Characterization of Zr$_6$Nb$_2$O$_{17}$ synthesized by a peroxo route as a novel solid acid

Margarita Kantcheva *, Hülya Budunoğlu, Olga Samarskaya

Laboratory for Advanced Functional Materials, Department of Chemistry, Bilkent University, 06800 Bilkent, Ankara, Turkey

Received 23 July 2007; received in revised form 7 September 2007; accepted 14 September 2007

Available online 20 September 2007

Abstract

The impregnation of hydrated zirconia at pH ~0.5 with a solution of peroxoniobium(V) complex, [Nb$_2$(O$_2$)$_3$]$^{4+}$, ensuring a ZrO$_2$:Nb$_2$O$_5$ mole ratio of 6:1 followed by calcination at 873 K resulted in the formation of a Zr$_6$Nb$_2$O$_{17}$ solid solution. The structure of this compound was confirmed by XRD. The surface acidity was investigated by in situ FT-IR spectroscopy using 2,6-dimethylpyridine (lutidine). Zr$_6$Nb$_2$O$_{17}$ has a sufficient amount of Brønsted acid sites necessary for the stabilization of dispersed Pd(II) species. The potential of the Pd-promoted Zr$_6$Nb$_2$O$_{17}$ as a catalyst for the reduction of NO with methane was evaluated by studying the reactivity of adsorbed NO$_x$ species toward the hydrocarbon.

Keywords: Zr$_6$Nb$_2$O$_{17}$; Synthesis from niobium(V) peroxo precursor; Surface acidity; Pd promotion; CH$_4$-SCR mechanism

1. Introduction

Niobium-based materials show potential applications in various oxidation and acid-catalyzed reactions [1,2]. Niobium pentoxide can be used as a promoter, support and an active phase [1,2]. Supported niobia catalysts have been extensively studied as solid acids [3–7]. Turek and Wachs [4] suggested that the bridging Nb–O–M bonds (M = support cation) are responsible for the acidic properties of these materials. It has been shown [8] that the deposition of WO$_x$ species on hydrated zirconia from an acidic hydrogen peroxide medium (the so called “peroxo route”) leads to the appearance of a substantial amount of Zr-containing polytungstates giving rise to high permanent Brønsted acidity in the calcined material. Niobium(V) ions can react with hydrogen peroxide at a low pH producing niobium(V) peroxide complexes [9,10]. Here, we report the results of the surface characterization of Pd-free and Pd-promoted Nb$_2$O$_5$–ZrO$_2$ solid solution, Zr$_6$Nb$_2$O$_{17}$, obtained by the impregnation of hydrated zirconia with an acidic solution of the peroxoniobium(V) complex, [Nb$_2$(O$_2$)$_3$]$^{4+}$. The formation of a series of ZrO$_2$–Nb$_2$O$_5$ solid solutions, with ZrO$_2$:Nb$_2$O$_5$ mole ratios ranging from 5:1 to 10:1, by a ceramic process from mixtures of zirconia and niobia powders at temperatures exceeding 1270 K has been reported in the literature [11]. Kominami et al. [12] obtained a single phase of Zr$_6$Nb$_2$O$_{17}$ directly by a glycothermal method. Recently, Lu et al. [13] synthesized crystallized mesoporous Zr$_6$Nb$_2$O$_{17}$ using block copolymer surfactant and chlorides of Zr(IV) and Nb(V). To the best of our knowledge, there are no reports dealing with the surface acidity of this material and its potential as a catalyst.

