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Abstract

We estimate a generalized option pricing formula that has a functional shape similar to
the usual Black}Scholes formula by a feedforward neural network model. This functional
shape is obtained when the option pricing function is homogeneous of degree one with
respect to the underlying asset price (S

t
) and the strike price (K). We show that pricing

accuracy gains can be made by exploiting this generalized Black}Scholes shape. Instead
of setting up a learning network mapping the ratio S

t
/K and the time to maturity (q)

directly into the derivative price, we break down the pricing function into two parts, one
controlled by the ratio S

t
/K, the other one by a function of time to maturity. The results

indicate that the homogeneity hint always reduces the out-of-sample mean squared
prediction error compared with a feedforward neural network with no hint. Both
feedforward network models, with and without the hint, provide similar delta-hedging
errors that are small relative to the hedging performance of the Black}Scholes model.

qThis paper has bene"ted from the comments of seminar participants at Cornell University,
CREST, Ohio State University, McGill University, UniversiteH du QueH bec à MontreH al, and the 1998
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However, the model with hint produces a more stable hedging performance. ( 2000
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1. Introduction

In a recent paper, Hutchinson et al. (1994) demonstrated that learning
networks can be used successfully to estimate a pricing formula for options, with
good out-of-sample pricing and delta-hedging performance. This nonparametric
pricing method has the distinct advantage of not relying on speci"c assumptions
about the underlying asset price dynamics and is therefore robust to speci"ca-
tion errors that might a!ect adversely parametric models. Hutchinson et al.
(1994) assume that their option pricing network formula is homogeneous of
degree one in the underlying stock price and the strike price which enables them
to use a smaller number of inputs in learning the nonparametric pricing
function. This parsimony is an advantage since the rate of convergence of
nonparametric estimators slows down considerably as the number of inputs
increases. Broadie et al. (1996a), who also use nonparametric methods to
estimate an option pricing function, invoke the nonstationarity of option and
stock prices to justify such a homogeneity property.

This homogeneity assumption is not consistent with any asset price dynamics.
Merton (1973) shows that serial independence of asset returns for the data
generating process is a su$cient condition for homogeneity. In a non-arbitrage
context, Garcia and Renault (1995) establish that conditional independence
under the pricing probability measure between future returns and the current
price is a necessary and su$cient condition for homogeneity of the option
pricing function. Several processes obey these objective or risk-neutral distribu-
tional assumptions and lead therefore to homogeneous option pricing for-
mulas.1 These formulas can be characterized as generalizations of the
Black}Scholes formula in the sense that the normal distribution function is
replaced by another distribution function in an otherwise similarly shaped
formula which stems from the convexity of the terminal payo!. Garcia and
Renault (1995) also provide a dynamic asset pricing equilibrium model in
a general stochastic framework that leads to a homogeneous option pricing

1For example, jump processes (see Hull, 1993, p. 454) or stable distributions (McCulloch, 1996).
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formula which keeps the main functional shape of the usual Black}Scholes
formula and nests most of the usual parametric option pricing formulas.2

In this paper, we show that pricing accuracy gains can be made by exploiting
the implications of this homogeneity property in terms of functional shape.
Instead of setting up a learning network mapping the stock price to strike price
ratio (S

t
/K) and the time to maturity (q) directly into the derivative price, we

break down the pricing function into two parts, one controlled by the ratio S
t
/K,

the other one by a function of time to maturity. In each part, a learning network
is "t with S

t
/K and q as inputs. We just mentioned that this separation into two

blocks is consistent not only with the Black}Scholes model, but with an array of
other models which keep the homogeneity property of the option pricing
function. It is this homogeneity restriction that we call a hint. In general, hints
based on additional prior information about the properties of the unknown
function to be learned guide the learning process. Because hints impose addi-
tional constraints on the set of allowable solutions to which the learning process
may converge, they may tend to worsen the in-sample performance by excluding
some solutions that might otherwise "t the data better. This constraint clearly
helps to avoid over"tting in the learning algorithms. The main purpose of
using hints is to improve the out-of-sample performance of the learning algo-
rithms.

To assess the potential gains that can be made by using the homogeneity hint
in setting up the nonparametric model, we simulate option prices that obey the
Black}Scholes formula. In this experimental setting, we obtain out-of-sample
pricing accuracy gains of about 25% in average. To assess the empirical
relevance of this additional structure consistent with homogeneity, we estimate
pricing functions for European call options on the S&P 500 index for various
sampling periods between 1987 and 1994. The homogeneity hint always reduces
the out-of-sample mean squared prediction error compared with a feedforward
neural network with no hint. The feedforward network models provide smaller
delta-hedging errors relative to the Black}Scholes model. Between the feedfor-
ward network models, the models with hint provide more stable average delta
hedging errors relative to the networks without the homogeneity hint.

Recently, a number of papers have used nonparametric methods to price
options. Ghysels et al. (1997) provide a survey of this literature. Two papers
appeal to "nancial theory to complement a strictly nonparametric approach.
GourieH roux et al. (1994) apply a Kernel M-estimator methodology to the option

2They obtain as special cases the formula derived by Amin and Ng (1993) and a fortiori all the
other pricing formulas that were nested in the latter: of course the Black}Scholes formula, but also
the Hull and White (1987) and Bailey and Stulz (1989) stochastic volatility option pricing formulas
and the Merton (1973), Turnbull and Milne (1991), and Amin and Jarrow (1992) stochastic interest
rate option pricing formulas for equity options.
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pricing problem by extending the Black}Scholes formulation.3 In doing so, they
recognize that the Black}Scholes formula is not strictly valid, but that its shape
can still be useful to recover a pricing formula more in line with observed data.
More precisely, they keep the Black}Scholes functional shape but they make the
volatility parameter which is assumed "xed in the Black}Scholes model a func-
tion of some observable state variables such as the S

t
/K ratio. Apart from the

fact that we use a feedforward neural network estimation technique instead of
a kernel estimator, our approach can be seen as a generalization of their
approach since we dispense with the log-normality assumption of the asset
underlying the Black}Scholes model. AmK t-Sahalia and Lo (1996) use kernel
estimation techniques for the option pricing function. They also point out that
several of the partial derivatives of the option pricing function are of special
interest. Apart from the well-known delta of the option, i.e. the "rst derivative of
the option pricing formula with respect to the stock price, it is possible to
recover the state price density (SPD) through the second derivative of the option
pricing function with respect to the strike price.4 In the context of complete
markets, this state price density is very useful since it provides an arbitrage-free
method of pricing complex or less liquid options given observed prices on liquid
basic options.

