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a  b  s  t  r  a  c  t

Common  spatial  pattern  (CSP)  method  is  widely  used  in  brain  machine  interface  (BMI)  applications  to
extract  features  from  the  multichannel  neural  activity  through  a set  of  spatial  projections.  These  spatial
projections  minimize  the  Rayleigh  quotient  (RQ)  as the  objective  function,  which  is the  variance  ratio  of
the  classes.  The  CSP  method  easily  overfits  the  data  when  the number  of  training  trials  is not  sufficiently
large  and  it is sensitive  to  daily  variation  of  multichannel  electrode  placement,  which  limits  its  applicabil-
ity for  everyday  use  in BMI  systems.  To  overcome  these  problems,  the  amount  of channels  that  is  used  in
projections,  should  be  limited  to some  adequate  number.  We  introduce  a spatially  sparse  projection  (SSP)
method  that  exploits  the  unconstrained  minimization  of  a new  objective  function  with  approximated  �1
parse spatial projections
ayleigh quotient
nconstrained optimization

penalty.  Unlike  the  RQ,  this  new  objective  function  depends  on the  magnitude  of  the  sparse  filter.  The
SSP  method  is employed  to  classify  the  multiclass  ECoG  and  two  class  EEG  data  sets.  We  compared  our
results with  a recently  introduced  sparse  CSP  solution  based  on  �0 norm.  Our  method  outperforms  the
standard  CSP  method  and  provides  comparable  results  to �0 norm  based  solution  and  it  is  associated
with  less  computational  complexity.  We  also  conducted  several  simulation  studies  on the  effect  of noisy
channel  and  intersession  variability  on the  performance  of  the  CSP  and  sparse  filters.
. Introduction

The BMI  technology aims to help disabled people to establish
ommunication with their environment solely by their brain sig-
als. With the recent advances in electrode design and recording
echnology, the number of recording channels used in BMI  appli-
ations is increasing to capture signals from a larger area of the
rain or to get more information from smaller regions using dense
lectrode grids. Therefore, a dimension reduction algorithm needs
o be employed to decrease the correlation between channels and
mprove the signal to noise ratio (SNR). In this scheme, the CSP algo-
ithm is widely used due to its simplicity and lower computational
omplexity to extract features from high-density recordings both
sing noninvasive and invasive modalities [1,2].

Despite the benefits of the CSP method, it also has a number

f drawbacks. One major problem of the CSP is that it gener-
lly overfits the data when it is recorded from a large number
f electrodes and when there is limited number of train trials.
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Moreover, the chance that CSP uses a noisy or corrupted channel is
linearly increased with increasing number of recording channels.
Robustness over time is also a major drawback in CSP applications
[3,4]. Since all channels are used in spatial projections of CSP, the
classification accuracy may  reduce in case the electrode locations
slightly change in different sessions. This requires almost identical
electrode positions over time, which is difficult to realize [5]. The
sparseness of the spatial filter might have an important role to
increase the robustness and generalization capacity of the BMI
system.

The CSP method minimizes the Rayleigh Quotient (RQ) of the
spatial covariance matrices to achieve the variance imbalance
between the classes of interest. The RQ is defined as

R(w) = wT Aw

wT Bw
(1)

where A and B are the spatial covariance matrices of two  different
classes and w is the spatial filter that we want to find. One way  to
reduce the number of channels used in the projection w,  is to trans-

form the CSP algorithm into a regularized optimization problem in
the form of

L(w) = R(w) + �||w|| (2)
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here R(w) is the objective function, ||w|| is the �1 norm based
enalty and � is a constant that controls the sparsity of the solution.

n the past few years, there is growing interest in using �1 penalty
o construct sparse solutions. However, RQ does not depend on
he magnitude of the sparse filter. Therefore, RQ cannot be directly
sed in a norm based minimization problem, since the optimizer
lways minimizes the norm along the direction which RQ has been
inimized.
A number of studies investigated putting the CSP into alterna-

