
Computer Networks 48 (2005) 489–501

www.elsevier.com/locate/comnet

Computer Networks 48 (2005) 489–501

www.elsevier.com/locate/comnet

Computer Networks 48 (2005) 489–501

www.elsevier.com/locate/comnet

Computer Networks 48 (2005) 489–501

www.elsevier.com/locate/comnet

Computer Networks 48 (2005) 489–501

www.elsevier.com/locate/comnet
A simple and effective mechanism for stored video
streaming with TCP transport and server-side

adaptive frame discard

Eren Gürses a, Gozde Bozdagi Akar a,*, Nail Akar b

a Department of Electrical and Electronics Engineering, Middle East Technical University, 06533 Ankara, Turkey
b Department of Electrical and Electronics Engineering, Bilkent University, 06800 Ankara, Turkey

Received 5 October 2003; received in revised form 2 July 2004; accepted 24 October 2004

Available online 30 December 2004

Responsible Editor: B. Baykal
Abstract

Transmission control protocol (TCP) with its well-established congestion control mechanism is the prevailing trans-

port layer protocol for non-real time data in current Internet Protocol (IP) networks. It would be desirable to transmit

any type of multimedia data using TCP in order to take advantage of the extensive operational experience behind TCP

in the Internet. However, some features of TCP including retransmissions and variations in throughput and delay,

although not catastrophic for non-real time data, may result in inefficiencies for video streaming applications. In this

paper, we propose an architecture which consists of an input buffer at the server side, coupled with the congestion con-

trol mechanism of TCP at the transport layer, for efficiently streaming stored video in the best-effort Internet. The pro-

posed buffer management scheme selectively discards low priority frames from its head-end, which otherwise would

jeopardize the successful playout of high priority frames. Moreover, the proposed discarding policy is adaptive to

changes in the bandwidth available to the video stream.

� 2004 Elsevier B.V. All rights reserved.

Keywords: Video streaming; Congestion control; Adaptive frame discarding; Explicit congestion notification; Differentiated services
1389-1286/$ - see front matter � 2004 Elsevier B.V. All rights reserv

doi:10.1016/j.comnet.2004.10.015

* Corresponding author. Tel.: +90 312 2102341.

E-mail addresses: gurses@eee.metu.edu.tr (E. Gürses),

bozdagi@eee.metu.edu.tr (G.B. Akar), akar@ee.bilkent.edu.tr

(N. Akar).
1. Introduction

Transmission of high quality video over the

Internet Protocol (IP) networks has become com-

monplace due to recent progresses in video

compression and networking disciplines, the
ed.

mailto:gurses@eee.metu.edu.tr
mailto:bozdagi@eee.metu.edu.tr
mailto:akar@ee.bilkent.edu.tr

490 E. Gürses et al. / Computer Networks 48 (2005) 489–501
development of efficient video coders/decoders, the

increasing interest in applications such as video on

demand, videophone, and video conferencing, and

the ubiquity of the Internet. However, that are cer-

tain technical challenges to be overcome for effi-
ciently transmitting video over IP networks; see

for example the references [1] and [2] for an intro-

duction to the topic. These challenges stem from

the mismatch between the strict bandwidth, delay,

and loss requirements of the video applications

and the best-effort current Internet, which was

originally designed around data applications that

can tolerate loss and delay. Moreover, the instant-
enous bandwidth available to a certain user or

application changes in all time scales because of

the very dynamic nature of the Internet, making

the problem even more challenging. These charac-

teristics of the Internet led to the rise of network-

adaptive video applications for providing smooth

playout at the receiving client.

This paper addresses the problem of TCP-
friendly on-demand streaming of temporally

scalable stored video over the Internet using ser-

ver-side adaptive frame discarding. In a stored

video-on-demand system, the server prestores the

encoded video and transmits it on demand to a cli-

ent for playout in real time. The client buffers the

data and starts playout after a short delay in the

order of seconds (called the playout delay and
denoted by Tp). We assume a fixed Tp throughout

the paper as opposed to the adaptive playout

schemes where the client buffering delay is varied

with respect to the network conditions [3,4]. It is

this tolerability to larger playout delays that distin-

guishes the stored video streaming problem from

other video networking applications like video-

phony, video conferencing, and live video stream-
ing. It is also very desirable that once the playout

begins, it should be able to playout without any

interruption (i.e., smooth playout) until the end

of the video streaming session. Moreover, such a

transmission strategy should not jeopardize the

data flows on the same network path which use

TCP as their transport protocol, which is referred

to as the ‘‘TCP-friendliness’’ requirement [5–7].
For network-adaptive video transmission over