By contrast, the two latter papers underline an important issue. In
GourieH roux et al. (1994), the parameters of the volatility function correcting the
Black and Scholes model are estimated according to a speci"cally chosen
objective function based on an empirical criterion, what they call objective-
driven inference. In AmK t-Sahalia and Lo (1996), although the ultimate objective
might be to extract the risk neutral density, it is the pricing function that is
estimated through kernel methods. Although kernel methods or feedforward
networks can estimate consistently the derivatives of a function, it might be
important to target directly the statistical or "nancial criterion of interest (see
Bengio, 1996). If the goal is to hedge a portfolio, the training or the validation of
the learning network should be done according to the hedging criterion which
involves the "rst derivative of the function. As we will see, the architectures of
the networks selected for pricing and hedging will be very di!erent. Choosing
the best pricing model for hedging purposes could lead to important "nancial
losses, especially in networks without the homogeneity hint.

To show the usefulness of a learning network in pricing and hedging options,
Hutchinson et al. (1994) looked at several techniques for modelling nonlinear

3AmK t-Sahalia and Lo (1996) also use the same semiparametric approach, along with their purely
nonparametric approach.

4CleHment et al. (1993) and Patilea and Renault (1995) estimate an equivalent martingale measure
by a nonparametric Bayesian method. Jondeau and Rockinger (1997) survey and compare several
methods to extract risk neutral densities with an applicaton to exchange rate options.
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statistical relationships nonparametrically: radial basis functions, projection
pursuit regression, and multilayer perceptrons. We use only the last of these
techniques to illustrate the accuracy gains that could be made by exploiting the
homogeneity property of the formula. Whether similar gains can be made with
the other techniques or any other nonparametric approach remains to be
investigated.

Section 2 discusses the nonparametric approach to option pricing and the
restrictions implied by the often assumed homogeneity of degree one of the
pricing function in the underlying stock price and the strike price. Section
3 presents the feedforward neural networks used for estimating the option
pricing function. In Section 4, we report the results of a Monte-Carlo experiment
aimed at assessing the pricing and hedging accuracy gains provided by the
homogeneity restriction. Section 5 mirrors Section 4 with actual price data on
options written on the S&P 500 index. Section 6 concludes.

2. Nonparametric option pricing with homogeneity

A natural nonparametric function for pricing a European call option on
a non-dividend paying asset will relate the price of the option to the set of
variables which characterize the option, i.e. the price of the underlying asset S

t
,

the strike price K, and the time to maturity q. Therefore, the option pricing
function can be written as:

C
t
"f (S

t
, K, q). (1)

This approach is followed by Hutchinson et al. (1994). The function will
also be valid to learn prices generated by a Black}Scholes model as the interest
rate and volatility parameters present in the formula are constant and cannot be
identi"ed by a nonparametric estimator of the function f. It is generally more
di$cult to estimate nonparametrically such a function when the number of
input variables is large. To reduce the number of inputs, Hutchinson et al. (1994)
divide the function and its arguments by K and write the pricing function as
follows:

C
t

K
"fA

S
t

K
, 1, qB. (2)

This form assumes the homogeneity of degree one in the asset price and the
strike price of the pricing function f. Another technical reason for dividing by the
strike price is that the process S

t
is nonstationary while the variable St

K
is

stationary as strike prices bracket the underlying asset price process. This point
is emphasized in Ghysels et al. (1997). The crucial question is to determine to
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what extent this homogeneity property is restrictive for the nonparametric
learning of the option pricing function. From Merton (1973), we know that the
call pricing function is homogeneous of degree one in the asset price and the
strike price when the unconditional distribution of returns is independent of
the level of the asset price. In Garcia and Renault (1995), Proposition 2 estab-
lishes that a necessary and su$cient condition for homogeneity is the condi-
tional independence (under the pricing probability measure) between future
returns and the current price, given the currently available information other
than the history of the underlying asset price. This property must be understood
as a noncausality relationship in the Granger sense from the current price to
future returns (for a given informational setting) and not as an independence
property. This characterization of homogeneity is more general than the su$-
cient condition proposed by Merton (1973), not only since the independence
requirement is replaced by a more speci"c noncausality assumption, but also
since it is stated in terms of the pricing probability measure rather than the data
generating process. In such a setting, risk premiums may depend on the level of
the asset price S

t
. Very general processes are also admissible for the underlying

asset, such as for example a stochastic volatility model, except that the volatility
function cannot be a function of the asset price level as in implied tree models
(see Rubinstein (1994)).

