

2s|Es = rs/δs

and

δs < li,s < exp(16
s∑

k=1

γk) · δs for 1 ≤ i ≤ 2s.

Proof : From (2) it follows that |P ′
2s|Es ≥ |P ′

2s(0)| = rs/δs. In order to get the
corresponding lower bound, let us fix Ii,s ⊂ Es. Without loss of generality we can
assume that i = 2j − 1 is odd. Then Ii,s ⊂ Ij,s−1 and Ii,s = [y, x] with y ∈ Ys−1, x =
y + li,s ∈ Xs. By Lemma 3, |P ′

2s| decreases on [y, x], so |P ′
2s(x)| < |P ′

2s(y)|. We will
estimate |P ′

2s(x)| from below in terms of |P ′
2s(y)|.

The point x is a zero of P2s+1 . Therefore, P ′
2s+1(x) = (x − y) · ∏yk∈Y ′s

|x − yk| =

(x − y) · ∏yk∈Y ′s
|y − yk| · β, where Y ′

s = Ys \ {x, y}, β =
∏

yk∈Y ′s
(1 +

li,s
y−yk

). Here,

(x− y) ·∏yk∈Y ′s
|y − yk| =

∏
xk∈Xs

|y − xk|
∏

yk∈Ys−1,yk 6=y |y − yk| = rs |P ′
2s(y)|, by (3).

On the other hand, by (1), P ′
2s+1(x) = rs |P ′

2s(y)|. Hence, |P ′
2s(x)| = β |P ′

2s(y)|. Let us
estimate β from below. We can take into account only yk ∈ Y ′

s with yk > y, since
otherwise the corresponding term in β exceeds 1. The interval Ij,s−1 contains two

points yk with yk − y > hj,s−1. Lemma 3 yields 1 +
li,s

y−yk
> 1− 8

7
· li,s

li,s−1
> 1− 8

7
· 4γs.
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For the next four points (let Ij,s−1 ⊂ Im,s−2) we have yk−y > hm,s−2 and 1+
li,s

y−yk
>

1− 8
7
· li,s

lm,s−2
> 1− 8

7
· 4γs · 4γs−1 ≥ 1− 1

7
· 4γs, by (5).

We continue in this fashion obtaining log β >
∑s

k=1 2k log(1 − 4
7
· 82−kγs). If 0 <

a < 1
4

then log(1− a) > 4 a log 3
4

> −1.16 a. A straightforward calculation shows that
log β > −16 γs. Thus,

exp(−16 γs) |P ′
2s(y)| < |P ′

2s(x)| < |P ′
2s(y)|. (6)

Combining this inequality with (2) yields the first statement of Lemma. Indeed, let
x = li1,m1−li2,m2 +· · ·−liq−1,mq−1 +liq ,mq with 1 ≤ m1 < · · · < mq = s. Then y ∈ Xmq−1 .
We use (6), then (2) for y, then (6) with y instead of x and z = li1,m1 − li2,m2 + · · ·+
liq−2,mq−2 ∈ Xmq−2 instead of y, then (2) for z, etc. Finally,

exp(−16(γm1 + · · ·+ γmq)) r1r2 · · · rs−1 < |P ′
2s(x)| < r1r2 · · · rs−1.

If mk = k for 1 ≤ k ≤ s, then all γk are presented in the corresponding sum. Mono-
tonicity of |P ′

2s| on [y, x] gives the desired conclusion.
The second statement of Lemma can be obtained by the Mean Value Theorem,

since P2s(y) = 0, P2s(y + li,s) = −rs. In particular, (6) with x = l1,s, y = 0 yields

δs < l1,s < δs · e16 γs < 2 δs. (7)

2

A.F.Beardon and Ch.Pommerenke introduced in [6] the concept of uniformly perfect
sets. A dozen of equivalent descriptions of such sets are suggested in [10, p. 343]. We
use the following: a compact set K ⊂ C is uniformly perfect if K has at least two
points and there exists ε0 > 0 such that for any z0 ∈ K and 0 < r ≤ diam(K) the set
K ∩ {z : ε0r < |z − z0| < r} is not empty.

Theorem 2. The set K(γ), provided (5), is uniformly perfect if and only if inf γs > 0.

Proof : Suppose K(γ) is uniformly perfect. The values z0 = 0 and r = l1,s−1 − l2,s

in the definition above imply l1,s + l2,s > ε0 l1,s−1. By Lemma 3, we have 4γs > ε0, so
infs γs ≥ ε0/4, which is our claim.

For the converse, assume γs ≥ γ0 > 0 for all s. Let us show that li,s > 1
2
γ0 lj,s−1

for any intervals Ii,s ⊂ Ij,s−1, which clearly gives uniform perfectness of K(γ). Fix
Ii,s ⊂ Ij,s−1. Let x, y be the endpoints of Ii,s with x ∈ Xs, y ∈ Ys−1.

