EQUILIBRIUM CANTOR-TYPE SETS

ALEXANDER P. GONCHAROV

ABSTRACT. Equilibrium Cantor-type sets are suggested. This allows to obtain Green functions with various moduli of continuity and compact sets with preassigned growth of Markov's factors.

1. Introduction

If a compact set $K \subset \mathbb{C}$ is regular with respect to the Dirichlet problem then the Green function $g_{\mathbb{C}\setminus K}$ of $\mathbb{C}\setminus K$ with pole at infinity is continuous throughout \mathbb{C} . We are interested in analysis of a character of smoothness of $g_{\mathbb{C}\setminus K}$ near the boundary of K. For example, if $K \subset \mathbb{R}$ then the monotonicity of the Green function with respect to the set K implies that the best possible behavior of $g_{\mathbb{C}\setminus K}$ is Lip_2^1 smoothness. An important characterization for general compact sets with $g_{\mathbb{C}\setminus K} \in Lip_2^1$ was found in [17] by V.Totik. The monograph [17] revives interest in the problem of boundary behavior of Green functions. Various conditions for optimal smoothness of $g_{\mathbb{C}\setminus K}$ in terms of metric properties of the set K are suggested in [7], and in papers by V.Andrievskii [2]-[3]. On the other hand, compact sets are considered in [1], [8] such that the corresponding Green functions have moduli of continuity equal to some degrees of h, where the function $h(\delta) = (\log \frac{1}{\delta})^{-1}$ defines the logarithmic measure of sets. For a recent result on smoothness of $g_{\mathbb{C}\setminus K_0}$, where K_0 is the classical Cantor set, see [13].

Here the Cantor-type set $K(\gamma)$ is constructed as the intersection of the level domains for a certain sequence of polynomials depending on the parameter $\gamma = (\gamma_n)_{n=1}^{\infty}$ (Section 2). In favor of $K(\gamma)$, in comparison to usual Cantor-type sets, it is equilibrium in the following sense.

Let λ_s denote the normalized Lebesgue measure on the closed set E_s , where $K(\gamma) = \bigcap_{s=0}^{\infty} E_s$. Then λ_s converges in the weak^{*} topology to the equilibrium measure of $K(\gamma)$ (Section 5). This is not valid for geometrically symmetric, though very small Cantor-type sets with positive capacity.

Different values of γ provide a variety of the Green functions with diverse moduli of continuity (Section 7).

In Section 8 we estimate Markov's factors for the set $K(\gamma)$ and construct a set with preassigned growth of subsequence of Markov's factors.

In Section 9 a set $K(\gamma)$ is presented such that the Markov inequality on $K(\gamma)$ does not hold with the best Markov's exponent $m(K(\gamma))$. This gives an affirmative answer to the problem (5.1) in [4].

For basic notions of logarithmic potential theory we refer the reader to [10], [12], and [15].

²⁰⁰⁰ Mathematics Subject Classification. 31A15, 41A10, 41A17.

Key words and phrases. Green's function, Modulus of continuity, Markov's factors.

We use the notation $|\cdot|_K$ for the supremum norm on K, log denotes the natural logarithm, $0 \cdot \log 0 := 0$.

2. Construction of $K(\gamma)$

Suppose we are given a sequence $\gamma = (\gamma_s)_{s=1}^{\infty}$ with $0 < \gamma_s < 1/4$. Let $r_0 = 1$ and $r_s = \gamma_s r_{s-1}^2$ for $s \in \mathbb{N}$. We define inductively a sequence of real polynomials: let $P_2(x) = x(x-1)$ and $P_{2^{s+1}} = P_{2^s}(P_{2^s} + r_s)$ for $s \in \mathbb{N}$. It is easy to check by induction that the polynomial P_{2^s} has 2^{s-1} points of minimum with equal values $P_{2^s} = -r_{s-1}^2/4$. By that we have a geometric procedure to define new (with respect to P_{2^s}) zeros of $P_{2^{s+1}}$: they are abscissas of points of intersection of the line $y = -r_s$ with the graph $y = P_{2^s}$. Let E_s denote the set $\{x \in \mathbb{R} : P_{2^{s+1}}(x) \leq 0\}$. Since $r_s < r_{s-1}^2/4$, the set E_s consists of 2^s disjoint closed basic intervals $I_{j,s}$. In general, the lengths $l_{j,s}$ of intervals of the same level are different, however, by the construction of $K(\gamma)$, we have $\max_{1 \leq j \leq 2^s} l_{j,s} \to 0$ as $s \to \infty$. Clearly, $E_{s+1} \subset E_s$. Set $K(\gamma) = \bigcap_{s=0}^{\infty} E_s$.

Let us show that the sequence of level domains $D_s = \{z \in \mathbb{C} : |P_{2^s}(z) + r_s/2| < r_s/2\}, s = 1, 2, \cdots$, is a nested family.

Lemma 1. Given $z \in \mathbb{C}$ and $s \in \mathbb{N}$, let $w_s = 2r_s^{-1}P_{2^s}(z) + 1$. Suppose $|w_s| = 1 + \varepsilon$ for some $\varepsilon > 0$. Then $|w_{s+1}| > 1 + 4\varepsilon$.

Proof: We have $w_{s+1} = (2\gamma_{s+1})^{-1} (w_s^2 - 1 + 2\gamma_{s+1})$. Therefore, $|w_{s+1}|$ attains its minimal value if $w_s \in \mathbb{R}$, so $|w_{s+1}| > (2\gamma_{s+1})^{-1} (2\varepsilon + \varepsilon^2 + 2\gamma_{s+1}) > 1 + \frac{\varepsilon}{\gamma_{s+1}} > 1 + 4\varepsilon$.

Theorem 1. We have $\overline{D}_s \searrow K(\gamma)$.

Proof: The embedding $\overline{D}_{s+1} \subset \overline{D}_s$ is equivalent to the implication

$$|P_{2^s}(z) + r_s/2| > r_s/2 \implies |P_{2^{s+1}}(z) + r_{s+1}| > r_{s+1}/2,$$

which we have by Lemma 1.

For each $j \leq 2^s$ the real polynomial P_{2^s} is monotone on $I_{j,s}$ and takes values 0 and $-r_s$ at its endpoints. Therefore, $E_s \subset \overline{D}_s$ and $K(\gamma) \subset \bigcap_{s=0}^{\infty} \overline{D}_s$.

For the inverse embedding, let us fix $z \notin K(\gamma)$. We need to find s with $z \notin \overline{D}_s$. Suppose first $z \in \mathbb{R}$. Since $\overline{D}_s \cap \mathbb{R} = E_s$, the condition $z \notin E_s$ gives the desired s.

Let z = x + iy with $y \neq 0, x \notin K(\gamma)$. By the above, $x \notin \overline{D}_s$ for some s. All zeros $(x_j)_{j=1}^{2^s}$ of the polynomial $P_{2^s} + r_s/2$ are real. Therefore, $|P_{2^s}(z) + r_s/2| > |P_{2^s}(x) + r_s/2| > r_s/2$ and $z \notin \overline{D}_s$.

It remains to consider the case z = x + iy with $y \neq 0, x \in K(\gamma)$. There is no loss of generality in assuming |y| < 2. Let us fix s with $\max_{1 \leq j \leq 2^s} l_{j,s} < y^2/2$ and k with $x \in I_{k,s} = [a, b]$. Here, $|P_{2^s}(a) + r_s/2| = r_s/2$. Let us show that $|P_{2^s}(z) + r_s/2| > |P_{2^s}(a) + r_s/2|$ by comparison the distances from z and from a to the zero x_j .

If j < k then $|a - x_j| \le |a - x|$, which is less than the hypotenuse $|z - x_j|$.

If j = k then $|a - x_k| \le l_{k,s} < y^2/2 < |y| \le |z - x_k|$.

If j > k then $|a - x_j| = x_j - b + l_{k,s}$. Therefore, $|a - x_j|^2 < |x_j - b|^2 + 2 l_{k,s} < |x_j - b|^2 + y^2 \le |z - x_j|^2$. \Box

Corollary 1. The set $K(\gamma)$ is polar if and only if $\lim_{s\to\infty} 2^{-s} \log \frac{2}{r_s} = \infty$. If this limit is finite and $z \notin K(\gamma)$, then

$$g_{\mathbb{C}\backslash K(\gamma)}(z) = \lim_{s \to \infty} 2^{-s} \log |P_{2^s}(z)/r_s|.$$

Proof: Clearly, $g_{\mathbb{C}\setminus\overline{D}_s}(z) = 2^{-s} \log |2r_s^{-1}P_{2^s}(z) + 1|$. The sequence of the corresponding Robin constants $Rob(\overline{D}_s) = 2^{-s} \log \frac{2}{r_s}$ increases. If its limit is finite, then, by the Harnack Principle (see e.g. [15], Th.0.4.10), $g_{\mathbb{C}\setminus\overline{D}_s} \nearrow g_{\mathbb{C}\setminus K(\gamma)}$ uniformly on compact subsets of $\mathbb{C} \setminus K(\gamma)$. Suppose $z \notin K(\gamma)$. Then for some $q \in \mathbb{N}$ and $\varepsilon > 0$ we have $|w_q| = 1 + \varepsilon$. By Lemma 1, $|w_s| > 1 + 4^{s-q} \varepsilon$, so, for large s, the value $|P_{2^s}(z)/r_s|$ dominates 1. This gives the desired representation of $g_{\mathbb{C}\setminus K(\gamma)}$. \Box

The next corollary is a consequence of the Kolmogorov criterion (see e.g. [9], T.3.2.1). Recall that a monic polynomial Q_n is a Chebyshev polynomial for a compact set K if the value $|Q_n|_K$ is minimal among all monic polynomials of degree n.

Corollary 2. The polynomial $P_{2^s} + r_s/2$ is the Chebyshev polynomial for the set $K(\gamma)$.

