
Theoretical Computer Science 244 (2000) 95–116
www.elsevier.com/locate/tcs

Convexity and logical analysis of data

Oya Ekin a, Peter L. Hammer b, Alexander Kogan b;c;∗

a Department of Industrial Engineering, Bilkent University, Ankara, Turkey
b RUTCOR, Rutgers University, P.O. Box 5062, New Brunswick, NJ 08903-5062, USA
c Accounting and Information Systems, Faculty of Management, Rutgers University,

180 University Ave., Newark, NJ 07102, USA

Received January 1998; revised May 1998
Communicated by E. Shamir

Abstract

A Boolean function is called k-convex if for any pair x; y of its true points at Hamming
distance at most k, every point “between” x and y is also true. Given a set of true points and a
set of false points, the central question of Logical Analysis of Data is the study of those Boolean
functions whose values agree with those of the given points. In this paper we examine data sets
which admit k-convex Boolean extensions. We provide polynomial algorithms for �nding a k-
convex extension, if any, and for �nding the maximum k for which a k-convex extension exists.
We study the problem of uniqueness, and provide a polynomial algorithm for checking whether
all k-convex extensions agree in a point outside the given data set. We estimate the number
of k-convex Boolean functions, and show that for small k this number is doubly exponential.
On the other hand, we also show that for large k the class of k-convex Boolean functions is
PAC-learnable. c© 2000 Elsevier Science B.V. All rights reserved.

Keywords: Partially-de�ned Boolean functions; Orthogonal disjunctive normal forms;
Computational learning theory; Classi�cation; Polynomial algorithms

1. Introduction

Partially de�ned Boolean functions provide formal representations of data sets arising
in numerous applications. Given a set of true points and a set of false points, the central
question of logical analysis of data (LAD) is the study of those Boolean functions
(called “extensions” of data sets) whose values agree with those of the given points.
The basic concepts of LAD are introduced in [9], and an implementation of LAD is
described in [6].
A typical data set will usually have exponentially many extensions. In the absence

of any additional information about the properties of the data set, the choice of an

∗ Corresponding author.
E-mail address: kogan@rutcor.rutgers.edu (A. Kogan).

0304-3975/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(98)00337 -5

96 O. Ekin et al. / Theoretical Computer Science 244 (2000) 95–116

extension would be totally arbitrary, and therefore would risk to omit the most signi�-
cant features of the data set. However, in many practical cases signi�cant information
about the data set is available. This information can be used to restrict the set of pos-
sible extensions to those satisfying certain required properties. In a typical example,
the extension may be required to be a monotone Boolean function, a Boolean function
that can be represented as a DNF of low degree (i.e. one consisting only of “short”
terms), etc.
It is often known that data points of the same type exhibit certain compactness prop-

erties. The property of compactness can be formalized in various ways. For example,
if a Boolean function takes the value 1 in two points x and y that are close to each
other (e.g. being at Hamming distance at most k), then this function may be required
to take the value 1 in every point situated “between” x and y. This property de�nes
the class of so-called k-convex Boolean functions. It turns out that k-convex functions
(k¿2) can be characterized by the property that their prime implicants are pairwise
strongly orthogonal, i.e. they “con
ict” in at least k+1 literals. Orthogonal DNFs play
an important role in many areas, including operations research (see [12]), reliability
theory (see [8, 15]), and computational learning theory (see [3]).
This paper is devoted to the study of data sets which admit k-convex extensions.

We provide polynomial algorithms for �nding a k-convex extension of a given data
set, if any, and for �nding the maximum k for which a k-convex extension exists. We
also study the problem of uniqueness, and provide a polynomial algorithm for checking
whether all k-convex extensions agree in a point which is outside the given data set.
In order to overcome the fact that there are only a very limited number of Boolean

functions whose true points and whose false points are both k-convex, we introduce
here the concept of k-convex partially-de�ned Boolean functions, and study the problem
of constructing k-convex partially-de�ned extensions of the given data set.
To study the probabilistic properties of k-convex extensions, we estimate the number

of k-convex Boolean functions, and show that for small k this number is doubly
exponential. On the other hand, we also show that for large k the class of k-convex
Boolean functions is PAC-learnable.

2. Basic concepts

We assume that the reader is familiar with the basic concepts of Boolean algebra,
and we only introduce here the notions that we explicitly use in this paper.

2.1. Boolean functions

A Boolean function f of n variables x1; : : : ; xn is a mapping Bn→B, where B= {0; 1},
and where Bn is commonly referred to as the Boolean hypercube. The variables
x1; : : : ; xn and their complements �x1; : : : �xn are called positive and negative literals, re-
spectively. We shall sometimes denote x by x1, and �x by x0. For two Boolean func-

O. Ekin et al. / Theoretical Computer Science 244 (2000) 95–116 97

tions f and g we write f6g i� for every 0–1 vector x, f(x1; : : : ; xn)= 1 implies
g(x1; : : : ; xn)= 1; in this case g is called a majorant of f and f is called a minorant
of g. Throughout this paper the number of variables will be denoted by n.
The dual of a Boolean function f(x) is de�ned as

fd(x)= �f(�x);

where �x=(�x1; �x2; : : : ; �xn) is the complement of x, and �f is the complement of f i.e.
�f(y)= 1 if and only if f(y)= 0.
Given a Boolean function, we shall call the points for which f(x)= 1(f(x=0) the

true points (false points) of the function. The true (false) set of a function f, denoted
by Tf (Ff), is the collection of the true (false) points of f, i.e.

Tf = {x∈{0; 1}n: f(x)= 1} and Ff = {x∈{0; 1}n: f(x)= 0}:
A term, or an elementary conjunction, is a conjunction of literals

∏
i∈P

xi
∏
i∈N
�xi;

where P and N are disjoint subsets of {1; : : : ; n}; by convention, if P=N = ∅, the term
is considered to be the constant 1. The degree of a term is |P| + |N |. We shall say
that a term T absorbs another term T ′, i� T ∨ T ′=T , i.e. i� T¿T ′ (e.g. the term
x �y absorbs the term x �yz). A term T covers a 0–1 point x∗ i� T (x∗)= 1. Given a
point s, the term

∨n
i=1x

si
i is called minterm(s). A term T is called an implicant of

a function f i� T6f. An implicant T of a function is called prime i� there is no
distinct implicant T ′ absorbing T .
A disjunctive normal form (DNF) is a disjunction of terms. It is well known that

every Boolean function can be represented by a DNF, and that this representation is
not unique. A DNF representing a function f is called prime i� each term of the DNF
is a prime implicant of the function. On the other hand, a DNF representing a function
is called irredundant i� eliminating any one of its terms results in a DNF which does
not represent the same function. Given a DNF �, we denote by |�| and length(�) the
number of terms and the number of literals in � respectively.
A Boolean function is called positive (negative) or monotonically nondecreasing

(monotonically nonincreasing) if it has a DNF representation in which each one of the
terms consists only of positive (negative) literals.
Two terms are said to be orthogonal or to con
ict in xi if xi is a literal in one

of them and �xi is a literal in the other. If two terms P and Q con
ict in exactly one
variable, i.e., they have the form P= xiP′ and Q= �xiQ′ and the elementary conjunctions
P′ and Q′ have no con
ict, then the consensus of P and Q is de�ned to be the term
P′Q′. The consensus method applied to an arbitrary DNF � performs the following
operations as many times as possible:

Consensus: If there exist two terms of � having a consensus T which is not absorbed
by any term of � then replace the DNF � by the DNF � ∨ T .