Suppose first that y ∈ Xs−1. By the Mean Value Theorem, li,s |P ′
2s(ξ)| = rs for

some ξ ∈ Ii,s. By the monotonicity of |P ′
2s| on Ii,s, we have |P ′

2s(ξ)| < |P ′
2s(y)|, which

is rs−1 |P ′
2s−1(y)|, by (1). Here, |P ′

2s−1(y)| < |P ′
2s−1(z)|, where z ∈ Ys−2 is another

endpoint of Ij,s−1. Therefore, li,s > γs rs−1/|P ′
2s−1(z)|. On the other hand, lj,s−1 =

rs−1/|P ′
2s−1(η)| with η ∈ Ij,s−1, so |P ′

2s−1(η)| > |P ′
2s−1(z)|/e16 γs−1 , by (6). Hence,

li,s > γs lj,s−1/e
16 γs−1 ≥ 1

2
γ0 lj,s−1.

The case y ∈ Ys−2 is very similar. Here at once y plays the role of z. 2
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5. K(γ) is equilibrium

Here and in the sequel we consider rs in the form rs = 2 exp(−Rs · 2s). Recall that
Rs is the Robin constant for Ds and Rs ↑ R, which is finite if K(γ) is not a polar
set. In this case, let ρs = R − Rs. Since r0 = 1, we have ρ0 = R − log 2. Clearly,
γs = 1

2
exp[2s(ρs − ρs−1)] and δs = 2−s exp(2sρs −

∑s−1
k=1 2kρk − 2 ρ0). From this,

2−s log δs → 0 as s →∞. (8)

Given s ∈ N, let us uniformly distribute the mass 2−s on each Ij,s for 1 ≤ j ≤ 2s.
We will denote by λs the normalized (in this sense) Lebesgue measure on the set Es,
so dλs = (2s lj,s)

−1dt on Ij,s.
If µ is a finite Borel measure of compact support then its logarithmic potential is

defined by Uµ(z) =
∫

log 1
|z−t|dµ(t). We will denote by µK the equilibrium measure of

K,
∗→ means convergence in the weak∗ topology.

Let I = [a, b] with b− a ≤ 1, z ∈ I. By partial integration,
∫

I

log
1

|z − t| dt = b− a− (z − a) log(z − a)− (b− z) log(b− z).

It follows that

(b− a) log
e

b− a
<

∫

I

log
1

|z − t| dt < (b− a) log
2e

b− a
. (9)

Lemma 5. Let γ satisfy (5) and R < ∞. Then Uλs(z) → R for z ∈ K(γ) as s →∞.

Proof : Fix z ∈ K(γ). Given s, let z ∈ Ij,s for 1 ≤ j ≤ 2s. From (9) we have∫
Ij,s

log |z − t|−1 dλs(t) < 2−s (2 + log l−1
j,s ), which is o(1) as s → ∞, by Lemma 4 and

(8).

To estimate
∑2s

k=1,k 6=j

∫
Ik,s

log |z − t|−1 dλs(t) we use P2s(x) =
∏2s

k=1(x − yk) with

yk ∈ Ik,s. As above, let Ij,s ⊂ Im,s−1 ⊂ Iq,s−2 ⊂ · · · ⊂ I1,0. Suppose k corresponds
to the adjacent to Ij,s subinterval Ik,s of Im,s−1. Then hm,s−1 ≤ |z − t| ≤ |yj − yk| ≤
|z − t| + lj,s + lk,s. Hence, 1 ≤ |yj−yk|

|z−t| ≤ 1 + ε0, where ε0 =
lj,s+lk,s

hm,s−1
< 1

7
, by Lemma 3.

For this k we get
2−s log |yj − yk|−1 <

∫
Ik,s

log |z − t|−1 dλs(t) < 2−s (log |yj − yk|−1 + ε0).

In its turn, Iq,s−2 ⊃ Im,s−1 ∪ In,s−1, where In,s−1 contains other two intervals of
the s−th level. Let k correspond to any of them. Then |z − t| − lj,s − lk,s ≤ |yj −
yk| ≤ |z − t| + lj,s + lk,s with |z − t| ≥ hq,s−2. Here, 1 − ε1 ≤ |yj−yk|

|z−t| ≤ 1 + ε1 with

ε1 =
lj,s+lk,s

hq,s−2
< 8

7
(

lj,s

lm,s−1

lm,s−1

lq,s−2
+

lk,s

ln,s−1

ln,s−1

lq,s−2
) < 8

7
· 2 · 4γs 4γs−1 < 1

7
· 1

4
, by Lemma 3.