Example 1. Let us consider the limit case, when $\gamma_s = 1/4$ for all s, so $r_s = 4^{1-2^s}$. Since here $K(\gamma) = [0, 1]$, the *n*-th Chebyshev polynomial is $Q_n(x) = 2^{-n} T_n(2x - 1)$, where T_n is the monic Chebyshev polynomial for [-1, 1], that is $T_n(t) = 2^{1-n} \cos(n \arccos t)$ for $n \in \mathbb{N}$. Therefore, in this case, $P_{2^s}(x) + r_s/2 = 2^{-2^s} T_{2^s}(2x - 1)$ for $s \in \mathbb{N}$.

3. Location of zeros

We decompose all zeros of P_{2^s} into s groups. Let $X_0 = \{x_1, x_2\} = \{0, 1\}, X_1 = \{x_3, x_4\} = \{l_{1,1}, 1-l_{2,1}\}, \cdots, X_k = \{x_{2^{k+1}}, \cdots, x_{2^{k+1}}\} = \{l_{1,k}, l_{1,k-1}-l_{2,k}, \cdots, 1-l_{2^{k},k}\}, \text{ so } X_k = \{x : P_{2^k}(x)+r_k=0\} \text{ contains all zeros of } P_{2^{k+1}} \text{ that are not zeros of } P_{2^k}.$ Set $Y_s = \bigcup_{k=0}^s X_k$. Then $P_{2^s}(x) = \prod_{x_k \in Y_{s-1}} (x-x_k)$. Since $P'_{2^s} = P'_{2^{s-1}}(2P_{2^{s-1}}+r_{s-1})$ for $s \ge 2$, we have

$$P_{2^{s}}'(y) = r_{s-1} P_{2^{s-1}}'(y), \ y \in Y_{s-2}; \ P_{2^{s}}'(x) = -r_{s-1} P_{2^{s-1}}'(x), \ x \in X_{s-1}.$$
 (1)

After iteration this gives

$$|P'_{2^{s}}(x)| = r_{s-1} r_{s-2} \cdots r_q |P'_{2^{q}}(x)| \quad \text{for} \quad x \in X_q \quad \text{with} \quad q < s.$$
(2)

From here, for example, $|P'_{2^s}(0)| = r_{s-1} r_{s-2} \cdots r_1$.

The identity $P_{2^{s+1}}(y) = P_{2^s}(y) \prod_{x_k \in X_s} (y - x_k) = P_{2^s}(y) (P_{2^s}(y) + r_s)$ implies $P_{2^s}(y) + r_s = \prod_{x_k \in X_s} (y - x_k)$. Thus,

$$\prod_{x_k \in X_s} (y - x_k) = r_s \quad \text{for} \quad y \in Y_{s-1}.$$
(3)

Our next goal is to express the values of $x_k \in X_s$ in terms of the function $u(t) = \frac{1}{2} - \frac{1}{2}\sqrt{1-4t}$ with $0 < t < \frac{1}{4}$. Clearly, u(t) and 1 - u(t) are the solutions of the equation $P_2(x) + t = 0$. Let us consider the expression

$$x = f_1(\gamma_1 \cdot f_2(\gamma_2 \cdots f_{s-1}(\gamma_{s-1} \cdot f_s(\gamma_s)) \cdots)), \qquad (4)$$

where $f_k = u$ or $f_k = 1 - u$ for $1 \le k \le s$, so $f_k(t)(1 - f_k(t)) = t$. We have $P_2(x) = -\gamma_1 \cdot f_2(\gamma_2 \cdots)$ with $\gamma_1 = r_1$. Hence, $P_4(x) = P_2(x)(P_2(x) + r_1) = -r_1^2 f_2(1 - 3)$

 $f_2) = -r_1^2 \gamma_2 f_3 = -r_2 f_3(\gamma_3 \cdots)$. We continue in this fashion to obtain eventually $P_{2^s}(x) = -r_{s-1}^2 \gamma_s = -r_s$, which gives $x \in X_s$.

The formula (4) provides 2^s possible values x. Let us show that they are all different, so any $x_k \in X_s$ can be represented by means of (4). Since u increases and u(a) < 1 - u(b) for $a, b \in (0, \frac{1}{4})$, we have $u(\gamma_1 \cdot u(\gamma_2 \cdots \gamma_m u(a)) \cdots) < u(\gamma_1 \cdot u(\gamma_2 \cdots \gamma_m (1 - u(b)) \cdots)$. In general, let $x_i = u(\gamma_1 \cdot u(\gamma_2 \cdots \gamma_{k_1} (1 - u(\gamma_{k_1+1} \cdot u(\cdots \gamma_{k_2} (1 - u(\gamma_{k_2+1} \cdots \gamma_{k_m} (1 - u(a)) \cdots))))$ and $x_j = u(\gamma_1 \cdot u(\gamma_2 \cdots \gamma_{k_1} (1 - u(\gamma_{k_1+1} \cdot u(\cdots \gamma_{k_2} (1 - u(\gamma_{k_2+1} \cdots \gamma_{k_m} \cdot u(b)))))))$, that is the first k_m functions f_k for both points are identical, whereas $f_{k_m+1} = 1 - u$ for x_i and u for x_j . The straightforward comparison shows that $x_i > x_j$ for odd m and $x_i < x_j$ otherwise.

Lemma 2. Let $s \in \mathbb{N}$ and $1 \leq j \leq 2^s$. Then $l_{1,s} \leq l_{j,s}$.

Proof: Assume without loss of generality that j is odd. Then $I_{j,s} = [y, x]$ with $x \in X_s, y \in X_m$ where $1 \leq m \leq s-1$. The case m = 0 can be excluded, since then y = 0 and j = 1. Consider the function $F(t) = f_1(\gamma_1 \cdot f_2(\gamma_2 \cdots f_{m-1}(\gamma_{m-1} \cdot f_m(t)) \cdots))$, where $f_k \in \{u, 1-u\}$ are chosen in a such way that $y = F(\gamma_m)$. Then $x = F(\gamma_m \cdot (1 - u(\gamma_{m+1} \cdot u(\gamma_{m+2} \cdots u(\gamma_s)) \cdots))$. By the Mean Value Theorem, $l_{j,s} = x - y = |F'(\xi)| \cdot \gamma_m \cdot u(\gamma_{m+1} \cdots u(\gamma_s)) \cdots$) with $\gamma_m - \gamma_m \cdot u(\gamma_{m+1} \cdots u(\gamma_s)) \cdots) < \xi < \gamma_m \cdot u(\gamma_{m+1} \cdots u(\gamma_s)) \cdots$). To simplify notations, we write $t_k = \gamma_k \cdot f_{k+1}(\gamma_{k+1} \cdots \gamma_{m-1} \cdot f_m(\xi)) \cdots$ and $\tau_k = \gamma_k \cdot u(\gamma_{k+1} \cdots \gamma_{m-1} \cdot u(\xi)) \cdots$ for $1 \leq k \leq m-1$. By the above, $\tau_k \leq t_k$. Therefore, $|f'_k(t_k)| = \frac{1}{\sqrt{1-4t_k}} \geq \frac{1}{\sqrt{1-4t_k}} = u'_k(\tau_k)$. On the other hand, $u(t)\sqrt{1-4t} < t$ for $0 < t < \frac{1}{4}$, as is easy to check. This gives $|F'(\xi)| = |f'_1(t_1)| \cdot \gamma_1 \cdots |f'_{m-1}(t_{m-1})| \cdot \gamma_{m-1} \cdot |f'_m(\xi)| > \gamma_1 \cdots \gamma_{m-1} \cdot \frac{u(\tau_1)}{\tau_1} \cdot \frac{u(\tau_2)}{\tau_2} \cdots \frac{u(\tau_{m-1})}{\tau_{m-1}} \cdot \frac{u(\tau_1)}{\xi}$. Since $\tau_k = \gamma_k \cdot u(\tau_{k+1})$ for $k \leq m-2$ and $\tau_{m-1} = \gamma_{m-1} \cdot u(\xi)$, we obtain $|F'(\xi)| > \frac{u(\tau_1)}{\xi}$ and

$$l_{j,s} > \frac{u(\tau_1)}{\xi} \cdot \gamma_m \cdot u(\gamma_{m+1} \cdots u(\gamma_s)) \cdots).$$

Taking into account the representation $u(t) = \frac{2t}{1+\sqrt{1-4t}}$, we have $u(\alpha t) < \alpha u(t)$ for $0 < \alpha < 1$. The value $\alpha = \frac{1}{\xi} \cdot \gamma_m \cdot u(\gamma_{m+1} \cdots u(\gamma_s)) \cdots$) satisfies this condition. Therefore, $l_{1,s} = u(\gamma_1 \cdot u(\gamma_2 \cdots \gamma_{m-1} \cdot u(\xi \alpha)) \cdots) < \alpha u(\tau_1)$, that is $l_{1,s} < l_{j,s}$ for $j \in \{3, 5, \cdots, 2^s - 1\}$, which is the desired conclusion. \Box

4. Auxiliary results

From now on we make the assumption

$$\gamma_s \le 1/32 \quad \text{for} \quad s \in \mathbb{N}.$$
 (5)

Each $I_{j,s}$ contains two *adjacent* basic subintervals $I_{2j-1,s+1}$ and $I_{2j,s+1}$. Let $h_{j,s} = l_{j,s} - l_{2j-1,s+1} - l_{2j,s+1}$ be the distance between them.

Lemma 3. Suppose γ satisfies (5). Then the polynomial P_{2^s} is convex on $I_{j,s-1}$ and $l_{2j-1,s} + l_{2j,s} < 4\gamma_s l_{j,s-1}$ for $1 \leq j \leq 2^{s-1}$. Thus, $h_{j,s} > \frac{7}{8} l_{j,s}$ for $s \geq 0, 1 \leq j \leq 2^s$.