98 O. Ekin et al. / Theoretical Computer Science 244 (2000) 95–116

Absorption: If a term T of � absorbs a term T ′ of �, delete T ′.

It is easy to notice that all the DNFs produced at every step of the consensus method
represent the same function as the original DNF. The following result (see [4, 14]) plays
a central role in the theory and applications of Boolean functions:

Proposition 2.1 (Blake [4], Quine [14]). The consensus method applied to an arbi-
trary DNF of a Boolean function f results in the DNF which is the disjunction of
all the prime implicants of f.

Throughout the text, the following notation will be used to represent terms:

De�nition 2.2. If S = {i1; : : : ; i|S|}⊆{1; : : : ; n}, and �S =(�i1 ; : : : ; �i|S|)∈{0; 1}|S| is an
“assignment” of 0–1 values to the variables xi (i∈ S), then the term X �S associated to
�S is the conjunction �i∈Sx

�i
i ; if S = ∅, we de�ne X ∅=1.

We shall frequently use in this paper the concept of projection of a DNF:

De�nition 2.3. Let S = {i1; : : : ; i|S|}⊆{1; : : : ; n} and let �=(�i1 ; : : : ; �i|S|)∈{0; 1}|S|.
The projection of a DNF �(x1; : : : ; xn) on (S; �) is the DNF �(S;�) obtained from
� by the substitutions xi= �i for all i∈ S.

A classical hard problem concerning Boolean formulae is the tautology problem
(TAUT), which is the Boolean dual of the well known satis�ability problem. The
tautology problem can be formulated as follows: given as input a DNF �, is there an
assignment x∗ ∈ {0; 1}n such that �(x∗)= 0 (i.e. x∗ is a solution of �)?

2.2. Orthogonality

A DNF � is called orthogonal if every pair of its terms is orthogonal. It is well
known that every Boolean function can be represented by an orthogonal DNF (e.g. by
its minterm expression). It is also known that there exist Boolean functions that have
DNF representations of linear length (in the number of variables), but all of their or-
thogonal DNFs have exponential length (see [2]). Two DNFs are said to be orthogonal
if each term of one is orthogonal to all the terms of the other.

Lemma 2.4. Given two DNFs � and 	; we can decide in O(|	|length(�) +
|�|length()) time whether they are orthogonal to each other.

Proof. A comparison of two terms of degree d′ and d′′ can be done in O(d′ + d′′)
time. Therefore, one can check in O(length(�) + |�|d) time whether a term of 	
having degree d	 is orthogonal to all terms of �. Summing this up over all terms of
	 proves the claimed computational complexity.

O. Ekin et al. / Theoretical Computer Science 244 (2000) 95–116 99

If the DNFs � and 	 depend on n Boolean variables, then length(�)6n|�| and
length()6n|	|. Therefore, one can check in O(n|�||	|) time whether � and 	 are
orthogonal to each other.
While the result below is perhaps known, we could not �nd any reference to it.

Proposition 2.5. Given an orthogonal DNF � in n Boolean variables; the TAUT
problem for � can be solved in O(length(�)) time; and a solution x can be found in
O(length(�)n) time. Moreover; one can list all the solutions of � in time polynomial
in their total number NTP(�; n) and in length(�).

Proof. We �rst �nd the number of true points of �. Since no true point is covered
by more than one term in �, this number is easily computable by simply adding the
number of true points covered by each of the terms. Clearly, the answer to the TAUT
problem is YES if and only if this number is strictly less than 2n. The counter needs
n+1 binary digits, and the number of additions is |�|. Since a term of degree d covers
exactly 2n−d points, in each addition the counter will be added a binary number whose
only 1 appears in position n−d+1. The addition of such a number to the counter can
be done in O(d) time, since there are only d positions in front of position n− d+ 1.
Therefore, the total number of operations is O(length(�)).
In order to �nd a solution of the TAUT problem, if one exists, we �nd the projections

�0 and �1 of � on x1 = 0 and on x1 = 1, respectively. Obviously, both �0 and �1
are orthogonal DNFs and at least one of them has a solution (i.e. it does not cover
the whole Boolean hypercube Bn−1). The recursive application of this procedure to
one of the solvable DNFs produced at each step will yield in the end an assignment
which solves �. Since each step can be done in O(length(�)) time, and the number
of steps does not exceed the number of variables, the total number of operations is
O(length(�)n).
The algorithm described above �nds only one assignment which solves �. Obviously,

if our objective is to obtain all the solutions of the TAUT problem, we shall com-
plete this branching process following not only one but each of the solvable branches.
We note that the end result of this process will be a representation of the given
Boolean function by a so-called binary decision tree. This algorithm constructs a bi-
nary tree in which each path from the root to a 0-leaf represents a partial assignment
which solves �.

Note that while one can check in linear time whether an orthogonal DNF is a
tautology, by Lemma 2.4 it takes O(|�|length(�)) time to check whether the DNF �
is indeed orthogonal.

2.3. Partially-de�ned Boolean functions

De�nition 2.6. A partially de�ned Boolean function (pdBf) is a pair of disjoint sets
(T; F) of Boolean vectors where T denotes a set of true (or positive) points and F
denotes a set of false (or negative) points.

100 O. Ekin et al. / Theoretical Computer Science 244 (2000) 95–116

Any pdBf (T; F) can be represented by a pair of disjoint DNFs (�T ; �F), e.g. by
the pair (�T ; �F), where

�T =
∨
s∈T

n∧
i=1

x si
i and �F =

∨
s∈F

n∧
i=1

x si
i ;

i.e. �T and �F are the minterm expansions of the sets T and F respectively.