ive optimization forms to obtain a sparse solution for it. In [6] the
uthors converted CSP into a quadratically constrained quadratic
ptimization problem with �1 penalty; others used an �1/� 2 [3,7]
orm based solution. These studies have reported a slight decrease
r no change in the classification accuracy while decreasing the
umber of channels significantly. Recently, in [8] quasi �0 norm
ased criterion was used for obtaining the sparse solution which
esulted an improved classification accuracy. Since �0 norm is
on-convex, combinatorial and NP-hard, they implemented greedy
olutions such as Forward Selection (FS) and Backward Elimination
BE) to decrease the computational complexity. It has been shown
hat BE was better than FS (less myopic) in terms of classification
rror and sparseness level but associated with very high complexity
aking it difficult to use in rapid prototyping scenarios.
In this paper, we construct a computationally efficient spatially

parse projection (SSP) based on a novel objective function with
imilar characteristics to RQ. This new objective function can be
inimized in the form of (2) to address the drawbacks of regu-

ar CSP method. We  show that our new objective function has the
ame minimization solution as RQ and it depends on the magni-
ude of the spatial filter. The magnitude dependency of our new
bjective function allows us to use a continuous and differentiable
unction approximating �1 norm [9] as regularization term in an
nconstrained optimization framework and can be solved using
tandard algorithms with low complexity. The rest of the paper
s organized as follows. In the following section, we describe our
ovel objective function and its relation to RQ. Then we  explain

ts use in an unconstrained optimization problem. Next, we apply
ur method on the BCI competition IV ECoG dataset involving indi-
iduated movements of five fingers [10] and the BCI competition
II EEG dataset IVa [11] involving imaginary foot and hand move-

ents. We  also compare our method to standard CSP and the �0
orm based BE solution given in [8].  Finally, we studied the effect
f additional Gaussian noise and simulated channel displacements
n the classification accuracy and discuss our results and provide
uture directions.

. Materials and methods

.1. Standard CSP and a new objective function

In the CSP framework, the spatial filters are a weighted linear
ombination of recording channels, which are tuned to produce
patial projections maximizing the variance of one class and mini-
izing the other. The spatial projection is computed using

CSP = WT X (3)

here the columns of W are the vectors representing each spatial
rojection and X is the multichannel ECoG data.

Maximizing the RQ (1) is identical to the following optimization
roblem.

maximize wT Aw

w

subjectto wT Bw = 1.
(4)

After writing this optimization problem in the Lagrange form
nd taking the derivative with respect to w, we obtain the identical
sing and Control 8 (2013) 282– 288 283

problem in the form of Aw = �Bw which is the Generalized Eigen-
value Decomposition (GED). The solutions of this equation are the
joint eigenvectors of A and B and � is the associated eigenvalue of
a particular eigenvector.

The drawbacks of the CSP method that are described earlier lead
us to find a way to sparsify the spatial filter to increase the classi-
fication accuracy and the generalization capability of the method.
We assume that the discriminatory information is embedded in a
few channels where the number of these channels is much smaller
than the actual number of all recording channels. So the discrimi-
nation can be obtained with a sparse spatial projection, which uses
only informative channels. In this scheme assume that the data was
recorded from K channels. We  are interested in obtaining a sparse
spatial projection using an unconstrained minimization problem in
the form of (2),  where w has only k nonzero entries, card(w) = k and
k � K. We note that the R(w) does not depend on the magnitude of
w, as shown in the following equation. Let w∗ = ˛w,  then

R(w∗) = R(˛w) = ˛2wT Aw

˛2wT Bw
=  R(w) (5)

where  ̨ is any scalar which is not equal to zero. Since R(w) does
not depend on the gain of w, the optimizer arbitrarily reduces the
gain of w to minimize regularization term �||w|| after finding the
direction that minimizes R(w). Thus, the solution of the optimiza-
tion problem that uses R(w) as an objective function is essentially
the same as the GED solution.

To find a sparse solution we  need to have an objective function
that depends on the gain of w. In this scheme, we replaced R(w)
with the following objective function.