Proof: We proceed by induction. If s = 1 then P_2 is convex on $I_{1,0} = [0,1]$. Let us show that $l_{1,1} + l_{2,1} < 4 \gamma_1$. The triangle Δ with the vertices $(0,0), (1,0), (\frac{1}{2}, -\frac{1}{4})$ is entirely situated in the epigraph $\{(x, y) \in \mathbb{R}^2 : P_2(x) \leq y\}$. The line $y = -r_1$ intersects Δ along the segment [A, B]. By convexity of P_2 , we have $h_{1,0} = 1 - l_{1,1} - l_{2,1} > |B - A|$. The triangle Δ_1 with the vertices $A, B, (\frac{1}{2}, -\frac{1}{4})$ is similar to Δ . Therefore, $\frac{1}{4} |B-A| = \frac{1}{4} - r_1$. Here, $r_1 = \gamma_1$, and the result follows.

Suppose we have convexity of $P_{2^k}|_{I_{j,k-1}}$ and the desired inequalities for $k = 1, 2, \dots, s-1$. Fix $j \leq 2^{s-1}$ and $x \in I_{j,s-1} = [a, b]$. Then $P_{2^s}(x) = (x-a)(x-b) g(x)$, where $g(x) = \prod_{k=1}^n (x-z_k)$ with $n = 2^s - 2$. Hence,

$$P_{2^{s}}''(x) = g(x) \left[2 + 2 \sum_{k=1}^{n} \frac{2x - a - b}{x - z_{k}} + \sum_{k=1}^{n} \sum_{i=1, i \neq k}^{n} \frac{(x - a)(x - b)}{(x - z_{k})(x - z_{i})} \right].$$

Clearly, the polynomial g is positive on $I_{j,s-1}$, $|2x-a-b| \le l_{j,s-1}$, and $|(x-a)(x-b)| \le \frac{1}{4} l_{j,s-1}^2$. For convexity of $P_{2^s}|_{I_{j,s-1}}$ we only need to check that $8 \ge 8 l_{j,s-1} \sum_{k=1}^n |x-z_k|^{-1} + l_{j,s-1}^2 \sum_{k=1}^n \sum_{i \ne k} |x-z_k|^{-1} |x-z_i|^{-1}$.

Let us consider the basic intervals containing $x : I_{j,s-1} \subset I_{m,s-2} \subset I_{q,s-3} \subset \cdots \subset I_{1,0}$. The interval $I_{m,s-2}$ contains two zeros of g. For them $|x - z_k| \geq h_{m,s-2} > (1 - 4\gamma_{s-1}) l_{m,s-2}$ and $\frac{l_{j,s-1}}{|x-z_k|} < \frac{4\gamma_{s-1}}{1-4\gamma_{s-1}}$, by inductive hypothesis. The last fraction does not exceed 1/7. Similarly, $I_{q,s-3}$ contains another four zeros of g with $\frac{l_{j,s-1}}{|x-z_k|} < \frac{4\gamma_{s-1}}{1-4\gamma_{s-2}} \leq \frac{1}{7} \cdot \frac{1}{8}$. We continue in this fashion to obtain $l_{j,s-1} \sum_{k=1}^{n} |x - z_k|^{-1} < \sum_{k=1}^{s-1} 2^k \cdot \frac{1}{7} \cdot (\frac{1}{8})^{k-1} < \frac{8}{21}$.

In the same way, $l_{j,s-1}^2 \sum_{k=1}^n \sum_{i \neq k} |x-z_k|^{-1} |x-z_i|^{-1} < (\frac{8}{21})^2$, which gives $P_{2^s}'|_{I_{j,s-1}} > 0$. Arguing as above, by means of convexity of $P_{2^s}|_{I_{j,s-1}}$, it is easy to show the second statement of Lemma. \Box

Let $\delta_s = \gamma_1 \gamma_2 \cdots \gamma_s$, so $r_1 r_2 \cdots r_{s-1} \delta_s = r_s$.

Lemma 4. If γ satisfies (5) then for any $x_k \in Y_{s-1}$ with $s \in \mathbb{N}$

$$\exp(-16\sum_{k=1}^{s} \gamma_k) \cdot r_s / \delta_s < |P'_{2^s}(x_k)| \le |P'_{2^s}|_{E_s} = r_s / \delta_s$$

and

$$\delta_s < l_{i,s} < \exp(16\sum_{k=1}^s \gamma_k) \cdot \delta_s \quad for \quad 1 \le i \le 2^s.$$

Proof: From (2) it follows that $|P'_{2^s}|_{E_s} \geq |P'_{2^s}(0)| = r_s/\delta_s$. In order to get the corresponding lower bound, let us fix $I_{i,s} \subset E_s$. Without loss of generality we can assume that i = 2j - 1 is odd. Then $I_{i,s} \subset I_{j,s-1}$ and $I_{i,s} = [y, x]$ with $y \in Y_{s-1}$, $x = y + l_{i,s} \in X_s$. By Lemma 3, $|P'_{2^s}|$ decreases on [y, x], so $|P'_{2^s}(x)| < |P'_{2^s}(y)|$. We will estimate $|P'_{2^s}(x)|$ from below in terms of $|P'_{2^s}(y)|$.

The point x is a zero of $P_{2^{s+1}}$. Therefore, $P'_{2^{s+1}}(x) = (x-y) \cdot \prod_{y_k \in Y'_s} |x-y_k| = (x-y) \cdot \prod_{y_k \in Y'_s} |y-y_k| \cdot \beta$, where $Y'_s = Y_s \setminus \{x, y\}$, $\beta = \prod_{y_k \in Y'_s} (1 + \frac{l_{i,s}}{y-y_k})$. Here, $(x-y) \cdot \prod_{y_k \in Y'_s} |y-y_k| = \prod_{x_k \in X_s} |y-x_k| \prod_{y_k \in Y_{s-1}, y_k \neq y} |y-y_k| = r_s |P'_{2^s}(y)|$, by (3). On the other hand, by (1), $P'_{2^{s+1}}(x) = r_s |P'_{2^s}(y)|$. Hence, $|P'_{2^s}(x)| = \beta |P'_{2^s}(y)|$. Let us estimate β from below. We can take into account only $y_k \in Y'_s$ with $y_k > y$, since otherwise the corresponding term in β exceeds 1. The interval $I_{j,s-1}$ contains two points y_k with $y_k - y > h_{j,s-1}$. Lemma 3 yields $1 + \frac{l_{i,s}}{y-y_k} > 1 - \frac{8}{7} \cdot \frac{l_{i,s-1}}{l_{i,s-1}} > 1 - \frac{8}{7} \cdot 4\gamma_s$.

For the next four points (let $I_{j,s-1} \subset I_{m,s-2}$) we have $y_k - y > h_{m,s-2}$ and $1 + \frac{l_{i,s}}{y - y_k} > 1 - \frac{8}{7} \cdot \frac{l_{i,s}}{l_{m,s-2}} > 1 - \frac{8}{7} \cdot 4\gamma_s \cdot 4\gamma_{s-1} \ge 1 - \frac{1}{7} \cdot 4\gamma_s$, by (5).

We continue in this fashion obtaining $\log \beta > \sum_{k=1}^{s} 2^k \log(1 - \frac{4}{7} \cdot 8^{2-k} \gamma_s)$. If $0 < a < \frac{1}{4}$ then $\log(1-a) > 4a \log \frac{3}{4} > -1.16a$. A straightforward calculation shows that $\log \beta > -16 \gamma_s$. Thus,

$$\exp(-16\,\gamma_s) \, |P_{2^s}'(y)| < |P_{2^s}'(x)| < |P_{2^s}'(y)|. \tag{6}$$

Combining this inequality with (2) yields the first statement of Lemma. Indeed, let $x = l_{i_1,m_1} - l_{i_2,m_2} + \cdots - l_{i_{q-1},m_{q-1}} + l_{i_q,m_q}$ with $1 \le m_1 < \cdots < m_q = s$. Then $y \in X_{m_{q-1}}$. We use (6), then (2) for y, then (6) with y instead of x and $z = l_{i_1,m_1} - l_{i_2,m_2} + \cdots + l_{i_{q-2},m_{q-2}} \in X_{m_{q-2}}$ instead of y, then (2) for z, etc. Finally,

$$\exp(-16(\gamma_{m_1} + \dots + \gamma_{m_q}))r_1r_2\cdots r_{s-1} < |P'_{2^s}(x)| < r_1r_2\cdots r_{s-1}.$$

If $m_k = k$ for $1 \le k \le s$, then all γ_k are presented in the corresponding sum. Monotonicity of $|P'_{2^s}|$ on [y, x] gives the desired conclusion.

The second statement of Lemma can be obtained by the Mean Value Theorem, since $P_{2^s}(y) = 0$, $P_{2^s}(y + l_{i,s}) = -r_s$. In particular, (6) with $x = l_{1,s}, y = 0$ yields

$$\delta_s < l_{1,s} < \delta_s \cdot e^{16\,\gamma_s} < 2\,\delta_s. \tag{7}$$

A.F.Beardon and Ch.Pommerenke introduced in [6] the concept of uniformly perfect sets. A dozen of equivalent descriptions of such sets are suggested in [10, p. 343]. We use the following: a compact set $K \subset \mathbb{C}$ is uniformly perfect if K has at least two points and there exists $\varepsilon_0 > 0$ such that for any $z_0 \in K$ and $0 < r \leq diam(K)$ the set $K \cap \{z : \varepsilon_0 r < |z - z_0| < r\}$ is not empty.

Theorem 2. The set $K(\gamma)$, provided (5), is uniformly perfect if and only if $\inf \gamma_s > 0$.

Proof: Suppose $K(\gamma)$ is uniformly perfect. The values $z_0 = 0$ and $r = l_{1,s-1} - l_{2,s}$ in the definition above imply $l_{1,s} + l_{2,s} > \varepsilon_0 l_{1,s-1}$. By Lemma 3, we have $4\gamma_s > \varepsilon_0$, so $\inf_s \gamma_s \ge \varepsilon_0/4$, which is our claim.