Example 2.7. Consider the pdBf (T; F); where
T = {(11000); (11001); (11010); (11011); (00110)},
F = {(01000); (01001); (01100); (01101)}.
We can represent this pdBf by the disjoint pair (�T ; �F), where

�T = x1x2 �x3 ∨ �x1 �x2x3x4 �x5 and �F = �x1x2 �x4:

This example shows that the use of DNFs may allow for a more compact repre-
sentation of pdBfs. However, it will be seen below that the representation of a pdBf
by a pair of disjoint sets of points may sometimes allow for polynomial solutions to
certain problems which are computationally intractable for the representation by a pair
of disjoint DNFs.

De�nition 2.8. A positive pattern of a pdBf (T; F) is a term which does not cover
any points in F and covers at least one point in T . Similarly, a negative pattern of a
pdBf (T; F) is a term which does not cover any points in T and covers at least one
point in F .

Example 2.9. For the pdBf given in Example 2.7, x1 is a positive pattern and �x1x2 is
a negative pattern.

Remark 2.10. Given a term S and a pdBf represented by (T; F), it is easy to check
whether the term is a positive pattern of the pdBf. We simply verify that the term
covers at least one true point and does not cover any of the false points. Similarly, if
the pdBf is represented by (�T ; �F), it is easy to decide whether a term S is a positive
pattern. In this case, S must con
ict with every term from �F and there must exist at
least one term of �T which does not con
ict with S.

De�nition 2.11. An extension of a pdBf (T; F) is a Boolean function f such that

f(x)=



1 if x∈T;
0 if x∈F;
arbitrary otherwise.

De�nition 2.12. A positive theory (or simply, a theory) is an extension which can
be represented as a disjunction of positive patterns. Similarly, a negative theory is a
Boolean function which can be represented as a disjunction of negative patterns.

O. Ekin et al. / Theoretical Computer Science 244 (2000) 95–116 101

It is easy to see that a positive theory has a prime DNF representation where each
prime implicant is a positive pattern. Note also that a positive theory is not necessarily
a positive (i.e. monotonically nondecreasing) function.

Example 2.13. The Boolean functions

f= x1x2 ∨ x3x4 and g= x1x2 �x3 ∨ x3x4

are both positive theories of the pdBf given in Example 2.7. Note that f happens to
belong to the class of positive Boolean functions, while g does not.

Remark 2.14. Given a DNF �∗, it is easy to check whether it represents a theory for
a pdBf (T; F). We simply check that each term of �∗ is a positive pattern and whether
every point in T is covered by some term of �∗. However, the same problem becomes
hard if the pdBf is represented by (�T ; �F), since checking whether every true point
of �T is covered by �∗ is equivalent with solving SAT. In the special case where �∗
is orthogonal, we can answer this question in polynomial time. We �rst check (as in
Remark 2.10) if each term of �∗ is a positive pattern. To decide if every true point
of �T is covered by �∗ we have to check whether the inequality

�T6�∗

holds. Equivalently, we have to show that every term Ti of �T satis�es the relation

Ti6�∗:

This can be accomplished by substituting in �∗ the partial assignment corresponding
to the term Ti and checking the tautology of the resulting orthogonal DNF (as in
Proposition 2.5).

Because of the special role played by various classes of Boolean functions examined
in the literature (e.g. monotone, Horn, quadratic, threshold, convex etc.), we shall be
frequently interested in extending a pdBf to a fully de�ned Boolean function belonging
to one of these classes.
The central topic of this paper will be the study of the following important problems

arising in LAD. Given a pdBf (T; F) and a class of Boolean functions C,
• check whether a theory of (T; F) in C exists, and if yes, �nd one;
• checkwhether a theory of (T; F) in C is unique, and if not, check whether for a
given point not belonging to T ∪F , all the theories of (T; F) in C agree.

3. Convex functions

An important property of Boolean functions playing a special role in LAD is that
of convexity. Convex Boolean functions were introduced and studied in [11]. In this

102 O. Ekin et al. / Theoretical Computer Science 244 (2000) 95–116

paper, we shall extend this concept to the case of pdBfs. For the presentation that
follows, we shall need several de�nitions.
The Hamming distance between two Boolean vectors x and y is the number of

components in which they di�er:

d(x; y)= |{i: xi 6=yi i∈ [1; : : : ; n]}|:
Two vectors x and y are called neighbors i� d(x; y)= 1. A point y is between x

and z i� d(x; y) + d(y; z)=d(x; z). A sequence of points x1; : : : ; xk is called a path
of length k − 1 from x1 to xk i� any two consecutive points in this sequence are
neighbors. A shortest path between x and y is a path of length d(x; y). A true (false)
path is a path consisting only of true (false) points of a Boolean function.
We say that two true (false) points are convexly connected i� all the shortest paths

connecting them are true (false).
For any two terms T and S, let the distance between them, denoted by d(T; S), be

the number of con
icts between these two terms.
The extremely powerful requirement of convexity puts a severe limitation on the

number of functions with this property. In order to provide more
exibility, we intro-
duced in [11] the following relaxation of the de�nition.

De�nition 3.1. For any integer k ∈{2; : : : ; n}, a Boolean function f is called k-convex
if and only if any pair of true points at distance at most k is convexly connected.

The following results are obtained in [11] and presented here for the sake of com-
pleteness.

Proposition 3.2. For any k¿2; a Boolean function f is k-convex if and only if any
two prime implicants of f con
ict in at least k + 1 literals.

Corollary 3.3. A k-convex Boolean function has a unique prime DNF representation.

Remark 3.4. A k-convex function having an implicant of degree at most k is equal
to that implicant.

With increasing values of k, the statement of Proposition 3.2 gets stronger. In par-
ticular, an n-convex function has a single prime implicant. An (n− 1)-convex function
is either an elementary conjunction, or is of the form x�11 x�22 : : : x�nn ∨ x ��11 x ��22 : : : x ��n

n .
It follows immediately from the de�nition of k-convexity that the conjunction of

any two k-convex functions is a k-convex function. This justi�es the following
de�nition.

De�nition 3.5. The k-convex envelope of a Boolean function f is the Boolean function
[f]k de�ned by
(i) [f]k is k-convex,

O. Ekin et al. / Theoretical Computer Science 244 (2000) 95–116 103

(ii) [f]k is a majorant of f,
(iii) if g is a k-convex majorant of f then [f]k is a minorant of g.