G(w) = wT Aw + 1
wT Bw

(6)

This function is bounded from below and has interesting prop-
erties. Let us define a = wT Aw and b = wT Bw. If we define RQ in
terms of a and b such that R = a/b then our new objective function
can be expressed as

G(w) = a + 1
b

= ab

b
+ 1

b
= Rb + 1

b
(7)

The derivative of G(w) with respect to R is equal to b which
is always positive. This indicates that our objective function G(w)
decreases with a decrease in R value. After taking the derivative of
G(w) with respect to b and solving Eq. 8,

∂G(w)
∂b

= R − 1
b2

= 0 (8)

we note that b is equal to
√

R−1. By inserting b value into the Eq.
7 we  obtain the minimum value of G(w) as 2

√
R. This result shows

that the direction that minimizes R also minimizes G(w).
We plug G(w) into unconstrained optimization formulation in

(2) as the objective function. Rather than working to solve (2) with
a non-differentiable �1 penalty, we  replaced it with a twice differ-
entiable smooth version of �1 (epsL1) which is sufficiently close
to minimizing �1 [9].  The main advantage of this approach is that,
since epsL1 and G(w) are both twice differentiable we can directly
apply an unconstrained optimization method to minimize L(w)
[12]. The epsL1 is defined as

||w|| =
K∑

i=1

√
w2

i
+ � (9)

where � is a sufficiently small parameter and K is the dimension

of w. The epsL1 approximates the �1 norm and they are identical
when � is equal to zero. Twice differentiability of the epsL1 norm
allows us to use it when wi is equal to zero unlike the regular �1
norm which is not differentiable at zero.
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Table 1
ECoG dataset classification error rates (%) for each subject using SVM classifier.

Cardinality Subject 1 Subject 2 Subject 3 Avg

BE 5 19.8 17.1 16.8 18

optimum cardinality as 10 in the training data.
On all subjects we  studied, we observed that the SSP method

consistently outperformed the CSP method. We  noted that the min-
imum error rate was obtained with SSP method for ECoG data. Both

Table 2
EEG dataset classification error rates (%) for each subject using SVM classifier.
84 I. Onaran et al. / Biomedical Signal P

The solution w that minimizes the function L(w) = G(w) + �||w||
ends to become sparse as � gets bigger. The entries of w gen-
rally were not exactly equal to zero, so we normalized w to its
aximum absolute value and eliminated the weights consequently

orresponding channels that do not exceed a predefined threshold
=10−2). We  used “fminunc” function of Matlab to find the solu-
ion of our unconstrained minimization problem. We  computed the
esired cardinality which is the number of channels to be selected
or the spatial projection by implementing a bisection search [13]
n the �. The upper border of � was determined initially using the
(wc)/||wc || ratio where wc is the full CSP solution. In case the initial
pper border results a cardinality larger than the desired value, we
ept doubling the � parameter until we obtained a � that results a
ardinality which is less than or equal to the target value.

Following the above procedure, we computed the first spatial fil-
er w that minimizes the G(w) which also minimizes the R(w). The
olution that maximizes R(w) is also a useful spatial filter. There-
ore, we interchanged the matrix A and B to find a solution that

aximizes R(w). In order to find multiple sparse filters we  deflated
he covariance matrices with sparse vectors using the Schur com-
lement deflation method described in [14].

.2. ECoG & EEG datasets

We applied the SSP method on two different datasets, multiclass
CoG and two class EEG of BCI competitions IV and III respectively.

The ECoG data was recorded from three subjects during finger
exions and extensions [10] with a sampling rate of 1 kHz. The elec-
rode grid was placed on the surface of the brain. Each electrode
rray contained 48 (8 × 6) or 64 (8 × 8) platinum electrodes. The
nger index to be moved was shown with a cue on a computer
onitor. The subjects moved one of their five fingers 3–5 times

uring the cue period. The ECoG data of each subject was subband
ltered in the gamma frequency band (65–200 Hz) as in [15]. We
sed 1 s data following the movement onset in the analysis. The
ataset contains around 146 trials for each subject.

We also used the BCI competition III dataset IVa [11]. The dataset
s recorded from five subjects (aa, al, av, aw,  ay) who were asked
o imagine either right foot or right index finger movements. The
ampling rate of the data was 1 kHz and data was recorded from
18 channels. The EEG signal was filtered in the range of 8–30 Hz.
here were 140 trials available for each class. Once again, 1 s data
ollowing the cue was used in the analysis.

For both ECoG and EEG datasets, the signal was  transformed
nto four spatial filters by taking first and last two  eigenvectors for
ach CSP methods. After computing the spatial filter outputs, we
alculated the energy of the signal and converted it to log scale for
ach sparse filter and we used them as input features to lib-SVM
lassifier with an RBF kernel [16]. We  also investigated the efficacy
f using Linear Discriminant Analysis (LDA) classifier [17] which is
arameter free decision function.