Garcia and Renault (1995) further propose an equilibrium model that ensures
the homogeneity property.5 Given a conditional (on state variables) log-normal-
ity assumption about the fundamentals of the economy, they derive an extended
Black}Scholes option pricing formula. They stress that such an additional
assumption is not really restrictive once the assumptions required for homo-
geneous option pricing are maintained since log-normality follows from a stan-
dard central limit argument. Therefore, the Black}Scholes shape of the option
pricing formula will be robust when one remains true to homogeneity. Their
general pricing formula for European call options is given by

C
t

K
"E

tG
S
t

K
Q

XY
(t, ¹)U(d

1
)!BI (t, ¹)U(d

2
)H, (3)

where Q
XY

(t, ¹) is a function of preference parameters and of conditional
moments of future growth rates of consumption (X) and dividends (>), BI (t, ¹)
a stochastic discount factor also a function of preference parameters and
future growth rates of consumption (X), U(.) the cumulative normal distribution

5Corollary 2.1 in Broadie et al. (1996b) also states that such a homogeneity property holds in
a fairly general stochastic volatility model. One restriction is that the drift and di!usion functions of
the stochastic volatility process may not depend on the asset price itself.
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function and:

d
1
"

lnC
S
t
Q

XY
(t, ¹)

KBI (t, ¹) D
(+Tq/t`1

p2
Yq)1@2

#

1

2A
T
+

q/t`1

p2
YqB

1@2
,

d
2
"d

1
!A

T
+

q/t`1

p2
YqB

1@2
.

The expression inside the expectation in (3) keeps the Black}Scholes func-
tional shape. For a nonparametric characterization of the option pricing func-
tion, we therefore use a generalized Black}Scholes formula:

C
t

K
"

S
t

K
f
1A

S
t

K
, qB!b(q) f

2A
S
t

K
, qB. (4)

Theoretical restrictions stemming from the absence of arbitrage or from
equilibrium constrain the functions f

1
and f

2
to approximate the same function

(for example the normal distribution function in the Black}Scholes formula),
with possibly di!erent arguments or di!erent signs for the same arguments. We
account for these theoretical restrictions by constraining the neural network
structure to be the same for f

1
and f

2
. Since we limit the arguments of the

functions to St

K
and q, we let the signs of the inputs unconstrained within each

function. The function b(q) is a general function of the maturity of the option.

3. Learning networks

Hutchinson et al. (1994) used learning networks based on three techniques:
radial basis functions, multilayer perceptrons, and projection pursuit regression.
Our ultimate goal is to assess the usefulness of the homogeneity hint for learning
the option pricing function. We select the multilayer perceptron or feedforward
neural network technique for this purpose, hoping that similar results could be
obtained with the other techniques.

3.1. Feedforward neural networks and hints

Let a typical regression function be written as f (x, h), where x stands for the
explanatory variables, h is a vector of parameters and the function f determines
how x and h interact. This representation is identical to the output function of
a feedforward network such that the network inputs are interpreted as the
explanatory variables and the weights in the network are interpreted as the
parameters, h. In a typical feedforward network, the input units send signals
x
j

across weighted connections to intermediate or hidden units. Any given
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hidden unit j receives the sum of all the p weighted inputs, c
j0
#+p

i/1
c
ji
x
i
. The

"rst term c
j0

is an intercept or a bias term. The weights c
ji

are the weights to the
jth hidden unit from the ith input. The hidden unit j outputs a signal
h
j
"G(c

j0
#+p

i/1
c
ji
x
i
) where the activation function G is

G(x)"
1

1#e~ax
,

a logistic function which has the property of being a sigmoidal6 function. The
signals from the hidden units j"1,2,d are sent to the output unit across
weighted connections in a manner similar to what happens between the input
and hidden layers. The output unit receives the sum of the weighted hidden
units, b

0
#+d

j/1
b
j
h
j
. If the expression for h

j
is substituted into the latter

expression, it yields the output of a single layer feedforward network

f (x, h)"UAb0
#

d
+
j/1

b
j
GAcj0#

p
+
i/1

c
ji
x
iBB (5)

as a function of inputs and weights.
Many authors have investigated the universal approximation properties of

neural networks (Gallant and White, 1988, 1992; Cybenko, 1989; Funahashi,
1989; Hornik et al., 1989, 1990). Using a wide variety of proof strategies, all have
demonstrated that under general regularity conditions, a su$ciently complex
single hidden-layer feedforward network can approximate a large class of
functions and their derivatives to any desired degree of accuracy where the
complexity of a single hidden layer feedforward network is measured by the
number of hidden units in the hidden layer. One of the requirements for this
universal approximation property is that the activation function has to be
a sigmoidal such as the logistic function presented above.7 We estimate h by
nonlinear least squares. Gallant and White (1992) show that the least squares
estimates are consistent in the Sobolev norm, provided that the number of
hidden units increases with the size of the data set.

All learning network methods share the same fundamental premise of learn-
ing from input and output pairs. For a method to learn an unknown function
from data, it must be able to make generalizations to the out-of-sample setting
from the limited input}output pairs upon which it is trained. In general,
a learning network technique knows nothing about the unknown function it is
trying to learn, except what is provided in the sample of input}output pairs. If

6G is a sigmodial function if G:RP[0,1], G(a)P0 as aP!R, G(a)P1 as aPR and G is
monotonic.

7For an excellent survey of the feedforward and recurrent network models, the reader may refer to
Kuan and White (1994) and White (1992).
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the provided pairs contain irrelevant information or a substantial amount of
noise, the "t will be poor. Accordingly, the method will provide poor out-of-
sample generalizations.

A method which provides additional information to the learning algorithm is
the method of hints. A method with hints describes a situation where, in addition
to the set of input}output pairs of an unknown function, there is additional prior
information about the properties of the unknown function which is provided to
the learning algorithm. In general, hints provide auxiliary information about the
unknown function which can be used to guide the learning process. The idea of
using auxiliary information about the target function to help the learning
process is clearly a basic one, and has been used in the literature under di!erent
names such as hints, prior knowledge and explicit rules. Furthermore, a model
with hint provides additional guidance to the learning algorithm in the presence
of noisy data and a limited number of observations.

