EQUILIBRIUM CANTOR-TYPE SETS

ALEXANDER P. GONCHAROV

Abstract

Equilibrium Cantor-type sets are suggested. This allows to obtain Green functions with various moduli of continuity and compact sets with preassigned growth of Markov's factors.

1. Introduction

If a compact set $K \subset \mathbb{C}$ is regular with respect to the Dirichlet problem then the Green function $g_{\mathbb{C} \backslash K}$ of $\mathbb{C} \backslash K$ with pole at infinity is continuous throughout \mathbb{C}. We are interested in analysis of a character of smoothness of $g_{\mathbb{C} \backslash K}$ near the boundary of K. For example, if $K \subset \mathbb{R}$ then the monotonicity of the Green function with respect to the set K implies that the best possible behavior of $g_{\mathbb{C} \backslash K}$ is $\operatorname{Lip} \frac{1}{2}$ smoothness. An important characterization for general compact sets with $g_{\mathbb{C} \backslash K} \in \operatorname{Lip} \frac{1}{2}$ was found in [17] by V.Totik. The monograph [17] revives interest in the problem of boundary behavior of Green functions. Various conditions for optimal smoothness of $g_{\mathbb{C} \backslash K}$ in terms of metric properties of the set K are suggested in [7], and in papers by V.Andrievskii [2]-[3]. On the other hand, compact sets are considered in [1], [8] such that the corresponding Green functions have moduli of continuity equal to some degrees of h, where the function $h(\delta)=\left(\log \frac{1}{\delta}\right)^{-1}$ defines the logarithmic measure of sets. For a recent result on smoothness of $g_{\mathbb{C} \backslash K_{0}}$, where K_{0} is the classical Cantor set, see [13].

Here the Cantor-type set $K(\gamma)$ is constructed as the intersection of the level domains for a certain sequence of polynomials depending on the parameter $\gamma=\left(\gamma_{n}\right)_{n=1}^{\infty}$ (Section 2). In favor of $K(\gamma)$, in comparison to usual Cantor-type sets, it is equilibrium in the following sense.

Let λ_{s} denote the normalized Lebesgue measure on the closed set E_{s}, where $K(\gamma)=$ $\cap_{s=0}^{\infty} E_{s}$. Then λ_{s} converges in the weak* topology to the equilibrium measure of $K(\gamma)$ (Section 5). This is not valid for geometrically symmetric, though very small Cantortype sets with positive capacity.

Different values of γ provide a variety of the Green functions with diverse moduli of continuity (Section 7).

In Section 8 we estimate Markov's factors for the set $K(\gamma)$ and construct a set with preassigned growth of subsequence of Markov's factors.

In Section 9 a set $K(\gamma)$ is presented such that the Markov inequality on $K(\gamma)$ does not hold with the best Markov's exponent $m(K(\gamma))$. This gives an affirmative answer to the problem (5.1) in [4].

For basic notions of logarithmic potential theory we refer the reader to [10], [12], and [15].

2000 Mathematics Subject Classification. 31A15, 41A10, 41A17.
Key words and phrases. Green's function, Modulus of continuity, Markov's factors.

We use the notation $|\cdot|_{K}$ for the supremum norm on K, \log denotes the natural \log arithm, $0 \cdot \log 0:=0$.

2. Construction of $K(\gamma)$

Suppose we are given a sequence $\gamma=\left(\gamma_{s}\right)_{s=1}^{\infty}$ with $0<\gamma_{s}<1 / 4$. Let $r_{0}=1$ and $r_{s}=\gamma_{s} r_{s-1}^{2}$ for $s \in \mathbb{N}$. We define inductively a sequence of real polynomials: let $P_{2}(x)=x(x-1)$ and $P_{2^{s+1}}=P_{2^{s}}\left(P_{2^{s}}+r_{s}\right)$ for $s \in \mathbb{N}$. It is easy to check by induction that the polynomial $P_{2^{s}}$ has 2^{s-1} points of minimum with equal values $P_{2^{s}}=-r_{s-1}^{2} / 4$. By that we have a geometric procedure to define new (with respect to $P_{2^{s}}$) zeros of $P_{2^{s+1}}$: they are abscissas of points of intersection of the line $y=-r_{s}$ with the graph $y=P_{2^{s}}$. Let E_{s} denote the set $\left\{x \in \mathbb{R}: P_{2^{s+1}}(x) \leq 0\right\}$. Since $r_{s}<r_{s-1}^{2} / 4$, the set E_{s} consists of 2^{s} disjoint closed basic intervals $I_{j, s}$. In general, the lengths $l_{j, s}$ of intervals of the same level are different, however, by the construction of $K(\gamma)$, we have $\max _{1 \leq j \leq 2^{s}} l_{j, s} \rightarrow 0$ as $s \rightarrow \infty$. Clearly, $E_{s+1} \subset E_{s}$. Set $K(\gamma)=\cap_{s=0}^{\infty} E_{s}$.

Let us show that the sequence of level domains $D_{s}=\left\{z \in \mathbb{C}:\left|P_{2^{s}}(z)+r_{s} / 2\right|<\right.$ $\left.r_{s} / 2\right\}, s=1,2, \cdots$, is a nested family.

Lemma 1. Given $z \in \mathbb{C}$ and $s \in \mathbb{N}$, let $w_{s}=2 r_{s}^{-1} P_{2^{s}}(z)+1$. Suppose $\left|w_{s}\right|=1+\varepsilon$ for some $\varepsilon>0$. Then $\left|w_{s+1}\right|>1+4 \varepsilon$.

Proof: We have $w_{s+1}=\left(2 \gamma_{s+1}\right)^{-1}\left(w_{s}^{2}-1+2 \gamma_{s+1}\right)$. Therefore, $\left|w_{s+1}\right|$ attains its minimal value if $w_{s} \in \mathbb{R}$, so $\left|w_{s+1}\right|>\left(2 \gamma_{s+1}\right)^{-1}\left(2 \varepsilon+\varepsilon^{2}+2 \gamma_{s+1}\right)>1+\frac{\varepsilon}{\gamma_{s+1}}>1+4 \varepsilon$.

Theorem 1. We have $\bar{D}_{s} \searrow K(\gamma)$.
Proof: The embedding $\bar{D}_{s+1} \subset \bar{D}_{s}$ is equivalent to the implication

$$
\left|P_{2^{s}}(z)+r_{s} / 2\right|>r_{s} / 2 \Longrightarrow\left|P_{2^{s+1}}(z)+r_{s+1}\right|>r_{s+1} / 2
$$

which we have by Lemma 1.
For each $j \leq 2^{s}$ the real polynomial $P_{2^{s}}$ is monotone on $I_{j, s}$ and takes values 0 and $-r_{s}$ at its endpoints. Therefore, $E_{s} \subset \bar{D}_{s}$ and $K(\gamma) \subset \cap_{s=0}^{\infty} \bar{D}_{s}$.

For the inverse embedding, let us fix $z \notin K(\gamma)$. We need to find s with $z \notin \bar{D}_{s}$. Suppose first $z \in \mathbb{R}$. Since $\bar{D}_{s} \cap \mathbb{R}=E_{s}$, the condition $z \notin E_{s}$ gives the desired s.

Let $z=x+i y$ with $y \neq 0, x \notin K(\gamma)$. By the above, $x \notin \bar{D}_{s}$ for some s. All zeros $\left(x_{j}\right)_{j=1}^{2^{s}}$ of the polynomial $P_{2^{s}}+r_{s} / 2$ are real. Therefore, $\left|P_{2^{s}}(z)+r_{s} / 2\right|>$ $\left|P_{2^{s}}(x)+r_{s} / 2\right|>r_{s} / 2$ and $z \notin \bar{D}_{s}$.

It remains to consider the case $z=x+i y$ with $y \neq 0, x \in K(\gamma)$. There is no loss of generality in assuming $|y|<2$. Let us fix s with $\max _{1 \leq j \leq 2^{s}} l_{j, s}<y^{2} / 2$ and k with $x \in I_{k, s}=[a, b]$. Here, $\left|P_{2^{s}}(a)+r_{s} / 2\right|=r_{s} / 2$. Let us show that $\left|P_{2^{s}}(z)+r_{s} / 2\right|>$ $\left|P_{2^{s}}(a)+r_{s} / 2\right|$ by comparison the distances from z and from a to the zero x_{j}.

If $j<k$ then $\left|a-x_{j}\right| \leq|a-x|$, which is less than the hypotenuse $\left|z-x_{j}\right|$.
If $j=k$ then $\left|a-x_{k}\right| \leq l_{k, s}<y^{2} / 2<|y| \leq\left|z-x_{k}\right|$.
If $j>k$ then $\left|a-x_{j}\right|=x_{j}-b+l_{k, s}$. Therefore, $\left|a-x_{j}\right|^{2}<\left|x_{j}-b\right|^{2}+2 l_{k, s}<$ $\left|x_{j}-b\right|^{2}+y^{2} \leq\left|z-x_{j}\right|^{2}$.

Corollary 1. The set $K(\gamma)$ is polar if and only if $\lim _{s \rightarrow \infty} 2^{-s} \log \frac{2}{r_{s}}=\infty$. If this limit is finite and $z \notin K(\gamma)$, then

$$
g_{\mathbb{C} \backslash K(\gamma)}(z)=\lim _{s \rightarrow \infty} 2^{-s} \log \left|P_{2^{s}}(z) / r_{s}\right|
$$

Proof: Clearly, $g_{\mathbb{C} \backslash \bar{D}_{s}}(z)=2^{-s} \log \left|2 r_{s}^{-1} P_{2^{s}}(z)+1\right|$. The sequence of the corresponding Robin constants $\operatorname{Rob}\left(\bar{D}_{s}\right)=2^{-s} \log \frac{2}{r_{s}}$ increases. If its limit is finite, then, by the Harnack Principle (see e.g. [15], Th.0.4.10), $g_{\mathbb{C} \backslash \bar{D}_{s}} \nearrow g_{\mathbb{C} \backslash K(\gamma)}$ uniformly on compact subsets of $\mathbb{C} \backslash K(\gamma)$. Suppose $z \notin K(\gamma)$. Then for some $q \in \mathbb{N}$ and $\varepsilon>0$ we have $\left|w_{q}\right|=1+\varepsilon$. By Lemma $1,\left|w_{s}\right|>1+4^{s-q} \varepsilon$, so, for large s, the value $\left|P_{2^{s}}(z) / r_{s}\right|$ dominates 1. This gives the desired representation of $g_{\mathbb{C} \backslash K(\gamma)}$.

The next corollary is a consequence of the Kolmogorov criterion (see e.g. [9], T.3.2.1). Recall that a monic polynomial Q_{n} is a Chebyshev polynomial for a compact set K if the value $\left|Q_{n}\right|_{K}$ is minimal among all monic polynomials of degree n.
Corollary 2. The polynomial $P_{2^{s}}+r_{s} / 2$ is the Chebyshev polynomial for the set $K(\gamma)$.
Example 1. Let us consider the limit case, when $\gamma_{s}=1 / 4$ for all s, so $r_{s}=4^{1-2^{s}}$. Since here $K(\gamma)=[0,1]$, the $n-$ th Chebyshev polynomial is $Q_{n}(x)=2^{-n} T_{n}(2 x-1)$, where T_{n} is the monic Chebyshev polynomial for $[-1,1]$, that is $T_{n}(t)=2^{1-n} \cos (n \arccos t)$ for $n \in \mathbb{N}$. Therefore, in this case, $P_{2^{s}}(x)+r_{s} / 2=2^{-2^{s}} T_{2^{s}}(2 x-1)$ for $s \in \mathbb{N}$.