IP networks, the server adapts its video injection

rate into the network to the instantenous available
bandwidth in the network. Several mechanisms are

proposed for rate adaptation including stream

switching as in the SureStream technology pro-

vided by RealSystem G2 [8,9], rate-adaptive video

encoding/transcoding [1], or joint use of scalable
coding (i.e., layered coding) and rate shaping via

server-side selective frame discard [10]. Bitstream

switching does not offer a fine granularity since

there are only a few bitstreams available among

which the streaming server can switch. Rate-adap-

tive encoding is more appropriate for live video

streaming or interactive video applications as op-

posed to the stored video streaming problem we
discuss in this paper. In our work, we therefore

focus on rate adaptation using scalable encoded

bitstreams. Scalable video codecs generate two or

more bit streams, one carrying the most vital video

information, called the base layer (BL), and the

others carrying the residual information to en-

hance the quality of the base layer, which is re-

ferred to as the enhancement layers (EL) [11]. If
there is a single EL, then the corresponding scal-

able coding is called 2-layer. Several scalable vi-

deo-coding techniques have been proposed over

the past few years for real-time Internet applica-

tions in the form of several video compression

standards such as MPEG-2/4 and H.263/H.264

[11–15]. The types of scalability which are defined

in these standards can be categorized as temporal,
spatial, SNR, and object (only for MPEG4) scala-

bility; see [16] for a general overview of layered

coding. In these structures, base and enhancement

layers are precoded at encoding time, and there-

fore their rates cannot be adjusted at transmission

time. Therefore, server-side selective frame discard

mechanisms are proposed for rate adaptation of

scalable video. These discard mechanisms intelli-
gently decide to drop some EL frames with the

goal of increasing the overall quality of the video

by taking network constraints and client QoS

requirements into consideration [10]. The more re-

cent Fine Grained Scalability (FGS) coding (see

[17]) in which the enhancement frame can be en-

coded independently with an arbitrary number of

bits and the bit rate can thus be adjusted at trans-
mission time for finer granularity is left outside the

scope of the current paper. We limit the focus of

this paper by using a 2-layer temporal scalability

E. Gürses et al. / Computer Networks 48 (2005) 489–501 491
video encoding scheme provided by H.263 version

2 (H.263+) [13] although we note that our results

also apply to other 2-layer scalable video encoding

schemes.

Besides network adaptivity, another challenging
issue for the stored video streaming problem over

the Internet is to provide inter-protocol fairness.

Transmission Control Protocol (TCP) is the de-

facto transport protocol for data in the current

Internet. TCP is designed to offer a fully reliable

service which is suitable for applications like file

transfers, e-mail, etc. On the other hand, the alter-

native transport protocol User Datagram Protocol
(UDP) used by many current streaming applica-

tions does not possess congestion control. Conse-

quently, when UDP and TCP flows share the

same link, TCP flows reduce their rates in case of

a packet drop. This leaves most of the available

bandwidth to unresponsive UDP flows leading to

starvation of TCP traffic in case of substantial

UDP load. Some believe that the current trend in
using UDP as the transport layer without conges-

tion control can lead to a congestion collapse of

the Internet due to the rapid growth of such appli-

cations like Internet telephony, streaming video,

and on-line games [5]. Taking into consideration

the dominance of TCP in today�s Internet traffic,

it is therefore desirable that the throughput of a

video streaming session be similar to that of a
TCP flow under the same network circumstances

(i.e., two sessions simulatenously using the same

network path). Such a mechanism is called TCP-

friendly and TCP friendly schemes need to be

designed to be cooperative with TCP flows by

appropriately reacting to congestion [5]. There

are a number of TCP-friendly congestion control

algorithms which have recently been proposed,
such as the rate-based Rate Adaptation Protocol

(RAP) [18], equation-based TCP-Friendly Rate

Control (TFRC) [6,7], and window-based Bino-

mial Congestion Control (BCC) [19]. The trans-

mission rates of the proposed TCP-friendly

algorithms are generally smoother than that of

TCP under stationary conditions at the expense

of reduced responsiveness to changes in the net-
work state (e.g., a new session arrival/departure

to/from the bottleneck link) [20]. Moreover, these

TCP-friendly mechanisms do not provide reliable
transfer as TCP does, making them more suitable

for real-time applications. The Datagram Conges-

tion Control Protocol (DCCP) is a new transport

protocol being developed by the IETF that pro-

vides a congestion-controlled flow of unreliable
datagrams [21]. TCP-like congestion control with-

out reliability and the equation-based TFRC [7]

form the basis for the two congestion control pro-

files ID 2 and ID 3 in the DCCP protocol suite

[22,23].