There are di!erent types of hints common to di!erent applications. Invariance
hints of Duda and Hart (1973), Hinton (1987), Hu (1962) and Minsky and Papert
(1988) are the most common types of hints in pattern recognition applications.
An invariance hint asserts that the target function is invariant under certain
transformations of the input. Monotonicity hints, as in Abu-Mostafa (1993), are
common in applications such as medical diagnosis and credit rating where the
target function is assumed to be monotonic in certain variables.8 Symmetry
hints are commonly used in foreign exchange predictions by technical analysts.
Abu-Mostafa (1994, 1995) indicate that appropriately placed restrictions may
lead to improved out-of-sample generalizations.

3.2. The estimated networks

For the architecture of our networks, with and without the homogeneity hint,
we follow the general choice of the identity function for U and the logistic
function for G. Therefore, we will estimate the following two models, respectively
for the model without hint (6) and with hint (7):

f NN(S
t
/K, q; h)"b

0
#

d
+
j/1

b
j

1

1#exp(!c
j0
!c

j1
(S

t
/K)!c

j2
q))

, (6)

f WH(S
t
/K, q; h)"b

0
#

S
t

KA
d
+
j/1

b1
j

1

1#exp(!c1
j0
!c1

j1
(S

t
/K)!c1

j2
q))B

!e~aqA
d
+
j/1

b2
j

1

1#exp(!c2
j0
!c2

j1
(S

t
/K)!c2

j2
q))B. (7)

8The methodology proposed by Abu-Mostafa (1993) is to create virtual examples from the
observed data and add them to the training set as hints to improve the out-of-sample predictability.
A similar methodology could be used to impose homogeneity.
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From a statistical point of view, one drawback of the feedforward neural
network technique is the virtual absence of inferential procedures to determine
the best model speci"cation. There are a number of information theoretic
criteria such as the Schwarz Information Criteria (SIC) or the Akaike Informa-
tion Criteria (AIC) which could be used for this purpose, but they support the
choice of feedforward network models which do not generalize well. Swanson
and White (1995) report that the SIC fails to select su$ciently parsimonious
models in terms of being a reliable guide to the out-of-sample performance.
Cross-validation based methods are also available and require heavy computa-
tional time to determine the network complexity.

We select the complexity of the networks based on their performance in an
out-of-sample validation period. From equations (6) and (7), it can be seen that
the networks for the model with hint will always have about twice as many
parameters as the networks without the hint for a given number of hidden units.
To compare fairly the performance of the two networks, we adopt a three-step
strategy. First, we estimate networks with 1}9 hidden units9 for the regular
neural networks and 1}5 hidden units for the networks with hint over half of the
data points for a particular sample, the training period. Next, we choose the
network in each family that gives the best mean square prediction error (MSPE)
over half of the remaining data points in the sample, called the validation period.
Finally, we assess the prediction performance (MSPE) of the best model chosen
in the previous step for the models with and without the homogeneity hint over
the last quarter of data, the prediction period.

To gauge the improvement achieved with the homogeneity hint in a model
kept as simple as possible, we limit our investigation to two inputs, namely St

K
and

q. It also makes our results comparable to the study of Hutchinson et al. (1994)
who used the same inputs. Of course, the introduction of various estimates of the
volatility of the underlying assets could further improve results but this avenue
will not be pursued here. The interest rate is estimated by the parameter a in the
model with hint (7) but is absent from (6).10 Again, introducing the observed
interest rate could add useful information.

Hutchinson et al. (1994) also evaluated their pricing model in terms of hedging
performance. We compare the two families of neural networks, with and without
the hint, according to this criterion. We proceed in the same way as for the
MSPE criterion. We choose the best model on an intermediate validation period
and evaluate the forecasted average hedging error over a "nal prediction period.
We also present the percentage of options, in this "nal period, for which the
hedging error is less than the Black}Scholes hedging error.

9We also experimented with feedforward network models with 10 hidden units, but they were
never selected in the validation period.

10We impose the positivity of the corresponding parameter in the networks with hint.
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4. Learning with a homogeneity hint: A Monte Carlo experiment

To run our Monte Carlo experiment, we adopt a Black}Scholes framework.
The price of the underlying asset on which the option is written follows
a geometric Brownian motion:

dS
t
"kS

t
dt#pS

t
d=

t
.

We adopt the same setting as Hutchinson et al. (1994) with S
0
, the initial price

of the stock set equal to $50, k equal to 10% and a yearly volatility p to 20%. To
make our experiment comparable to our performance assessment strategy with
actual daily data, we simulate a year of daily-return data by drawing 253

random normal variates Z
t
with mean k/253 and standard deviation p/J253.

The price series MS
t
, t"1,2,253N is obtained as follows:

S
t
"S

0
expA

t
+
i/1

Z
iB.

Given this path of daily stock prices, we create stock options according to the
rules of the Chicago Board Options Exchange (CBOE), summarized in the
Appendix, and generate 3333 data points. As described in the previous section,
we train the two families of networks over the data points that correspond to the
"rst six months of the sample, which amounts to 1612 points in our experiment.
Given the estimated networks, we predict the option prices over the next three
months, a period which represents 916 data points. Based on these predicted
prices, we compute the MSPE over this validation period in order to select in
each family the network that delivers the lowest MSPE. We have now selected
two competing models, one for each family of neural networks, with and without
the homogeneity hint. We compute for each model the MSPE over the last part
of the sample which counts 805 data points.11 Since the estimation result of the
networks depends on the random seed from which initial values are drawn for
the parameters, we run this procedure "ve times.12 Table 1 presents the average
MSPE over the prediction period for each family of networks, along with the

11The out-of-sample forecast is therefore done over these 805 data points. Notice that the same
estimated parameters are kept for the whole period. Of course, in a real-time forecast exercise, the
networks should be reestimated as new information becomes available.