3. Location of zeros

We decompose all zeros of $P_{2^{s}}$ into s groups. Let $X_{0}=\left\{x_{1}, x_{2}\right\}=\{0,1\}$,
$X_{1}=\left\{x_{3}, x_{4}\right\}=\left\{l_{1,1}, 1-l_{2,1}\right\}, \cdots, X_{k}=\left\{x_{2^{k}+1}, \cdots, x_{2^{k+1}}\right\}=\left\{l_{1, k}, l_{1, k-1}-l_{2, k}, \cdots, 1-\right.$ $\left.l_{2^{k}, k}\right\}$, so $X_{k}=\left\{x: P_{2^{k}}(x)+r_{k}=0\right\}$ contains all zeros of $P_{2^{k+1}}$ that are not zeros of $P_{2^{k}}$. Set $Y_{s}=\cup_{k=0}^{s} X_{k}$. Then $P_{2^{s}}(x)=\prod_{x_{k} \in Y_{s-1}}\left(x-x_{k}\right)$. Since $P_{2^{s}}^{\prime}=P_{2^{s-1}}^{\prime}\left(2 P_{2^{s-1}}+r_{s-1}\right)$ for $s \geq 2$, we have

$$
\begin{equation*}
P_{2^{s}}^{\prime}(y)=r_{s-1} P_{2^{s-1}}^{\prime}(y), y \in Y_{s-2} ; \quad P_{2^{s}}^{\prime}(x)=-r_{s-1} P_{2^{s-1}}^{\prime}(x), x \in X_{s-1} . \tag{1}
\end{equation*}
$$

After iteration this gives

$$
\begin{equation*}
\left|P_{2^{s}}^{\prime}(x)\right|=r_{s-1} r_{s-2} \cdots r_{q}\left|P_{2^{q}}^{\prime}(x)\right| \quad \text { for } \quad x \in X_{q} \quad \text { with } \quad q<s . \tag{2}
\end{equation*}
$$

From here, for example, $\left|P_{2^{s}}^{\prime}(0)\right|=r_{s-1} r_{s-2} \cdots r_{1}$.
The identity $P_{2^{s+1}}(y)=P_{2^{s}}(y) \prod_{x_{k} \in X_{s}}\left(y-x_{k}\right)=P_{2^{s}}(y)\left(P_{2^{s}}(y)+r_{s}\right)$ implies $P_{2^{s}}(y)+$ $r_{s}=\prod_{x_{k} \in X_{s}}\left(y-x_{k}\right)$. Thus,

$$
\begin{equation*}
\prod_{x_{k} \in X_{s}}\left(y-x_{k}\right)=r_{s} \quad \text { for } \quad y \in Y_{s-1} . \tag{3}
\end{equation*}
$$

Our next goal is to express the values of $x_{k} \in X_{s}$ in terms of the function $u(t)=$ $\frac{1}{2}-\frac{1}{2} \sqrt{1-4 t}$ with $0<t<\frac{1}{4}$. Clearly, $u(t)$ and $1-u(t)$ are the solutions of the equation $P_{2}(x)+t=0$. Let us consider the expression

$$
\begin{equation*}
x=f_{1}\left(\gamma_{1} \cdot f_{2}\left(\gamma_{2} \cdots f_{s-1}\left(\gamma_{s-1} \cdot f_{s}\left(\gamma_{s}\right)\right) \cdots\right)\right. \tag{4}
\end{equation*}
$$

where $f_{k}=u$ or $f_{k}=1-u$ for $1 \leq k \leq s$, so $f_{k}(t)\left(1-f_{k}(t)\right)=t$. We have $P_{2}(x)=-\gamma_{1} \cdot f_{2}\left(\gamma_{2} \cdots\right)$ with $\gamma_{1}=r_{1}$. Hence, $P_{4}(x)=P_{2}(x)\left(P_{2}(x)+r_{1}\right)=-r_{1}^{2} f_{2}(1-$
$\left.f_{2}\right)=-r_{1}^{2} \gamma_{2} f_{3}=-r_{2} f_{3}\left(\gamma_{3} \cdots\right)$. We continue in this fashion to obtain eventually $P_{2^{s}}(x)=-r_{s-1}^{2} \gamma_{s}=-r_{s}$, which gives $x \in X_{s}$.

The formula (4) provides 2^{s} possible values x. Let us show that they are all different, so any $x_{k} \in X_{s}$ can be represented by means of (4). Since u increases and $u(a)<1-u(b)$ for $a, b \in\left(0, \frac{1}{4}\right)$, we have $u\left(\gamma_{1} \cdot u\left(\gamma_{2} \cdots \gamma_{m} u(a)\right) \cdots\right)<u\left(\gamma_{1}\right.$. $u\left(\gamma_{2} \cdots \gamma_{m}(1-u(b)) \cdots\right)$. In general, let $x_{i}=u\left(\gamma_{1} \cdot u\left(\gamma_{2} \cdots \gamma_{k_{1}}\left(1-u\left(\gamma_{k_{1}+1} \cdot u\left(\cdots \gamma_{k_{2}}(1-\right.\right.\right.\right.\right.$ $u\left(\gamma_{k_{2}+1} \cdots \gamma_{k_{m}}(1-u(a)) \cdots\right)$ and $x_{j}=u\left(\gamma_{1} \cdot u\left(\gamma_{2} \cdots \gamma_{k_{1}}\left(1-u\left(\gamma_{k_{1}+1} \cdot u\left(\cdots \gamma_{k_{2}}(1-\right.\right.\right.\right.\right.$ $\left.u\left(\gamma_{k_{2}+1} \cdots \gamma_{k_{m}} \cdot u(b)\right) \cdots\right)$, that is the first k_{m} functions f_{k} for both points are identical, whereas $f_{k_{m}+1}=1-u$ for x_{i} and u for x_{j}. The straightforward comparison shows that $x_{i}>x_{j}$ for odd m and $x_{i}<x_{j}$ otherwise.

Lemma 2. Let $s \in \mathbb{N}$ and $1 \leq j \leq 2^{s}$. Then $l_{1, s} \leq l_{j, s}$.
Proof: Assume without loss of generality that j is odd. Then $I_{j, s}=[y, x]$ with $x \in X_{s}, y \in X_{m}$ where $1 \leq m \leq s-1$. The case $m=0$ can be excluded, since then $y=0$ and $j=1$. Consider the function $F(t)=f_{1}\left(\gamma_{1} \cdot f_{2}\left(\gamma_{2} \cdots f_{m-1}\left(\gamma_{m-1} \cdot\right.\right.\right.$ $\left.f_{m}(t)\right) \cdots$, where $f_{k} \in\{u, 1-u\}$ are chosen in a such way that $y=F\left(\gamma_{m}\right)$. Then $x=F\left(\gamma_{m} \cdot\left(1-u\left(\gamma_{m+1} \cdot u\left(\gamma_{m+2} \cdots u\left(\gamma_{s}\right)\right) \cdots\right)\right.\right.$. By the Mean Value Theorem, $l_{j, s}=$ $\left.x-y=\left|F^{\prime}(\xi)\right| \cdot \gamma_{m} \cdot u\left(\gamma_{m+1} \cdots u\left(\gamma_{s}\right)\right) \cdots\right)$ with $\left.\gamma_{m}-\gamma_{m} \cdot u\left(\gamma_{m+1} \cdots u\left(\gamma_{s}\right)\right) \cdots\right)<\xi<$ $\left.\gamma_{m} \cdot u\left(\gamma_{m+1} \cdots u\left(\gamma_{s}\right)\right) \cdots\right)$. To simplify notations, we write $t_{k}=\gamma_{k} \cdot f_{k+1}\left(\gamma_{k+1} \cdots \gamma_{m-1}\right.$. $\left.f_{m}(\xi)\right) \cdots$) and $\left.\tau_{k}=\gamma_{k} \cdot u\left(\gamma_{k+1} \cdots \gamma_{m-1} \cdot u(\xi)\right) \cdots\right)$ for $1 \leq k \leq m-1$. By the above, $\tau_{k} \leq t_{k}$. Therefore, $\left|f_{k}^{\prime}\left(t_{k}\right)\right|=\frac{1}{\sqrt{1-4 t_{k}}} \geq \frac{1}{\sqrt{1-4 \tau_{k}}}=u_{k}^{\prime}\left(\tau_{k}\right)$. On the other hand, $u(t) \sqrt{1-4 t}<t$ for $0<t<\frac{1}{4}$, as is easy to check. This gives $\left|F^{\prime}(\xi)\right|=\left|f_{1}^{\prime}\left(t_{1}\right)\right|$. $\gamma_{1} \cdots\left|f_{m-1}^{\prime}\left(t_{m-1}\right)\right| \cdot \gamma_{m-1} \cdot\left|f_{m}^{\prime}(\xi)\right|>\gamma_{1} \cdots \gamma_{m-1} \cdot \frac{u\left(\tau_{1}\right)}{\tau_{1}} \cdot \frac{u\left(\tau_{2}\right)}{\tau_{2}} \cdots \frac{u\left(\tau_{m-1}\right)}{\tau_{m-1}} \cdot \frac{u(\xi)}{\xi}$. Since $\tau_{k}=$ $\gamma_{k} \cdot u\left(\tau_{k+1}\right)$ for $k \leq m-2$ and $\tau_{m-1}=\gamma_{m-1} \cdot u(\xi)$, we obtain $\left|F^{\prime}(\xi)\right|>\frac{u\left(\tau_{1}\right)}{\xi}$ and

$$
\left.l_{j, s}>\frac{u\left(\tau_{1}\right)}{\xi} \cdot \gamma_{m} \cdot u\left(\gamma_{m+1} \cdots u\left(\gamma_{s}\right)\right) \cdots\right)
$$

Taking into account the representation $u(t)=\frac{2 t}{1+\sqrt{1-4 t}}$, we have $u(\alpha t)<\alpha u(t)$ for $0<\alpha<1$. The value $\left.\alpha=\frac{1}{\xi} \cdot \gamma_{m} \cdot u\left(\gamma_{m+1} \cdots u\left(\gamma_{s}\right)\right) \cdots\right)$ satisfies this condition. Therefore, $l_{1, s}=u\left(\gamma_{1} \cdot u\left(\gamma_{2} \cdots \gamma_{m-1} \cdot u(\xi \alpha)\right) \cdots\right)<\alpha u\left(\tau_{1}\right)$, that is $l_{1, s}<l_{j, s}$ for $j \in\left\{3,5, \cdots, 2^{s}-1\right\}$, which is the desired conclusion.