The stored video streaming problem over re-

source constrained networks, like the Internet,

has attacted the attention of many researchers.
Given network bandwidth and client buffer con-

straints, a dynamic programming algorithm with

reportedly significant computational complexity

is developed for the optimal selective frame dis-

card problem in [10] as well as several heuristic

algorithms. However, this study is unable to

accomodate the bandwidth variability patterns

of the Internet since the network bandwidth is
assumed to be fixed and a priori known. On

a similar ground, rate-distortion optimization-

based video streaming algorithms have been

developed in [24,25] that obtain scheduling poli-

cies for both new and retransmitted frames using

stochastic control principles but the proposed

methods are relatively complex and their feas-

ability remain to be seen. The reference [26] con-
siders a practical frame dropping algorithm for

MPEG streams over best-effort networks but

they neither use a TCP-friendly congestion con-

trol algorithm nor they take into account the

deadlines of frames. In [27], a dynamic frame

dropping filter for MPEG streams is proposed

in a network environment where the avail-

able bandwidth changes dynamically but this
work also lacks the TCP-friendliness component.

A number of studies focus on streaming video

using new TCP-friendly transport protocols

[18,7] while others employing TCP itself [28–

31]. One common objection to use of TCP for

streaming applications is the fully reliable service

model of TCP through retransmissions [30].

While delays due to retransmissions may not be
tolerable for interactive applications, the service

model for TCP may not be problematic for video

on demand applications, which is the scope of

492 E. Gürses et al. / Computer Networks 48 (2005) 489–501
the current paper [30]. Moreover, the use of

Explicit Congestion Notification (ECN) allows

TCP to perform congestion avoidance without

losses, limiting further the potential adverse effect

of the TCP service model.
In this paper, we propose a stored video stream-

ing system architecture which consists of an input

buffer at the server side coupled with the conges-

tion control scheme of TCP at the transport layer,

for efficiently streaming stored video over the best-

effort Internet. The proposed method can be made

to work with other transport protocols including

DCCP but our choice of TCP in the current paper
as the underlying transport protocol stems from

the following reasons:

• Slowly-responding TCP-friendly algorithms

perform reasonably well in terms of video

throughput in stationary conditions. However,

responsiveness is especially critical in the core

of the Internet today which appears to be oper-
ating in the transient rather than in the station-

ary regime due to the large session arrival and/

or departure rates to/from the network. On the

other hand, TCP congestion control has a well-

established responsiveness to changing network

state and might be more appropriate in rapidly

changing environments.

• TCP with its original congestion control but
with its full reliability feature replaced with

selective reliability would be a more appropri-

ate fit as a transport protocol for the underly-

ing problem but the standards in this

direction have not finalized and are still evolv-

ing [21,23]. We note that TCP�s insistence on

reliable delivery without timing considerations

would adversely affect the performance of the
system under packet losses especially for (near)

real-time applications (e.g., applications requir-

ing short playout delays). In this paper, we

study the regimes for which TCP performance

for stored video streaming is acceptable but

also identify regimes for which TCP performs

poorly and a new transport protocol would

be needed.
• TCP is currently used for streaming applica-

tions in order to get through some firewalls that

block UDP traffic.
• The choice of TCP as the transport protocol

eliminates the unnecessary burden on the appli-

cation-level designer by providing congestion

control at the transport layer [21].

• Another key advantage related to providing
congestion control at the transport layer (i.e.,

TCP) rather than ‘‘above UDP’’ is that the

proposed scheme can make use of the services

provided by the standard-based Explicit Con-

gestion Notification (ECN) mechanism [32]

which provides a means of explicitly sending a

‘‘congestion experienced’’ signal towards the

TCP sender in TCP acknowledgment packets.
We note that explicit feedback significantly

reduces the losses in the network and is there-

fore particularly useful in scenarios such as

video streaming where the frequency of retrans-

missions due to losses is to be kept at a

minimum.