For the converse, assume $\gamma_s \geq \gamma_0 > 0$ for all s. Let us show that $l_{i,s} > \frac{1}{2} \gamma_0 l_{j,s-1}$ for any intervals $I_{i,s} \subset I_{j,s-1}$, which clearly gives uniform perfectness of $K(\gamma)$. Fix $I_{i,s} \subset I_{j,s-1}$. Let x, y be the endpoints of $I_{i,s}$ with $x \in X_s, y \in Y_{s-1}$.

Suppose first that $y \in X_{s-1}$. By the Mean Value Theorem, $l_{i,s} |P'_{2^s}(\xi)| = r_s$ for some $\xi \in I_{i,s}$. By the monotonicity of $|P'_{2^s}|$ on $I_{i,s}$, we have $|P'_{2^s}(\xi)| < |P'_{2^s}(y)|$, which is $r_{s-1} |P'_{2^{s-1}}(y)|$, by (1). Here, $|P'_{2^{s-1}}(y)| < |P'_{2^{s-1}}(z)|$, where $z \in Y_{s-2}$ is another endpoint of $I_{j,s-1}$. Therefore, $l_{i,s} > \gamma_s r_{s-1}/|P'_{2^{s-1}}(z)|$. On the other hand, $l_{j,s-1} = r_{s-1}/|P'_{2^{s-1}}(\eta)|$ with $\eta \in I_{j,s-1}$, so $|P'_{2^{s-1}}(\eta)| > |P'_{2^{s-1}}(z)|/e^{16\gamma_{s-1}}$, by (6). Hence, $l_{i,s} > \gamma_s l_{j,s-1}/e^{16\gamma_{s-1}} \ge \frac{1}{2}\gamma_0 l_{j,s-1}$.

The case $y \in Y_{s-2}$ is very similar. Here at once y plays the role of z. \Box

5. $K(\gamma)$ is equilibrium

Here and in the sequel we consider r_s in the form $r_s = 2 \exp(-R_s \cdot 2^s)$. Recall that R_s is the Robin constant for \overline{D}_s and $R_s \uparrow R$, which is finite if $K(\gamma)$ is not a polar set. In this case, let $\rho_s = R - R_s$. Since $r_0 = 1$, we have $\rho_0 = R - \log 2$. Clearly, $\gamma_s = \frac{1}{2} \exp[2^s(\rho_s - \rho_{s-1})]$ and $\delta_s = 2^{-s} \exp(2^s\rho_s - \sum_{k=1}^{s-1} 2^k\rho_k - 2\rho_0)$. From this,

$$2^{-s} \log \delta_s \to 0 \quad \text{as} \quad s \to \infty.$$
 (8)

Given $s \in \mathbb{N}$, let us uniformly distribute the mass 2^{-s} on each $I_{j,s}$ for $1 \leq j \leq 2^s$. We will denote by λ_s the normalized (in this sense) Lebesgue measure on the set E_s , so $d\lambda_s = (2^s l_{j,s})^{-1} dt$ on $I_{j,s}$.

If μ is a finite Borel measure of compact support then its logarithmic potential is defined by $U^{\mu}(z) = \int \log \frac{1}{|z-t|} d\mu(t)$. We will denote by μ_K the equilibrium measure of $K, \stackrel{*}{\to}$ means convergence in the weak^{*} topology.

Let I = [a, b] with $b - a \leq 1, z \in I$. By partial integration,

$$\int_{I} \log \frac{1}{|z-t|} dt = b - a - (z-a) \log(z-a) - (b-z) \log(b-z).$$

It follows that

$$(b-a)\,\log\frac{e}{b-a} < \int_{I}\log\frac{1}{|z-t|}\,dt < (b-a)\,\log\frac{2e}{b-a}.$$
(9)

Lemma 5. Let γ satisfy (5) and $R < \infty$. Then $U^{\lambda_s}(z) \to R$ for $z \in K(\gamma)$ as $s \to \infty$.

Proof: Fix $z \in K(\gamma)$. Given s, let $z \in I_{j,s}$ for $1 \leq j \leq 2^s$. From (9) we have $\int_{I_{j,s}} \log |z-t|^{-1} d\lambda_s(t) < 2^{-s} (2 + \log l_{j,s}^{-1})$, which is o(1) as $s \to \infty$, by Lemma 4 and (8).

To estimate $\sum_{k=1,k\neq j}^{2^s} \int_{I_{k,s}} \log |z-t|^{-1} d\lambda_s(t)$ we use $P_{2^s}(x) = \prod_{k=1}^{2^s} (x-y_k)$ with $y_k \in I_{k,s}$. As above, let $I_{j,s} \subset I_{m,s-1} \subset I_{q,s-2} \subset \cdots \subset I_{1,0}$. Suppose k corresponds to the adjacent to $I_{j,s}$ subinterval $I_{k,s}$ of $I_{m,s-1}$. Then $h_{m,s-1} \leq |z-t| \leq |y_j-y_k| \leq |z-t| + l_{j,s} + l_{k,s}$. Hence, $1 \leq \frac{|y_j-y_k|}{|z-t|} \leq 1 + \varepsilon_0$, where $\varepsilon_0 = \frac{l_{j,s}+l_{k,s}}{h_{m,s-1}} < \frac{1}{7}$, by Lemma 3. For this k we get

 $2^{-s} \log |y_j - y_k|^{-1} < \int_{I_{k,s}} \log |z - t|^{-1} d\lambda_s(t) < 2^{-s} (\log |y_j - y_k|^{-1} + \varepsilon_0).$

In its turn, $I_{q,s-2} \supset I_{m,s-1}^{i,s} \cup I_{n,s-1}$, where $I_{n,s-1}$ contains other two intervals of the *s*-th level. Let *k* correspond to any of them. Then $|z - t| - l_{j,s} - l_{k,s} \leq |y_j - y_k| \leq |z - t| + l_{j,s} + l_{k,s}$ with $|z - t| \geq h_{q,s-2}$. Here, $1 - \varepsilon_1 \leq \frac{|y_j - y_k|}{|z - t|} \leq 1 + \varepsilon_1$ with $\varepsilon_1 = \frac{l_{j,s} + l_{k,s}}{h_{q,s-2}} < \frac{8}{7} (\frac{l_{j,s}}{l_{m,s-1}} \frac{l_{m,s-1}}{l_{q,s-2}} + \frac{l_{k,s}}{l_{n,s-1}} \frac{l_{n,s-1}}{l_{q,s-2}}) < \frac{8}{7} \cdot 2 \cdot 4\gamma_s 4\gamma_{s-1} < \frac{1}{7} \cdot \frac{1}{4}$, by Lemma 3. Repeating this argument leads to the representation

$$\sum_{k=1,k\neq j}^{2^{s}} \int_{I_{k,s}} \log|z-t|^{-1} d\lambda_{s}(t) = 2^{-s} \log \prod_{k=1,k\neq j}^{2^{s}} |y_{j}-y_{k}|^{-1} + \varepsilon,$$

where $|\varepsilon| \leq 2^{-s+1}(\varepsilon_0 + 2\varepsilon_1 + \dots + 2^{s-1}\varepsilon_{s-1})$ with $\varepsilon_k < \frac{2}{7} \cdot 8^{-k}$ for $k \geq 1$. Here we used the estimate $|\log(1+x)| \leq 2|x|$ for |x| < 1/2. We see that $|\varepsilon| < 2^{-s}$.

The main term above is $2^{-s} \log |P'_{2^s}(y_j)|^{-1}$, which is $2^{-s} \log(\delta_s/r_s) + o(1)$, by Lemma 4. Thus,

$$\int \log |z-t|^{-1} d\lambda_s(t) = 2^{-s} \log(\delta_s/r_s) + o(1) \quad \text{as} \quad s \to \infty.$$

Finally, $2^{-s} \log(\delta_s/r_s) = R_s + 2^{-s} \log \frac{\delta_s}{2} \to R$ as $s \to \infty$, by (8). \Box

Theorem 3. Suppose γ satisfies (5) and $Cap(K(\gamma)) > 0$. Then $\lambda_s \xrightarrow{*} \mu_{K(\gamma)}$.

Proof: All measures λ_s have unit mass. By Helly's Selection Theorem (see for instance [15, Th.0.1.3]), we can select a subsequence $(\lambda_{s_k})_{k=1}^{\infty}$, weak* convergent to some measure μ . Approximating the function $\log |z - \cdot|^{-1}$ by the truncated continuous kernels (see for instance [15, Th.1.6.9]), we get $\liminf_{k\to\infty} U^{\lambda_{s_k}}(z) = U^{\mu}(z)$ for quasi-every $z \in \mathbb{C}$. In particular, by Lemma 5, we have $U^{\mu}(z) = R$ for quasi-every $z \in K(\gamma)$. This means that $\mu = \mu_{K(\gamma)}$ (see e.g. [15, Th.1.3.3]). The same proof remains valid for any subsequence $(\lambda_{s_i})_{i=1}^{\infty}$. Therefore, $\lambda_s \xrightarrow{*} \mu_{K(\gamma)}$. \Box

Remark. Clearly, any compact set K with nonempty interior cannot be equilibrium in our sense since $supp \mu_k \subset \partial K$. Neither geometrically symmetric Cantor-type sets of positive capacity are equilibrium. Let us consider the set $K^{(\alpha)}$ from [1] which is constructed by means of the Cantor procedure with $l_{s+1} = l_s^{\alpha}$ for $1 < \alpha < 2$. The values $\alpha \geq 2$ give polar sets $K^{(\alpha)}$. As above, let λ_s be the normalized Lebesgue measure on $E_s = \bigcup_{j=1}^{2^s} I_{j,s}$. Given $s \in \mathbb{N}$, let $z_s = l_1 - l_2 + \cdots + (-1)^{s+1} l_s$. Estimating distances |z - t| for z = 0 and $z = z_s$, as in Lemma 5, it can be checked that $U^{\lambda_s}(0) - U^{\lambda_s}(z_s) > \sum_{k=1}^{s-1} 2^{-k-1} \log \frac{(l_{k-1}-l_k)(l_{k-1}-l_{k+1})}{(l_{k-1}-2l_k)(l_{k-1}-l_{k+1})}$. It is easily seen that all fractions here exceed 1. Therefore, for each s there exists a point $z_s \in K^{(\alpha)}$ such that $U^{\lambda_s}(0) - U^{\lambda_s}(z_s)$ exceeds the constant $\frac{1}{4} \log \frac{(1-l_1)(1-l_2)}{(1-2l_1)(1-l_1-l_2)}$ and the limit logarithmic potential is not equilibrium. Indeed, if $K^{(\alpha)}$ is not polar, then it is regular with respect to the Dirichlet problem (see [11]) and $U^{\mu_{K(\alpha)}}$ must be continuous in \mathbb{C} and constant on $K^{(\alpha)}$.