Repeating this argument leads to the representation

2s∑

k=1,k 6=j

∫

Ik,s

log |z − t|−1 dλs(t) = 2−s log
2s∏

k=1,k 6=j

|yj − yk|−1 + ε,

where |ε| ≤ 2−s+1(ε0 +2 ε1 + · · ·+2s−1 εs−1) with εk < 2
7
· 8−k for k ≥ 1. Here we used

the estimate | log(1 + x)| ≤ 2 |x| for |x| < 1/2. We see that |ε| < 2−s.
7



The main term above is 2−s log |P ′
2s(yj)|−1, which is 2−s log(δs/rs)+o(1), by Lemma

4. Thus, ∫
log |z − t|−1 dλs(t) = 2−s log(δs/rs) + o(1) as s →∞.

Finally, 2−s log(δs/rs) = Rs + 2−s log δs

2
→ R as s →∞, by (8). 2

Theorem 3. Suppose γ satisfies (5) and Cap(K(γ)) > 0. Then λs
∗→ µK(γ).

Proof : All measures λs have unit mass. By Helly’s Selection Theorem (see for
instance [15, Th.0.1.3]), we can select a subsequence (λsk

)∞k=1, weak∗ convergent to
some measure µ. Approximating the function log |z − · |−1 by the truncated contin-
uous kernels (see for instance [15, Th.1.6.9]), we get lim infk→∞ Uλsk (z) = Uµ(z) for
quasi-every z ∈ C. In particular, by Lemma 5, we have Uµ(z) = R for quasi-every
z ∈ K(γ). This means that µ = µK(γ) (see e.g. [15, Th.1.3.3]). The same proof re-

mains valid for any subsequence (λsj
)∞j=1. Therefore, λs

∗→ µK(γ). 2

Remark. Clearly, any compact set K with nonempty interior cannot be equilib-
rium in our sense since supp µk ⊂ ∂K. Neither geometrically symmetric Cantor-type
sets of positive capacity are equilibrium. Let us consider the set K(α) from [1] which
is constructed by means of the Cantor procedure with ls+1 = lαs for 1 < α < 2. The
values α ≥ 2 give polar sets K(α). As above, let λs be the normalized Lebesgue
measure on Es = ∪2s

j=1Ij,s. Given s ∈ N, let zs = l1 − l2 + · · · + (−1)s+1ls. Estimat-
ing distances |z − t| for z = 0 and z = zs, as in Lemma 5, it can be checked that

Uλs(0)−Uλs(zs) >
∑s−1

k=1 2−k−1 log (lk−1−lk)(lk−1−lk+1)

(lk−1−2lk)(lk−1−lk−lk+1)
. It is easily seen that all frac-

tions here exceed 1. Therefore, for each s there exists a point zs ∈ K(α) such that

Uλs(0) − Uλs(zs) exceeds the constant 1
4

log (1−l1)(1−l2)
(1−2l1)(1−l1−l2)

and the limit logarithmic

potential is not equilibrium. Indeed, if K(α) is not polar, then it is regular with respect
to the Dirichlet problem (see [11]) and Uµ

K(α) must be continuous in C and constant
on K(α).

6. Smoothness of gC\K(γ)

We proceed to evaluate the modulus of continuity of the Green function corresponding
to the set K(γ). Recall that a modulus of continuity is a continuous non-decreasing
subadditive function ω : R+ → R+ with ω(0) = 0. Given function f , its modulus of
continuity is ω(f, δ) = sup|x−y|≤δ |f(x)− f(y)|.

In what follows the symbol ∼ denotes the strong equivalence: as ∼ bs means that
as = bs(1 + o(1)) for s →∞. This gives a natural interpretation of the relation . .

Let γ be as in the preceding theorem. Then, we are given two monotone sequences
(δs)

∞
s=1 and (ρs)

∞
s=1 where, as above, δs = γ1 · · · γs, ρs =

∑∞
k=s+1 2−k log 1

2γk
. We define

the function ω by the following conditions: ω(0) = 0, ω(δ) = ρ1 for δ ≥ δ1. If s ≥ 2
then ω(δ) = ρs + 2−s log δ

δs
for δs ≤ δ ≤ δs−1/16 and ω(δ) = ρs−1 − ks(δs−1 − δ) for

δs−1/16 < δ < δs−1 with ks = 16
15
· 2−s δ−1

s−1 log 8.

Lemma 6. The function ω is a concave modulus of continuity. If γs → 0 then for
any positive constant C we have ω(δ) ∼ ρs + 2−s log C δ

δs
as δ → 0 with δs ≤ δ < δs−1.
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Proof : The function ω is continuous due to the choice of ks. In addition, ω′(δs−1 +
0) < ks < ω′(δs−1/16− 0), which provides concavity of ω.