4. Auxiliary results

From now on we make the assumption

$$
\begin{equation*}
\gamma_{s} \leq 1 / 32 \quad \text { for } \quad s \in \mathbb{N} . \tag{5}
\end{equation*}
$$

Each $I_{j, s}$ contains two adjacent basic subintervals $I_{2 j-1, s+1}$ and $I_{2 j, s+1}$. Let $h_{j, s}=$ $l_{j, s}-l_{2 j-1, s+1}-l_{2 j, s+1}$ be the distance between them.
Lemma 3. Suppose γ satisfies (5). Then the polynomial $P_{2^{s}}$ is convex on $I_{j, s-1}$ and $l_{2 j-1, s}+l_{2 j, s}<4 \gamma_{s} l_{j, s-1} \quad$ for $1 \leq j \leq 2^{s-1}$. Thus, $h_{j, s}>\frac{7}{8} l_{j, s}$ for $s \geq 0,1 \leq j \leq 2^{s}$.

Proof: We proceed by induction. If $s=1$ then P_{2} is convex on $I_{1,0}=[0,1]$. Let us show that $l_{1,1}+l_{2,1}<4 \gamma_{1}$. The triangle Δ with the vertices $(0,0),(1,0),\left(\frac{1}{2},-\frac{1}{4}\right)$ is entirely situated in the epigraph $\left\{(x, y) \in \mathbb{R}^{2}: P_{2}(x) \leq y\right\}$. The line $y=-r_{1}$ intersects Δ along the segment $[A, B]$. By convexity of P_{2}, we have $h_{1,0}=1-l_{1,1}-l_{2,1}>|B-A|$.

The triangle Δ_{1} with the vertices $A, B,\left(\frac{1}{2},-\frac{1}{4}\right)$ is similar to Δ. Therefore, $\frac{1}{4}|B-A|=$ $\frac{1}{4}-r_{1}$. Here, $r_{1}=\gamma_{1}$, and the result follows.

Suppose we have convexity of $\left.P_{2^{k}}\right|_{I_{j, k-1}}$ and the desired inequalities for $k=1,2, \cdots, s-1$. Fix $j \leq 2^{s-1}$ and $x \in I_{j, s-1}=[a, b]$. Then $P_{2^{s}}(x)=(x-a)(x-$ b) $g(x)$, where $g(x)=\prod_{k=1}^{n}\left(x-z_{k}\right)$ with $n=2^{s}-2$. Hence,

$$
P_{2^{s}}^{\prime \prime}(x)=g(x)\left[2+2 \sum_{k=1}^{n} \frac{2 x-a-b}{x-z_{k}}+\sum_{k=1}^{n} \sum_{i=1, i \neq k}^{n} \frac{(x-a)(x-b)}{\left(x-z_{k}\right)\left(x-z_{i}\right)}\right] .
$$

Clearly, the polynomial g is positive on $I_{j, s-1},|2 x-a-b| \leq l_{j, s-1}$, and $|(x-a)(x-b)| \leq$ $\frac{1}{4} l_{j, s-1}^{2}$. For convexity of $\left.P_{2^{s}}\right|_{J_{j, s-1}}$ we only need to check that $8 \geq 8 l_{j, s-1} \sum_{k=1}^{n} \mid x-$ $\left.z_{k}\right|^{-1}+l_{j, s-1}^{2} \sum_{k=1}^{n} \sum_{i \neq k}\left|x-z_{k}\right|^{-1}\left|x-z_{i}\right|^{-1}$.

Let us consider the basic intervals containing $x: I_{j, s-1} \subset I_{m, s-2} \subset I_{q, s-3} \subset \cdots \subset$ $I_{1,0}$. The interval $I_{m, s-2}$ contains two zeros of g. For them $\left|x-z_{k}\right| \geq h_{m, s-2}>$ $\left(1-4 \gamma_{s-1}\right) l_{m, s-2}$ and $\frac{l_{j, s-1}}{\left|x-z_{k}\right|}<\frac{4 \gamma_{s-1}}{1-4 \gamma_{s-1}}$, by inductive hypothesis. The last fraction does not exceed $1 / 7$. Similarly, $I_{q, s-3}$ contains another four zeros of g with $\frac{l_{j, s-1}}{\left|x-z_{k}\right|}<$ $\frac{4 \gamma_{s-1} 4 \gamma_{s-2}}{1-4 \gamma_{s-2}} \leq \frac{1}{7} \cdot \frac{1}{8}$. We continue in this fashion to obtain $l_{j, s-1} \sum_{k=1}^{n}\left|x-z_{k}\right|^{-1}<$ $\sum_{k=1}^{s-1} 2^{k} \cdot \frac{1}{7} \cdot\left(\frac{1}{8}\right)^{k-1}<\frac{8}{21}$.

In the same way, $l_{j, s-1}^{2} \sum_{k=1}^{n} \sum_{i \neq k}\left|x-z_{k}\right|^{-1}\left|x-z_{i}\right|^{-1}<\left(\frac{8}{21}\right)^{2}$, which gives $\left.P_{2^{s}}^{\prime \prime}\right|_{I_{j, s-1}}>$ 0 . Arguing as above, by means of convexity of $\left.P_{2^{s}}\right|_{I_{j, s-1}}$, it is easy to show the second statement of Lemma.

Let $\delta_{s}=\gamma_{1} \gamma_{2} \cdots \gamma_{s}$, so $r_{1} r_{2} \cdots r_{s-1} \delta_{s}=r_{s}$.
Lemma 4. If γ satisfies (5) then for any $x_{k} \in Y_{s-1}$ with $s \in \mathbb{N}$

$$
\exp \left(-16 \sum_{k=1}^{s} \gamma_{k}\right) \cdot r_{s} / \delta_{s}<\left|P_{2^{s}}^{\prime}\left(x_{k}\right)\right| \leq\left|P_{2^{s}}^{\prime}\right|_{E_{s}}=r_{s} / \delta_{s}
$$

and

$$
\delta_{s}<l_{i, s}<\exp \left(16 \sum_{k=1}^{s} \gamma_{k}\right) \cdot \delta_{s} \quad \text { for } \quad 1 \leq i \leq 2^{s} .
$$

Proof: From (2) it follows that $\left|P_{2^{s}}^{\prime}\right|_{E_{s}} \geq\left|P_{2^{s}}^{\prime}(0)\right|=r_{s} / \delta_{s}$. In order to get the corresponding lower bound, let us fix $I_{i, s} \subset E_{s}$. Without loss of generality we can assume that $i=2 j-1$ is odd. Then $I_{i, s} \subset I_{j, s-1}$ and $I_{i, s}=[y, x]$ with $y \in Y_{s-1}, x=$ $y+l_{i, s} \in X_{s}$. By Lemma 3, $\left|P_{2^{s}}^{\prime}\right|$ decreases on $[y, x]$, so $\left|P_{2^{s}}^{\prime}(x)\right|<\left|P_{2^{s}}^{\prime}(y)\right|$. We will estimate $\left|P_{2^{s}}^{\prime}(x)\right|$ from below in terms of $\left|P_{2^{s}}^{\prime}(y)\right|$.

The point x is a zero of $P_{2^{s+1}}$. Therefore, $P_{2^{s+1}}^{\prime}(x)=(x-y) \cdot \prod_{y_{k} \in Y_{s}^{\prime}}\left|x-y_{k}\right|=$ $(x-y) \cdot \prod_{y_{k} \in Y_{s}^{\prime}}\left|y-y_{k}\right| \cdot \beta$, where $Y_{s}^{\prime}=Y_{s} \backslash\{x, y\}, \beta=\prod_{y_{k} \in Y_{s}^{\prime}}\left(1+\frac{l_{i, s}}{y-y_{k}}\right)$. Here, $(x-y) \cdot \prod_{y_{k} \in Y_{s}^{\prime}}\left|y-y_{k}\right|=\prod_{x_{k} \in X_{s}}\left|y-x_{k}\right| \prod_{y_{k} \in Y_{s-1}, y_{k} \neq y}\left|y-y_{k}\right|=r_{s}\left|P_{2^{s}}^{\prime}(y)\right|$, by (3). On the other hand, by $(1), P_{2^{s+1}}^{\prime}(x)=r_{s}\left|P_{2^{s}}^{\prime}(y)\right|$. Hence, $\left|P_{2^{s}}^{\prime}(x)\right|=\beta\left|P_{2^{s}}^{\prime}(y)\right|$. Let us estimate β from below. We can take into account only $y_{k} \in Y_{s}^{\prime}$ with $y_{k}>y$, since otherwise the corresponding term in β exceeds 1 . The interval $I_{j, s-1}$ contains two points y_{k} with $y_{k}-y>h_{j, s-1}$. Lemma 3 yields $1+\frac{l_{i, s}}{y-y_{k}}>1-\frac{8}{7} \cdot \frac{l_{i, s}}{l_{i, s-1}}>1-\frac{8}{7} \cdot 4 \gamma_{s}$.

For the next four points (let $I_{j, s-1} \subset I_{m, s-2}$) we have $y_{k}-y>h_{m, s-2}$ and $1+\frac{l_{i, s}}{y-y_{k}}>$ $1-\frac{8}{7} \cdot \frac{l_{i, s}}{l_{m, s-2}}>1-\frac{8}{7} \cdot 4 \gamma_{s} \cdot 4 \gamma_{s-1} \geq 1-\frac{1}{7} \cdot 4 \gamma_{s}$, by (5).

We continue in this fashion obtaining $\log \beta>\sum_{k=1}^{s} 2^{k} \log \left(1-\frac{4}{7} \cdot 8^{2-k} \gamma_{s}\right)$. If $0<$ $a<\frac{1}{4}$ then $\log (1-a)>4 a \log \frac{3}{4}>-1.16 a$. A straightforward calculation shows that $\log \beta>-16 \gamma_{s}$. Thus,

$$
\begin{equation*}
\exp \left(-16 \gamma_{s}\right)\left|P_{2^{s}}^{\prime}(y)\right|<\left|P_{2^{s}}^{\prime}(x)\right|<\left|P_{2^{s}}^{\prime}(y)\right| \tag{6}
\end{equation*}
$$

Combining this inequality with (2) yields the first statement of Lemma. Indeed, let $x=l_{i_{1}, m_{1}}-l_{i_{2}, m_{2}}+\cdots-l_{i_{q-1}, m_{q-1}}+l_{i_{q}, m_{q}}$ with $1 \leq m_{1}<\cdots<m_{q}=s$. Then $y \in X_{m_{q-1}}$. We use (6), then (2) for y, then (6) with y instead of x and $z=l_{i_{1}, m_{1}}-l_{i_{2}, m_{2}}+\cdots+$ $l_{i_{q-2}, m_{q-2}} \in X_{m_{q-2}}$ instead of y, then (2) for z, etc. Finally,

$$
\exp \left(-16\left(\gamma_{m_{1}}+\cdots+\gamma_{m_{q}}\right)\right) r_{1} r_{2} \cdots r_{s-1}<\left|P_{2^{s}}^{\prime}(x)\right|<r_{1} r_{2} \cdots r_{s-1}
$$

If $m_{k}=k$ for $1 \leq k \leq s$, then all γ_{k} are presented in the corresponding sum. Monotonicity of $\left|P_{2^{s}}^{\prime}\right|$ on $[y, x]$ gives the desired conclusion.