6. Smoothness of $g_{\mathbb{C}\setminus K(\gamma)}$

We proceed to evaluate the modulus of continuity of the Green function corresponding to the set $K(\gamma)$. Recall that a modulus of continuity is a continuous non-decreasing subadditive function $\omega : \mathbb{R}_+ \to \mathbb{R}_+$ with $\omega(0) = 0$. Given function f, its modulus of continuity is $\omega(f, \delta) = \sup_{|x-y| \leq \delta} |f(x) - f(y)|$.

In what follows the symbol \sim denotes the strong equivalence: $a_s \sim b_s$ means that $a_s = b_s(1 + o(1))$ for $s \to \infty$. This gives a natural interpretation of the relation \leq .

Let γ be as in the preceding theorem. Then, we are given two monotone sequences $(\delta_s)_{s=1}^{\infty}$ and $(\rho_s)_{s=1}^{\infty}$ where, as above, $\delta_s = \gamma_1 \cdots \gamma_s$, $\rho_s = \sum_{k=s+1}^{\infty} 2^{-k} \log \frac{1}{2\gamma_k}$. We define the function ω by the following conditions: $\omega(0) = 0$, $\omega(\delta) = \rho_1$ for $\delta \ge \delta_1$. If $s \ge 2$ then $\omega(\delta) = \rho_s + 2^{-s} \log \frac{\delta}{\delta_s}$ for $\delta_s \le \delta \le \delta_{s-1}/16$ and $\omega(\delta) = \rho_{s-1} - k_s(\delta_{s-1} - \delta)$ for $\delta_{s-1}/16 < \delta < \delta_{s-1}$ with $k_s = \frac{16}{15} \cdot 2^{-s} \delta_{s-1}^{-1} \log 8$.

Lemma 6. The function ω is a concave modulus of continuity. If $\gamma_s \to 0$ then for any positive constant C we have $\omega(\delta) \sim \rho_s + 2^{-s} \log \frac{C\delta}{\delta_s}$ as $\delta \to 0$ with $\delta_s \leq \delta < \delta_{s-1}$. Proof: The function ω is continuous due to the choice of k_s . In addition, $\omega'(\delta_{s-1} + 0) < k_s < \omega'(\delta_{s-1}/16 - 0)$, which provides concavity of ω .

If $\gamma_s = \frac{1}{2} \exp[2^s(\rho_s - \rho_{s-1})] \to 0$ then $2^s \rho_s \to \infty$ and we have the desired equivalence in the case $\delta_s \leq \delta \leq \delta_{s-1}/16$. Suppose $\delta_{s-1}/16 < \delta < \delta_{s-1}$. The identity

$$\rho_{s-1} = \rho_s + 2^{-s} \log \frac{\delta_{s-1}}{2\delta_s} \tag{10}$$

yields $|\rho_s + 2^{-s} \log \frac{C\delta}{\delta_s} - \omega(\delta)| < 2^{-s} [|\log \frac{2C\delta}{\delta_{s-1}}| + \frac{16}{15} \log 8 \cdot (1 - \frac{\delta}{\delta_{s-1}})] < 2^{-s} [|\log C| + 8 \log 2]$, which is $o(\omega)$ since here $\omega(\delta) > \rho_{s-1} - 2^{-s} \log 8$. \Box

Lemma 7. Suppose γ satisfies (5) and $Cap(K(\gamma)) > 0$. Let $z \in \mathbb{C}$, $z_0 \in K(\gamma)$ with $dist(z, K(\gamma)) = |z - z_0| = \delta < 1$. Choose $s \in \mathbb{N}$ such that $z_0 \in I_{j,s} \subset I_{j_1,s-1}$ with $l_{j,s} \leq \delta < l_{j_1,s-1}$. Then $g_{\mathbb{C}\setminus K(\gamma)}(z) < \rho_s + 2^{-s} \log \frac{16\delta}{\delta_s}$. On the other hand, if $l_{1,s} \leq \delta < l_{1,s-1}$ then $g_{\mathbb{C}\setminus K(\gamma)}(-\delta) > \rho_s + 2^{-s} \log \frac{\delta}{\delta_s}$.

Proof: Consider the chain of basic intervals containing $z_0: z_0 \in I_{j,s} \subset I_{j_1,s-1} \subset I_{j_2,s-2} \subset \cdots \subset I_{j_s,0} = [0,1]$. Here, $I_{j_i,s-i} \setminus I_{j_{i-1},s-i+1}$ contains 2^{i-1} basic intervals of the *s*-th level. Each of them has certain endpoints x, y with $x \in X_s, y \in Y_{s-1}$. Recall that Y_{s-1} is the set of zeros of P_{2^s} . Distinguish $y_j \in I_{j,s}$. Now for a fixed large n we will express the value $|P_{2^n}(z)| = \prod_{k=1}^{2^n} |z - x_k|$ in terms of $\prod_{k=1, k\neq j}^{2^s} |y_j - y_k|$ (compare to Lemma 5). Clearly, each interval of the *s*-th level contains 2^{n-s} zeros of P_{2^n} , so we will replace these 2^{n-s} points with the corresponding y_k .

Let us first consider the product $\pi_0 := \prod_{x_k \in I_{j,s}} |z - x_k|$. Here, $|z - x_k| \le \delta + l_{j,s} < 2\delta$, so $\pi_0 < (2\delta)^{2^{n-s}}$.

Let $\pi_1 := \prod_{x_k \in I_{m,s}} |z - x_k|$, where $I_{m,s}$ is adjacent to $I_{j,s}$. Then $|z_0 - x_k| \le l_{j_1,s-1} = |y_j - y_m|$, since y_j and y_m are the endpoints of the interval $I_{j_1,s-1}$. Therefore, $|z - x_k| < 2|y_j - y_m|$ and $\pi_1 < (2|y_j - y_m|)^{2^{n-s}}$.

In the general case, given $2 \leq i \leq s$, let π_i denote the product of all $|z - x_k|$ for $x_k \in J_i := I_{j_i,s-i} \setminus I_{j_{i-1},s-i+1}$. Suppose $x_k \in I_{q,s}$. Then, $|z - x_k| \leq \delta + l_{j,s} + |y_j - y_q| + l_{q,s} \leq |y_j - y_q| (1 + \frac{\delta + l_{j,s} + l_{q,s}}{h_{j_i,s-i}})$, since y_j and y_q belong to different subintervals of the (s - i + 1)-th level for $I_{j_i,s-i}$. Here, $\frac{\delta}{h_{j_i,s-i}} < \frac{8}{7} \frac{l_{j_1,s-1}}{l_{j_i,s-i}} < \frac{8}{7} 8^{1-i}$, by Lemma 3. As in the proof of Lemma 5, we obtain $\frac{l_{j,s}+l_{q,s}}{h_{j_i,s-i}} < \frac{8}{7} \cdot 2 \cdot 8^{-i}$. From this, $\prod_{x_k \in I_{q,s}} |z - x_k| \leq [|y_j - y_q| (1 + \frac{80}{7} 8^{-i})]^{2^{n-s}}$. Since J_i contains 2^{i-1} basic intervals of the s-th level, $\pi_i < [(1 + \frac{80}{7} 8^{-i})^{2^{i-1}} \prod_{y_q \in J_i} |y_j - y_q|]^{2^{n-s}}$.

The product $\prod_{i=2}^{s} (1 + \frac{80}{7} 8^{-i})^{2^{i-1}}$ is smaller than 2, as is easy to check.

Therefore, $|P_{2^n}(z)| = \prod_{i=0}^s \pi_i < [8 \cdot \delta \cdot \prod_{k=1, k \neq j}^{2^s} |y_j - y_k|]^{2^{n-s}}$. The last product in the square brackets is $|P'_{2^s}(y_j)|$, which does not exceed r_s/δ_s , by Lemma 4. Hence, $2^{-n} \log |P_{2^n}(z)| < 2^{-s} \log \frac{16\delta}{\delta_s} - R_s$.

Finally, by Corollary 1, $g_{\mathbb{C}\setminus K(\gamma)}(z) = R + \lim_{n\to\infty} 2^{-n} \log |P_{2^n}(z)|$, which yields the desired upper bound of the Green function.