2. Experimental

2.1. Sample preparation

Amorphous ZrO$_x$(OH)$_{4-2x}$ was prepared by the hydrolysis of ZrCl$_4$ (Merck, for synthesis) with a concentrated (25%) solution of ammonia.
A solution of the complex \([\text{Nb}_2(\text{O}_2)\text{O}_3]^{4+}\) was prepared according to the procedure described in Ref. [10]. The starting Nb(V) precursor, \((\text{NH}_4)_2\text{C}_2\text{O}_4\text{NbO} \cdot x\text{H}_2\text{O}\) (Aldrich, \(x = 19.15\)), was added under stirring in small portions to a 30% \(\text{H}_2\text{O}_2\) solution (Merek, without stabilizer) acidified to a pH \(\sim 0.5\) by concentrated \(\text{HNO}_3\) and then the solution was heated for 1 h at 323 K. The color of the resulting solution was yellow exhibiting a UV absorption band at 335 nm typical of a complex with a peroxo:Nb mole ratio of 3:2 [9]. Hydrated zirconia was impregnated for 24 h, under stirring, at room temperature with the peroxoniobium(V) solution taken in concentration ensuring a mole ratio \(\text{ZrO}_2:\text{Nb}_2\text{O}_5 = 6:1\). The amount of the hydrated zirconia was determined according to the weight loss after the calcination for 2 h at 873 K. The liquid was removed from the suspension by gentle evaporation at 343 K and the solid was calcined under static air for 2 h at 623 K and 2 h at 873 K (heating rate 10 K/min). The sample obtained from the niobium(V) peroxo precursor is denoted as NbZ-P. The BET surface area of the calcined material is 42 m\(^2\)/g. The deposition of Pd(II) was performed by impregnation of the calcined NbZ-P sample with an aqueous solution of \(\text{Pd(NO}_3\text{)}_2 \cdot 2\text{H}_2\text{O}\) (Merek) giving 0.1 wt% of nominal palladium content followed by drying at 343 K and calcination under static air for 2 h at 773 K. This sample is labeled as 0.1Pd/NbZ-P.

For comparison purposes a \(\text{Nb}_2\text{O}_5\)–\(\text{ZrO}_2\) sample containing the same \(\text{ZrO}_2:\text{Nb}_2\text{O}_5\) mole ratio was synthesized by impregnating hydrated zirconia with an aqueous solution of ammonium niobium oxide. This sample (labeled as NbZ-O) was dried and calcined according to the procedures described above. Niobium pentoxide was obtained by precipitation of \(\text{Nb}_2\text{O}_5 \cdot n\text{H}_2\text{O}\) with a concentrated (25%) solution of ammonia from an aqueous solution of ammonium niobium oxalate at pH 8.2. The precipitate was separated from the solution, washed with deionized water (negative test for oxalate ions) and calcined for 2 h at 873 K. Monoclinic zirconia was obtained by the calcination of hydrated zirconium oxyhydroxide at 873 K for 2 h.

2.2. Characterization techniques

The XRD analysis was performed on a Rigaku Miniflex diffractometer with Ni-filtered Cu K\(\alpha\) radiation under ambient conditions. DR-UV–vis spectra were obtained under ambient conditions with a fiber optic spectrometer AvaSpec-2048 (Avantes) using WS-2 as a reference.

The FT-IR spectra were recorded using a Bomem Hartmann & Braun MB-102 model FT-IR spectrometer with a liquid-nitrogen cooled MCT detector at a resolution of 4 cm\(^{-1}\) (128 scans). The self-supporting discs (~0.01 g/cm\(^2\)) were activated in the IR cell by heating for 1 h in a vacuum at 723 K, and in oxygen (100 mbar, passed through a trap cooled in liquid nitrogen) at the same temperature, followed by evacuation for 1 h at 723 K. The surface acidity of the samples was investigated by in situ FT-IR spectroscopy using 2,6-dimethylpyridine (lutidine) and NO as probe molecules. The 2,6-dimethylpyridine (lutidine, Sigma–Aldrich, redistilled) adsorption test was carried out by the admission of 2.5 mbar of the base into the IR cell and left in contact with the sample for 10 min. The excess 2,6-lutidine was then evacuated at room temperature for 15 min, followed by a desorption of the strongly bonded base fraction in the temperature range 150–723 K. The purity of the NO gas (Air Products) was 99.99%. The spectra of the adsorbed compounds were obtained by subtracting the spectra of the activated samples from the spectra recorded.

3. Results and discussion

3.1. Structural characterization of the \(\text{Nb}_2\text{O}_5\)–\(\text{ZrO}_2\) samples

Fig. 1 compares the XRD patterns of niobia with those of the \(\text{Nb}_2\text{O}_5\)–\(\text{ZrO}_2\) samples. The crystallographic modification of \(\text{Nb}_2\text{O}_5\) synthesized corresponds to the pseudo-hexagonal TT-phase (ICDD Card No. 27-1312). The XRD patterns of the NbZ-O sample revealed the presence of two phases – niobia and tetragonal zirconia. All diffraction peaks of the NbZ-P sample are indexed as \(\text{Zr}_6\text{Nb}_2\text{O}_{17}\) (ICDD card No 09-0251). The average crystallite size is 19 nm as determined by the Scherrer equation using the (111) peak at 2\(\theta\) = 30.0° in the diffractogram of \(\text{Zr}_6\text{Nb}_2\text{O}_{17}\). No signals of the other phases are observed.