In other words, the k-convex envelope of f is the smallest k-convex majorant of f.
While the existence and the uniqueness of the k-convex envelope of any Boolean

function are obvious, it may be surprising that the DNF representation of the k-convex
envelope can be easily constructed from the DNF representation of the original function,
as can be seen below.
It is well known that given an arbitrary DNF of a positive Boolean function, we

can obtain a positive DNF of it by simply “erasing” all the complemented variables
from the given DNF. Obviously, the correctness of this polynomial algorithm is a
consequence of the prior knowledge of the positivity of the function.
It is interesting to note that a similarly e�cient method can be applied for �nding

the prime implicants of a Boolean function which is a priori known to be k-convex.
We shall use the following:

De�nition 3.6. If S and T are elementary conjunctions, then the convex hull of S and
T is the smallest elementary conjunction [S; T] which satis�es

[S; T]¿S and [S; T]¿T:

Speci�cally, if S =X �AX �BX �C and T =X �AX �BX �D , then

[S; T] =X �B :

Note that when B= ∅, the convex hull is simply the constant 1. Obviously, S ∨ T6
[S; T].
Given any DNF �, the k-convexi�cation method for �nding the k-convex hull of

� repeats the following step as many times as possible:
• If Ti and Tj are two terms of � such that d(Ti; Tj)6k, transform � by removing Ti

and Tj and adding [Ti; Tj].
The algorithm stops when every two of the remaining terms con
ict in at least k + 1
literals.
The pseudo-code in Fig. 1 provides a careful implementation of the k-convexi�cation

method.
It was shown in [11] that the k-convex hull of a DNF represents the k-convex

envelope of the function represented by that DNF. Let [�]k denote the k-convex hull
of �. More precisely, the following results were proven.

Proposition 3.7. Let a Boolean function f be represented by a DNF �. Then the
k-convex hull [�]k is the (unique) irredundant prime DNF of the k-convex envelope
[f]k .

Corollary 3.8. If f is k-convex for some k¿2 and � is an arbitrary DNF of f; then
f= [�]2.

104 O. Ekin et al. / Theoretical Computer Science 244 (2000) 95–116

Input: A DNF �=
∨m

i= 1 Ti

Output: [�]k , the k-convex hull of �.
Initialization: structure terms

string term
string mode
pointer to terms next

list of terms List1,List2
terms headlist1,current,convhull
List1= [T1; T2; : : : ; Tm]
for i=1 to m

List1[i].mode=oldterm
List2 = []

Algorithm: begin {main}
while (List1 〈 〉[]) do
headlist1=List1[1]
current=List1[2]
while (current 〈 〉∅) do

if d(headlist1.term,current.term) 6k
let convhull = [headlist1.term,current.term]
delete headlist1 and current from List1
push convhull to List1
List1[1].mode=newterm
headlist1=List1[1]
current=List1[2]

else current= current.next
if headlist1.mode=newterm

current=List2[1]
while (current 〈 〉∅) do

if d(headlist1.term,current.term) 6k
let convhull = [headlist1,current]
delete headlist1 from List1
delete current from List2
push convhull to List1
List1[1].mode=newterm
headlist1=List1[1]
current=List2[1]

else current= current.next
delete headlist1 from List1
push headlist1 to List2

end {main}

Fig. 1. Procedure k-convexi�cation method (DNF �).

O. Ekin et al. / Theoretical Computer Science 244 (2000) 95–116 105

Example 3.9. Let

�= x1x2x3x4x5x6 ∨ x1x2x3x4x7 ∨ �x1 �x2 �x3x5x8 ∨ �x1 �x2 �x3x4x6 ∨ �x1 �x2 �x3 �x4 �x5 �x6
be the input to the 2-convexi�cation method. Then, the 2-convex hull of � is

[�]2 = x1x2x3x4 ∨ �x1 �x2 �x3:

Theorem 3.10. The k-convex hull [�]k of an arbitrary DNF � can be obtained in
O(n|�|2) time by using the k-convexi�cation method.

Proof. The k-convexi�cation method described in Fig. 1 maintains two stacks of terms:
List1 and List2. All the terms in List1, with the possible exception of the �rst one, are
terms of the original DNF �. By construction, every two terms in List2 are at distance
at least k + 1 from each other. After making at most List1+List2 comparisons of
terms, the k-convexi�cation method either
(1) �nds a pair of terms at distance at most k, in which case the number of terms in

List1 or in List2 is decreased by one, or
(2) moves the �rst term of List1 to List2.
Since in the beginning the total number of terms in both stacks is |�|, the method

can make at most |�| steps of type (1). Obviously, after at most |�| steps of type
(2) List1 becomes empty, and the method stops. Since List1 + List2 6|�| and each
comparison of two terms can be done in O(n) time, the total running time of the
method does not exceed O(n|�|2).

4. Convex theories of PDBFs

We shall start now the study of convex theories of partially-de�ned Boolean func-
tions. The main problems to be analyzed here are those concerning the existence of
a k-convex extension, and the determination of the maximum k for which a k-convex
extension exists. The other central theme of this section is the recognition of pdBf’s
having a unique k-convex theory, and, when a k-convex theory is not unique, the
recognition of those points where all k-convex theories take the same value.

Theorem 4.1. A pdBf (�T ; �F) has a k-convex extension if and only if the k-convex
hull [�T]k is orthogonal to �F .

Proof. Let us consider a pdBf (�T ; �F) and a positive integer k¿2. Let us construct
the k-convex hull [�T]k , as described in the previous section. If a k-convex extension
� of (�T ; �F) exists, then

�T6[�T]k6�;

since [�T]k is the minimum k-convex majorant of �T .

106 O. Ekin et al. / Theoretical Computer Science 244 (2000) 95–116

If [�T]k and �F are orthogonal, then [�T]k represents a k-convex extension of
(�T ; �F). If [�T]k and �F are not orthogonal, then there must exist x∈�F such
that [�T]k(x)= 1. In this case, �(x)= 1, contradicting the assumption that � is an
extension.

Corollary 4.2. Given a pdBf (�T ; �F) and a positive integer k¿2; we can decide
in O(n|�T |(|�T |+ |�F |) time whether (�T ; �F) has a k-convex extension; and if so;
construct a DNF representing its minimum k-convex theory.

Proof. Let us de�ne the k-convex theory algorithm. It applies the k-convexi�cation
method to �T to construct [�T]k . The algorithm then checks whether [�T]k is orthog-
onal to �F , and if yes, outputs [�T]k as the minimum k-convex theory hk of (�T ; �F).
If [�T]k and �F are not orthogonal, then the algorithm reports that (�T ; �F) has no
k-convex extension. The claimed computational complexity follows from Theorem 3.10
and Lemma 2.4.

De�nition 4.3. The convexity index � of a pdBf (�T ; �F) is the maximum number k
for which a k-convex extension of (�T ; �F) exists.

Theorem 4.4. Given a pdBf (�T ; �F); we can �nd in O(n log n|�T |(|�T |+ |�F |)) time
the convexity index � of (�T ; �F); and construct a prime DNF representation of its
minimum �-convex theory.