Since we are tackling a multiclass problem for the ECoG dataset,
e used the pairwise discrimination strategy of [2] to apply the
SP to the five-class finger movement data. In other words, we
onstructed sparse spatial filters tuned to contrast pairs of finger
ovements such as 1 vs. 2; 1 vs. 3; 2 vs. 4, etc.
In each dataset, we compared the SSP to the standard CSP and to

he �0 norm based BE method of [8] as it provided superior results
n terms of classification accuracy and reduced cardinality. We
tudied the classification accuracy as a function of cardinality. On
he training data with the purpose of finding optimum sparseness
evel for the classification, we computed several sparse solutions,
ith decreasing cardinality. For the ECoG dataset, the sparse CSP
ethods were employed with k ∈ {40, 30, 20, 15, 10, 5, 2, 1}. For

he EEG dataset, we computed the sparse filters with k ∈ {80, 60,
0, 30, 20, 15, 10, 5, 2, 1}. For each cardinality, we  computed the
SSP 5 18.4  13.4 18 17
CSP All 30.7 26 32.8 30

corresponding RQ value. We  studied the inverse of the RQ (IRQ)
curve and determined the optimal cardinality where its value sud-
denly dropped indicating we started to lose informative channels.

For the ECoG dataset, half of the trials were used in training and
the remaining half for testing. In average, we  used 15 ± 2 train trials
per finger (the thumb, index, middle, ring and little fingers respec-
tively). The EEG dataset contains 140 trials per class and subject.
We  used 70 trials in training to estimate the sparse filters, and
70 trials for testing. In both datasets, the value of the � in epsL1
regularization term was  chosen to be 10−6.

3. Results

We  observed that for the SSP method, any particular � value can
lead to different cardinality and normalized IRQ values for different
subjects as shown in Fig. 1. In particular, this inter subject variabil-
ity of IRQ did not allow us to use the same � value for all subjects
(See Fig. 1a and b). However, the variability of IRQ values of differ-
ent subjects was lower when we  fixed the cardinality as shown in
Fig. 1e and f. Consequently, due to this reduced variability and to
compare our method to the BE technique, we  studied the classifi-
cation error as a function of cardinality. In order to decide on the
optimal cardinality level to be used on the test data, the IRQ val-
ues were computed on the training data, scaled to their maximum
value and averaged over subjects. In the following step, we com-
puted the slope of the IRQ curve and normalized it to its maximum
value to get an idea about the relative change in the IRQ.

We  depicted the change in IRQ values for each cardinality as
shown in Fig. 2a and b. As expected, decreasing the cardinality of
the spatial projection resulted to a decrease in the IRQ value. To
determine the optimum cardinality to be used in classification on
the test data, we selected the cardinality that is below 10% of the
maximum relative change (see the dashed lines in Fig. 2a and b). For
the ECoG dataset, the cardinality value was found to be 5 and for the
EEG data set, it was  found to be 15 for the SSP method. For the BE
method these values were 5 and 10 respectively. These indices per-
fectly corresponded to the elbow of the IRQ curve, which indicates
loss of informative channels. In Tables 1 and 2, we provide the clas-
sification results and selected cardinalities for the ECoG and EEG
data set using different methods including SSP, CSP and �0 based
greedy solution, BE. In order to give a flavor about the change in
error rate versus the cardinality, we provided the related classi-
fication error curves in Fig. 2c and d. For the ECoG data selected
cardinality provided minimum test errors. However, for the EEG
data, although the minimum classification error was obtained at
cardinality 5 for the BE method, we noticed that we  identified the
Cardinality aa al av aw ay Avg

BE 10 13.6 2.9 30.7 2.1 5.0 10.9
SSP  15 19.3 1.4 23.6 4.3 5.7 10.9
CSP 118 23.6 3.6 32.1 2.9 11.4 14.7
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ig. 1. Normalized IRQ values are shown in (a) for ECoG and in (b) for EEG data. Th
EG  data for each subject. The vertical lines indicate the � values that are initially c
egular  CSP solution. The normalized IRQ values vs. cardinality for each subject is sh