![XRD patterns of the samples studied.](image)
does not contain bands characteristic of crystalline Nb₂O₅ which confirms the formation of a single phase of Zr₆Nb₂O₁₇. This is in agreement with the fact that the structure of Nb₆Zrₓ-2O₂ₓ+1 solid solutions (x = 7.1–12) is described as a superstructure made up of subcells of metal and oxygen atoms allowing the accommodation of various Nb concentrations [11]. The formation of the Zr₆Nb₂O₁₇ is favored by the partial solubility of hydrous zirconia in H₂O₂ solution [8].

3.2. Brønsted acidity of Zr₆Nb₂O₁₇

The FT-IR spectra of the activated samples in the ν(OH) stretching region are shown in Fig. 2a. The ZrO₂ sample (monoclinic) is completely dehydroxylated after the activation procedure is employed. In contrast, the NbZ-P sample exhibits a wide signal, which extends down to 2400 cm⁻¹. This absorption is ascribed to the ν(OH) stretching vibrations of H-bonded surface hydroxyls of Zr₆Nb₂O₁₇.

The Brønsted acidity of Zr₆Nb₂O₅ has been tested by the adsorption of lutidine. This probe molecule, because of its higher basicity and steric hindrance of the methyl groups, is more sensitive to Brønsted acidity than pyridine [14,15]. Fig. 2b compares the spectra of ZrO₂ and Zr₆Nb₂O₅ obtained after the admission of 2.5 mbar of the base followed by evacuation for 15 min at 423 K. The weak unresolved absorption at approximately 1610 cm⁻¹ and the band at 1567 cm⁻¹ detected on zirconia characterize lutidine adducts with the Lewis acid sites [6,15,16] and are due to the 8a and 8b modes of the coordinated base, respectively. The strong bands at 1643 and 1628 cm⁻¹ observed in the spectrum of the NbZ-P samples correspond to the 8a and 8b vibrational modes, respectively, of protonated lutidine species (lutudinium cation) [6,15,16] and testify the existence of Brønsted acid sites on the surface of Zr₆Nb₂O₁₇. The species at 1643 and 1628 cm⁻¹ are strongly held and resist the evacuation at 723 K.

3.3. Pd-promoted Zr₆Nb₂O₁₇ solid solution

3.3.1. Brønsted acidity

Resasco and coworkers [17–19] concluded that the Brønsted acid sites of anion-modified zirconias play an important role in stabilizing the Pd(II) species in a highly dispersed state. The promotion of the NbZ-P sample with palladium causes a strong erosion of the absorption in the ν(OH) stretching region (Fig. 2a) which indicates that Pd²⁺ ions replace protons of the surface hydroxyls. This results in a corresponding decrease in the amount of Brønsted acid sites on the Pd/NbZ-P sample (Fig. 2b).

3.3.2. DR-UV–vis spectroscopy

The DR-UV–vis spectrum of the 0.1Pd/NbZ-P sample is shown in Fig. 3. The band at 325 nm corresponds to O₂⁻ → Nb⁵⁺ charge transfer transition [5,6]. The absorption at ~420 nm is attributed to d–d transition of either isolated Pd²⁺ ions linked to surface oxygen atoms of the support, or small Pd(O)₉²⁺ entities [20,21].