Proof. Let us de�ne the convexity index algorithm. It simply does a binary search for
k on [2; : : : ; n], checking each time whether the pdBf (�T ; �F) has a k-convex extension
by calling the k-convex theory algorithm described in the proof of Corollary 4.2. The
claimed computational complexity follows from the fact that the binary search makes
at most O(log n) steps.

Theorem 4.5. Given a pdBf (�T ; �F); we can check in O(n|�T |(|�T | + |�F |)length
(�T)) time whether it has a unique k-convex theory.

Proof. Let the DNF
∨s

i= 1 Pi be the prime representation of the minimum k-convex
theory hk of the given pdBf, and assume that other k-convex theories exist. Let then
fu be another k-convex theory of (�T ; �F) and

∨t
j= 1Qj be the prime representation

of it. In view of our assumption, Theorem 4.2 shows that

s∨
i=1

Pi6
t∨

j=1
Qj: (1)

We shall show that each Pi for i∈ [1; : : : ; s] is majorized by a Qj for some j∈
[1; : : : ; t]. Assume to the contrary that none of the Qj’s is a majorant of P1. It follows
from (1) that

P1 =P1Q1 ∨P1Q2 ∨ · · · ∨P1Qt: (2)

O. Ekin et al. / Theoretical Computer Science 244 (2000) 95–116 107

The right-hand side of (2) must contain at least two terms which are not identically
zero, since otherwise the remaining Qj would be a majorant of P1. However, any pair
of Qj’s con
icts in at least k + 1 variables, making the application of the consensus
method impossible, which contradicts the fact that P1 is a prime implicant of the right
hand side.
We can show in a similar way that every term Qj for j∈ [1; : : : ; t] is a majorant

of a Pk for some k ∈ [1; : : : ; s]. Assume to the contrary that Q1 is not a majorant of
any of the Pi’s. Since fu is a theory, Q1 must cover a true point from �T , say x.
Let Pk be the term covering this true point. By the argument above, Pk6Qr for some
r ∈ [2; : : : ; s]. However, it is impossible that Q1 and Qr cover the same true point while
being at a distance of at least k + 1 from each other.
The algorithm, which will decide whether the pdBf (�T ; �F) has a unique k-convex

theory, �rst runs the k-convex theory algorithm on (�T ; �F), and outputs “No” if [�T]k
is not orthogonal to �F . If [�T]k is orthogonal to �F , then the algorithm examines
one by one every occurrence of each literal in [�T]k . Let lP denote the occurrence
of a literal l in a term P of [�T]k . Let further [�T]l

P

k denote the DNF obtained from
[�T]k by removing l from P. Then the algorithm runs the k-convexi�cation method and
checks whether [[�T]l

P

k]k is orthogonal to �F . If there exists at least one lP such that
the DNFs [[�T]l

P

k]k and �F are orthogonal, then the algorithm reports that (�T ; �F)
has more than one k-convex theory. Otherwise, the algorithm reports that hk = [�T]k
is the unique k-convex theory of (�T ; �F).
The claimed computational complexity follows from the fact that |hk |6|�T | and

length(hk)6length(�T).

Example 4.6. Consider the pdBf (�T ; �F) where

�T = x1x2x3x4x5x6x7x8 ∨ x1x2x3x4x5 �x6 �x7 �x8 ∨ �x1 �x2 �x3 �x4 �x5 and �F = �x1x3:

Application of the convexity index algorithm will yield k =4 and the minimum 4-
convex theory [�]4 = x1x2x3x4x5 ∨ �x1 �x2 �x3 �x4 �x5. Note that �T is already a 2-convex the-
ory of (�T ; �F). Note also that the above example shows the fact that there are more
than one 2-convex theories of the given pdBf, namely �T and [�]4 (the latter being
4-convex, it is also 3-convex and 2-convex). Note however that [�]4 is the unique
4-convex theory of the given pdBf.

Theorem 4.7. Given a pdBf (�T ; �F) and a point x which is not covered by �T ∨�F;
we can check in
• O(n|�T |(|�T |+ |�F |) time if all the k-convex extensions of (�T ; �F) agree in x;
• O(n|�T |2(|�T |+ |�F |) time if all the k-convex theories of (�T ; �F) agree in x.

Proof. We check �rst whether all k-convex extensions of (�T ; �F) take the value 1
in x. To do this, we run the k-convex theory algorithm on (�T ; �F) and check whether
the hk constructed by the algorithm takes the value 1 in x. If yes, then every other

108 O. Ekin et al. / Theoretical Computer Science 244 (2000) 95–116

k-convex extension of (�T ; �F) will also take the value 1 in x, since hk is the smallest
one.
Let us now assume that hk takes the value 0 in x. Then we add the minterm of x

to �T , denote the resulting DNF by �′
T , and run the k-convex theory algorithm on

(�′
T ; �F). If the algorithm fails to produce a k-convex extension, then all k-convex

extensions of (�T ; �F) take the value 0 in x. Let us now assume that the algorithm
produces a k-convex function h′k . Then the two k-convex extensions of (�T ; �F), hk

and h′k , disagree in x. If h′k happens to be a theory of (�T ; �F), then we already
obtained two k-convex theories of (�T ; �F) that disagree in x.
Let us now assume that h′k is not a theory of (�T ; �F), i.e. the term P of h′k that

covers x, does not cover any points in �T . By construction, every k-convex theory
of (�T ; �F) that takes the value 1 in x must be a majorant of h′k . Let h

′′
k be such a

theory of (�T ; �F). As was shown in the previous proof, every term in h′k must be
majorized by a term in h′′k . Let P

′′ be the term of h′′k such that P
′′¿P. Since h′′k is a

k-convex theory of (�T ; �F), its term P′′ must cover some points in �T , and therefore
must majorize those terms of h′k that also cover the same points in �T . Therefore,
there must exist another term P′ 6=P in h′k such that P

′′¿P′. Since h′′k is a k-convex
majorant of h′k , it must be true that P

′′¿[P; P′]. It follows that it is su�cient to try one
by one every term P′ 6=P, replace both P and P′ in h′k by [P; P

′] resulting in the DNF
h∗k , and run the k-convex theory procedure on (h∗k ; �F). If this procedure succeeds
in producing a k-convex extension, then its output will be a theory of (�T ; �F) that
disagrees with hk in x. Otherwise, another term P′ should be tried. Eventually, when
all the terms in h′k are examined, we either construct a k-convex theory of (�T ; �F)
disagreeing with hk in x, or prove that no such theory exists.
The claimed computational complexity follows from the fact that the number of

terms in h′k does not exceed |�T |.