If γs = 1
2

exp[2s(ρs−ρs−1)] → 0 then 2sρs →∞ and we have the desired equivalence
in the case δs ≤ δ ≤ δs−1/16. Suppose δs−1/16 < δ < δs−1. The identity

ρs−1 = ρs + 2−s log
δs−1

2δs

(10)

yields |ρs + 2−s log C δ
δs
− ω(δ)| < 2−s[| log 2C δ

δs−1
| + 16

15
log 8 · (1 − δ

δs−1
)] < 2−s[| log C| +

8 log 2], which is o(ω) since here ω(δ) > ρs−1 − 2−s log 8. 2

Lemma 7. Suppose γ satisfies (5) and Cap(K(γ)) > 0. Let z ∈ C, z0 ∈ K(γ) with
dist(z, K(γ)) = |z − z0| = δ < 1. Choose s ∈ N such that z0 ∈ Ij,s ⊂ Ij 1,s−1 with
lj,s ≤ δ < lj 1,s−1. Then gC\K(γ)(z) < ρs + 2−s log 16 δ

δs
.

On the other hand, if l1,s ≤ δ < l1,s−1 then gC\K(γ)(−δ) > ρs + 2−s log δ
δs

.

Proof : Consider the chain of basic intervals containing z0: z0 ∈ Ij,s ⊂ Ij 1,s−1 ⊂
Ij 2,s−2 ⊂ · · · ⊂ Ij s,0 = [0, 1]. Here, Ij i,s−i \ Ij i−1,s−i+1 contains 2i−1 basic intervals of
the s−th level. Each of them has certain endpoints x, y with x ∈ Xs, y ∈ Ys−1. Recall
that Ys−1 is the set of zeros of P2s . Distinguish yj ∈ Ij,s. Now for a fixed large n we

will express the value |P2n(z)| = ∏2n

k=1 |z− xk| in terms of
∏2s

k=1,k 6=j |yj − yk| (compare

to Lemma 5). Clearly, each interval of the s−th level contains 2n−s zeros of P2n , so
we will replace these 2n−s points with the corresponding yk.

Let us first consider the product π0 :=
∏

xk∈Ij,s
|z−xk|. Here, |z−xk| ≤ δ+lj,s < 2 δ,

so π0 < (2 δ)2 n−s
.

Let π1 :=
∏

xk∈Im,s
|z− xk|, where Im,s is adjacent to Ij,s. Then |z0− xk| ≤ lj 1,s−1 =

|yj−ym|, since yj and ym are the endpoints of the interval Ij 1,s−1. Therefore, |z−xk| <
2 |yj − ym| and π1 < (2 |yj − ym|)2 n−s

.
In the general case, given 2 ≤ i ≤ s, let πi denote the product of all |z − xk| for

xk ∈ Ji := Ij i,s−i \ Ij i−1,s−i+1. Suppose xk ∈ Iq,s. Then, |z − xk| ≤ δ + lj,s + |yj − yq|+
lq,s ≤ |yj − yq|(1 +

δ+lj,s+lq,s

hj i,s−i
), since yj and yq belong to different subintervals of the

(s − i + 1)−th level for Ij i,s−i. Here, δ
hj i,s−i

< 8
7

lj 1,s−1

lj i,s−i
< 8

7
81−i, by Lemma 3. As in

the proof of Lemma 5, we obtain
lj,s+lq,s

hj i,s−i
< 8

7
· 2 · 8−i. From this,

∏
xk∈Iq,s

|z − xk| ≤
[ |yj − yq| (1 + 80

7
8−i)]2

n−s
. Since Ji contains 2i−1 basic intervals of the s−th level,

πi < [ (1 + 80
7

8−i)2 i−1 ∏
yq∈Ji

|yj − yq| ]2 n−s
.

The product
∏s

i=2(1 + 80
7

8−i)2 i−1
is smaller than 2, as is easy to check.

Therefore, |P2n(z)| =
∏s

i=0 πi < [ 8 · δ ·∏2s

k=1,k 6=j |yj − yk| ]2 n−s
. The last product in

the square brackets is |P ′
2s(yj)|, which does not exceed rs/δs, by Lemma 4. Hence,

2−n log |P2n(z)| < 2−s log 16 δ
δs
−Rs.

Finally, by Corollary 1, gC\K(γ)(z) = R + limn→∞ 2−n log |P2n(z)|, which yields the
desired upper bound of the Green function.