12For each experiment and each network (1}5 units for the networks with the homogeneity hint
and 1}9 units for the networks without the hint), we draw 200 sets of parameters starting from
di!erent seeds and select the set with the smallest mean squared error as the starting values for our
nonlinear least square estimation over the "rst half of the sample for each year. The number of units
reported in the table corresponds to the networks that obtained the lowest MSPE over the
validation period, averaged over the "ve runs.
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Table 1
Out-of-sample mean square prediction errors on simulated call option Black}Scholes prices
(Total sample: 1612, Validation sample: 916, Prediction sample: 805)

Statistics MSPE with hint MSPE no hint Ratio MSPE linear

x6 0.1708 (3) 0.2321 (6) 0.74 37.35
p 0.0623 0.0360 1.73
DM 20.57

Notes: This table presents the out-of-sample mean square prediction error (MSPE) performance
of a neural network with a homogeneity hint, a regular feedforward network with no hint, and
of a linear model for call option prices generated with the Black}Scholes formula. The table reports
the average (x6 ) of the "ve MSPEs corresponding to "ve networks estimated from di!erent seeds. The
average number of hidden units of the "ve runs are reported between parentheses next to the average
MSPEs. p is the standard deviation of the "ve MSPEs of the estimated networks. The Ratio is
the ratio between the corresponding statistics between the feedforward network model with hint and
without hint. DM refers to the Diebold and Mariano (1995) test for a mean loss di!erential. This test
statistic is distributed standard normal in large samples. All DM test statistics are calculated from
the loss di!erential of the mean square prediction errors between the feedforward network models
with and without the homogeneity hint. MSPE reported "gures have been multiplied by 105.

average complexity in parentheses, as well as the standard deviation over the
"ve experiments.

First, it should be noticed that the procedure selects in average a lower
complexity than the maximum hidden units allowed for both models. The
complexity is also roughly equivalent in terms of parameters for each family of
models. The average MSPE is about 20 percent lower for the model with hint.
To see if this di!erence is statistically signi"cant, we compute the Diebold and
Mariano (1995) test statistic (DM hereafter).13 This statistic tests the null
hypothesis of no di!erence in the forecasting accuracy of the two models. Given
that the statistic is distributed as a N(0, 1) variable, the value of 20.57 means that
the equality of the two forecasts is overwhelmingly rejected in favor of the model
with hint.

Hutchinson et al. (1994) argue that a more meaningful performance measure
for a given option pricing formula is the tracking error associated with a rep-
licating portfolio that delta-hedges an option position. The hedging ratios (the
derivative of the option price with respect to the stock price) are computed based
on the pricing formulas. To compute the tracking errors, we follow the proced-
ure described in detail in Hutchinson et al. (1994) and summarized in the
Appendix.

13With this statistic, forecast errors can be serially correlated and contemporaneously correlated.
The test statistic is computed by averaging the forecast error di!ererences of the 25 pairs of models
that result from the "ve estimations of each type of network.
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Table 2
Average hedging errors on simulated call option Black}Scholes prices
(Number of options hedged: 18)

Statistics AHE with hint %(BS AHE no hint %(BS Ratio AHE
linear

AHE
BS

x6 0.2153 (3) 0.21 0.2022 (7) 0.17 1.06 12.28 0.0874
p 0.0299 0.0086 3.50

Notes: This table presents the average hedging error (AHE) of a neural network with a homogeneity
hint, of a regular feedforward network with no hint, of the Black}Scholes model (BS) and of the
linear model for call option prices generated with the Black}Scholes formula. x6 corresponds to the
average of the "ve di!erent AHEs estimated networks from "ve di!erent seeds. The average number
of hidden units of the "ve runs are reported between parentheses next to the average AHEs. p is the
standard deviation of the "ve AHEs of the estimated networks. The column (%(BS) is the average
of the percentage of options where the delta hedging error was less than the BS delta hedging error.

An average hedging error is reported, where the average is computed across
all options hedged in the prediction sample. We also report the number of times
that e computed from the networks is less than the e obtained with the
Black}Scholes formula, as a percentage of the number of options hedged over
the prediction period. For computing the hedging performance, the sample is
split into three parts as we did for pricing. In the validation period though, for
reasons that we will elaborate on in the next section, we select as the best model
in each family of networks the one that minimizes the average hedging error and
not the MSPE. Table 2 reports the average tracking error over the "ve runs for
both models as well as the average complexity of the networks. Contrary to the
pricing performance, the networks without hint produce a slightly lower average
hedging error. As it was the case for pricing, the complexity is similar in both
networks. The percentage of cases where the hedging error is less than the
Black}Scholes hedging error is around 20% for both networks, which is ex-
pected since the Black}Scholes model is the true model and the only source of
error comes from discrete hedging. In the next section, we assess to what extent
these simulation results are con"rmed with actual data.

5. Assessment of the relevance of the homogeneity hint for pricing and hedging
S&P 500 call options

The data are daily S&P 500 Index European options obtained from the
Chicago Board Options Exchange for the period January 1987 to October 1994.
The S&P 500 index option market is extremely liquid and it is one of the most
active options markets in the United States. This market is the closest to the
theoretical setting of the Black}Scholes model. In constructing the data used in

R. Garcia, R. Genc7 ay / Journal of Econometrics 94 (2000) 93}115 105



the estimation, options with zero volume are not used. For each year, the sample
is split into three parts: "rst half of the year (training period), third quarter
(validation period) and fourth quarter (prediction period). One possible draw-
back of such a setup is that we will always evaluate the predictive ability of our
networks on the last quarter of the year. The advantage is that it will facilitate
comparison between years, especially with reference to the last quarter of 1987,
when a market crash occurred. Since our main purpose is to compare the
feedforward networks with and without the homogeneity hint, the last quarter
of each year is as good for prediction purposes as any other period. Moreover,
since our methodology for choosing the best architecture involves estimating
numerous networks for each family of models and repeating the estimation for
"ve di!erent seeds, it requires a lot of computation and forces us to limit
somewhat the scope of our investigation. In the next two subsections, we will
analyze the results in terms of predictive performance for pricing and hedging
respectively.