Example 4.8. For the pdBf given in Example 4.6, there is no agreement among the
3-convex theories in point x=(0; 0; 0; 0; 1; 0; 1; 1). Indeed, one of the 3-convex theories,
namely x1x2x3x4 ∨ �x1 �x2 �x3 �x4, characterizes this point as true whereas [�]4 characterizes
it as false.

5. Partially de�ned convex theories of PDBFs

The LAD problems we have considered in the previous sections of this paper focused
on constructing extensions of the given data, i.e. fully de�ned Boolean functions. In
many real life problems, certain Boolean vectors are not only absent from the given
data, but are in fact infeasible, i.e. can never occur. For example, if the Boolean variable
xv takes the value 1 i� the systolic blood pressure is greater than or equal to some
value v, and the Boolean variable yv takes the value 1 i� the diastolic blood pressure
is greater than or equal to v, then it is known that any observation in which xv=0 and
yv=1 can never occur. In such situations a fully de�ned function may be inadequate

O. Ekin et al. / Theoretical Computer Science 244 (2000) 95–116 109

as a model of the phenomenon, because the structural properties of feasible points may
turn out to be too restrictive if applied to all the vectors in the Boolean hypercube.
In order to clarify this point, let us consider the main subject of this paper, i.e.

the property of convexity. In the previous sections it was assumed that only the true
points of the function possess the property of convexity, i.e. every pair of true points
at distance at most k1 is convexly connected. In many situations negative points may
also possess the same convexity property, i.e. every pair of false points at distance at
most k0 is convexly connected. It was shown in [11] that there are only n+2 distinct
fully de�ned Boolean functions of n variables with the property that both the set of
true points and the set of false points are 2-convex. It is therefore natural not to limit
the search for extensions of the given data set to these n+2 fully de�ned functions, but
to also allow partially de�ned extensions as long as their true points and their false
points both possess the desirable convexity properties. With this in mind, we introduce
the following de�nitions.
A subset S of points in a Boolean hypercube de�nes naturally a Boolean function

fS whose set of true points is S. For the sake of brevity, we shall frequently denote
fS simply by S. For example, if fS belongs to a class C of Boolean functions, we
may write S ∈C.

De�nition 5.1. Given a pdBf (T; F) and a pair of classes of Boolean functions (CT ;
CF), a partially de�ned extension (pde) of (T; F) in (CT ;CF) is a pdBf (ST ; SF) such
that T ⊆ ST , F ⊆ SF , ST ∩ SF = ∅, and ST ∈CT and SF ∈CF .

De�nition 5.2. Given a pdBf (T; F) and a pair of classes of Boolean functions (CT ;
CF), a partially de�ned theory (pdt) of (T; F) in (CT ;CF) is a pde of (T; F) in
(CT ;CF) for which there exists a pair of DNFs (�T ; �F) such that �T is a positive
theory of (T; F) and �F is a negative theory of (T; F).

The main problem to be studied in this section is the following. Given a pdBf (T; F)
and a pair of classes of Boolean functions (CT ;CF), check whether a pdt of (T; F) in
(CT ;CF) exists, and if yes, �nd one. More speci�cally, we will consider this problem
for the case where CT is the class of k1-convex Boolean functions, and CF is the class
of k0-convex Boolean functions, and any such pde will be said to belong to the class
of (k1; k0)-convex pdBf’s.
It follows from Proposition 3.2 that if a given pdBf has a (k1; k0)-convex pde, then

it will also have a (k ′1; k
′
0)-convex pde for any k ′16k1 and any k ′06k0. Let us call a pair

of numbers (k1; k0) a non-dominated pair of a pdBf (T; F) if this pdBf has a (k1; k0)-
convex pde, but does not have a (k1 + 1; k0)-convex pde or a (k1; k0 + 1)-convex pde.
Clearly, the set of all non-dominated pairs describes completely the possible convex
partially-de�ned extensions of the given pdBf.

Theorem 5.3. Given a pdBf (�T ; �F); all the non-dominated pairs of (�T ; �F) can
be generated in O(n2(max{|�T |; |�F |}+ log nmin{|�T |; |�F |})(|�T |+ |�F |)) time.

110 O. Ekin et al. / Theoretical Computer Science 244 (2000) 95–116

Proof. Let us assume that the given pdBf (�T ; �F) has a k1-convex extension, and
hk1 is the output of the k-convex theory algorithm. If (�′

T ; �
′
F) is a (k1; k0)-convex

pde of (�T ; �F), then (hk1 ; �
′
F) is also a (k1; k0)-convex pde of (�T ; �F) since hk1

is a minorant of �′
T . Moreover, �

′
F must also be a k0-convex extension of the pdBf

(�F; hk1). Therefore, all non-dominated pairs of (�T ; �F) can be obtained by examining
one by one all the values k ∈{2; : : : ; n} starting with 2 and determining for each k
whether (�T ; �F) has a k-convex extension by running the k-convex theory algorithm
to obtain hk , if any. Then for each such k that a k-convex extension exists, we can
run on (�F; hk) the convexity index algorithm described in the proof of Theorem 4.4.
Let us denote the result of this algorithm by m(k).

Let us also denote by K the set of such values of k that m(k)¿m(k + 1) for
every k ∈K . Then, clearly, the set of all non-dominated pairs is {(k; m(k))|k ∈K}. It
follows from Theorems 4.2 and 4.4 that the described procedure has the computational
complexity of O(n2(|�T |+ log n|�F |)(|�T |+ |�F |)).
The obtained computational complexity can be actually improved to

O(n2(max{|�T |; |�F |}+ log nmin{|�T |; |�F |})(|�T |+ |�F |)):
This follows from the fact that all the non-dominated pairs of (�T ; �F) can be obtained
from the non-dominated pairs of (�F;�T) by simply swapping the numbers in each
pair. Therefore, the algorithm presented above can be applied to (�F;�T) if |�F |¿|�T |.

Note that given a (k1; k0)-convex pde (h1; h0) of a pdBf (T; F) which has been
constructed using the k-convex theory procedure, we can check easily whether this pde
is in fact an extension of (T; F), i.e. if any unknown point can always be classi�ed
using (h1; h0). Indeed, since h1 and h0 are disjoint, the number of true points of h1 ∨
h0 is simply the sum of the true points of h1 and those of h0. On the other hand,
both h1 and h0 are constructed as orthogonal DNFs, and therefore the number of
their true points is easily computable, as described in the proof of Proposition 2.5.
Clearly, (h1; h0) is an extension of (T; F) i� the total number of true points of h1 ∨ h0
equals 2n.
If our objective is to build a question-asking strategy, we can easily exhibit a point

not covered by either h1 or h0, if any. Indeed, we simply apply Proposition 2.5 to the
orthogonal DNF h1 ∨ h0. Additionally, using Proposition 2.5 we can output all such
unclassi�ed points in time polynomial in their total number.