Similar, but simpler calculations establish the sharpness of the bound. We have
gC\K(γ)(−δ) = R + limn→∞ 2−n log P2n(−δ). Now, P2n(−δ) =

∏s
i=0 πi with π0 =∏

xk∈I1,s
(δ + xk) > δ2 n−s

and πi =
∏

xk∈I2,s−i+1
(δ + xk) for i ≥ 1. Suppose xk ∈ Iq,s ⊂
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I2,s−i+1. Then δ+xk > yq−lq,s. Since yq > h1,s−i > 7
8
l1,s−i, we have δ+xk > yq(1− 8

7
8−i)

and πi > [ (1− 1
7
81−i)2 i−1 ∏

yq∈I2,s−i+1
yq ]2

n−s
. Therefore, P2n(−δ) > [ δ

2

∏2s

k=1 yk]
2 n−s

=

[ δ
2
|P ′

2s(0)|]2 n−s
= [ δ/δs · rs/2 ]2

n−s
, by (2). Thus, 2−n log P2n(−δ) > −Rs + 2−s log δ

δs

and gC\K(γ)(−δ) ≥ ρs + 2−s log δ
δs

. 2

Theorem 4. Suppose γ satisfies (5) and Cap(K(γ)) > 0. If δs ≤ δ < δs−1 then
ρs + 2−s log δ

δs
< ω(gC\K(γ), δ) < ρs + 2−s log 16 δ

δs
. If γs → 0 then ω(gC\K(γ), δ) ∼ ω(δ)

as δ → 0.

Proof : Fix δ and s with δs ≤ δ < δs−1. By (7), δs < l1,s < 2 δs < δs−1.
If l1,s ≤ δ < δs−1 then ω(gC\K(γ), δ) ≥ gC\K(γ)(−δ), so Lemma 7 yields the desired

lower bound. If δs ≤ δ < l1,s, then gC\K(γ)(−δ) > ρs+1 + 2−s−1 log δ
δs+1

= ρs +

2−s−1 log 2 δ
δs

, by (10). Here, 2−s−1 log 2 δ
δs

> 2−s log 2 δ
δs

, as is easy to check.
In order to get the upper bound, without loss of generality we can assume that

ω(gC\K(γ), δ) = gC\K(γ)(z) where z ∈ C is such that dist(z, K(γ)) = |z − z0| = δ for
some z0 ∈ K(γ).

Fix m such that z0 ∈ Ij,m ⊂ Ij 1,m−1 for some j with lj,m ≤ δ < lj 1,m−1. Then m ≥ s,
since otherwise Lemma 4 gives a contradiction δ < δs−1 ≤ δm < lj,m ≤ δ.

If m = s then, by Lemma 7, the result is immediate.
If m ≥ s+1 then gC\K(γ)(z) ≤ ρm+2−m log 16 δ

δm
that does not exceed ρs+2−s log 16 δ

δs
.

Indeed, the function f(δ) = ρs − ρm + (2−s − 2−m) log 16 δ − 2−s log δs + 2−m log δm

attains its minimal value on [δs, δs−1) at the left endpoint. Here, f(δs) = (2−s −
2−m) log 8 +

∑m
k=s+1(2

−k − 2−m) log 1
γk

> 0.

The last statement of the theorem is a corollary of Lemma 6. 2

7. Model types of smoothness

Let us consider some model examples with different rates of decrease of (ρs)
∞
s=1. Recall

that for non-polar sets K(γ) with R = Rob(K(γ)) we have ρs ↓ 0 and Rs − Rs−1 =
ρs−1 − ρs = 2−s log 1

2γs
with ρ0 = R − log 2. Therefore, R = log 2 −∑∞

k=1 2−k log 2γk.

In addition, (5) implies ρs ≥ 2−s log 16 and R ≥ log 32, so Cap(K(γ)) ≤ 1/32.
If a set K is uniformly perfect, then the function gC\K is Hölder continuous (see

e.g. [10], p. 119), which means the existence of constants C, α such that

gC\K(z) ≤ C (dist(z, K))α for all z ∈ C.

In this case we write gC\K ∈ Lip α.
By Theorem 2, gC\K(γ) is Hölder continuous provided γs = const. Now we can con-

trol the exponent α in the definition above. In the following examples we suppose
that dist(z, K(γ)) = δ with δs ≤ δ < δs−1 for large s.

Example 2. Let γs = γ1 ≤ 1
32

for all s. Then δs = γs
1, rs = γ2s−1

1 , R = log 1
γ1

,

and ρs = 2−s log 1
2γ1

. Here, ρs + 2−s log δ
δs
≥ ρs > 2−s = δα

s with α = − log 2
log γ1

. Since

δs = γ1 δs−1 > γ1 δ, we have, by Theorem 4, gC\K(γ)(−δ) > γα
1 δα. On the other hand,

ρs + 2−s log 16δ
δs

< δα log 8
γ2
1
.
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Suppose we are given α with 0 < α ≤ 1/5. Then the value γs = 2−1/α for all s
provides gC\K(γ) ∈ Lip α and gC\K(γ) /∈ Lip β for β > α.

The next example is related to the function h(δ) = (log 1
δ
)−1 that defines the log-

arithmic measure of sets. Let us write gC\K ∈ Liph α if for some constants C we
have

gC\K(z) ≤ C hα(dist(z,K)) for all z ∈ C.