Similar, but simpler calculations establish the sharpness of the bound. We have $g_{\mathbb{C}\setminus K(\gamma)}(-\delta) = R + \lim_{n\to\infty} 2^{-n} \log P_{2^n}(-\delta)$. Now, $P_{2^n}(-\delta) = \prod_{i=0}^s \pi_i$ with $\pi_0 = \prod_{x_k\in I_{1,s}} (\delta+x_k) > \delta^{2^{n-s}}$ and $\pi_i = \prod_{x_k\in I_{2,s-i+1}} (\delta+x_k)$ for $i \ge 1$. Suppose $x_k \in I_{q,s} \subset \frac{1}{2^{n-s}}$

$$\begin{split} I_{2,s-i+1}. \text{ Then } \delta + x_k > y_q - l_{q,s}. \text{ Since } y_q > h_{1,s-i} > \frac{7}{8} l_{1,s-i}, \text{ we have } \delta + x_k > y_q (1 - \frac{8}{7} 8^{-i}) \\ \text{and } \pi_i > [(1 - \frac{1}{7} 8^{1-i})^{2^{i-1}} \prod_{y_q \in I_{2,s-i+1}} y_q]^{2^{n-s}}. \text{ Therefore, } P_{2^n}(-\delta) > [\frac{\delta}{2} \prod_{k=1}^{2^s} y_k]^{2^{n-s}} = [\frac{\delta}{2} |P'_{2^s}(0)|]^{2^{n-s}} = [\delta/\delta_s \cdot r_s/2]^{2^{n-s}}, \text{ by (2). Thus, } 2^{-n} \log P_{2^n}(-\delta) > -R_s + 2^{-s} \log \frac{\delta}{\delta_s} \\ \text{and } g_{\mathbb{C}\setminus K(\gamma)}(-\delta) \ge \rho_s + 2^{-s} \log \frac{\delta}{\delta_s}. \ \Box \end{split}$$

Theorem 4. Suppose γ satisfies (5) and $Cap(K(\gamma)) > 0$. If $\delta_s \leq \delta < \delta_{s-1}$ then $\rho_s + 2^{-s} \log \frac{\delta}{\delta_s} < \omega(g_{\mathbb{C}\setminus K(\gamma)}, \delta) < \rho_s + 2^{-s} \log \frac{16\delta}{\delta_s}$. If $\gamma_s \to 0$ then $\omega(g_{\mathbb{C}\setminus K(\gamma)}, \delta) \sim \omega(\delta)$ as $\delta \to 0$.

Proof: Fix δ and s with $\delta_s \leq \delta < \delta_{s-1}$. By (7), $\delta_s < l_{1,s} < 2 \, \delta_s < \delta_{s-1}$.

If $l_{1,s} \leq \delta < \delta_{s-1}$ then $\omega(g_{\mathbb{C}\setminus K(\gamma)}, \delta) \geq g_{\mathbb{C}\setminus K(\gamma)}(-\delta)$, so Lemma 7 yields the desired lower bound. If $\delta_s \leq \delta < l_{1,s}$, then $g_{\mathbb{C}\setminus K(\gamma)}(-\delta) > \rho_{s+1} + 2^{-s-1} \log \frac{\delta}{\delta_{s+1}} = \rho_s + 2^{-s-1} \log \frac{2\delta}{\delta_s}$, by (10). Here, $2^{-s-1} \log \frac{2\delta}{\delta_s} > 2^{-s} \log \frac{2\delta}{\delta_s}$, as is easy to check.

In order to get the upper bound, without loss of generality we can assume that $\omega(g_{\mathbb{C}\setminus K(\gamma)}, \delta) = g_{\mathbb{C}\setminus K(\gamma)}(z)$ where $z \in \mathbb{C}$ is such that $dist(z, K(\gamma)) = |z - z_0| = \delta$ for some $z_0 \in K(\gamma)$.

Fix m such that $z_0 \in I_{j,m} \subset I_{j_1,m-1}$ for some j with $l_{j,m} \leq \delta < l_{j_1,m-1}$. Then $m \geq s$, since otherwise Lemma 4 gives a contradiction $\delta < \delta_{s-1} \leq \delta_m < l_{j,m} \leq \delta$.

If m = s then, by Lemma 7, the result is immediate.

If $m \ge s+1$ then $g_{\mathbb{C}\setminus K(\gamma)}(z) \le \rho_m + 2^{-m} \log \frac{16\delta}{\delta_m}$ that does not exceed $\rho_s + 2^{-s} \log \frac{16\delta}{\delta_s}$. Indeed, the function $f(\delta) = \rho_s - \rho_m + (2^{-s} - 2^{-m}) \log 16\delta - 2^{-s} \log \delta_s + 2^{-m} \log \delta_m$ attains its minimal value on $[\delta_s, \delta_{s-1})$ at the left endpoint. Here, $f(\delta_s) = (2^{-s} - 2^{-m}) \log 8 + \sum_{k=s+1}^m (2^{-k} - 2^{-m}) \log \frac{1}{\gamma_k} > 0$.

The last statement of the theorem is a corollary of Lemma 6. \Box

7. Model types of smoothness

Let us consider some model examples with different rates of decrease of $(\rho_s)_{s=1}^{\infty}$. Recall that for non-polar sets $K(\gamma)$ with $R = Rob(K(\gamma))$ we have $\rho_s \downarrow 0$ and $R_s - R_{s-1} = \rho_{s-1} - \rho_s = 2^{-s} \log \frac{1}{2\gamma_s}$ with $\rho_0 = R - \log 2$. Therefore, $R = \log 2 - \sum_{k=1}^{\infty} 2^{-k} \log 2\gamma_k$. In addition, (5) implies $\rho_s \ge 2^{-s} \log 16$ and $R \ge \log 32$, so $Cap(K(\gamma)) \le 1/32$.

If a set K is uniformly perfect, then the function $g_{\mathbb{C}\setminus K}$ is Hölder continuous (see e.g. [10], p. 119), which means the existence of constants C, α such that

$$g_{\mathbb{C}\setminus K}(z) \leq C (dist(z,K))^{\alpha}$$
 for all $z \in \mathbb{C}$.

In this case we write $g_{\mathbb{C}\setminus K} \in Lip \ \alpha$.

By Theorem 2, $g_{\mathbb{C}\setminus K(\gamma)}$ is Hölder continuous provided $\gamma_s = const$. Now we can control the exponent α in the definition above. In the following examples we suppose that $dist(z, K(\gamma)) = \delta$ with $\delta_s \leq \delta < \delta_{s-1}$ for large s.

Example 2. Let $\gamma_s = \gamma_1 \leq \frac{1}{32}$ for all s. Then $\delta_s = \gamma_1^s, r_s = \gamma_1^{2^{s-1}}, R = \log \frac{1}{\gamma_1}$, and $\rho_s = 2^{-s} \log \frac{1}{2\gamma_1}$. Here, $\rho_s + 2^{-s} \log \frac{\delta}{\delta_s} \geq \rho_s > 2^{-s} = \delta_s^{\alpha}$ with $\alpha = -\frac{\log 2}{\log \gamma_1}$. Since $\delta_s = \gamma_1 \delta_{s-1} > \gamma_1 \delta$, we have, by Theorem 4, $g_{\mathbb{C}\setminus K(\gamma)}(-\delta) > \gamma_1^{\alpha} \delta^{\alpha}$. On the other hand, $\rho_s + 2^{-s} \log \frac{16\delta}{\delta_s} < \delta^{\alpha} \log \frac{8}{\gamma_1^2}$. Suppose we are given α with $0 < \alpha \leq 1/5$. Then the value $\gamma_s = 2^{-1/\alpha}$ for all s provides $g_{\mathbb{C}\setminus K(\gamma)} \in Lip \ \alpha$ and $g_{\mathbb{C}\setminus K(\gamma)} \notin Lip \ \beta$ for $\beta > \alpha$.

The next example is related to the function $h(\delta) = (\log \frac{1}{\delta})^{-1}$ that defines the logarithmic measure of sets. Let us write $g_{\mathbb{C}\setminus K} \in Lip_h \alpha$ if for some constants C we have

$$g_{\mathbb{C}\setminus K}(z) \le C h^{\alpha}(dist(z,K))$$
 for all $z \in \mathbb{C}$.

Example 3. Given $1/2 < \rho < 1$, let $\rho_s = \rho^s$ for $s \ge s_0$, where $\frac{\rho}{1-\rho} \log 16 < (2\rho)^{s_0}$. This condition provides $\gamma_s < 1/32$ for $s > s_0$. Suppose $\gamma_s = 1/32$ for $s \le s_0$, so we can use Theorem 4. For large s we have $\delta_s = C 2^{-s} \mu^{(2\rho)^s}$ with $\mu = \exp(\frac{2\rho-2}{2\rho-1})$ and some constant C. Let us take $\alpha = \frac{\log(1/\rho)}{\log(2\rho)}$, so $(2\rho)^{\alpha} = 1/\rho$. Then $h^{\alpha}(\delta) \ge h^{\alpha}(\delta_s) \ge \varepsilon_0(2\rho)^{-s\alpha} = \varepsilon_0 \rho \cdot \rho_{s-1}$ for some ε_0 . From this we conclude that $g_{\mathbb{C}\setminus K(\gamma)} \in Lip_h \alpha$ for given α . Evaluation $g_{\mathbb{C}\setminus K(\gamma)}(-\delta_s)$ from below yields $g_{\mathbb{C}\setminus K(\gamma)} \notin Lip_h \beta$ for $\beta > \alpha$. Now, given $\alpha > 0$, the value $\rho = 2^{-\frac{\alpha}{1+\alpha}}$ provides the corresponding Green function of the exact class $Lip_h \alpha$ (compare this to [1], [8]).

Example 4. Let $\rho_s = 1/s$. Then $\gamma_s = \frac{1}{2} \exp(\frac{-2^s}{s^2-s}) < 1/32$ for $s \ge 8$. As above, all previous values of γ_s are 1/32. Here, $\delta_s = C 2^{-s} \exp[\frac{2^s}{s} - \sum_{k=1}^{s-1} \frac{2^k}{k}]$. Summation by parts (see e.g. [14], T.3.41) yields $\delta_s = C 2^{-s} \exp[-2^{s+1}(s^{-2} + o(s^{-2}))]$. From this, $\omega(g_{\mathbb{C}\setminus K(\gamma)}, \delta) \sim \frac{1}{s} \sim \frac{\log 2}{\log \log 1/\delta_s}$.