6. Probabilistic properties

In order to analyze the predictive performance of our algorithms on random data,
we shall follow the probably approximately correct (PAC) model of computational
learning theory (see e.g. [1, 5, 13]), which assumes that data points are generated ran-
domly according to a �xed unknown probability distribution on Bn, and that they are

O. Ekin et al. / Theoretical Computer Science 244 (2000) 95–116 111

classi�ed by some unknown Boolean function f belonging to a class C(n) of Boolean
functions.
The class C(n) is called PAC-learnable if for any �; �∈ (0; 1), one can draw ran-

domly a polynomial number of points Poly(n; 1� ;
1
�) from Bn together with their classi-

�cations and can �nd in polynomial time a function g∈C(n) such that

Prob(Prob(f�g)¿�)¡�: (3)

Here � is called the accuracy of g, � is called the con�dence in this accuracy, and
f�g denotes the set of Boolean vectors where f and g disagree.
Given a set S ⊆Bn, let us denote by clC(n)(S) the number of di�erent dichotomies

induced on S by the functions in C(n).

De�nition 6.1. The Vapnik–Chervonenkis dimension (VC-dimension) of a set of
Boolean functions C(n) is the largest integer d(C(n)) such that there exists a set
S ⊆Bn of cardinality d(C(n)) for which clC(n)(S)= 2d(C(n)).

Clearly, for any class C(n) of Boolean functions of n variables, d(C(n))62n. It is
also well known that

d(C(n))6 log2 |C(n)|: (4)

Let F(n; k) denote the class of k-convex functions of n Boolean variables.

Theorem 6.2. The VC-dimension of the class F(n; k) has the following lower bound:

d(F(n; k))¿
2n∑k

i=0

(n
i

) :

Proof. Let M be a largest set of Boolean vectors of dimension n whose pairwise
Hamming distances are at least k + 1, and let m be the cardinality of M . If we take
balls of radius k around each point in M , then

∑k
i=0

(n
i

)
is the number of points that

fall within each ball, and each point in the hypercube must be inside at least one of
these balls. Therefore,

m
k∑

i=0

(
n
i

)
¿2n:

If we have a set of vectors which are pairwise at distance at least k + 1, then any
subset of this set can de�ne the set of true points of a k-convex Boolean function.

Theorem 6.2 and inequality (4) imply

Corollary 6.3. The number of functions in the class F(n; k) is at least

|F(n; k)|¿2
2n∑k

i=0
(ni) :

112 O. Ekin et al. / Theoretical Computer Science 244 (2000) 95–116

In the following we use the notation �=
() to denote that there exists a constant
c such that �¿c .

Corollary 6.4. If k6 n
2 −
(n); then

1. d(F(n; k))¿2
(n);
2. |F(n; k)|¿22
(n) .

Proof. Using Cherno�’s bound [7]

∑
i¡ n
2−m

(
n
i

)
¡2ne−

2m2

n for 06m6
n
2
;

if we let k = n
2 − m+ 1, then

d(F(n; k))¿
2n∑k

i=0

(n
i

)¿ 2n

2ne−
2m2

n

=e
2m2

n ¿e
(n) if m=
(n):

Lemma 6.5. The number of functions in the class F(n; k) is bounded in the following
way:

|F(n; k)|63k2n−k
:

Proof. It is known that F(n; n) represents the class of monomials, and that there exist
exactly 3n di�erent monomials of n variables. If we �x a set of n− k variables in an
arbitrary k-convex function, the resulting function must be a monomial since it should
still be a k-convex function. Since the n − k variables can be �xed in 2n−k di�erent
ways, and since each such restriction can yield at most 3k di�erent functions, we must

have |F(n; k)|6(3k)2
n−k

:

The upper bound on the number of k-convex functions obtained in Lemma 6.5 is not
sharp enough to imply PAC-learnability results for k close to n=2. To obtain a sharper
bound, we need to estimate �rst how many prime implicants a k-convex function can
have when k is large.

Lemma 6.6. If k¿n
2−1; then the number of prime implicants of a function in F(n; k)

cannot exceed 2(k + 1)=[2(k + 1)− n].

Proof. Let {T1; T2; : : : ; Ts} be the prime implicants of f∈F(n; k); let ei(j; l)= 1 if Tj

and Tl con
ict in xi and let ei(j; l)= 0 otherwise. It follows from Proposition 3.2 that
for any pair j; l

n∑
i=1

ei(j; l)¿k + 1: (5)

O. Ekin et al. / Theoretical Computer Science 244 (2000) 95–116 113

Summing up these inequalities for all pairs j; l, we get

s−1∑
j=1

s∑
l=j+1

n∑
i=1

ei(j; l)¿(k + 1)
s(s− 1)
2

: (6)

Let us consider the graph Gi whose vertices are the terms {T1; T2; : : : ; Ts}, and where
Tj and Tl are connected if and only if they con
ict in xi. This graph is bipartite: the
terms containing xi belong to the �rst part, the terms containing xi belong to the second
part, and the terms not involving xi can be considered as belonging to either part. Since
Gi is bipartite, the number of edges in it is limited by s2

4 . Therefore,

s−1∑
j=1

s∑
l=j+1

ei(j; l)6
s2

4
: (7)

Since
∑s−1

j=1

∑s
l=j+1

∑n
i=1 ei(j; l)=

∑n
i=1

∑s−1
j=1

∑s
l=j+1 ei(j; l), (6) and (7) imply

n
s2

4
¿(k + 1)

s(s− 1)
2

;

or equivalently,

s(2(k + 1)− n)62(k + 1): (8)

If k¿n
2 − 1, then (8) implies the claim of the lemma.

Corollary 6.7. The number of prime implicants of any function in F(n; k) does not
exceed
1. n+ 1 if k¿ n

2 − 1
2 ;

2. 1 + 1
c if k¿ n

2 − 1 + cn.

Remark that since k is integer, the inequality k¿n
2 − 1 implies k¿ n

2 − 1
2 .

Since the number of di�erent terms in n Boolean variables is 3n, Lemma 6.6 and
Corollary 6.7 imply

Corollary 6.8. The number of functions in F(n; k) does not exceed

1. 3
2n(k+1)
2(k+1)−n63n(n+1) if k¿n

2 − 1;
2. 2O(n) if k¿ n

2 +
(n).