Example 3. Given 1/2 < ρ < 1, let ρs = ρs for s ≥ s0, where ρ
1−ρ

log 16 < (2 ρ)s0 .

This condition provides γs < 1/32 for s > s0. Suppose γs = 1/32 for s ≤ s0, so we
can use Theorem 4. For large s we have δs = C 2−sµ(2 ρ)s

with µ = exp(2 ρ−2
2 ρ−1

) and

some constant C. Let us take α = log(1/ρ)
log(2 ρ)

, so (2ρ)α = 1/ρ. Then hα(δ) ≥ hα(δs) ≥
ε0(2 ρ)−s α = ε0 ρ · ρs−1 for some ε0. From this we conclude that gC\K(γ) ∈ Liph α for
given α. Evaluation gC\K(γ)(−δs) from below yields gC\K(γ) /∈ Liph β for β > α. Now,

given α > 0, the value ρ = 2−
α

1+α provides the corresponding Green function of the
exact class Liph α (compare this to [1], [8]).

Example 4. Let ρs = 1/s. Then γs = 1
2
exp( −2s

s2−s
) < 1/32 for s ≥ 8. As above,

all previous values of γs are 1/32. Here, δs = C 2−s exp[2
s

s
− ∑s−1

k=1
2k

k
]. Summation

by parts (see e.g.[14],T.3.41) yields δs = C 2−s exp[−2s+1(s−2 + o(s−2))]. From this,
ω(gC\K(γ), δ) ∼ 1

s
∼ log 2

log log 1/δs
.

Example 5. Given N ∈ N, let FN(t) = log log · · · log t be the N−th iteration of
the logarithmic function. Let ρs = (FN(s))−1 for large enough s. Here, ρk−1 − ρk ∼
[k · log k · F2(k) · · ·FN−1(k) · F 2

N(k)]−1. Since δs = C 2−s exp[−∑s
k=1 2k(ρk−1 − ρk)],

we have, as above, s ∼ log log 1/δs

log 2
. Thus, ω(gC\K(γ), δ) ∼ [FN+2(1/δ)]

−1.

We see that a more slow decrease of (ρs) implies a less smooth gC\K(γ) and con-
versely. If, in examples above, we take γs = 1/32 for s < s0 with rather large s0, then
the set K(γ) will have logarithmic capacity as closed to 1/32, as we wish.

Problem. Given modulus of continuity ω, to find (γs)
∞
s=1 such that ω(gC\K(γ), ·)

coincides with ω at least on some null sequence.

8. Markov’s factors

Let Pn denote the set of all holomorphic polynomials of degree at most n. For any
infinite compact set K ⊂ C we consider the sequence of Markov’s factors Mn(K) =
inf{M : |P ′|K ≤ M |P |K for all P ∈ Pn}, n ∈ N. We see that Mn(K) is the norm
of the operator of differentiation in the space (Pn, | · |K). In the case of non-polar K,
the knowledge about smoothness of the Green function near the boundary of K may
help to estimate Mn(K) from above. The application of the Cauchy formula for P ′

and the Bernstein-Walsh inequality yields the estimate

Mn(K) ≤ inf
δ

δ−1 exp[n · ω(gC\K , δ)]. (11)
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This approach gives an effective bound of Mn(K) for the cases of temperate growth
of ω(gC\K , ·). For instance, the Hölder continuity of gC\K implies Markov’s property
of the set K, which means that there are constants C, m such that Mn(K) ≤ Cnm

for all n. In this case, the infimum m(K) of all positive exponents m in the inequality
above is called the best Markov’s exponent of K.

Lemma 8. Suppose γ satisfies (5) and Cap(K(γ)) > 0. Given fixed s ∈ N, let f(δ) =
δ−1 exp[2s(ρk + 2−k log 16 δ

δk
)] for δk ≤ δ < δk−1 with k ≥ 2. Then inf0<δ<δ1 f(δ) =

f(δs − 0) = 4
√

2 δ−1
s exp(2s ρs).

Proof : Let us fix the interval Ik = [δk, δk−1). In view of the representation f(δ) =

Cs,k δ2s−k−1, the function f increases for k < s, decreases for k > s, and is constant
for k = s on Ik. An easy computation shows that f(δk+1) < f(δk) for k ≤ s − 1 and
f(δk−1−0) < f(δk−0) for k ≥ s+1. Thus, it remains to compare f(δs−0) and f(δs).
Here, f(δs) = 16 δ−1

s exp(2s ρs) exceeds f(δs − 0) = δ−1
s (16/γs+1)

1/2 exp(2sρs+1) =
4
√

2 δ−1
s exp(2s ρs). 2

Example 6. Let γs = γ1 ≤ 1
32

for s ∈ N. Then, by Lemma 8 and Example 2,

M2s(K(γ)) ≤ √
8 · δ−1

s+1 =
√

8 γ−1
1 2 s/α, where α is the same as in Example 2.