In our proposed architecture, the buffer man-
agement scheme selectively discards low priority

frames from its head-end which otherwise would

jeopardize the successful playout of high priority

frames. Moreover, the proposed discarding policy

is adaptive to changes in the bandwidth available

to the video stream. Contrary to many of the pre-

viously proposed adaptive transmission algo-

rithms, the proposed Selective Frame Discard
(SFD) strategy is simple and easily implementable

at the application layer by allowing additional

information exchange between the transport layer

and the application layer. Moreover, our proposed

server-side frame discarding algorithm only needs

to know the playout delay Tp and several net-

work-related variables which are made available

by using the services of TCP and the playout buffer
occupancy does not need to fed back to the server

in this proposed scheme. Our simulation results

demonstrate that scalable stored video can effi-

ciently be streamed over TCP with the proposed

adaptive frame discarding strategy if the client

playout delay is large enough to absorb the fluctu-

ations in the TCP estimation of the available band-

width. We also study the impact using Explicit
Congestion Notification (ECN) in the network in

terms of attained video quality. Finally, we com-

pare the proposed edge-based server-side frame

Base Layer Enhancement Layer

I

anchor

P

anchor

P P P P P P P

Fig. 1. Base and enhancement layers in temporal scalability

mode.

E. Gürses et al. / Computer Networks 48 (2005) 489–501 493
discarding solution with the core-based Differenti-

ated Services (Diffserv) Assured Forwarding (AF)

Per-Hop-Behavior (PHB) architecture (see [33]) in

the context of stored video streaming and identify

regimes in which the former architecture outper-
forms the latter.

The rest of the paper is organized as follows. In

Section 2, the proposed architecture including the

scalable coding model and the selective frame dis-

card schemes are presented. The simulation plat-

form and the numerical results are given in

Section 3. We conclude in the final section.
2. Video streaming architecture

In this section, we first describe our video

encoding model and then present the details of

the proposed input buffer management scheme

based on selective frame discarding.

2.1. Scalable video coding

The main goal of scalable coding of video is to

flexibly support a heteregoneous set of receivers

with different access bandwidths and display capa-

bilities. Furthermore, scalable coding provides a

layered video bit stream which is amenable to pri-

oritized transmission. In this paper, we assume
that the stored video is encoded into two layers,

the BL and the EL, using the Reference Picture

Selection mode of H.263 version 2 [13,14]. In this

structure (i.e., backward prediction disabled), the

BL is composed of Intra (I) and anchor P (pre-

dicted) frames whereas the EL is composed of

the remaining P frames. P frames in the EL are

estimated using the anchor P frames or I frames
in the BL where anchor P frames are chosen using

the Reference Picture Selection mode. Throughout

the rest of this paper, we will denote the base layer

frames by H (High-priority), and enhancement

layer frames as L (Low-priority). A schematic dia-

gram of the employed scalable video coding struc-

ture is shown in Fig. 1. We leave the study of

different temporal scalability models and other
video coding standards for future research but

we believe that the proposed architecture is appli-

cable to other 2-layer scalable video codecs.
2.2. Selective frame discarding

As stated in the previous section, we assume

that video encoders generate H- and L-frames. If
the available network bandwidth cannot accom-

modate the transmission of all frames, then it

would be desirable to discard some of the L-frames

on behalf of the H-frames. While making a L-

frame discarding decision, our goal is to maximize

the number of transported L-frames subject to the

constraint that the loss rate for the H-frames

would be minimal. In this definition, a loss refers
to a missed frame at the client either because the

frame is not transmitted by the server or is trans-

mitted but partially/completely lost in the network

or the frame is received by the client but after its

deadline. For this purpose, we propose an input

buffer implemented at the application layer of the

sender which dynamically and intelligently dis-

cards L-frames from its headend and this scheme
is depicted in Fig. 2.

We use the RTP/TCP/IP protocols stack in this

study. We propose in this architecture that the

stored video frames arrive at the input buffer at a

frequency f = 1/T frames per second, which is the

frame generation rate of the underlying video ses-

sion. These frames wait in the input buffer until

they reach the headend of the buffer and a decision
is then made by the Selective Frame Discard

(SFD) block whether the corresponding frame

should be passed towards the transport layer or

is simply discarded. In cases of discard, the SFD

block will make subsequent discard decisions until

an acceptance decision is made. When a frame is

accepted by the SFD module, it is segmented into

receipt of a packet
Generate ACKs upon

Missed
PlayoutYes No

i th
frame

f=1/T fps

...
Selective Frame

 Discard

Reverse Path delay

Forward Path delay

∆ i

Packets

cwnd(t)i

RTT(t)iTransport Layer

Application Layer

Playout Buffer

...
1/T fpsInput Buffer

Discard
Discard

TCP socket send buffer(M packets)

Admit

Client SideServer Side

FramesPackets

Frames

Partial Frame
Buffer

Fig. 2. Proposed stored video streaming architecture.