The second statement of Lemma can be obtained by the Mean Value Theorem, since $P_{2^{s}}(y)=0, P_{2^{s}}\left(y+l_{i, s}\right)=-r_{s}$. In particular, (6) with $x=l_{1, s}, y=0$ yields

$$
\begin{equation*}
\delta_{s}<l_{1, s}<\delta_{s} \cdot e^{16 \gamma_{s}}<2 \delta_{s} \tag{7}
\end{equation*}
$$

A.F.Beardon and Ch.Pommerenke introduced in [6] the concept of uniformly perfect sets. A dozen of equivalent descriptions of such sets are suggested in [10, p. 343]. We use the following: a compact set $K \subset \mathbb{C}$ is uniformly perfect if K has at least two points and there exists $\varepsilon_{0}>0$ such that for any $z_{0} \in K$ and $0<r \leq \operatorname{diam}(K)$ the set $K \cap\left\{z: \varepsilon_{0} r<\left|z-z_{0}\right|<r\right\}$ is not empty.

Theorem 2. The set $K(\gamma)$, provided (5), is uniformly perfect if and only if inf $\gamma_{s}>0$.
Proof: Suppose $K(\gamma)$ is uniformly perfect. The values $z_{0}=0$ and $r=l_{1, s-1}-l_{2, s}$ in the definition above imply $l_{1, s}+l_{2, s}>\varepsilon_{0} l_{1, s-1}$. By Lemma 3, we have $4 \gamma_{s}>\varepsilon_{0}$, so $\inf _{s} \gamma_{s} \geq \varepsilon_{0} / 4$, which is our claim.

For the converse, assume $\gamma_{s} \geq \gamma_{0}>0$ for all s. Let us show that $l_{i, s}>\frac{1}{2} \gamma_{0} l_{j, s-1}$ for any intervals $I_{i, s} \subset I_{j, s-1}$, which clearly gives uniform perfectness of $K(\gamma)$. Fix $I_{i, s} \subset I_{j, s-1}$. Let x, y be the endpoints of $I_{i, s}$ with $x \in X_{s}, y \in Y_{s-1}$.

Suppose first that $y \in X_{s-1}$. By the Mean Value Theorem, $l_{i, s}\left|P_{2 s}^{\prime}(\xi)\right|=r_{s}$ for some $\xi \in I_{i, s}$. By the monotonicity of $\left|P_{2^{s}}^{\prime}\right|$ on $I_{i, s}$, we have $\left|P_{2^{s}}^{\prime}(\xi)\right|<\left|P_{2^{s}}^{\prime}(y)\right|$, which is $r_{s-1}\left|P_{2^{s-1}}^{\prime}(y)\right|$, by (1). Here, $\left|P_{2^{s-1}}^{\prime}(y)\right|<\left|P_{2^{s-1}}^{\prime}(z)\right|$, where $z \in Y_{s-2}$ is another endpoint of $I_{j, s-1}$. Therefore, $l_{i, s}>\gamma_{s} r_{s-1} /\left|P_{2^{s-1}}^{\prime}(z)\right|$. On the other hand, $l_{j, s-1}=$ $r_{s-1} /\left|P_{2^{s-1}}^{\prime}(\eta)\right|$ with $\eta \in I_{j, s-1}$, so $\left|P_{2^{s-1}}^{\prime}(\eta)\right|>\left|P_{2^{s-1}}^{\prime}(z)\right| / e^{16 \gamma_{s-1}}$, by (6). Hence, $l_{i, s}>\gamma_{s} l_{j, s-1} / e^{16 \gamma_{s-1}} \geq \frac{1}{2} \gamma_{0} l_{j, s-1}$.

The case $y \in Y_{s-2}$ is very similar. Here at once y plays the role of z.

5. $K(\gamma)$ is equilibrium

Here and in the sequel we consider r_{s} in the form $r_{s}=2 \exp \left(-R_{s} \cdot 2^{s}\right)$. Recall that R_{s} is the Robin constant for \bar{D}_{s} and $R_{s} \uparrow R$, which is finite if $K(\gamma)$ is not a polar set. In this case, let $\rho_{s}=R-R_{s}$. Since $r_{0}=1$, we have $\rho_{0}=R-\log 2$. Clearly, $\gamma_{s}=\frac{1}{2} \exp \left[2^{s}\left(\rho_{s}-\rho_{s-1}\right)\right]$ and $\delta_{s}=2^{-s} \exp \left(2^{s} \rho_{s}-\sum_{k=1}^{s-1} 2^{k} \rho_{k}-2 \rho_{0}\right)$. From this,

$$
\begin{equation*}
2^{-s} \log \delta_{s} \rightarrow 0 \quad \text { as } \quad s \rightarrow \infty \tag{8}
\end{equation*}
$$

Given $s \in \mathbb{N}$, let us uniformly distribute the mass 2^{-s} on each $I_{j, s}$ for $1 \leq j \leq 2^{s}$. We will denote by λ_{s} the normalized (in this sense) Lebesgue measure on the set E_{s}, so $d \lambda_{s}=\left(2^{s} l_{j, s}\right)^{-1} d t$ on $I_{j, s}$.

If μ is a finite Borel measure of compact support then its logarithmic potential is defined by $U^{\mu}(z)=\int \log \frac{1}{|z-t|} d \mu(t)$. We will denote by μ_{K} the equilibrium measure of $K, \xrightarrow{*}$ means convergence in the weak* topology.

Let $I=[a, b]$ with $b-a \leq 1, z \in I$. By partial integration,

$$
\int_{I} \log \frac{1}{|z-t|} d t=b-a-(z-a) \log (z-a)-(b-z) \log (b-z)
$$

It follows that

$$
\begin{equation*}
(b-a) \log \frac{e}{b-a}<\int_{I} \log \frac{1}{|z-t|} d t<(b-a) \log \frac{2 e}{b-a} . \tag{9}
\end{equation*}
$$

Lemma 5. Let γ satisfy (5) and $R<\infty$. Then $U^{\lambda_{s}}(z) \rightarrow R$ for $z \in K(\gamma)$ as $s \rightarrow \infty$.
Proof: Fix $z \in K(\gamma)$. Given s, let $z \in I_{j, s}$ for $1 \leq j \leq 2^{s}$. From (9) we have $\int_{I_{j, s}} \log |z-t|^{-1} d \lambda_{s}(t)<2^{-s}\left(2+\log l_{j, s}^{-1}\right)$, which is $o(1)$ as $s \rightarrow \infty$, by Lemma 4 and (8).

To estimate $\sum_{k=1, k \neq j}^{2^{s}} \int_{I_{k, s}} \log |z-t|^{-1} d \lambda_{s}(t)$ we use $P_{2^{s}}(x)=\prod_{k=1}^{2^{s}}\left(x-y_{k}\right)$ with $y_{k} \in I_{k, s}$. As above, let $I_{j, s} \subset I_{m, s-1} \subset I_{q, s-2} \subset \cdots \subset I_{1,0}$. Suppose k corresponds to the adjacent to $I_{j, s}$ subinterval $I_{k, s}$ of $I_{m, s-1}$. Then $h_{m, s-1} \leq|z-t| \leq\left|y_{j}-y_{k}\right| \leq$ $|z-t|+l_{j, s}+l_{k, s}$. Hence, $1 \leq \frac{\left|y_{j}-y_{k}\right|}{|z-t|} \leq 1+\varepsilon_{0}$, where $\varepsilon_{0}=\frac{l_{j, s}+l_{k, s}}{h_{m, s-1}}<\frac{1}{7}$, by Lemma 3 . For this k we get
$2^{-s} \log \left|y_{j}-y_{k}\right|^{-1}<\int_{I_{k, s}} \log |z-t|^{-1} d \lambda_{s}(t)<2^{-s}\left(\log \left|y_{j}-y_{k}\right|^{-1}+\varepsilon_{0}\right)$.
In its turn, $I_{q, s-2} \supset I_{m, s-1} \cup I_{n, s-1}$, where $I_{n, s-1}$ contains other two intervals of the s-th level. Let k correspond to any of them. Then $|z-t|-l_{j, s}-l_{k, s} \leq \mid y_{j}-$ $y_{k}\left|\leq|z-t|+l_{j, s}+l_{k, s}\right.$ with $| z-t \mid \geq h_{q, s-2}$. Here, $1-\varepsilon_{1} \leq \frac{\left|y_{j}-y_{k}\right|}{|z-t|} \leq 1+\varepsilon_{1}$ with $\varepsilon_{1}=\frac{l_{j, s}+l_{k, s}}{h_{q, s-2}}<\frac{8}{7}\left(\frac{l_{j, s}}{l_{m, s-1}} \frac{l_{m, s-1}}{l_{q, s-2}}+\frac{l_{k, s}}{l_{n, s-1}} \frac{l_{n, s-1}}{l_{q, s-2}}\right)<\frac{8}{7} \cdot 2 \cdot 4 \gamma_{s} 4 \gamma_{s-1}<\frac{1}{7} \cdot \frac{1}{4}$, by Lemma 3. Repeating this argument leads to the representation

$$
\sum_{k=1, k \neq j}^{2^{s}} \int_{I_{k, s}} \log |z-t|^{-1} d \lambda_{s}(t)=2^{-s} \log \prod_{k=1, k \neq j}^{2^{s}}\left|y_{j}-y_{k}\right|^{-1}+\varepsilon
$$

where $|\varepsilon| \leq 2^{-s+1}\left(\varepsilon_{0}+2 \varepsilon_{1}+\cdots+2^{s-1} \varepsilon_{s-1}\right)$ with $\varepsilon_{k}<\frac{2}{7} \cdot 8^{-k}$ for $k \geq 1$. Here we used the estimate $|\log (1+x)| \leq 2|x|$ for $|x|<{ }_{7}^{1 / 2}$. We see that $|\varepsilon|<2^{-s}$.

The main term above is $2^{-s} \log \left|P_{2^{s}}^{\prime}\left(y_{j}\right)\right|^{-1}$, which is $2^{-s} \log \left(\delta_{s} / r_{s}\right)+o(1)$, by Lemma 4. Thus,

$$
\int \log |z-t|^{-1} d \lambda_{s}(t)=2^{-s} \log \left(\delta_{s} / r_{s}\right)+o(1) \quad \text { as } \quad s \rightarrow \infty
$$

Finally, $2^{-s} \log \left(\delta_{s} / r_{s}\right)=R_{s}+2^{-s} \log \frac{\delta_{s}}{2} \rightarrow R$ as $s \rightarrow \infty$, by (8).
Theorem 3. Suppose γ satisfies (5) and $\operatorname{Cap}(K(\gamma))>0$. Then $\lambda_{s} \xrightarrow{*} \mu_{K(\gamma)}$.
Proof: All measures λ_{s} have unit mass. By Helly's Selection Theorem (see for instance [15, Th.0.1.3]), we can select a subsequence $\left(\lambda_{s_{k}}\right)_{k=1}^{\infty}$, weak ${ }^{*}$ convergent to some measure μ. Approximating the function $\log |z-\cdot|^{-1}$ by the truncated continuous kernels (see for instance [15, Th.1.6.9]), we get $\liminf _{k \rightarrow \infty} U^{\lambda_{s_{k}}}(z)=U^{\mu}(z)$ for quasi-every $z \in \mathbb{C}$. In particular, by Lemma 5 , we have $U^{\mu}(z)=R$ for quasi-every $z \in K(\gamma)$. This means that $\mu=\mu_{K(\gamma)}$ (see e.g. [15, Th.1.3.3]). The same proof remains valid for any subsequence $\left(\lambda_{s_{j}}\right)_{j=1}^{\infty}$. Therefore, $\lambda_{s} \xrightarrow{*} \mu_{K(\gamma)}$.