Example 5. Given $N \in \mathbb{N}$, let $F_N(t) = \log \log \cdots \log t$ be the N-th iteration of the logarithmic function. Let $\rho_s = (F_N(s))^{-1}$ for large enough s. Here, $\rho_{k-1} - \rho_k \sim [k \cdot \log k \cdot F_2(k) \cdots F_{N-1}(k) \cdot F_N^2(k)]^{-1}$. Since $\delta_s = C 2^{-s} \exp[-\sum_{k=1}^s 2^k (\rho_{k-1} - \rho_k)]$, we have, as above, $s \sim \frac{\log \log 1/\delta_s}{\log 2}$. Thus, $\omega(g_{\mathbb{C}\setminus K(\gamma)}, \delta) \sim [F_{N+2}(1/\delta)]^{-1}$.

We see that a more slow decrease of (ρ_s) implies a less smooth $g_{\mathbb{C}\setminus K(\gamma)}$ and conversely. If, in examples above, we take $\gamma_s = 1/32$ for $s < s_0$ with rather large s_0 , then the set $K(\gamma)$ will have logarithmic capacity as closed to 1/32, as we wish.

Problem. Given modulus of continuity ω , to find $(\gamma_s)_{s=1}^{\infty}$ such that $\omega(g_{\mathbb{C}\setminus K(\gamma)}, \cdot)$ coincides with ω at least on some null sequence.

8. Markov's factors

Let \mathcal{P}_n denote the set of all holomorphic polynomials of degree at most n. For any infinite compact set $K \subset \mathbb{C}$ we consider the sequence of Markov's factors $M_n(K) =$ $\inf\{M : |P'|_K \leq M |P|_K \text{ for all } P \in \mathcal{P}_n\}, n \in \mathbb{N}$. We see that $M_n(K)$ is the norm of the operator of differentiation in the space $(\mathcal{P}_n, |\cdot|_K)$. In the case of non-polar K, the knowledge about smoothness of the Green function near the boundary of K may help to estimate $M_n(K)$ from above. The application of the Cauchy formula for P'and the Bernstein-Walsh inequality yields the estimate

$$M_n(K) \le \inf_{\delta} \delta^{-1} \exp[n \cdot \omega(g_{\mathbb{C} \setminus K}, \delta)].$$
(11)

This approach gives an effective bound of $M_n(K)$ for the cases of temperate growth of $\omega(g_{\mathbb{C}\backslash K}, \cdot)$. For instance, the Hölder continuity of $g_{\mathbb{C}\backslash K}$ implies Markov's property of the set K, which means that there are constants C, m such that $M_n(K) \leq Cn^m$ for all n. In this case, the infimum m(K) of all positive exponents m in the inequality above is called the best Markov's exponent of K.

Lemma 8. Suppose γ satisfies (5) and $Cap(K(\gamma)) > 0$. Given fixed $s \in \mathbb{N}$, let $f(\delta) = \delta^{-1} \exp[2^s(\rho_k + 2^{-k} \log \frac{16\delta}{\delta_k})]$ for $\delta_k \leq \delta < \delta_{k-1}$ with $k \geq 2$. Then $\inf_{0 < \delta < \delta_1} f(\delta) = f(\delta_s - 0) = 4\sqrt{2} \delta_s^{-1} \exp(2^s \rho_s)$.

Proof: Let us fix the interval $I_k = [\delta_k, \delta_{k-1})$. In view of the representation $f(\delta) = C_{s,k} \, \delta^{2^{s-k}-1}$, the function f increases for k < s, decreases for k > s, and is constant for k = s on I_k . An easy computation shows that $f(\delta_{k+1}) < f(\delta_k)$ for $k \leq s-1$ and $f(\delta_{k-1}-0) < f(\delta_k-0)$ for $k \geq s+1$. Thus, it remains to compare $f(\delta_s-0)$ and $f(\delta_s)$. Here, $f(\delta_s) = 16 \, \delta_s^{-1} \exp(2^s \, \rho_s)$ exceeds $f(\delta_s - 0) = \, \delta_s^{-1} (16/\gamma_{s+1})^{1/2} \exp(2^s \rho_{s+1}) = 4\sqrt{2} \, \delta_s^{-1} \exp(2^s \, \rho_s)$. \Box

Example 6. Let $\gamma_s = \gamma_1 \leq \frac{1}{32}$ for $s \in \mathbb{N}$. Then, by Lemma 8 and Example 2, $M_{2^s}(K(\gamma)) \leq \sqrt{8} \cdot \delta_{s+1}^{-1} = \sqrt{8} \gamma_1^{-1} 2^{s/\alpha}$, where α is the same as in Example 2.

On the other hand, let $Q = P_{2^s} + r_s/2$. Then $|Q|_{K(\gamma)} = r_s/2$ and $|Q'(0)| = r_s/\delta_s$, so $M_{2^s}(K(\gamma)) \ge 2 \delta_s^{-1} = 2 \cdot 2^{s/\alpha}$. Now, for each *n* we choose *s* with $2^s \le n < 2^{s+1}$. Since the sequence of Markov's factors increases,

$$c \ n^{1/\alpha} \le M_{2^s}(K(\gamma)) \le M_n(K(\gamma)) \le M_{2^{s+1}}(K(\gamma)) \le C \ n^{1/\alpha}$$

with $c = 2^{1-1/\alpha}$, $C = \gamma_1^{-1} 2^{3/2+1/\alpha}$. Given $m \in [5, \infty)$, the value $\gamma_s = 2^{-m}$ for all s provides the set $K(\gamma)$ with $m(K(\gamma)) = m = 1/\alpha$.

However, the estimate (11) may be rather rough for compact sets with less smooth moduli of continuity of the corresponding Green's functions. For instance, in the case of $K(\gamma)$ with $\sum_{k=1}^{\infty} \gamma_k < \infty$ (then $2^s \rho_s \to \infty$) and $n = 2^s$, the exact value of the right side in (11) is $4\sqrt{2} \delta_s^{-1} \exp(2^s \rho_s)$, whereas $M_{2^s}(K(\gamma)) \sim 2 \delta_s^{-1}$, which will be shown below by means of the Lagrange interpolation. It should be noted that the set $K(\gamma)$ may be polar here.

Let us interpolate $P \in \mathcal{P}_{2^s}$ at zeros $(x_k)_{k=1}^{2^s}$ of P_{2^s} and at one extra point $l_{1,s}$. Then the fundamental Lagrange interpolating polynomials are $L_*(x) = -P_{2^s}(x)/r_s$ and $L_k(x) = \frac{(x-l_{1,s})P_{2^s}(x)}{(x-x_k)(x_k-l_{1,s})P'_{2^s}(x_k)}$ for $k = 1, 2, \cdots, 2^s$. Let Δ_s denote $\sup_{x \in K(\gamma)} [|L'_*(x)| + \sum_{k=1}^{2^s} |L'_k(x)|]$. For convenience we enumerate $(x_k)_{k=1}^{2^s}$ in increasing way, so $x_k \in I_{k,s}$ for $1 \leq k \leq 2^s$.

Lemma 9. Suppose γ satisfies (5) and $\sum_{k=1}^{\infty} \gamma_k < \infty$. Then $\Delta_s \sim 2 \, \delta_s^{-1}$.

Proof: We use the following representation:

$$L'_{k}(x) = \frac{P'_{2^{s}}(x)}{(x_{k} - l_{1,s})P'_{2^{s}}(x_{k})} + \frac{P_{2^{s}}(x)}{(x - x_{k})P'_{2^{s}}(x_{k})} \sum_{j=1, j \neq k}^{2^{s}} \frac{1}{x - x_{j}} =: A_{k} + B_{k}.$$
(12)

In particular, $L'_1(0) = -l_{1,s}^{-1} - \sum_{j=2}^{2^s} x_k^{-1}$. By (2), $|L'_*(0)| = \delta_s^{-1}$, so $\Delta_s > |L'_*(0)| + |L'_1(0)| > \delta_s^{-1} + l_{1,s}^{-1} > \delta_s^{-1}(1 + e^{-16\gamma_s})$, by (7). Thus, $\Delta_s \gtrsim 2 \delta_s^{-1}$.

We proceed to estimate Δ_s from above. Lemma 4 gives the uniform bound $|L'_*(x)| \leq$ δ_s^{-1} .

Let us examine separately the sum $\sum_{k=1}^{2^s} |A_k|$, where A_k are defined by (12). Let $C_0 = \exp(16 \sum_{k=1}^{\infty} \gamma_k)$. Then, by Lemma 4, $|P'_{2^s}(x)| \leq |P'_{2^s}(0)| = r_s/\delta_s < C_0|P'_{2^s}(x_k)|$ for $x \in K(\gamma)$. Therefore, $|A_1| \leq l_{1,s}^{-1} < \delta_s^{-1}$ and $\sum_{k=2}^{2^s} |A_k| < C_0 \sum_{k=2}^{2^s} (x_k - l_{1,s})^{-1}$. Here, $\sum_{k=2}^{2^s} (x_k - l_{1,s})^{-1} < 2 l_{1,s-1}^{-1}$, as is easy to check. Thus, $\sum_{k=1}^{2^s} |A_k| < \delta_s^{-1} + 2C_s \delta^{-1}$ $2C_0\delta_{s-1}^{-1}$.