3.3.3. Adsorption of NO at room temperature

The existence of Pd(II) species in a dispersed state on the surface of Zr₆Nb₂O₁₇ has been confirmed by adsorption of NO (8 mbar) at room temperature (Fig. 4). The bands at 1859 and 1815 cm⁻¹ detected on the NbZ-P sample are typical of two types of coordinatively unsaturated Pd²⁺ ions differing in their environment [18,19,21]. These bands are stable upon NO evacuation. The bare NbZ-P sample shows a band at 1925 cm⁻¹ which is removed by room temperature evacuation of NO. Based on the analysis of the low-frequency region, this signal is attributed to the ν(N=O) mode of adsorbed N₂O₃ [21]. The absorptions at 1859
and 1815 cm$^{-1}$ are not observed for the 0.1Pd/ZrO$_2$ sample despite the fact that both 0.1Pd/NbZ-P and 0.1Pd/ZrO$_2$ samples contain the same amount of Pd. This result is in line with the conclusion made by Resasco and coworkers [18] that materials lacking Brønsted acidity (such as ZrO$_2$) do not have the ability to stabilize dispersed Pd(II) species. The formation of Pd(II) nitrosyls on the 0.1Pd/NbZ-P sample may be ascribed to the particle size effect, as smaller PdO$_{2+}$ particles should exhibit a higher fraction of coordinatively unsaturated cationic sites.

3.4. Reactivity of NO$_x$ species adsorbed on 0.1Pd/Zr$_6$Nb$_2$O$_{17}$ toward methane

Low-loading palladium catalysts supported on anion-modified zirconias exhibit high activity and selectivity in the reduction of NO with methane in the presence of oxygen [17,19]. Since we cannot report catalytic data, we tested the potential of the 0.1Pd/NbZ-P sample as a catalyst for the CH$_4$-SCR of NO by studying the reactivity of adsorbed NO$_x$ species toward methane. The detection of reactive intermediates leading to the CH$_4$-SCR products can be used as evidence that this material should be active in the catalytic reduction of NO with methane.

Surface NO$_x$ species were created by room temperature adsorption of NO + O$_2$ mixture (16 mbar, NO:O$_2$ = 1:1) for 20 min followed by evacuation for 15 min. To the sample treated in this way, 50 mbar of CH$_4$ was added and the isolated IR cell was heated in the 423–723 K temperature range with a 50 K ramp for 20 min at each temperature (the so called “CH$_4$−NO$_x$” experiment). The FT-IR spectra are shown in Fig. 5 in which panels a and b display the sample and gas phase spectra, respectively. The room temperature spectrum of the sample (Fig. 5a, spectrum RT) shows the presence of Pd$^{2+}$−NO species at 1884 and 1820 cm$^{-1}$ [18,19,21] and surface nitrates characterized by the absorption bands at 1648, 1575 and 1238 cm$^{-1}$ [21,22]. The sharp band marked by an asterisk is due to gaseous methane. The spectra taken at higher temperatures...
are gas-phase corrected. The decomposition of the surface nitrates starts at 423 K producing NO2 in the gas phase (absorption band at 1618 cm⁻¹ in Fig. 5b). Judging by the extremely low intensity of the band at 1238 cm⁻¹ (Fig. 5a), the heating at 473 K causes an almost complete desorption of the NO3⁻ species. A new, weak band at 1378 cm⁻¹ appears in the spectrum. The bands at 1648 and 1575 cm⁻¹ shift to 1622 and 1558 cm⁻¹, respectively, and the absorption at 1622 cm⁻¹ has become less intense than that at 1558 cm⁻¹. In addition, the amount of gaseous NO2 at 473 K has decreased relative to that at 423 K (Fig. 5b). This indicates that NO2 reacts with the activated methane and as shown in analogous experiment with Pd-promoted tungstated zirconia [22], the product of this interaction is nitromethane. The bands at 1558 and 1378 cm⁻¹ are attributed to the νs(NO2) and νa(NO2) modes of adsorbed CH3NO2, respectively [22], whereas the absorption at 1622 cm⁻¹ most likely corresponds to residual nitrate species. At 523 K the NO2 disappears from the gas phase (Fig. 5b). The sample spectrum at this temperature exhibits bands at 1826 and 1568 cm⁻¹ with a shoulder at approximately 1610 cm⁻¹, and weak absorptions at 1440 and 1390 cm⁻¹ (Fig. 5a). Note that the intensities of the bands at 1610 and 1558 cm⁻¹ are higher than those of the bands at 1622 and 1558 cm⁻¹ observed in the spectrum taken at 473 K. This shows that at 523 K new species are formed as a result of the transformation of nitromethane giving rise to the absorptions at 1842, 1615 and 1568 cm⁻¹. The former band is characteristic of Pd(NO) nitrosyls [21,22] and the bands at 1568 and 1390 cm⁻¹ are attributed to the νa(CO2) and νs(CO2) modes of formate species, respectively. [21,22]. The absorptions at 1610 (v(N=O) and 1440 cm⁻¹ (v(=CH3) most likely belong to cis-methyl nitrite, CH3ONO [22]. As proposed earlier [22] the decomposition of nitromethane on Pd-promoted tungstated zirconia takes place through the intermediacy of cis-CH3ONO leading to the formation of adsorbed NO and formate species. Apparently, the surface CH4—NO reaction on the 0.1Pd/NbZ-P sample follows the same mechanistic scheme proposed for Pd-promoted tungstated zirconia [22]. Increasing the temperature to 623 K causes an almost complete vanishing of the adsorbed NO and a strong decrease in the intensities of the formate bands as a result of the NO + HCOO⁻ interaction to N2 [22]. The spectrum taken after cooling to room temperature (spectrum RT') contains bands at 1622 and 1457 cm⁻¹ assigned to CO3²⁻ and/or HCO3⁻ species [22]. In contrast to the surface nitrates, the carbonate species are weakly adsorbed and leave the surface during the evacuation at room temperature.