Remark. Clearly, any compact set K with nonempty interior cannot be equilibrium in our sense since supp $\mu_{k} \subset \partial K$. Neither geometrically symmetric Cantor-type sets of positive capacity are equilibrium. Let us consider the set $K^{(\alpha)}$ from [1] which is constructed by means of the Cantor procedure with $l_{s+1}=l_{s}^{\alpha}$ for $1<\alpha<2$. The values $\alpha \geq 2$ give polar sets $K^{(\alpha)}$. As above, let λ_{s} be the normalized Lebesgue measure on $E_{s}=\cup_{j=1}^{2^{s}} I_{j, s}$. Given $s \in \mathbb{N}$, let $z_{s}=l_{1}-l_{2}+\cdots+(-1)^{s+1} l_{s}$. Estimating distances $|z-t|$ for $z=0$ and $z=z_{s}$, as in Lemma 5, it can be checked that $U^{\lambda_{s}}(0)-U^{\lambda_{s}}\left(z_{s}\right)>\sum_{k=1}^{s-1} 2^{-k-1} \log \frac{\left(l_{k-1}-l_{k}\right)\left(l_{k-1}-l_{k+1}\right)}{\left(l_{k-1}-2 l_{k}\right)\left(l_{k-1}-l_{k}-l_{k+1}\right)}$. It is easily seen that all fractions here exceed 1. Therefore, for each s there exists a point $z_{s} \in K^{(\alpha)}$ such that $U^{\lambda_{s}}(0)-U^{\lambda_{s}}\left(z_{s}\right)$ exceeds the constant $\frac{1}{4} \log \frac{\left(1-l_{1}\right)\left(1-l_{2}\right)}{\left(1-2 l_{1}\right)\left(1-l_{1}-l_{2}\right)}$ and the limit logarithmic potential is not equilibrium. Indeed, if $K^{(\alpha)}$ is not polar, then it is regular with respect to the Dirichlet problem (see [11]) and $U^{\mu}{ }_{K^{(\alpha)}}$ must be continuous in \mathbb{C} and constant on $K^{(\alpha)}$.

6. Smoothness of $g_{\mathbb{C} \backslash K(\gamma)}$

We proceed to evaluate the modulus of continuity of the Green function corresponding to the set $K(\gamma)$. Recall that a modulus of continuity is a continuous non-decreasing subadditive function $\omega: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$with $\omega(0)=0$. Given function f, its modulus of continuity is $\omega(f, \delta)=\sup _{|x-y| \leq \delta}|f(x)-f(y)|$.

In what follows the symbol \sim denotes the strong equivalence: $a_{s} \sim b_{s}$ means that $a_{s}=b_{s}(1+o(1))$ for $s \rightarrow \infty$. This gives a natural interpretation of the relation \lesssim.

Let γ be as in the preceding theorem. Then, we are given two monotone sequences $\left(\delta_{s}\right)_{s=1}^{\infty}$ and $\left(\rho_{s}\right)_{s=1}^{\infty}$ where, as above, $\delta_{s}=\gamma_{1} \cdots \gamma_{s}, \rho_{s}=\sum_{k=s+1}^{\infty} 2^{-k} \log \frac{1}{2 \gamma_{k}}$. We define the function ω by the following conditions: $\omega(0)=0, \omega(\delta)=\rho_{1}$ for $\delta \geq \delta_{1}$. If $s \geq 2$ then $\omega(\delta)=\rho_{s}+2^{-s} \log \frac{\delta}{\delta_{s}}$ for $\delta_{s} \leq \delta \leq \delta_{s-1} / 16$ and $\omega(\delta)=\rho_{s-1}-k_{s}\left(\delta_{s-1}-\delta\right)$ for $\delta_{s-1} / 16<\delta<\delta_{s-1}$ with $k_{s}=\frac{16}{15} \cdot 2^{-s} \delta_{s-1}^{-1} \log 8$.
Lemma 6. The function ω is a concave modulus of continuity. If $\gamma_{s} \rightarrow 0$ then for any positive constant C we have $\omega(\delta) \sim \rho_{s}+2^{-s} \log \frac{C \delta}{\delta_{s}}$ as $\delta \rightarrow 0$ with $\delta_{s} \leq \delta<\delta_{s-1}$.

Proof: The function ω is continuous due to the choice of k_{s}. In addition, $\omega^{\prime}\left(\delta_{s-1}+\right.$ $0)<k_{s}<\omega^{\prime}\left(\delta_{s-1} / 16-0\right)$, which provides concavity of ω.

If $\gamma_{s}=\frac{1}{2} \exp \left[2^{s}\left(\rho_{s}-\rho_{s-1}\right)\right] \rightarrow 0$ then $2^{s} \rho_{s} \rightarrow \infty$ and we have the desired equivalence in the case $\delta_{s} \leq \delta \leq \delta_{s-1} / 16$. Suppose $\delta_{s-1} / 16<\delta<\delta_{s-1}$. The identity

$$
\begin{equation*}
\rho_{s-1}=\rho_{s}+2^{-s} \log \frac{\delta_{s-1}}{2 \delta_{s}} \tag{10}
\end{equation*}
$$

yields $\left|\rho_{s}+2^{-s} \log \frac{C \delta}{\delta_{s}}-\omega(\delta)\right|<2^{-s}\left[\left|\log \frac{2 C \delta}{\delta_{s-1}}\right|+\frac{16}{15} \log 8 \cdot\left(1-\frac{\delta}{\delta_{s-1}}\right)\right]<2^{-s}[|\log C|+$ $8 \log 2$], which is $o(\omega)$ since here $\omega(\delta)>\rho_{s-1}-2^{-s} \log 8$.

Lemma 7. Suppose γ satisfies (5) and $\operatorname{Cap}(K(\gamma))>0$. Let $z \in \mathbb{C}$, $z_{0} \in K(\gamma)$ with $\operatorname{dist}(z, K(\gamma))=\left|z-z_{0}\right|=\delta<1$. Choose $s \in \mathbb{N}$ such that $z_{0} \in I_{j, s} \subset I_{j_{1}, s-1}$ with $l_{j, s} \leq \delta<l_{j_{1, s-1}}$. Then $g_{\mathbb{C} \backslash K(\gamma)}(z)<\rho_{s}+2^{-s} \log \frac{16 \delta}{\delta_{s}}$.
On the other hand, if $l_{1, s} \leq \delta<l_{1, s-1}$ then $g_{\mathbb{C} \backslash K(\gamma)}(-\delta)>\rho_{s}+2^{-s} \log \frac{\delta}{\delta_{s}}$.
Proof: Consider the chain of basic intervals containing $z_{0}: z_{0} \in I_{j, s} \subset I_{j_{1}, s-1} \subset$ $I_{j_{2}, s-2} \subset \cdots \subset I_{j_{s}, 0}=[0,1]$. Here, $I_{j_{i}, s-i} \backslash I_{j_{i-1}, s-i+1}$ contains 2^{i-1} basic intervals of the s-th level. Each of them has certain endpoints x, y with $x \in X_{s}, y \in Y_{s-1}$. Recall that Y_{s-1} is the set of zeros of $P_{2^{s}}$. Distinguish $y_{j} \in I_{j, s}$. Now for a fixed large n we will express the value $\left|P_{2^{n}}(z)\right|=\prod_{k=1}^{2^{n}}\left|z-x_{k}\right|$ in terms of $\prod_{k=1, k \neq j}^{2^{s}}\left|y_{j}-y_{k}\right|$ (compare to Lemma 5). Clearly, each interval of the s-th level contains 2^{n-s} zeros of $P_{2^{n}}$, so we will replace these 2^{n-s} points with the corresponding y_{k}.

Let us first consider the product $\pi_{0}:=\prod_{x_{k} \in I_{j, s}}\left|z-x_{k}\right|$. Here, $\left|z-x_{k}\right| \leq \delta+l_{j, s}<2 \delta$, so $\pi_{0}<(2 \delta)^{2^{n-s}}$.

Let $\pi_{1}:=\prod_{x_{k} \in I_{m, s}}\left|z-x_{k}\right|$, where $I_{m, s}$ is adjacent to $I_{j, s}$. Then $\left|z_{0}-x_{k}\right| \leq l_{j_{1}, s-1}=$ $\left|y_{j}-y_{m}\right|$, since y_{j} and y_{m} are the endpoints of the interval $I_{j_{1}, s-1}$. Therefore, $\left|z-x_{k}\right|<$ $2\left|y_{j}-y_{m}\right|$ and $\pi_{1}<\left(2\left|y_{j}-y_{m}\right|\right)^{2^{n-s}}$.

In the general case, given $2 \leq i \leq s$, let π_{i} denote the product of all $\left|z-x_{k}\right|$ for $x_{k} \in J_{i}:=I_{j_{i}, s-i} \backslash I_{j_{i-1}, s-i+1}$. Suppose $x_{k} \in I_{q, s}$. Then, $\left|z-x_{k}\right| \leq \delta+l_{j, s}+\left|y_{j}-y_{q}\right|+$ $l_{q, s} \leq\left|y_{j}-y_{q}\right|\left(1+\frac{\delta+l_{j, s}+l_{q, s}}{h_{j_{i}, s-i}}\right)$, since y_{j} and y_{q} belong to different subintervals of the $(s-i+1)$-th level for $I_{j_{i}, s-i}$. Here, $\frac{\delta}{h_{j_{i}, s-i}}<\frac{8}{7} \frac{l_{j_{1}, s-1}}{l_{j_{i}, s-i}}<\frac{8}{7} 8^{1-i}$, by Lemma 3. As in the proof of Lemma 5, we obtain $\frac{l_{j, s}+l_{q, s}}{h_{j_{i}, s-i}}<\frac{8}{7} \cdot 2 \cdot 8^{-i}$. From this, $\prod_{x_{k} \in I_{q, s}}\left|z-x_{k}\right| \leq$ $\left[\left|y_{j}-y_{q}\right|\left(1+\frac{80}{7} 8^{-i}\right)\right]^{2 n-s}$. Since J_{i} contains 2^{i-1} basic intervals of the s-th level, $\pi_{i}<\left[\left(1+\frac{80}{7} 8^{-i}\right)^{2^{i-1}} \prod_{y_{q} \in J_{i}}\left|y_{j}-y_{q}\right|\right]^{2^{n-s}}$.

The product $\prod_{i=2}^{s}\left(1+\frac{80}{7} 8^{-i}\right)^{2^{i-1}}$ is smaller than 2 , as is easy to check.
Therefore, $\left|P_{2^{n}}(z)\right|=\prod_{i=0}^{s} \pi_{i}<\left[8 \cdot \delta \cdot \prod_{k=1, k \neq j}^{2^{s}}\left|y_{j}-y_{k}\right|\right]^{2^{n-s}}$. The last product in the square brackets is $\left|P_{2^{s}}^{\prime}\left(y_{j}\right)\right|$, which does not exceed r_{s} / δ_{s}, by Lemma 4. Hence, $2^{-n} \log \left|P_{2^{n}}(z)\right|<2^{-s} \log \frac{16 \delta}{\delta_{s}}-R_{s}$.

Finally, by Corollary 1, $g_{\mathbb{C} \backslash K(\gamma)}(z)=R+\lim _{n \rightarrow \infty} 2^{-n} \log \left|P_{2^{n}}(z)\right|$, which yields the desired upper bound of the Green function.