SP and BE methods used cardinality of 5 to achieve the minimum
rror rate. As expected the full CSP solution did not perform as good
s the other sparse methods and likely overfitted the training data.
he SSP method improved the classification error rate with an error
ifference of 13.2%. We  obtained comparable results on EEG data
sing the SSP and BE methods (p-value =0.5, paired t-test), how-
ver BE provided a significant improvement over SSP method on
he number of channels (p-value = 0.003) used in spatial projection.
he error difference between regular CSP and SSP is less appar-
nt in the EEG dataset where the difference between classification
ccuracies was 3.8%. This could be due to the high number of train-
ng trials used in EEG data. We  studied the effect of the amount
f training data on the classification accuracy and presented the
esults in Fig. 4a. When a small number of training trials, as low as
5 are used in the EEG dataset, the difference between the sparse
nd standard CSP technique was more than 6%. Interestingly, with
ncreasing number of training trials the SSP method consistently
rovided better results and the difference remained between 3 and
%. There was no noticeable difference between SSP and BE.

The classification results obtained with LDA classifier are given
n Table 3. We  observed that the LDA classifier which does not
nvolve parameter selection like SVM, provided slightly higher

rror rates for the sparse solutions. This could be due to nonlin-
ar decision surface and maximum margin identified by the SVM
lassifier. Interestingly, in both datasets, the LDA classifier resulted
n lower error rates with the non-sparse CSP solution.

able 3
verage test error rate (%) and corresponding cardinality.

ECoG EEG

BE SSP CSP BE SSP CSP

LDA 19.9 18.9 24.1 11.4 11.1 14.3
SVM  17.9 16.6 29.8 10.9 10.9 14.7
Cardinality 5 5 All 10 15 All
inality vs � value of the minimization function L(ω) = G(ω)+ � ‖ ω ‖ (c) ECoG and (d)
 for bisection search. The initial data point corresponds to � = 0 which produces the
in (e) and (f).

Fig. 3 illustrates the distribution of the spatial filters obtained
using SSP and CSP algorithms for all subjects. We  observed that
the SSP filter coefficients are localized on the left hemisphere and
the central area, which is in accordance with the cortical regions
related to right hand and the foot movement generation.

Arvaneh et al. [7] used the �1/� 2 ratio as a penalty term
and they applied their algorithm to the BCI competition III
EEG dataset IVa [11] which we used in this paper as well.
They achieved a mean error rate of 17.7± 15.4 % using 22.6 ± 11
channels. Here, we compared our method with the study of
Arvaneh et al. by extracting one filter from each end of the
sparse solutions. The SSP method achieved a mean error rate
of 12± 11.3 % with an average number of channels 25.6 ± 2.3.
The obtained results indicated that the SSP method provided
a significant improvement (p-value = 0.024, paired t-test) over
the �1/� 2 based algorithm on the classification accuracy without
any significant difference between number of channels used (p-
value = 0.28).

In order to compare the computational complexity of SSP
method to the BE, we  computed sparse filters with a cardinality of
two  from an increasing number of recording channels on simulated
data. The training was performed on a regular desktop computer
with 4 GB of RAM and equipped with a CPU running at 2.66 GHz.
The elapsed time per filter computation increased exponentially
for the BE method and linearly for the SSP method as shown in
Fig. 4b. With 128 channels, the BE algorithm computed a single
spatial filter with two nonzero entries in 90 s. For the SSP method
with the same setup above, the elapsed time was less than a sec-
ond. Although, we used the relative change in the IRQ to identify
the optimum sparsity level, one can also run a typical k-fold cross
validation procedure to identify the optimum level. However, in

such a case training the system with BE method will take several
hours which may  not be feasible for BMI  applications. On the other
hand with the SSP method training through cross validation can be
executed in a few minutes.
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In order to evaluate the effect of noise and intersession variabil-
ty on the performance of our approach we studied two different

ontrolled experiments:

i Adding Gaussian noise to a randomly selected channel in ECoG
and EEG data.

Fig. 3. The CSP and SSP filters for hand and foot movement imagination.
15 respectively. The classification error curves of SSP and BE methods versus the
he results obtained from standard CSP which uses all channels. (For interpretation

f the article.)

ii Simulation of electrode displacement in EEG data.