The results obtained above allow us to characterized the PAC-learnability of the
classes of k-convex functions using upper and lower bounds on the sample complexity
of PAC-learning algorithms.
The following result was shown in [10] (see also [1, 13]).

Proposition 6.9. Any PAC-learning algorithm for a class C(n) may need to draw a
random sample of at least
(d(C(n))�) points to satisfy the PAC-learning condition (3).

114 O. Ekin et al. / Theoretical Computer Science 244 (2000) 95–116

The following result is well known in computational learning theory (see e.g.
[1, 5, 13]).

Proposition 6.10. Any Boolean function g∈C(n) which correctly classi�es a random
sample of
(1� log

|C(n)|
�) points satis�es the PAC-learning condition (3).

Theorem 6.11. 1. If k6 n
2 −
(n); then the class F(n; k) is not PAC-learnable.

2. If k¿n
2 − 1; then the class F(n; k) is PAC-learnable.

Proof. The �rst statement follows from Proposition 6.9 and Corollary 6.4(1) show-
ing that a random sample of exponential size is needed to satisfy the PAC-learning
condition (3).
To prove the second statement, note that it follows from Proposition 6.10 and Corol-

lary 4.2 that the k-convex theory procedure provides a polynomial PAC-learning al-
gorithm when it is applied to a random sample of size �(1� log

|F(n;k)|
�) 1 (which is

polynomial in n by Corollary 6.8(1)).

Corollary 6.12. The class
⋃n

k=d n−1
2 e F(n; k) is PAC-learnable.

Proof. Clearly,∣∣∣∣∣∣
n⋃

k=d n−1
2 e

F(n; k)

∣∣∣∣∣∣6
⌈
n+ 1
2

⌉
3n(n+1):

It is therefore su�cient to draw a random sample of �(1� (n
2+log n

�)) points and apply
the k-convex theory procedure only for k = d n−1

2 e.

Remark 6.13. The application of the k-convex theory procedure in the PAC-learning
framework can be somewhat simpli�ed. More exactly, in view of the assumed
k-convexity of the unknown function, the k-convex hull [�T]k is known a priori to be
orthogonal to [�F], i.e. this property does not have to be checked during the execution
of the algorithm. Therefore, for k¿n

2 − 1, k-convex functions are PAC-learnable from
positive examples only.

7. Concluding remarks

We have studied in this paper convexity properties of partially-de�ned Boolean func-
tions. A polynomial-time algorithm was developed for recognizing those pdBfs which
admit k-convex extensions. As a by-product of this algorithm, a k-convex theory of
a pdBf was constructed when possible. It was shown how to determine in polyno-
mial time the convexity index of a given pdBf, and how to check in polynomial time

1 Here �=�() denotes that �=O() and �=
() simultaneously.

O. Ekin et al. / Theoretical Computer Science 244 (2000) 95–116 115

whether a given pdBf has a unique k-convex theory. Finally, a polynomial algorithm
was presented to establish whether all k-convex extensions and=or all k-convex theories
of a given pdBf (T; F) take the same value in a point not in T ∪ F .
It is easy to see that if f is a k-convex function and � is one of its true points,

then there exists a unique prime implicant of f which takes the value 1 in �. This
property de�nes the class of Boolean functions which we call orthogonal. It can be
checked easily that the class of orthogonal functions is characterized by the prop-
erty that every two prime implicants con
ict in at least two literals. The class of
k-convex functions (for any k¿2) is obviously included in the class of orthogonal
functions, and this inclusion is proper (e.g. the function xy∨xy is orthogonal but not k-
convex).
It is easy to check that all the results presented in this paper for k-convex func-

tions have straightforward extensions to the case of orthogonal functions. To see this,
in most cases it is su�cient to formally use k =1 in the stated results and algo-
rithms. We note however, that every Boolean function would satisfy De�nition 3.1 for
k =1.

Acknowledgements

The authors extend their thanks for the partial support provided by the O�ce of
Naval Research (grant N00014-92-J1375) and the National Science Foundation (grant
NSF-DMS-9806389). The authors also express their gratitude to Endre Boros and Dan
Roth for useful discussions, and to the anonymous referee for careful analysis and
helpful suggestions.

References

[1] M. Anthony, N. Biggs, Computational Learning Theory, Cambridge University Press, Cambridge, 1992.
[2] M.O. Ball, G.L. Nemhauser, Matroids and a reliability analysis problem, Math. Oper. Res. 4 (1979)

132–143.
[3] A. Beimel, F. Bergadano, N.H. Bshouty, E. Kushilevitz, S. Varricchio, On the applications of multiplicity

automata in learning, in: Proc. 37th Annual IEEE Symp. on Foundations of Computer Science
(FOCS’1996), pp. 349–358.

[4] A. Blake, Canonical expressions in Boolean algebra, Ph.D. Thesis, University of Chicago, August 1937.
[5] A. Blumer, A. Ehrenfeucht, D. Haussler, M.K. Warmuth, Learnability and the Vapnik–Chervonenkis

dimension, J. Assoc. Comput. Machinery 36 (4) (1989) 929–965.
[6] E. Boros, P.L. Hammer, T. Ibaraki, A. Kogan, E. Mayoraz, I. Muchnik, An implementation of logical

analysis of data, IEEE Transactions on Knowledge and Data Engineering, accepted for publication.
[7] H. Cherno�, A measure of asymptotic e�ciency for tests of a hypothesis based on the sum of

observations, Ann. Math. Statist. 23 (1952) 493–509.
[8] C.J. Colbourn, The Combinatorics of Network Reliability, Oxford University Press, New York, 1987.
[9] Y. Crama, P.L. Hammer, T. Ibaraki, Cause-e�ect relationships and partially de�ned Boolean functions,

Ann. Oper. Res. 16 (1988) 299–326.
[10] A. Ehrenfeucht, D. Haussler, M. Kearns, L. Valiant, A general lower bound on the number of examples

needed for learning, Inform. Comput. 82 (3) (1989) 247–261.

116 O. Ekin et al. / Theoretical Computer Science 244 (2000) 95–116

[11] O. Ekin, P.L. Hammer, A. Kogan, On connected Boolean functions, Discrete Appl. Math., accepted for
publication.

[12] P.L. Hammer, S. Rudeanu, Boolean Methods in Operations Research, Springer, Berlin, 1968.
[13] M.J. Kearns, U.V. Vazirani, An Introduction to Computational Learning Theory, MIT Press, Cambridge,

MA, 1994.
[14] W. Quine, A way to simplify truth functions, Amer. Math. Monthly 62 (1955) 627–631.
[15] K.G. Ramamurthy, Coherent Structures and Simple Games, Kluwer Academic Publishers, Dordrecht,

1990.