Similar, but simpler calculations establish the sharpness of the bound. We have $g_{\mathbb{C} \backslash K(\gamma)}(-\delta)=R+\lim _{n \rightarrow \infty} 2^{-n} \log P_{2^{n}}(-\delta)$. Now, $P_{2^{n}}(-\delta)=\prod_{i=0}^{s} \pi_{i}$ with $\pi_{0}=$ $\prod_{x_{k} \in I_{1, s}}\left(\delta+x_{k}\right)>\delta^{2^{n-s}}$ and $\pi_{i}=\prod_{x_{k} \in I_{2, s-i+1}}\left(\delta+x_{k}\right)$ for $i \geq 1$. Suppose $x_{k} \in I_{q, s} \subset$
$I_{2, s-i+1}$. Then $\delta+x_{k}>y_{q}-l_{q, s}$. Since $y_{q}>h_{1, s-i}>\frac{7}{8} l_{1, s-i}$, we have $\delta+x_{k}>y_{q}\left(1-\frac{8}{7} 8^{-i}\right)$ and $\pi_{i}>\left[\left(1-\frac{1}{7} 8^{1-i}\right)^{2^{i-1}} \prod_{y_{q} \in I_{2, s-i+1}} y_{q}\right]^{2^{n-s}}$. Therefore, $P_{2^{n}}(-\delta)>\left[\frac{\delta}{2} \prod_{k=1}^{2^{s}} y_{k}\right]^{2^{n-s}}=$ $\left[\frac{\delta}{2}\left|P_{2^{s}}^{\prime}(0)\right|\right]^{2^{n-s}}=\left[\delta / \delta_{s} \cdot r_{s} / 2\right]^{2^{n-s}}$, by (2). Thus, $2^{-n} \log P_{2^{n}}(-\delta)>-R_{s}+2^{-s} \log \frac{\delta}{\delta_{s}}$ and $g_{\mathbb{C} \backslash K(\gamma)}(-\delta) \geq \rho_{s}+2^{-s} \log \frac{\delta}{\delta_{s}}$.

Theorem 4. Suppose γ satisfies (5) and $\operatorname{Cap}(K(\gamma))>0$. If $\delta_{s} \leq \delta<\delta_{s-1}$ then $\rho_{s}+2^{-s} \log \frac{\delta}{\delta_{s}}<\omega\left(g_{\mathbb{C} \backslash K(\gamma)}, \delta\right)<\rho_{s}+2^{-s} \log \frac{16 \delta}{\delta_{s}}$. If $\gamma_{s} \rightarrow 0$ then $\omega\left(g_{\mathbb{C} \backslash K(\gamma)}, \delta\right) \sim \omega(\delta)$ as $\delta \rightarrow 0$.

Proof: Fix δ and s with $\delta_{s} \leq \delta<\delta_{s-1}$. By (7), $\delta_{s}<l_{1, s}<2 \delta_{s}<\delta_{s-1}$.
If $l_{1, s} \leq \delta<\delta_{s-1}$ then $\omega\left(g_{\mathbb{C} \backslash K(\gamma)}, \delta\right) \geq g_{\mathbb{C} \backslash K(\gamma)}(-\delta)$, so Lemma 7 yields the desired lower bound. If $\delta_{s} \leq \delta<l_{1, s}$, then $g_{\mathbb{C} \backslash K(\gamma)}(-\delta)>\rho_{s+1}+2^{-s-1} \log \frac{\delta}{\delta_{s+1}}=\rho_{s}+$ $2^{-s-1} \log \frac{2 \delta}{\delta_{s}}$, by (10). Here, $2^{-s-1} \log \frac{2 \delta}{\delta_{s}}>2^{-s} \log \frac{2 \delta}{\delta_{s}}$, as is easy to check.

In order to get the upper bound, without loss of generality we can assume that $\omega\left(g_{\mathbb{C} \backslash K(\gamma)}, \delta\right)=g_{\mathbb{C} \backslash K(\gamma)}(z)$ where $z \in \mathbb{C}$ is such that $\operatorname{dist}(z, K(\gamma))=\left|z-z_{0}\right|=\delta$ for some $z_{0} \in K(\gamma)$.

Fix m such that $z_{0} \in I_{j, m} \subset I_{j_{1}, m-1}$ for some j with $l_{j, m} \leq \delta<l_{j_{1}, m-1}$. Then $m \geq s$, since otherwise Lemma 4 gives a contradiction $\delta<\delta_{s-1} \leq \delta_{m}<l_{j, m} \leq \delta$.

If $m=s$ then, by Lemma 7 , the result is immediate.
If $m \geq s+1$ then $g_{\mathbb{C} \backslash K(\gamma)}(z) \leq \rho_{m}+2^{-m} \log \frac{16 \delta}{\delta_{m}}$ that does not exceed $\rho_{s}+2^{-s} \log \frac{16 \delta}{\delta_{s}}$. Indeed, the function $f(\delta)=\rho_{s}-\rho_{m}+\left(2^{-s}-2^{-m}\right) \log 16 \delta-2^{-s} \log \delta_{s}+2^{-m} \log \delta_{m}$ attains its minimal value on $\left[\delta_{s}, \delta_{s-1}\right)$ at the left endpoint. Here, $f\left(\delta_{s}\right)=\left(2^{-s}-\right.$ $\left.2^{-m}\right) \log 8+\sum_{k=s+1}^{m}\left(2^{-k}-2^{-m}\right) \log \frac{1}{\gamma_{k}}>0$.

The last statement of the theorem is a corollary of Lemma 6 .

7. Model types of smoothness

Let us consider some model examples with different rates of decrease of $\left(\rho_{s}\right)_{s=1}^{\infty}$. Recall that for non-polar sets $K(\gamma)$ with $R=\operatorname{Rob}(K(\gamma))$ we have $\rho_{s} \downarrow 0$ and $R_{s}-R_{s-1}=$ $\rho_{s-1}-\rho_{s}=2^{-s} \log \frac{1}{2 \gamma_{s}}$ with $\rho_{0}=R-\log 2$. Therefore, $R=\log 2-\sum_{k=1}^{\infty} 2^{-k} \log 2 \gamma_{k}$. In addition, (5) implies $\rho_{s} \geq 2^{-s} \log 16$ and $R \geq \log 32$, so $\operatorname{Cap}(K(\gamma)) \leq 1 / 32$.

If a set K is uniformly perfect, then the function $g_{\mathbb{C} \backslash K}$ is Hölder continuous (see e.g. [10], p. 119), which means the existence of constants C, α such that

$$
g_{\mathbb{C} \backslash K}(z) \leq C(\operatorname{dist}(z, K))^{\alpha} \quad \text { for all } \quad z \in \mathbb{C} .
$$

In this case we write $g_{\mathbb{C} \backslash K} \in \operatorname{Lip} \alpha$.
By Theorem 2, $g_{\mathbb{C} \backslash K(\gamma)}$ is Hölder continuous provided $\gamma_{s}=$ const. Now we can control the exponent α in the definition above. In the following examples we suppose that $\operatorname{dist}(z, K(\gamma))=\delta$ with $\delta_{s} \leq \delta<\delta_{s-1}$ for large s.

Example 2. Let $\gamma_{s}=\gamma_{1} \leq \frac{1}{32}$ for all s. Then $\delta_{s}=\gamma_{1}^{s}, r_{s}=\gamma_{1}^{2^{s}-1}, R=\log \frac{1}{\gamma_{1}}$, and $\rho_{s}=2^{-s} \log \frac{1}{2 \gamma_{1}}$. Here, $\rho_{s}+2^{-s} \log \frac{\delta}{\delta_{s}} \geq \rho_{s}>2^{-s}=\delta_{s}^{\alpha}$ with $\alpha=-\frac{\log 2}{\log \gamma_{1}}$. Since $\delta_{s}=\gamma_{1} \delta_{s-1}>\gamma_{1} \delta$, we have, by Theorem $4, g_{\mathbb{C} \backslash K(\gamma)}(-\delta)>\gamma_{1}^{\alpha} \delta^{\alpha}$. On the other hand, $\rho_{s}+2^{-s} \log \frac{16 \delta}{\delta_{s}}<\delta^{\alpha} \log \frac{8}{\gamma_{1}^{2}}$.

Suppose we are given α with $0<\alpha \leq 1 / 5$. Then the value $\gamma_{s}=2^{-1 / \alpha}$ for all s provides $g_{\mathbb{C} \backslash K(\gamma)} \in \operatorname{Lip} \alpha$ and $g_{\mathbb{C} \backslash K(\gamma)} \notin \operatorname{Lip} \beta$ for $\beta>\alpha$.

The next example is related to the function $h(\delta)=\left(\log \frac{1}{\delta}\right)^{-1}$ that defines the logarithmic measure of sets. Let us write $g_{\mathbb{C} \backslash K} \in \operatorname{Lip}_{h} \alpha$ if for some constants C we have

$$
g_{\mathbb{C} \backslash K}(z) \leq C h^{\alpha}(\operatorname{dist}(z, K)) \quad \text { for all } \quad z \in \mathbb{C}
$$

Example 3. Given $1 / 2<\rho<1$, let $\rho_{s}=\rho^{s}$ for $s \geq s_{0}$, where $\frac{\rho}{1-\rho} \log 16<(2 \rho)^{s_{0}}$. This condition provides $\gamma_{s}<1 / 32$ for $s>s_{0}$. Suppose $\gamma_{s}=1 / 32$ for $s \leq s_{0}$, so we can use Theorem 4. For large s we have $\delta_{s}=C 2^{-s} \mu^{(2 \rho)^{s}}$ with $\mu=\exp \left(\frac{2 \rho-2}{2 \rho-1}\right)$ and some constant C. Let us take $\alpha=\frac{\log (1 / \rho)}{\log (2 \rho)}$, so $(2 \rho)^{\alpha}=1 / \rho$. Then $h^{\alpha}(\delta) \geq h^{\alpha}\left(\delta_{s}\right) \geq$ $\varepsilon_{0}(2 \rho)^{-s \alpha}=\varepsilon_{0} \rho \cdot \rho_{s-1}$ for some ε_{0}. From this we conclude that $g_{\mathbb{C} \backslash K(\gamma)} \in \operatorname{Lip} p_{h} \alpha$ for given α. Evaluation $g_{\mathbb{C} \backslash K(\gamma)}\left(-\delta_{s}\right)$ from below yields $g_{\mathbb{C} \backslash K(\gamma)} \notin \operatorname{Lip} h$ for $\beta>\alpha$. Now, given $\alpha>0$, the value $\rho=2^{-\frac{\alpha}{1+\alpha}}$ provides the corresponding Green function of the exact class $\operatorname{Lip}_{h} \alpha$ (compare this to [1], [8]).

Example 4. Let $\rho_{s}=1 / s$. Then $\gamma_{s}=\frac{1}{2} \exp \left(\frac{-2^{s}}{s^{2}-s}\right)<1 / 32$ for $s \geq 8$. As above, all previous values of γ_{s} are $1 / 32$. Here, $\delta_{s}=C 2^{-s} \exp \left[\frac{2^{s}}{s}-\sum_{k=1}^{s-1} \frac{2^{k}}{k}\right]$. Summation by parts (see e.g.[14],T.3.41) yields $\delta_{s}=C 2^{-s} \exp \left[-2^{s+1}\left(s^{-2}+o\left(s^{-2}\right)\right)\right]$. From this, $\omega\left(g_{\mathbb{C} \backslash K(\gamma)}, \delta\right) \sim \frac{1}{s} \sim \frac{\log 2}{\log \log 1 / \delta_{s}}$.