On the other hand, let Q = P2s + rs/2. Then |Q|K(γ) = rs/2 and |Q′(0)| = rs/δs, so

M2s(K(γ)) ≥ 2 δ−1
s = 2 · 2 s/α. Now, for each n we choose s with 2s ≤ n < 2s+1. Since

the sequence of Markov’s factors increases,

c n1/α ≤ M2s(K(γ)) ≤ Mn(K(γ)) ≤ M2s+1(K(γ)) ≤ C n1/α

with c = 21−1/α, C = γ−1
1 23/2+1/α. Given m ∈ [5,∞), the value γs = 2−m for all s

provides the set K(γ) with m(K(γ)) = m = 1/α.

However, the estimate (11) may be rather rough for compact sets with less smooth
moduli of continuity of the corresponding Green’s functions. For instance, in the case
of K(γ) with

∑∞
k=1 γk < ∞ (then 2s ρs →∞) and n = 2s, the exact value of the right

side in (11) is 4
√

2 δ−1
s exp(2s ρs), whereas M2s(K(γ)) ∼ 2 δ−1

s , which will be shown
below by means of the Lagrange interpolation. It should be noted that the set K(γ)
may be polar here.

Let us interpolate P ∈ P2s at zeros (xk)
2s

k=1 of P2s and at one extra point l1,s. Then
the fundamental Lagrange interpolating polynomials are L∗(x) = −P2s(x)/rs and

Lk(x) = (x−l1,s)P2s (x)

(x−xk)(xk−l1,s)P ′2s (xk)
for k = 1, 2, · · · , 2s. Let ∆s denote supx∈K(γ)[ |L′∗(x)| +

∑2s

k=1 |L′k(x)| ]. For convenience we enumerate (xk)
2s

k=1 in increasing way, so xk ∈ Ik,s

for 1 ≤ k ≤ 2s.

Lemma 9. Suppose γ satisfies (5) and
∑∞

k=1 γk < ∞. Then ∆s ∼ 2 δ−1
s .

Proof : We use the following representation:

L′k(x) =
P ′

2s(x)

(xk − l1,s)P ′
2s(xk)

+
P2s(x)

(x− xk)P ′
2s(xk)

2s∑

j=1,j 6=k

1

x− xj

=: Ak + Bk.
(12)
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In particular, L′1(0) = −l−1
1,s −

∑2s

j=2 x−1
k . By (2), |L′∗(0)| = δ−1

s , so ∆s > |L′∗(0)| +
|L′1(0)| > δ−1

s + l−1
1,s > δ−1

s (1 + e−16γs), by (7). Thus, ∆s & 2 δ−1
s .

We proceed to estimate ∆s from above. Lemma 4 gives the uniform bound |L′∗(x)| ≤
δ−1
s .

Let us examine separately the sum
∑2s

k=1 |Ak|, where Ak are defined by (12). Let
C0 = exp(16

∑∞
k=1 γk). Then, by Lemma 4, |P ′

2s(x)| ≤ |P ′
2s(0)| = rs/δs < C0|P ′

2s(xk)|
for x ∈ K(γ). Therefore, |A1| ≤ l−1

1,s < δ−1
s and

∑2s

k=2 |Ak| < C0

∑2s

k=2(xk − l1,s)
−1.

Here,
∑2s

k=2(xk − l1,s)
−1 < 2 l−1

1,s−1, as is easy to check. Thus,
∑2s

k=1 |Ak| < δ−1
s +

2C0δ
−1
s−1.

In order to estimate the sum of the addends Bk, let us fix x ∈ K(γ) and 1 ≤ m ≤ 2s

such that x ∈ Im,s. Suppose first that k 6= m. Then

2s∑

j=1,j 6=k

∣∣∣∣
P2s(x)

x− xj

∣∣∣∣ < 2

∣∣∣∣
P2s(x)

x− xm

∣∣∣∣ ≤ 2 |P ′
2s(ξ)| (13)

with a certain ξ ∈ Im,s. Indeed, if x = xm then this sum is exactly |P ′
2s(xm)|, so

ξ = xm. Otherwise we take the main term out of the brackets:
∣∣∣∣
P2s(x)

x− xm

∣∣∣∣
[
1 +

2s∑

j=1,j 6=k,j 6=m

∣∣∣∣
x− xm

x− xj

∣∣∣∣
]

.

Here the sum in the square brackets can be handled in the same way as in the proof
of Lemma 3. Let Im,s ⊂ Iq,s−1 ⊂ Ir,s−2 ⊂ · · · . Then [ · · · ] ≤ 1 + lm,s(h

−1
q,s−1 + 2h−1

r,s−2 +

· · · ) ≤ 1 + 8
7
lm,s(l

−1
q,s−1 + 2l−1

r,s−2 + · · · ) < 1 + 8
7
(4γs + 2 · 4γs4γs−1 + · · · ) < 2.