5.1. Pricing errors

The network pricing performance measure is the Mean Squared Prediction
Error (MSPE) in the prediction sample. Results are presented in Table 3. For
each year, we report the average MSPE obtained over the "ve experiments for
each family of networks, along with the average number of hidden units selected.
First, it should be observed that the average MSPE for the models with the
homogeneity hint (WH) is always smaller than the MSPE of the models with no
hint (NN). The average MSPE ratios of the models with and without hint for
1987 to 1993 are 46%, 89%, 98%, 92%, 93%, 92% and 72%, respectively.
Furthermore, the ratio of the MSPE standard deviations across the "ve experi-
ments substantially favours the model with the homogeneity hint. In most years,
this ratio is lower than 50%. The values of the DM statistic are all large and
positive, which means that we strongly reject the equality of the forecast errors
in favor of the feedforward neural networks with hint.

The performance of the linear and the Black-and-Scholes models are also
presented in Table 3. Not surprisingly, the linear model provides the poorest
performance in terms of MSPE. The MSPE performance of the Black and
Scholes (BS) model is signi"cantly better than the linear model but worse than
the feedforward network models. Over all years except 1987, the BS MSPE is
3}10 times larger than the feedforward networks. The result in 1987 might then
appear surprising. It is less so when one realizes that the BS model incorporates
information from the third quarter of the year that is not part of the training
sample of the networks. Indeed, the volatility in the BS model is based on the
stock returns over the last sixty days preceding the "rst day of the last quarter. If
we give a comparable information to the networks, in the sense that we train
them over the "rst nine months of 1987 and forecast the option prices over the
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Table 3
Out-of-sample mean square prediction errors of the SP500 call options
(1987, Total sample: 3610, Validation sample: 2010, Prediction sample: 2239)

Statistics MSPE with hint MSPE no hint Ratio MSPE linear/BS

x6 16.70 (3) 36.23 (6) 0.46 98.96/4.38
p 9.51 43.20 0.22
DM 7.86

(1988, Total sample: 3434, Validation sample: 1642, Prediction sample: 1479)

Statistics MSPE with hint MSPE no hint Ratio MSPE linear/BS

x6 0.7114 (4) 0.7959 (7) 0.89 8.41/2.07
p 0.0429 0.0931 0.46
DM 9.91

(1989, Total sample: 3052, Validation sample: 1565, Prediction sample: 1515)

Statistics MSPE wth hint MSPE no hint Ratio MSPE linear/BS

x6 0.4138 (4) 0.4206 (8) 0.98 3.75/1.42
p 0.0068 0.0160 0.43
DM 6.99

(1990, Total sample: 3605, Validation sample: 2075, Prediction sample: 2166)

Statistics MSPE with hint MSPE no hint Ratio MSPE linear/BS

x6 0.6761 (3) 0.7253 (6) 0.92 8.15/2.62
p 0.0763 0.1222 0.62
DM 5.04

(1991, Total sample: 4481, Validation sample: 1922, Prediction sample: 2061)

Statistics MSPE with hint MSPE no hint Ratio MSPE linear/BS

x6 0.3498 (4) 0.3775 (8) 0.93 3.45/1.73
p 0.0148 0.0336 0.44
DM 11.57

(1992, Total sample: 4374, Validation sample: 1922, Prediction sample: 1848)

Statistics MSPE with hint MSPE no hint Ratio MSPE linear/BS

x6 0.1511 (4) 0.1649 (7) 0.92 2.39/1.36
p 0.0115 0.0126 0.91
DM 14.97
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Table 3 (Continued)

Statistics MSPE with hint MSPE no hint Ratio MSPE linear/BS

(1993, Total sample: 4214, Validation sample: 1973, Prediction sample: 2030)

Statistics MSPE with hint MSPE no hint Ratio MSPE linear/BS

x6 0.1054 (4) 0.1453 (6) 0.72 2.28/0.74
p 0.0222 0.0498 0.44
DM 11.24

Notes: This table presents the out-of-sample mean square prediction error (MSPE) perform-
ance of a neural network with a homogeneity hint, a regular feedforward network with no hint,
and of a linear model for call option prices from the SP500 call options. The table reports
the average (x6 ) of the "ve MSPEs corresponding to "ve networks estimated from di!erent
seeds. The average number of hidden units of the "ve runs are reported between parentheses next to
the average MSPEs. p is the standard deviation of the "ve MSPEs of the estimated networks. The
Ratio is the ratio between the corresponding statistics between the feedforward network model with
hint and without hint. DM refers to the Diebold and Mariano (1995) test for a mean loss di!erential.
This test statistic is distributed standard normal in large samples. All DM test statistics are
calculated from the loss di!erential of the mean square prediction errors between the feedforward
network models with and without the homogeneity hint. MSPE reported "gures have been
multiplied by 104.

last quarter, the MSPEs are 6.50 and 4.11 for the NN and WH models
respectively. Therefore, with comparable information, the model with hint does
slightly better than the BS model in 1987. This emphasizes the fact that in Table
3 the BS model is given an informational advantage compared with the other
three models. The relative pricing performance of the networks is all the more
remarkable.