Example 5. Given $N \in \mathbb{N}$, let $F_{N}(t)=\log \log \cdots \log t$ be the N-th iteration of the logarithmic function. Let $\rho_{s}=\left(F_{N}(s)\right)^{-1}$ for large enough s. Here, $\rho_{k-1}-\rho_{k} \sim$ $\left[k \cdot \log k \cdot F_{2}(k) \cdots F_{N-1}(k) \cdot F_{N}^{2}(k)\right]^{-1}$. Since $\delta_{s}=C 2^{-s} \exp \left[-\sum_{k=1}^{s} 2^{k}\left(\rho_{k-1}-\rho_{k}\right)\right]$, we have, as above, $s \sim \frac{\log \log 1 / \delta_{s}}{\log 2}$. Thus, $\omega\left(g_{\mathbb{C} \backslash K(\gamma)}, \delta\right) \sim\left[F_{N+2}(1 / \delta)\right]^{-1}$.

We see that a more slow decrease of $\left(\rho_{s}\right)$ implies a less smooth $g_{\mathbb{C} \backslash K(\gamma)}$ and conversely. If, in examples above, we take $\gamma_{s}=1 / 32$ for $s<s_{0}$ with rather large s_{0}, then the set $K(\gamma)$ will have logarithmic capacity as closed to $1 / 32$, as we wish.

Problem. Given modulus of continuity ω, to find $\left(\gamma_{s}\right)_{s=1}^{\infty}$ such that $\omega\left(g_{\mathbb{C} \backslash K(\gamma)}, \cdot\right)$ coincides with ω at least on some null sequence.

8. Markov's factors

Let \mathcal{P}_{n} denote the set of all holomorphic polynomials of degree at most n. For any infinite compact set $K \subset \mathbb{C}$ we consider the sequence of Markov's factors $M_{n}(K)=$ $\inf \left\{M:\left|P^{\prime}\right|_{K} \leq M|P|_{K}\right.$ for all $\left.P \in \mathcal{P}_{n}\right\}, n \in \mathbb{N}$. We see that $M_{n}(K)$ is the norm of the operator of differentiation in the space $\left(\mathcal{P}_{n},|\cdot|_{K}\right)$. In the case of non-polar K, the knowledge about smoothness of the Green function near the boundary of K may help to estimate $M_{n}(K)$ from above. The application of the Cauchy formula for P^{\prime} and the Bernstein-Walsh inequality yields the estimate

$$
\begin{equation*}
M_{n}(K) \leq \inf _{\delta} \delta^{-1} \exp \left[n \cdot \omega\left(g_{\mathbb{C} \backslash K}, \delta\right)\right] \tag{11}
\end{equation*}
$$

This approach gives an effective bound of $M_{n}(K)$ for the cases of temperate growth of $\omega\left(g_{\mathbb{C} \backslash K}, \cdot\right)$. For instance, the Hölder continuity of $g_{\mathbb{C} \backslash K}$ implies Markov's property of the set K, which means that there are constants C, m such that $M_{n}(K) \leq C n^{m}$ for all n. In this case, the infimum $m(K)$ of all positive exponents m in the inequality above is called the best Markov's exponent of K.

Lemma 8. Suppose γ satisfies (5) and $\operatorname{Cap}(K(\gamma))>0$. Given fixed $s \in \mathbb{N}$, let $f(\delta)=$ $\delta^{-1} \exp \left[2^{s}\left(\rho_{k}+2^{-k} \log \frac{16 \delta}{\delta_{k}}\right)\right]$ for $\delta_{k} \leq \delta<\delta_{k-1}$ with $k \geq 2$. Then $\inf _{0<\delta<\delta_{1}} f(\delta)=$ $f\left(\delta_{s}-0\right)=4 \sqrt{2} \delta_{s}^{-1} \exp \left(2^{s} \rho_{s}\right)$.

Proof: Let us fix the interval $I_{k}=\left[\delta_{k}, \delta_{k-1}\right)$. In view of the representation $f(\delta)=$ $C_{s, k} \delta^{2^{s-k}-1}$, the function f increases for $k<s$, decreases for $k>s$, and is constant for $k=s$ on I_{k}. An easy computation shows that $f\left(\delta_{k+1}\right)<f\left(\delta_{k}\right)$ for $k \leq s-1$ and $f\left(\delta_{k-1}-0\right)<f\left(\delta_{k}-0\right)$ for $k \geq s+1$. Thus, it remains to compare $f\left(\delta_{s}-0\right)$ and $f\left(\delta_{s}\right)$. Here, $f\left(\delta_{s}\right)=16 \delta_{s}^{-1} \exp \left(2^{s} \rho_{s}\right)$ exceeds $f\left(\delta_{s}-0\right)=\delta_{s}^{-1}\left(16 / \gamma_{s+1}\right)^{1 / 2} \exp \left(2^{s} \rho_{s+1}\right)=$ $4 \sqrt{2} \delta_{s}^{-1} \exp \left(2^{s} \rho_{s}\right)$.

Example 6. Let $\gamma_{s}=\gamma_{1} \leq \frac{1}{32}$ for $s \in \mathbb{N}$. Then, by Lemma 8 and Example 2, $M_{2^{s}}(K(\gamma)) \leq \sqrt{8} \cdot \delta_{s+1}^{-1}=\sqrt{8} \gamma_{1}^{-1} 2^{s / \alpha}$, where α is the same as in Example 2.

On the other hand, let $Q=P_{2^{s}}+r_{s} / 2$. Then $|Q|_{K(\gamma)}=r_{s} / 2$ and $\left|Q^{\prime}(0)\right|=r_{s} / \delta_{s}$, so $M_{2^{s}}(K(\gamma)) \geq 2 \delta_{s}^{-1}=2 \cdot 2^{s / \alpha}$. Now, for each n we choose s with $2^{s} \leq n<2^{s+1}$. Since the sequence of Markov's factors increases,

$$
c n^{1 / \alpha} \leq M_{2^{s}}(K(\gamma)) \leq M_{n}(K(\gamma)) \leq M_{2^{s+1}}(K(\gamma)) \leq C n^{1 / \alpha}
$$

with $c=2^{1-1 / \alpha}, C=\gamma_{1}^{-1} 2^{3 / 2+1 / \alpha}$. Given $m \in[5, \infty)$, the value $\gamma_{s}=2^{-m}$ for all s provides the set $K(\gamma)$ with $m(K(\gamma))=m=1 / \alpha$.

However, the estimate (11) may be rather rough for compact sets with less smooth moduli of continuity of the corresponding Green's functions. For instance, in the case of $K(\gamma)$ with $\sum_{k=1}^{\infty} \gamma_{k}<\infty\left(\right.$ then $\left.2^{s} \rho_{s} \rightarrow \infty\right)$ and $n=2^{s}$, the exact value of the right side in (11) is $4 \sqrt{2} \delta_{s}^{-1} \exp \left(2^{s} \rho_{s}\right)$, whereas $M_{2^{s}}(K(\gamma)) \sim 2 \delta_{s}^{-1}$, which will be shown below by means of the Lagrange interpolation. It should be noted that the set $K(\gamma)$ may be polar here.

Let us interpolate $P \in \mathcal{P}_{2^{s}}$ at zeros $\left(x_{k}\right)_{k=1}^{2^{s}}$ of $P_{2^{s}}$ and at one extra point $l_{1, s}$. Then the fundamental Lagrange interpolating polynomials are $L_{*}(x)=-P_{2^{s}}(x) / r_{s}$ and $L_{k}(x)=\frac{\left(x-l_{1, s} P_{2 s}(x)\right.}{\left(x-x_{k}\right)\left(x_{k}-l_{1, s}\right) P_{2_{s}}^{\prime}\left(x_{k}\right)}$ for $k=1,2, \cdots, 2^{s}$. Let Δ_{s} denote $\sup _{x \in K(\gamma)}\left[\left|L_{*}^{\prime}(x)\right|+\right.$ $\left.\sum_{k=1}^{2^{s}}\left|L_{k}^{\prime}(x)\right|\right]$. For convenience we enumerate $\left(x_{k}\right)_{k=1}^{2^{s}}$ in increasing way, so $x_{k} \in I_{k, s}$ for $1 \leq k \leq 2^{s}$.

Lemma 9. Suppose γ satisfies (5) and $\sum_{k=1}^{\infty} \gamma_{k}<\infty$. Then $\Delta_{s} \sim 2 \delta_{s}^{-1}$.
Proof: We use the following representation:

$$
\begin{equation*}
L_{k}^{\prime}(x)=\frac{P_{2^{s}}^{\prime}(x)}{\left(x_{k}-l_{1, s}\right) P_{2^{s}}^{\prime}\left(x_{k}\right)}+\frac{P_{2^{s}}(x)}{\left(x-x_{k}\right) P_{2^{s}}^{\prime}\left(x_{k}\right)} \sum_{j=1, j \neq k}^{2^{s}} \frac{1}{x-x_{j}}=: A_{k}+B_{k} \tag{12}
\end{equation*}
$$

In particular, $L_{1}^{\prime}(0)=-l_{1, s}^{-1}-\sum_{j=2}^{2^{s}} x_{k}^{-1}$. By $(2),\left|L_{*}^{\prime}(0)\right|=\delta_{s}^{-1}$, so $\Delta_{s}>\left|L_{*}^{\prime}(0)\right|+$ $\left|L_{1}^{\prime}(0)\right|>\delta_{s}^{-1}+l_{1, s}^{-1}>\delta_{s}^{-1}\left(1+e^{-16 \gamma_{s}}\right)$, by (7). Thus, $\Delta_{s} \gtrsim 2 \delta_{s}^{-1}$.

We proceed to estimate Δ_{s} from above. Lemma 4 gives the uniform bound $\left|L_{*}^{\prime}(x)\right| \leq$ δ_{s}^{-1}.

Let us examine separately the sum $\sum_{k=1}^{2^{s}}\left|A_{k}\right|$, where A_{k} are defined by (12). Let $C_{0}=\exp \left(16 \sum_{k=1}^{\infty} \gamma_{k}\right)$. Then, by Lemma 4, $\left|P_{2^{s}}^{\prime}(x)\right| \leq\left|P_{2^{s}}^{\prime}(0)\right|=r_{s} / \delta_{s}<C_{0}\left|P_{2^{s}}^{\prime}\left(x_{k}\right)\right|$ for $x \in K(\gamma)$. Therefore, $\left|A_{1}\right| \leq l_{1, s}^{-1}<\delta_{s}^{-1}$ and $\sum_{k=2}^{2^{s}}\left|A_{k}\right|<C_{0} \sum_{k=2}^{2^{s}}\left(x_{k}-l_{1, s}\right)^{-1}$. Here, $\sum_{k=2}^{2^{s}}\left(x_{k}-l_{1, s}\right)^{-1}<2 l_{1, s-1}^{-1}$, as is easy to check. Thus, $\sum_{k=1}^{2^{s}}\left|A_{k}\right|<\delta_{s}^{-1}+$ $2 C_{0} \delta_{s-1}^{-1}$.