The investigation of the thermal stability of the NOx species adsorbed on the 0.1Pd/NbZ-P sample (the so called “Blank NOx” experiment) shows that in the absence of methane, NO3 is present in the gas phase over the sample up to 723 K. The spectrum, taken after cooling to room temperature, contains bands at 1870 and 1820 cm⁻¹ corresponding to Pd²⁺—NO species and absorptions at 1635, 1575 and 1232 cm⁻¹ due to surface nitrates. The reappearance of adsorbed NOx species in CH4-free atmosphere supports the conclusion that the 0.1Pd/NbZ-P sample catalyzes the reduction of NOx to N2 in the presence of the hydrocarbon. The formation of intermediates during the CH4—NOx reaction on the 0.1Pd/NbZ-P catalyst, such as oxygenate species (formate ions) and adsorbed NO, is in agreement with the results of recent mechanistic studies on catalysts proven to be active in the reduction of NO with methane in excess oxygen [24,25].

The surface nitrates on the Pd-free NbZ-P sample decompose also to NO2. However, there is no evidence of the formation of intermediates such as nitromethane, formate species and adsorbed NO, indicating that this material is inactive in the CH4—NOx surface reaction.

Finally, the fact that the surface HCO3⁻/CO3²⁻ species (formed in the “CH4—NO3⁻” experiment) are weakly adsorbed (see Fig. 5a, spectra RT' and evacuation at RT') suggests that Zr6Nb2O17 has low surface basicity. This result points to the possibility of the application of Pd-promoted Zr6Nb2O17 as CH4-SCR catalyst which could be resistant to SO2 poisoning. For example, Ziolek et al. [23] concluded that the resistance of Cu-ZSM-5 catalysts to sulfation is improved if niobium is incorporated in the lattice. Forthcoming experiments involving adsorption of SO2 will test the potential of this material for the development of SO2-tollerant palladium catalysts for the reduction of NO with methane in the presence of oxygen.

4. Conclusions

The impregnation of hydrated zirconia (ZrO4(OH)4-2x) with the peroxoniobium(V) complex, [Nb3O12]4+⁷, ensuring ZrO2:Nb2O5 mole ratio of 6:1 followed by calcination at 873 K leads to the formation of Zr6Nb2O17. In contrast, the application of Nb(V) oxalate precursor (keeping the ZrO2:Nb2O5 mole ratio the same) results in an Nb2O5—ZrO2 sample that contains a phase of Nb2O5. The formation of Zr6Nb2O17 is favored by the partial solubility of hydrous zirconia in the H2O solution. This compound possesses a sufficient amount of strong Brensted acid sites allowing a good dispersion of deposited Pd(II) species. Pd-promoted Zr6Nb2O17 is a novel solid acid that has the potential of a catalyst for the selective reduction of NO with methane in the presence of oxygen.

Acknowledgements

This work was financially supported by Bilkent University and the Scientific and Technical Research Council of Turkey (TÜBİTAK), Project 106T081. The authors thank Ilknur Cayirtepe for the synthesis of Nb2O5.

References