To investigate for which options the two types of networks di!er in their
out-of-sample pricing performance, we report in Table 4 the out-of-sample
MSPE for various categories of options based on maturity and moneyness for
the year 1993. The ratios of the means and standard deviations of the feedfor-
ward networks with and without the homogeneity hint are lowest for the two
ends of the spectrum, the short-term out-of-the money options and the long-
term in-the-money options. The networks predict with the least di!erence for
the medium-term near-the-money options. This breakdown of predictions
by maturity and moneyness emphasizes that the homogeneity hint appears
most useful to generalize out of sample when there are less observations in
the learning sample. The number of options in sample for each category
is very similar to the number reported for the prediction period. The results
reported for the year 1993 are representative of what is obtained for the other
years.
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Table 4
Out-of-sample mean square prediction errors per maturity and moneyness S&P 500 call options
} Year 1993

MSPE No. Mean Mean Ratio SD SD Ratio
]104 options no hint with hint no hint with hint

Short term
Out 128 0.0720 0.0492 0.68 0.0271 0.0149 0.55
Near 473 0.1168 0.0910 0.78 0.0155 0.0149 0.96
In 143 0.2160 0.2323 1.08 0.0834 0.0385 0.46

Medium term
Out 198 0.0292 0.0216 0.74 0.0068 0.0064 0.94
Near 409 0.0511 0.0503 0.91 0.0067 0.0060 0.92
In 72 0.1962 0.1907 0.97 0.0140 0.0176 1.25

Long term
Out 186 0.0672 0.0512 0.76 0.0131 0.0193 1.47
At 337 0.0526 0.0439 0.84 0.0118 0.0016 0.14
In 84 1.5109 0.8149 0.54 1.0780 0.3484 0.32

Notes: This table presents a comparison between the out-of-sample mean square prediction
error (MSPE) performance of a neural network with a homogeneity hint (WH) and of a
regular feedforward network (NN) for S&P 500 European call options of di!erent maturity and
moneyness. The means and standard deviations are computed over "ve MSPEs obtained from "ve
estimated networks starting from "ve di!erent seeds. The maturity cuto! points are: less than 0.1
(short term), between 0.1 and 0.2 (medium term), above 0.2 (long term). The moneyness cuto! points
are: less than 0.97 (out of the money), between 0.97 and 1.05 (near the money), above 1.05 (in the
money).

To conclude this assessment of the pricing performance of the competing
feedforward network models, we can safely say that the networks with hint
predict better than the networks without hint.

5.2. Average hedging errors

Does a good pricing model produce a small average hedging error? One
certainly gets this impression when looking at the results in Hutchinson et al.
(1994). However, it should be remembered that they keep the architecture of the
learning networks "xed. There was no procedure to select the optimal number of
units. To answer the question in our setting, let us evaluate the average hedging
error that would be obtained when the best pricing models selected in the
previous section are used to compute the delta hedging ratios. In the last quarter
of the year 1988, the model without hint would have produced an average
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hedging error over the "ve runs greater than 30, compared with 4.50 for
the linear model. The model with hint does much better comparatively
with an average hedging error of 3.80. Still, both feedforward network models
fail to do better than the BS model. The same pattern emerges for the other
years.

Then, the best model in terms of out-of-sample pricing performance is not
necessarily a good tool to delta hedge a portfolio. This result might suggest that
one should train the networks based on the performance criterion ultimately
used. The idea is basically the same as the objective-driven inference concept
introduced by GourieH roux et al. (1994) and has also been put forward in the
learning network literature (see Bengio, 1996). However, it might be numerically
di$cult to estimate the parameters of the networks by minimizing an average
hedging error criterion. We therefore suggest below a computationally easier
route.

The networks are still trained by minimizing a mean square criterion over the
"rst half of the sample, as we did in the previous section. However, in the
validation phase over the third quarter of each year, we choose as best models
among the two families of feedforward network models the ones that minimize
the average hedging error. The average number of units for the selected models
appear in parentheses on the average performance x6 line in Table 5. It should be
noticed that the models selected are more parsimonious than the models
selected on a pricing criterion. For the feedforward networks without hint, the
average number of units is either 4 or 5, while it was close to 7 for the pricing
criterion (see Table 3). Similarly, for the networks with the homogeneity hint, the
average is close to 3 units instead of 4.

Based on this selection procedure on a hedging criterion over the validation
sample, the hedging performance of the selected models is evaluated for the
options traded in the last quarter of the year. Contrary to what was obtained for
the MSPE performance criterion, the ratios of the average hedging errors
between the two families of feedforward neural networks are very close to one in
most years. Therefore, the result found in the simulation exercise based on
Black}Scholes prices is con"rmed in the data. However, the standard deviation
of the average hedging error over the "ve runs is often much smaller for the net-
works with the homogeneity hint, except in 1991. This result shows that the
models with hint produce a more consistent hedging performance. The average
hedging errors of the networks with the homogeneity hint are more stable across
di!erent starting values of the nonlinear optimizers and models with di!erent
numbers of hidden units.

It should also be emphasized that both feedforward neural networks are
better for hedging than the BS model as the ratio is as low as 67% in 1991. This
is also re#ected in the percentages of options for which the AHE of the networks
is less than the BS AHE. This statistic is always greater than 50% and ex-
ceeds70% in 1991.
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Table 5
Average hedging errors on SP500 call options
(1988, Number of options hedged: 110)

Statistics AHE %(BS AHE %(BS Ratio AHE AHE
with hint no hint BS linear

x6 1.5911 (3) 0.5764 1.9901 (5) 0.5036 0.80 1.8433 4.5110
p 0.0507 0.6183 0.08

(1989, Number of options hedged: 108)

Statistics AHE %(BS AHE %(BS Ratio AHE AHE
with hint no hint BS linear

x6 3.014 (3) 0.5463 2.8060 (5) 0.5685 1.07 3.2343 4.7572
p 0.1335 0.3255 0.41

(1990, Number of options hedged: 132)

Statistics AHE %(BS AHE %(BS Ratio AHE AHE
with hint no hint BS linear

x6 2.6260 (3) 0.5818 2.6175 (4) 0.6091 1.003 3.2422 6.6553
p 0.1266 0.5865 0.22

(1991, Number of options hedged: 131)