494 E. Gürses et al. / Computer Networks 48 (2005) 489–501
video packets (or RTP packets) of length at most

L where we fix L to 1 Kbytes in this study. In

our simulation studies, QCIF videos are encoded

at around 30 dB quality and a typical video packet

can carry 1–3 P-frames depending on the compres-

sion efficiency of the frame (i.e. high/low motion)

and a typical I-frame can be transported by 2–3
video packets. Video packets of accepted frames

are first placed in the partial frame buffer which

is then drained by the TCP layer. We suggest that

whenever a TCP packet begins to take its first

journey towards the network, the TCP layer imme-

diately retrieves a packet from the partial frame

buffer if the buffer is nonempty. Otherwise, it que-

ries the SFD module to make an acceptance/rejec-
tion decision on the head-end frame.

The acceptance/rejection decision is made as

follows: The decision epoch for the ith frame is de-

noted by ti irrespective of the outcome of the deci-

sion. The waiting time or the shaping delay in the

input buffer for frame i, denoted by Di,S, is the dif-

ference between ti and the injection time for the ith

frame to the input buffer. Let Di,N denote the net-
work delay for the ith frame injected into the input

buffer. Recalling that frames are generated by the

encoder at integer multiples of T, the injection time

for the ith frame to the input buffer will be t0 + iT,

where t0 is the injection time of the 0th frame. The

ith frame will then wait in the input buffer for Di,S

seconds and the SFD module will make an admit/

discard decision for the ith frame at time epoch
ti,t0 + iT + Di,S. If the ith frame is admitted by

the SFD module into the transport layer then that

frame will be delayed an additional Di,TCP and Di,N

seconds in the TCP buffer and in the network,
respectively. It is clear that the ith frame must ar-

rive at the receiver before its playout time

t0 + D0,N + Tp + iT where Tp is the initial buffering

time of the playout buffer which starts accumula-

tion as soon as the frame 0 arrives. So the follow-

ing inequality should be satisfied for every

accepted frame i > 0 for its succesful playout:

Di;S 6 T p � ðDi;N � D0;N Þ � Di;TCP ð1Þ

In the above inequality, Di,S and Tp are known

to the SFD module, however one needs to find

estimates for the last two terms on the right hand

side of the inequality. In this study, we suggest to

estimate the one-way network delay difference

Di = Di,N�D0,N using the TCP Timestamps option

(TSopt) in TCP headers [34]. In the TCP Time-
stamps Option, while transmitting packet m, the

sender puts the transmission instant timestamp in

the Timestamp Value (TSval) field. After receiving

packet m, the receiver generates an acknowledge-

ment packet denoted by ack m, by setting its TSval

field with the current time of the receiver and by

copying the TSval field of packet m to the Time-

stamp Echo Reply (TSecr) field of ack m. In this
way, the SFD module will have an estimate of

the one-way network delay difference using the

TCP timestamp option for the last acknowledged

TCP packet before time ti when it needs to make

a decision for frame i. On the other hand, the last

term Di,TCP is not known in advance but is rela-

tively small compared to Tp unless there are TCP

losses because of the mechanism described for ini-
tiating a data transfer from the application layer

into the TCP layer. We therefore introduce a

safety parameter a, 0 < a < 1 to account for the

α
H

α
L
(t)

H
R (t)

L
R (t)

H
R (t) +

0
C(t)

Fig. 3. Adaptive choice of aL in the ASFD algorithm.

E. Gürses et al. / Computer Networks 48 (2005) 489–501 495
errors due to inaccuracies due to estimations to be

used in the inequality (1) as follows. In order for

an admission decision for frame i to take place,

the following new inequality should be checked

by the SFD block:

Di;S 6 aðT p � DiÞ ð2Þ
The inequality (2) can be used to select which

frames to discard for nonscalable video but it

needs to be modified for layered video. This mod-

ification is studied next.