During the first experiment, we  added zero mean Gaussian noise
to one of the channels and calculated the resulting classification
error to obtain final classification accuracy for the noisy data. This
experiment was  repeated for all channels and then the resulting
average classification error was  computed. The variance of the addi-
tional noise was  increased in a controlled manner and proportional
to the average variance of all channels. The ratio of the noise to
the variance of the original data was named as noise to signal plus
noise ratio (NSNR) since the original signal already contaminated
from different noise sources. In Fig. 5, we depicted the classifica-
tion accuracy vs. NSNR which was  expressed in Decibel scale. It was
noted that an increase in NSNR caused error to increase for all meth-
ods, however the increase in CSP method was  more than the sparse
filters. While using the sparse methods in the ECoG data, the classi-
fication error reached a plateau after 5 dB whereas the standard CSP
error increased monotonically. A similar behavior was observed in
the EEG data.

In the second experiment, in order to study intersession vari-
ability we simulated electrode displacements by interpolating the
EEG test data at different positions. Since electrode locations for
the ECoG data were not available, we conducted this experiment

with the EEG data only. We  randomly determined the direction and
the amount of displacement of the new electrode locations. To be
more realistic, we introduced displacement which was  uniformly
distributed over 118 electrodes varying between 0 and 50% of the
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istance to the nearest electrode as shown in Fig. 6a. The testing of
lgorithms was conducted on the interpolated EEG data on the dis-
laced electrode locations. The classification results vs. cardinality

s shown in Fig. 6b. It was noted that the error change for CSP, BE
nd SSP methods are 13%, 12% and 10%, respectively. The increase
n error rate was not as severe as in the previous noise contami-
ated channel experiment. The sparse methods had slightly lower

rror increase than the standard CSP. Initially, it was  expected that
he sparse methods would not be this vulnerable to displacement
n the electrode locations. At this point, we speculate that the
moothness of the projections have a certain advantage on the
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ssification accuracy for (a) ECoG and (b) EEG sets.

displaced electrodes. For instance, due to sparseness, it is likely that
the shifted electrode locations are weighted with zero. This makes
the sparse projections discard the shifted channels that fall outside
the projection zone. In contrary, the standard CSP is associated
with some sort of smoothness and many crucial channels, although
displaced, could still be projected with similar weights due to the
correlated distribution. Consequently, it should be noted that not

only sparseness but also smoothness of projections could be an
important parameter contributing to the generalization capability
of the methods. Never the less, once again we  need to highlight
that, the increase in error rate was  lower for the sparse methods.
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. Conclusion

The need for the sparse filters is apparent when there is large
umber of recording electrodes and insufficient amount of training
ata. To minimize overfitting on the training data and eliminate
oisy channels, we introduced a spatially sparse projection tech-
ique (SSP) based on a novel objective function. Unlike the RQ,
his new objective function has a dependency on the filter magni-
ude. By using an approximated �1 norm, we computed the sparse
patial filters through an unconstrained minimization formulation
ith standard optimization algorithm. We  applied our method to

CoG and EEG datasets and compared its efficiency to standard
SP, and to a �0 norm based greedy technique. The SSP method
utperformed the standard CSP on both datasets and provided
omparable results to �0 norm based method, which is associ-
ted with higher computational complexity. On the ECoG data, the
SP method provided 44% decrease in the error rate compared to
tandard CSP method and used only five channels in each spatial
rojection. The error difference between regular CSP and SSP is less
pparent in the EEG dataset as SSP method provided 26% decrease
n the error rate. In contrary to the ECoG data, we also observed
hat more channels were used to achieve minimum classification
ccuracy in the EEG dataset. This could be due the low spatial res-
lution originating from the volume conduction and low SNR of
he EEG. Nevertheless, the SSP algorithm was able to reach a mini-

um  error rate with only 15 channels. Our results indicate that SSP
ethod can be effectively used to extract features from both EEG

nd ECoG datasets with large number of recording channels. We
ote that the sparse methods provided superior results compared
o the standard CSP when there is a noisy/corrupted channel in the
est data. In another setup where displaced channels were used to
imulate intersession variability, we note that the sparse methods
ad slightly better robustness than the standard CSP. These obser-
ations indicate that the sparse spatial projection framework can
e effectively used as a robust feature extraction engine of future
CI systems.
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