On the other hand, by Taylor’s formula, P2s(x) = P ′
2s(ξ)(x − xm) with ξ ∈ Im,s,

which establishes (13).
Therefore,

2s∑

k=1,k 6=m

|Bk| <
2s∑

k=1,k 6=m

2 C0

|x− xk| .

As above,
∑2s

k=1,k 6=m |Bk| < 2 C0(h
−1
q,s−1 + 2h−1

r,s−2 + · · · ) < 4 C0 h−1
q,s−1 < 5 C0 l−1

q,s−1.

It remains to consider Bm = P2s (x)
(x−xm)P ′2s (xm)

∑2s

j=1,j 6=m
1

x−xj
. Let us take the interval

In,s adjacent to Im,s, so In,s ∪ Im,s ⊂ Iq,s−1. Then, as above,
∑2s

j=1,j 6=m |x − xj|−1 <

2 |x− xn|−1 and |Bm| < 2 C0 |x− xn|−1 < 3 C0 l−1
q,s−1, since |x− xn| > hq,s−1.

This gives
∑2s

k=1 |Bk| < 8 C0 l−1
q,s−1 < 8 C0 δ−1

s−1, by Lemma 4. Finally, ∆s < 2 δ−1
s +

10 C0 δ−1
s−1 = δ−1

s (2 + 10 C0 γs) ∼ 2 δ−1
s . 2

Theorem 5. With the assumptions of Lemma 8, M2s(K(γ)) ∼ 2 δ−1
s .

Proof : On the one hand, |P2s+rs/2|K(γ) = rs/2 and |P ′
2s(0)| = rs/δs, so M2s(K(γ)) ≥

2 δ−1
s .
On the other hand, for each polynomial P ∈ P2s and x ∈ K(γ) we have |P ′(x)| ≤

|P |K(γ) ∆s, and the theorem follows. 2
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We are now in a position to construct a compact set with preassigned growth of
subsequence of Markov’s factors. Suppose we are given a sequence of positive terms
(M2s)∞s=0 with

∑∞
s=0 M2s/M2s+1 < ∞. The case of polynomial growth of (Mn) was

considered before, so let us assume that C nm M−1
n → 0 as n →∞ for fixed C and m.

Fix s0 such that M2s/M2s+1 ≤ 1/32 for s ≥ s0 and M2s0 ≥ 2 · 25s0 .
Let us take γs = M2s−1/M2s for s > s0 and γs = (2/M2s0 )1/s0 for s ≤ s0. Then

γs ≤ 1/32 for all s and we can use Theorem 5. Here, δs = 2/M2s , so M2s(K(γ)) ∼ M2s .
It should be noted that the growth of (Mn(K)) is restricted for a non-polar compact

set K ([5], Pr.3.1). It is also interesting to compare Theorem 5 with Theorem 2 in
[16].

9. The best Markov’s exponent

If a compact set K has Markov’s property, then the Markov inequality is not neces-
sarily valid on K with the best Markov’s exponent m(K). An example of such compact
set in CN , N ≥ 2 was presented in [4], where the authors posed the problem (5.1):
is the same true in C? The compact set K(γ) with a suitable choice of γ gives the
answer in the affirmative.

Example 7. Fix m ≥ 5. Let εk =
√

k−√k − 1 and γk = 2−(m+εk) for k ∈ N. Then,
δs = 2−(ms+

√
s) and ρs =

∑∞
k=s+1 2−k log 2m−1+εk . Since εk ≤ 1, we have exp(2s ρs) <

2m. By Lemma 8 and (11), M2s(K(γ)) < C0 δ−1
s with C0 = 4

√
2 · 2m.

On the other hand, as in Example 6, M2s(K(γ)) ≥ 2 δ−1
s .

Let us show that for each k ≥ 2 the value mk := m +
√

k
k−1

is the Markov exponent
for K(γ). We want to find a constant Ck such that Mn(K(γ)) ≤ Ck nmk holds for all
n ∈ N. Let 2s−1 < n ≤ 2s. Then Mn(K(γ)) ≤ M2s(K(γ)) < C0 2m nms . If s > k then
ms < mk. If s ≤ k then Mn ≤ M2k . Therefore, Ck = max{C0 2m,M2k} satisfies the
desired condition.

However, the Markov inequality on K(γ) does not hold with the exponent m(K(γ)) =
inf mk = m. Indeed, M2s(K(γ)) ≥ 2 δ−1

s = 2 · 2m·s · 2√s. Therefore, given constant C,
the inequality M2s(K(γ)) ≤ C 2m·s is impossible for large s.
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