2.3. Static and adaptive selective frame discard

algorithms

We propose to use two different safety para-

meters aL and aH for the L-frames and the H-

frames, respectively, for preferential treatment

for H-frames. Such a treatment is possible by

choosing aL < aH. This choice makes aL not only

a safety parameter but also a prioritization instru-

ment. We summarize the general SFD algorithm at
decision epoch ti in Table 1.

The choice of the algorithm parameters aL and

aH are key to the success of the proposed architec-

ture. In Static SFD (SSFD), fixed aL and aH values

are used throughout the video streaming session.

However, such a fixed policy may not work well

in all possible traffic scenarios. For example in

cases where the instantenous available bandwidth
is close to the the BL rate then the L-frames should

aggressively be discarded (i.e., aL ! 0) in order to

minimize the loss probability of the BL frames. On

the other hand, if the available bandwidth happens

to be close to or exceeds the total rate of the BL

and the EL frames, then the L-frames should con-

servatively be discarded (i.e. aL ! aH). The very

dynamic nature of the Internet may lead to signif-
icant variations in the available bandwidth even

during the lifetime of a video session. Moreover
Table 1

The pseudo-code for the SFD algorithm at time ti

if ((frame i == L-frame) && (Di,S < aL(Tp�Di))){

Admit();

} else if ((frame i == H-frame) && (Di,S < aH(Tp� Di))){

Admit();

} else Discard();
the instaneous BL and EL rates for VBR encoded

video may substantially deviate from their long-

run average values. These observations lead us to

an adaptive version of the SFD algorithm. For this

purpose, we define C(t) as a smoothed estimate of
the bandwidth available to the session at time t.

Also we let RL(t) and RH(t) be the smoothed esti-

mates of the EL and the BL, respectively, by mon-

itoring the frame arrivals to the input buffer. We

also let C, RL and RH denote the time averages

of of the waveforms C(t), RH(t), and RL(t), respec-

tively. We then propose the simple Adaptive SFD

(ASFD) scheme depicted in Fig. 3. We fix aH and
use it only as a safety parameter (aH set to 0.7 in

this study). The choice of aL is less straightfor-

ward: aL is zero when C(t) < RH(t), aL equals aH
when C(t) > RH(t) + RL(t) and it changes linearly

within between these two end regimes. The nota-

tion SSFD(x) denotes the SSFD algorithm with

aH = 0.7 and aL set to x.
3. Simulation results

In this section, we study the performance of the

proposed stored video streaming architecture

using simulation. We use ns-2 [35] for simulations

with a number of enhancements required for the

video streaming architecture given in Fig. 2. We
use the single bottleneck topology in Fig. 4 for

all the simulation experiments. In all simulations,

N video sessions (of length 780 s) share a single

bottleneck link with capacity Ctot (set to 1 Mbps),

where N will be varied to account for the variabil-

ity of the available bandwidth to each user. The

sN-1

s1

s2

sN

dest

dest

1

2

1 Mbps

1 Mbps

1 Mbps

1 Mbps

1 Mbps

1 Mbps

C =1 Mbpstot

Core Network

30 msec propogation delay

Fig. 4. The network topology used in the simulation studies.

496 E. Gürses et al. / Computer Networks 48 (2005) 489–501
buffer management mechanism for the bottleneck

link is assumed to be Random Early Detect

(RED). Motivated by [36], we use the RED

parameters (minth, maxth, maxp) = (20,60,0.1)

and the RED smoothing parameter set to 0.002

unless otherwise stated.

The first N/2 sessions are sinked at dest1 and the
remaining ones at dest2. Each video source em-

ploys TCP Reno with the same set of parameters

and options and each source streams the same

video clip. There is one tagged source we monitor

among the N sources for Peak Signal-Noise Ratio

(PSNR) plots. Each source starts streaming at ran-

dom points in the video clip in order to prevent

synchronization among the sources. Throughout
the simulations, the bit rate of the VBR encoded

video has substantial oscillations while the average

rates are RL � 82.6 kbps and RH � 35.0 kbps (see

Fig. 5). Given that the original video frequency is
0

50

100

150

200

250

0 30 60

B
yt

es
 (

pe
r

50
 fr

am
es

)

Tim

 RH(t)

 RH(t)+RL(t)

Fig. 5. Smoothed bit rates for the BL and EL fo
f = 25 frames/s, the two layer scalable video is

composed of a single I and 9 anchor-P frames as

the base layer for each two-seconds interval (i.e.,

Group of Pictures (GOP) duration). The remain-

ing 40 are plain P frames that constitute the

enhancement layer as given in Fig. 1. In our simu-

lations, the average PSNR is used as the perfor-
mance metric. Both the received frames and the

lost frames are used in the PSNR calculation

where the lost frames are concealed at the receiver

by replicating the most recently decoded frame.