In order to estimate the sum of the addends B_{k}, let us fix $x \in K(\gamma)$ and $1 \leq m \leq 2^{s}$ such that $x \in I_{m, s}$. Suppose first that $k \neq m$. Then

$$
\begin{equation*}
\sum_{j=1, j \neq k}^{2^{s}}\left|\frac{P_{2^{s}}(x)}{x-x_{j}}\right|<2\left|\frac{P_{2^{s}}(x)}{x-x_{m}}\right| \leq 2\left|P_{2^{s}}^{\prime}(\xi)\right| \tag{13}
\end{equation*}
$$

with a certain $\xi \in I_{m, s}$. Indeed, if $x=x_{m}$ then this sum is exactly $\left|P_{2^{s}}^{\prime}\left(x_{m}\right)\right|$, so $\xi=x_{m}$. Otherwise we take the main term out of the brackets:

$$
\left|\frac{P_{2^{s}}(x)}{x-x_{m}}\right|\left[1+\sum_{j=1, j \neq k, j \neq m}^{2^{s}}\left|\frac{x-x_{m}}{x-x_{j}}\right|\right]
$$

Here the sum in the square brackets can be handled in the same way as in the proof of Lemma 3. Let $I_{m, s} \subset I_{q, s-1} \subset I_{r, s-2} \subset \cdots$. Then $[\cdots] \leq 1+l_{m, s}\left(h_{q, s-1}^{-1}+2 h_{r, s-2}^{-1}+\right.$ $\cdots) \leq 1+\frac{8}{7} l_{m, s}\left(l_{q, s-1}^{-1}+2 l_{r, s-2}^{-1}+\cdots\right)<1+\frac{8}{7}\left(4 \gamma_{s}+2 \cdot 4 \gamma_{s} 4 \gamma_{s-1}+\cdots\right)<2$.

On the other hand, by Taylor's formula, $P_{2^{s}}(x)=P_{2^{s}}^{\prime}(\xi)\left(x-x_{m}\right)$ with $\xi \in I_{m, s}$, which establishes (13).

Therefore,

$$
\sum_{k=1, k \neq m}^{2^{s}}\left|B_{k}\right|<\sum_{k=1, k \neq m}^{2^{s}} \frac{2 C_{0}}{\left|x-x_{k}\right|} .
$$

As above, $\sum_{k=1, k \neq m}^{2^{s}}\left|B_{k}\right|<2 C_{0}\left(h_{q, s-1}^{-1}+2 h_{r, s-2}^{-1}+\cdots\right)<4 C_{0} h_{q, s-1}^{-1}<5 C_{0} l_{q, s-1}^{-1}$.
It remains to consider $B_{m}=\frac{P_{2^{s}}(x)}{\left(x-x_{m}\right) P_{2 s}^{\prime s}\left(x_{m}\right)} \sum_{j=1, j \neq m}^{2^{s}} \frac{1}{x-x_{j}}$. Let us take the interval $I_{n, s}$ adjacent to $I_{m, s}$, so $I_{n, s} \cup I_{m, s} \subset I_{q, s-1}$. Then, as above, $\sum_{j=1, j \neq m}^{2^{s}}\left|x-x_{j}\right|^{-1}<$ $2\left|x-x_{n}\right|^{-1}$ and $\left|B_{m}\right|<2 C_{0}\left|x-x_{n}\right|^{-1}<3 C_{0} l_{q, s-1}^{-1}$, since $\left|x-x_{n}\right|>h_{q, s-1}$.

This gives $\sum_{k=1}^{2^{s}}\left|B_{k}\right|<8 C_{0} l_{q, s-1}^{-1}<8 C_{0} \delta_{s-1}^{-1}$, by Lemma 4. Finally, $\Delta_{s}<2 \delta_{s}^{-1}+$ $10 C_{0} \delta_{s-1}^{-1}=\delta_{s}^{-1}\left(2+10 C_{0} \gamma_{s}\right) \sim 2 \delta_{s}^{-1}$.

Theorem 5. With the assumptions of Lemma 8, $M_{2^{s}}(K(\gamma)) \sim 2 \delta_{s}^{-1}$.
Proof: On the one hand, $\left|P_{2^{s}}+r_{s} / 2\right|_{K(\gamma)}=r_{s} / 2$ and $\left|P_{2^{s}}^{\prime}(0)\right|=r_{s} / \delta_{s}$, so $M_{2^{s}}(K(\gamma)) \geq$ $2 \delta_{s}^{-1}$.

On the other hand, for each polynomial $P \in \mathcal{P}_{2^{s}}$ and $x \in K(\gamma)$ we have $\left|P^{\prime}(x)\right| \leq$ $|P|_{K(\gamma)} \Delta_{s}$, and the theorem follows.

We are now in a position to construct a compact set with preassigned growth of subsequence of Markov's factors. Suppose we are given a sequence of positive terms $\left(M_{2^{s}}\right)_{s=0}^{\infty}$ with $\sum_{s=0}^{\infty} M_{2^{s}} / M_{2^{s+1}}<\infty$. The case of polynomial growth of $\left(M_{n}\right)$ was considered before, so let us assume that $C n^{m} M_{n}^{-1} \rightarrow 0$ as $n \rightarrow \infty$ for fixed C and m. Fix s_{0} such that $M_{2^{s}} / M_{2^{s+1}} \leq 1 / 32$ for $s \geq s_{0}$ and $M_{2^{s_{0}}} \geq 2 \cdot 2^{5 s_{0}}$.

Let us take $\gamma_{s}=M_{2^{s-1}} / M_{2^{s}}$ for $s>s_{0}$ and $\gamma_{s}=\left(2 / M_{2^{s_{0}}}\right)^{1 / s_{0}}$ for $s \leq s_{0}$. Then $\gamma_{s} \leq 1 / 32$ for all s and we can use Theorem 5. Here, $\delta_{s}=2 / M_{2^{s}}$, so $M_{2^{s}}(K(\gamma)) \sim M_{2^{s}}$.

It should be noted that the growth of $\left(M_{n}(K)\right)$ is restricted for a non-polar compact set K ([5], Pr.3.1). It is also interesting to compare Theorem 5 with Theorem 2 in [16].

9. The best Markov's exponent

If a compact set K has Markov's property, then the Markov inequality is not necessarily valid on K with the best Markov's exponent $m(K)$. An example of such compact set in $\mathbb{C}^{N}, N \geq 2$ was presented in [4], where the authors posed the problem (5.1): is the same true in \mathbb{C} ? The compact set $K(\gamma)$ with a suitable choice of γ gives the answer in the affirmative.

Example 7. Fix $m \geq 5$. Let $\varepsilon_{k}=\sqrt{k}-\sqrt{k-1}$ and $\gamma_{k}=2^{-\left(m+\varepsilon_{k}\right)}$ for $k \in \mathbb{N}$. Then, $\delta_{s}=2^{-(m s+\sqrt{s})}$ and $\rho_{s}=\sum_{k=s+1}^{\infty} 2^{-k} \log 2^{m-1+\varepsilon_{k}}$. Since $\varepsilon_{k} \leq 1$, we have $\exp \left(2^{s} \rho_{s}\right)<$ 2^{m}. By Lemma 8 and (11), $M_{2^{s}}(K(\gamma))<C_{0} \delta_{s}^{-1}$ with $C_{0}=4 \sqrt{2} \cdot 2^{m}$.

On the other hand, as in Example 6, $M_{2^{s}}(K(\gamma)) \geq 2 \delta_{s}^{-1}$.
Let us show that for each $k \geq 2$ the value $m_{k}:=m+\frac{\sqrt{k}}{k-1}$ is the Markov exponent for $K(\gamma)$. We want to find a constant C_{k} such that $M_{n}(K(\gamma)) \leq C_{k} n^{m_{k}}$ holds for all $n \in \mathbb{N}$. Let $2^{s-1}<n \leq 2^{s}$. Then $M_{n}(K(\gamma)) \leq M_{2^{s}}(K(\gamma))<C_{0} 2^{m} n^{m_{s}}$. If $s>k$ then $m_{s}<m_{k}$. If $s \leq k$ then $M_{n} \leq M_{2^{k}}$. Therefore, $C_{k}=\max \left\{C_{0} 2^{m}, M_{2^{k}}\right\}$ satisfies the desired condition.

However, the Markov inequality on $K(\gamma)$ does not hold with the exponent $m(K(\gamma))=$ $\inf m_{k}=m$. Indeed, $M_{2^{s}}(K(\gamma)) \geq 2 \delta_{s}^{-1}=2 \cdot 2^{m \cdot s} \cdot 2^{\sqrt{s}}$. Therefore, given constant C, the inequality $M_{2^{s}}(K(\gamma)) \leq C 2^{m \cdot s}$ is impossible for large s.

References

[1] M. Altun and A. Goncharov, "On smoothness of the Green function for the complement of a rarefied Cantor-type set", Constr.Approx., vol.33, pp.265-271, 2011.
[2] V. V. Andrievskii, "On the Green function for a complement of a finite number of real intervals", Constr.Approx., vol.20, pp.565-583, 2004.
[3] V. V. Andrievskii, "Constructive function theory on sets of the complex plane through potential theory and geometric function theory", Surv.Approx.Theory, vol.2, pp.1-52, 2006.
[4] M. Baran, L. Białas-Cieź, and B. Milowka, "On the best exponent in Markov's inequality", Manuscript.
[5] L. Bialas Bialas-Ciez, "Smoothness of Green's functions and Markov-type inequalities", submitted to Banach Center Publications.
[6] A. F. Beardon and Ch. Pommerenke, "The Poincare metric of plane domains", J. London Math. Soc., vol.2, iss.3, pp.475-483, 1978.
[7] L. Carleson and V. Totik, "Hölder continuity of Green's functions", Acta Sci.Math. (Szeged), vol.70, pp.557-608, 2004.
[8] S. Celik and A. Goncharov, "Smoothness of the Green Function for a Special Domain", submitted.
[9] R. A. DeVore and G. G. Lorentz, Constructive Approximation, Berlin: SpringerVerlag, 1993.
[10] J. B. Garnett and D. E. Marshall, Harmonic measure, Cambridge: Cambridge University Press, 2005.
[11] W. Pleśniak, "A Cantor regular set which does not have Markov's property", Ann.Polon.Math., vol.51, pp.269-274, 1990.
[12] T. Ransford, Potential theory in the complex plane, Cambridge: Cambridge University Press, 1995.
[13] T. Ransford and J. Rostand, "Hölder exponents of Green's functions of Cantor sets", Comput.Methods Funct.Theory, vol.1, pp.151-158, 2008.
[14] W. Rudin, Principles of mathematical analysis. Third edition, McGraw-Hill Book Co., New York-Auckland-Dsseldorf, 1976.
[15] E. B. Saff and V. Totik, Logarithmic potentials with external fields, SpringerVerlag, 1997.
[16] V. Totik, "Markoff constants for Cantor sets, Acta Sci. Math. (Szeged), vol.60, no. 3-4, pp.715734, 1995.
[17] V. Totik, Metric Properties of Harmonic Measures, Mem.Amer. Math.Soc., vol.184, 2006.

Alexander Goncharov
Department of Mathematics
Bilkent University
Ankara, Turkey
goncha@fen.bilkent.edu.tr