Statistics AHE %(BS AHE %(BS Ratio AHE AHE
with hint no hint BS linear

x6 1.6844 (4) 0.7267 1.7349 (5) 0.7023 0.97 2.5043 4.6615
p 0.1974 0.07 2.69

(1992, Number of options hedged: 100)

Statistics AHE %(BS AHE %(BS Ratio AHE AHE
with hint no hint BS linear

x6 2.2100 (2) 0.5780 2.2406 (4) 0.6060 0.99 2.4522 5.8540
p 0.0848 0.1055 0.80

(1993, Number of options hedged: 145)

Statistics AHE %(BS AHE %(BS Ratio AHE AHE
with hint no hint BS linear

x6 1.4259 (3) 0.5324 1.4470 (4) 0.5255 0.99 1.5046 2.8114
p 0.0212 0.0934 0.23

Notes: This table presents the average hedging error (AHE) of a neural network with a homogeneity hint,
of a regular feedforward network with no hint and the linear model from the SP500 call options. x6 cor-
responds to the average of the "ve di!erent AHEs estimated networks from "ve di!erent seeds. The average
number of hidden units of the "ve runs are reported between parentheses next to the average AHEs. p is the
standard deviation of the "ve AHEs of the estimated networks. The column (%(BS) is the average of the
percentage of options where the delta hedging error was less than the BS delta hedging error.
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6. Conclusions

In this paper, we show that pricing accuracy gains can be made by exploiting
the implications of the homogeneity property of the options prices in a neural
network framework. Instead of setting up a learning network mapping the ratio
S
t
/K and the time to maturity (q) directly into the derivative price, we break

down the pricing function into two parts, one controlled by the ratio S
t
/K, the

other one by a function of time to maturity. The results indicate that the
homogeneity hint always reduces the out-of-sample mean squared prediction
error compared with a feedforward neural network with no hint. Our study
con"rms that the feedforward network models provide smaller delta-hedging
errors relative to the Black-and-Scholes model, but does not reveal any signi"-
cant di!erence between the feedforward network models themselves. However,
the hedging performance of the networks with hint appears to be more stable
across the estimated models.

The study of the average hedging error showed that the performance cri-
terion should be taken into account to select the best models. In Hutchinson
et al. (1994) the model selection issue was not dealt with as the complexity
of the learning networks was "xed. In practice, the complexity of the
model is always chosen based on various criteria such as information criteria or
out-of-sample prediction errors. Naturally, the same idea will apply to another
important use of the estimated pricing function which is the extraction of the
risk neutral density. Estimating this density involves computing the second
derivative of the option pricing function with respect to the strike price. The
selection of the best pricing model might cause a poor estimation of the
derivatives of the option pricing function and a!ect negatively the estimation of
the hedging ratio or of the risk neutral density. These issues will be investigated
in future research.

Appendix A

A.1. Rules for creation of the options

Stock options are on a January, February, or March cycle. The January cycle
consists of the months of January, April, July, and October. The February cycle
consists of the months of February, May, August, and November. The March
cycle consists of the months of March, June, September, and December. If the
expiration date for the current month has not yet been reached, options trade
with expiration dates in the current month, the following month, and the next
two months in its cycle. If the expiration date of the current month has passed,
options trade with expiration dates in the next month, the next-but-one month,
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and the next two months of the expiration cycle. When one option reaches
expiration, trading in another is started.

To set the strike prices at which options can be written, the rule followed by
the exchange is to use a $5 spacing when the stock price is between $25 and $200.
When options expire, a new expiration date is introduced. The two strike prices
closest to the current stock price are usually selected by the exchange. If one of
these is very close to the existing stock price, the third strike price closest to the
current stock price may also be selected. If the stock price moves outside the
range de"ned by the highest and the lowest strike price, trading is usually
introduced in an option with a new strike price. We set the price of each option
according to the Black}Scholes formula.

A.2. Procedure for computing the tracking errors

At date 0, we make up a portfolio by selling one call option and simulta-
neously purchasing D (the derivative of the option pricing function with respect
to the stock price) shares of stock. Since the stock purchase is "nanced through
the sale of the option and riskless borrowing, the value of the portfolio at time
0 is zero:

<(0)"<
S
(0)#<

B
(0)#<

C
(0)"0,

where<
S
(0), <

B
(0), and <

C
(0) are the values of stocks, bonds and options at time

0. At any time t, the value of the portfolio is given by

<(t)"<
S
(t)#<

B
(t)#<

C
(t).

We want to evaluate the value of the portfolio at time ¹, that is the di!erence
between the terminal value of the option and the value of the positions in bonds
and stocks. To make this measure comparable over all options hedged in a given
sampling period, we take the present value of its absolute value. For a particular
option, the tracking error is therefore given by

e"e~rTD<(¹)D.

The value of the stock position <
S
(¹) is equal to S(¹)D, where D is the delta

hedge ratio corresponding to the option pricing formula. In our comparison, we
assess the average tracking error of four models: the neural networks with and
without the homogeneity hint, the linear model and the Black}Scholes model.
Even if we generate our option prices according to the Black}Scholes model,
there is a tracking error for this latter model caused by the fact that our hedging
strategy is discrete and not continuous. For the linear model, D is the estimated
parameter of the variable S

t
/K in the regression of C

t
/K on a constant, the ratio
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S
t
/K and the time to maturity of the option. For the Black}Scholes model, it is

given by '(d
1
), where ' is the standard normal cumulative distribution function

and

d
1
"

ln(S
t
/K)#(r#p2/2)¹

pJ¹

.

The value of the bond position <
B
(¹) is constructed by recursion. We start

with <
B
(0) from the equation above and compute recursively for each period

until ¹

<
B
(t)"exp(r)<

B
(t!1)!S(t)(D(t)!D(t!1)).
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