In order to estimate the sum of the addends B_k , let us fix $x \in K(\gamma)$ and $1 \leq m \leq 2^s$ such that $x \in I_{m,s}$. Suppose first that $k \neq m$. Then

$$\sum_{j=1, j \neq k}^{2^{s}} \left| \frac{P_{2^{s}}(x)}{x - x_{j}} \right| < 2 \left| \frac{P_{2^{s}}(x)}{x - x_{m}} \right| \le 2 \left| P_{2^{s}}'(\xi) \right|$$
(13)

with a certain $\xi \in I_{m,s}$. Indeed, if $x = x_m$ then this sum is exactly $|P'_{2^s}(x_m)|$, so $\xi = x_m$. Otherwise we take the main term out of the brackets:

$$\left|\frac{P_{2^s}(x)}{x-x_m}\right| \left[1+\sum_{\substack{j=1, j\neq k, j\neq m}}^{2^s} \left|\frac{x-x_m}{x-x_j}\right|\right].$$

Here the sum in the square brackets can be handled in the same way as in the proof of Lemma 3. Let $I_{m,s} \subset I_{q,s-1} \subset I_{r,s-2} \subset \cdots$. Then $[\cdots] \leq 1 + l_{m,s}(h_{q,s-1}^{-1} + 2h_{r,s-2}^{-1} + \cdots) \leq 1 + \frac{8}{7}l_{m,s}(l_{q,s-1}^{-1} + 2l_{r,s-2}^{-1} + \cdots) < 1 + \frac{8}{7}(4\gamma_s + 2 \cdot 4\gamma_s 4\gamma_{s-1} + \cdots) < 2.$

On the other hand, by Taylor's formula, $P_{2^s}(x) = P'_{2^s}(\xi)(x-x_m)$ with $\xi \in I_{m,s}$, which establishes (13).

Therefore,

$$\sum_{k=1,k\neq m}^{2^{s}} |B_{k}| < \sum_{k=1,k\neq m}^{2^{s}} \frac{2C_{0}}{|x-x_{k}|}.$$

As above, $\sum_{k=1,k\neq m}^{2^{s}} |B_{k}| < 2C_{0}(h_{q,s-1}^{-1} + 2h_{r,s-2}^{-1} + \cdots) < 4C_{0}h_{q,s-1}^{-1} < 5C_{0}l_{q,s-1}^{-1}.$

It remains to consider $B_m = \frac{P_{2^s}(x)}{(x-x_m)P'_{2^s}(x_m)} \sum_{j=1, j \neq m}^{2^s} \frac{1}{x-x_j}$. Let us take the interval
$$\begin{split} &I_{n,s} \text{ adjacent to } I_{m,s}, \text{ so } I_{n,s} \cup I_{m,s} \subset I_{q,s-1}. \text{ Then, as above, } \sum_{j=1, j \neq m}^{2^{s}} |x - x_{j}|^{-1} < \\ &2 |x - x_{n}|^{-1} \text{ and } |B_{m}| < 2 C_{0} |x - x_{n}|^{-1} < 3 C_{0} l_{q,s-1}^{-1}, \text{ since } |x - x_{n}| > h_{q,s-1}. \\ &\text{This gives } \sum_{k=1}^{2^{s}} |B_{k}| < 8 C_{0} l_{q,s-1}^{-1} < 8 C_{0} \delta_{s-1}^{-1}, \text{ by Lemma 4. Finally, } \Delta_{s} < 2 \delta_{s}^{-1} + \\ &10 C_{0} \delta_{s-1}^{-1} = \delta_{s}^{-1} (2 + 10 C_{0} \gamma_{s}) \sim 2 \delta_{s}^{-1}. \quad \Box \end{split}$$

Theorem 5. With the assumptions of Lemma 8, $M_{2^s}(K(\gamma)) \sim 2 \delta_s^{-1}$.

Proof: On the one hand, $|P_{2^s} + r_s/2|_{K(\gamma)} = r_s/2$ and $|P'_{2^s}(0)| = r_s/\delta_s$, so $M_{2^s}(K(\gamma)) \ge 1$ $2\delta_s^{-1}$.

On the other hand, for each polynomial $P \in \mathcal{P}_{2^s}$ and $x \in K(\gamma)$ we have $|P'(x)| \leq |P'(x)| < |P'(x$ $|P|_{K(\gamma)}\Delta_s$, and the theorem follows. \Box

We are now in a position to construct a compact set with preassigned growth of subsequence of Markov's factors. Suppose we are given a sequence of positive terms $(M_{2^s})_{s=0}^{\infty}$ with $\sum_{s=0}^{\infty} M_{2^s}/M_{2^{s+1}} < \infty$. The case of polynomial growth of (M_n) was considered before, so let us assume that $C n^m M_n^{-1} \to 0$ as $n \to \infty$ for fixed C and m. Fix s_0 such that $M_{2^s}/M_{2^{s+1}} \leq 1/32$ for $s \geq s_0$ and $M_{2^{s_0}} \geq 2 \cdot 2^{5s_0}$.

Let us take $\gamma_s = M_{2^{s-1}}/M_{2^s}$ for $s > s_0$ and $\gamma_s = (2/M_{2^{s_0}})^{1/s_0}$ for $s \le s_0$. Then $\gamma_s \le 1/32$ for all s and we can use Theorem 5. Here, $\delta_s = 2/M_{2^s}$, so $M_{2^s}(K(\gamma)) \sim M_{2^s}$.

It should be noted that the growth of $(M_n(K))$ is restricted for a non-polar compact set K ([5], Pr.3.1). It is also interesting to compare Theorem 5 with Theorem 2 in [16].

9. The best Markov's exponent

If a compact set K has Markov's property, then the Markov inequality is not necessarily valid on K with the best Markov's exponent m(K). An example of such compact set in \mathbb{C}^N , $N \ge 2$ was presented in [4], where the authors posed the problem (5.1): is the same true in \mathbb{C} ? The compact set $K(\gamma)$ with a suitable choice of γ gives the answer in the affirmative.

Example 7. Fix $m \geq 5$. Let $\varepsilon_k = \sqrt{k} - \sqrt{k-1}$ and $\gamma_k = 2^{-(m+\varepsilon_k)}$ for $k \in \mathbb{N}$. Then, $\delta_s = 2^{-(ms+\sqrt{s})}$ and $\rho_s = \sum_{k=s+1}^{\infty} 2^{-k} \log 2^{m-1+\varepsilon_k}$. Since $\varepsilon_k \leq 1$, we have $\exp(2^s \rho_s) < 2^m$. By Lemma 8 and (11), $M_{2^s}(K(\gamma)) < C_0 \delta_s^{-1}$ with $C_0 = 4\sqrt{2} \cdot 2^m$.

On the other hand, as in Example 6, $M_{2^s}(K(\gamma)) \ge 2 \delta_s^{-1}$.

Let us show that for each $k \geq 2$ the value $m_k := m + \frac{\sqrt{k}}{k-1}$ is the Markov exponent for $K(\gamma)$. We want to find a constant C_k such that $M_n(K(\gamma)) \leq C_k n^{m_k}$ holds for all $n \in \mathbb{N}$. Let $2^{s-1} < n \leq 2^s$. Then $M_n(K(\gamma)) \leq M_{2^s}(K(\gamma)) < C_0 2^m n^{m_s}$. If s > k then $m_s < m_k$. If $s \leq k$ then $M_n \leq M_{2^k}$. Therefore, $C_k = \max\{C_0 2^m, M_{2^k}\}$ satisfies the desired condition.

However, the Markov inequality on $K(\gamma)$ does not hold with the exponent $m(K(\gamma)) = \inf m_k = m$. Indeed, $M_{2^s}(K(\gamma)) \geq 2 \, \delta_s^{-1} = 2 \cdot 2^{m \cdot s} \cdot 2^{\sqrt{s}}$. Therefore, given constant C, the inequality $M_{2^s}(K(\gamma)) \leq C \, 2^{m \cdot s}$ is impossible for large s.

References

[1] M. Altun and A. Goncharov, "On smoothness of the Green function for the complement of a rarefied Cantor-type set", *Constr.Approx.*, vol.33, pp.265-271, 2011.

[2] V. V. Andrievskii, "On the Green function for a complement of a finite number of real intervals", *Constr. Approx.*, vol.20, pp.565-583, 2004.

[3] V. V. Andrievskii, "Constructive function theory on sets of the complex plane through potential theory and geometric function theory", *Surv.Approx.Theory*, vol.2, pp.1-52, 2006.

[4] M. Baran, L. Białas-Cieź, and B. Milowka, "On the best exponent in Markov's inequality", Manuscript.

[5] L. Bialas Bialas-Ciez, "Smoothness of Green's functions and Markov-type inequalities", submitted to Banach Center Publications. [6] A. F. Beardon and Ch. Pommerenke, "The Poincare metric of plane domains", J. London Math. Soc., vol.2, iss.3, pp.475-483, 1978.

[7] L. Carleson and V. Totik, "Hölder continuity of Green's functions", *Acta Sci.Math.* (Szeged), vol.70, pp.557-608, 2004.

[8] S. Celik and A. Goncharov, "Smoothness of the Green Function for a Special Domain", submitted.

[9] R. A. DeVore and G. G. Lorentz, *Constructive Approximation*, Berlin: Springer-Verlag, 1993.

[10] J. B. Garnett and D. E. Marshall, *Harmonic measure*, Cambridge: Cambridge University Press, 2005.

[11] W. Pleśniak, "A Cantor regular set which does not have Markov's property", *Ann.Polon.Math.*, vol.51, pp.269-274, 1990.

[12] T. Ransford, *Potential theory in the complex plane*, Cambridge: Cambridge University Press, 1995.

[13] T. Ransford and J. Rostand, "Hölder exponents of Green's functions of Cantor sets", *Comput.Methods Funct. Theory*, vol.1, pp.151-158, 2008.

[14] W. Rudin, *Principles of mathematical analysis. Third edition*, McGraw-Hill Book Co., New York-Auckland-Dsseldorf, 1976.

[15] E. B. Saff and V. Totik, *Logarithmic potentials with external fields*, Springer-Verlag, 1997.

[16] V. Totik, "Markoff constants for Cantor sets, Acta Sci. Math. (Szeged), vol.60, no. 3-4, pp.715734, 1995.

[17] V. Totik, *Metric Properties of Harmonic Measures*, Mem.Amer. Math.Soc., vol.184, 2006.

Alexander Goncharov Department of Mathematics Bilkent University Ankara, Turkey goncha@fen.bilkent.edu.tr