Since we are using a temporally scalable bitstream,

the PSNR of the received frames reflects the degra-

dation in system performance due to losses only in

the BL. By using PSNR for both received and lost
frames as the performance metric, the degradation

in the system performance caused by the L-frame

losses are also included as well as the H-frame

losses. In all of our experiments, the bottleneck
90 120

e (sec)

r the layered video used in the simulations.

E. Gürses et al. / Computer Networks 48 (2005) 489–501 497
link with capacity Ctot is shared among N sources

where N2{6, . . . , 40} and the expected fair band-

width share per flow, which is C � Ctot/N, changes

in the range {25, . . . , 166} kbps.

In our first experiment, we compare and con-
trast the performance of the ASFD algorithm with

the SSFD algorithm with three settings for

aL2{0.05,0.4, 0.7}. For this purpose, we vary the

number of video sessions N and thus change the

fair share of each session C � Ctot/N and obtain

the corresponding PSNR value for the SSFD and

ASFD algorithms. The playout delay Tp is set to

5 s in this study. The results are depicted in Fig.
6. The ideal curve is obtained by allowing the sys-

tem to transmit and play all the scheduled frames,

in other words for a given bandwidth it is assumed

that there is enough playout buffering to tolerate

the latency due to retransmissions and the video bi-

trate is properly matched to the constant available

bandwidth in the network so that the scheduled

frames never miss their playout times. In our simu-
lations, the EL and/or BL frames are discarded

sequentially for the computation of the ideal curve

and the corresponding bitrate is calculated. The se-

quence used for discarding is the same for each

GOP. The selection of a conservative SSFD policy

(i.e., SSFD(0.05)) gives the best results for the hea-

vy load case (i.e., C < 100 kbps) when compared to

all other schemes. However, in the light load case
whenC gets close to or beyondRL + RH, the PSNR

performance of SSFD(0.05) degrades substan-

tially compared to the less conservative policies
18

20

22

24

26

28

30

32

50 100 150

A
ve

ra
ge

 P
S

N
R

(d
B

)

Average available bandwidth per source(kbps)

 ideal
 ASFD
 SSFD(0.05)
 SSFD(0.4)
 SSFD(0.7)

Fig. 6. Comparison of SSFD vs ASFD for the case Tp = 5 s.
SSFD(0.4) and SSFD(0.7). On the other hand,

the adaptive version ASFD is robust with respect

to the changes in the available bandwidth per user

and it compares reasonably well with the best per-

forming static policy in each case. The advantage of
the ASFD is that the video server can find a policy

very close to the optimal frame discarding policy

using local measurements even when the available

bandwidth per user changes significantly during

the lifetime of the video session. This behavior

can definitely not be obtained with static policies.

In our second simulation experiment, we study

the impact of the RED parameters on the ASFD
performance. The results are given in Fig. 7. The

cases with three different RED configurations out-

performed the drop-tail policy with the buffer size

set to 120 packets. This observation can be ex-

plained by the fact that drop-tail buffer manage-

ment causes synchronized losses and the resulting

overshoots and undershoots in the resulting buffer

occupancy yield substantial performance degrada-
tion relative to that of RED. We generally

obtained quite robust results with RED but we

also observed performance degradation with

RED(10,30,0.1) in the heavy load case compared

to the other two RED systems. This degradation

is due to the relatively conservative choice of minth
and maxth in this system when a fairly large num-

ber of sources are multiplexed.
In the third simulation experiment, we study the

impact of using ECN for which the RED module
 18

 20

 22

 24

 26

 28

 30

 32

 50 100 150

A
ve

ra
ge

 P
S

N
R

 (
dB

)

Average available bandwidth per source (kbps)

 ideal
 RED(10,30,0.1)
 RED(20,60,0.1)
 RED(40,120,0.1)
 DropTail(120)

Fig. 7. Effect of RED parameters on ASFD performance with

Tp = 5 s.

18

20

22

24

26

28

30

32

50 100 150

A
ve

ra
ge

 P
S

N
R

(d
B

)

Average available bandwidth per source(kbps)

 ideal
 no-ECN
 with-ECN

Fig. 9. Effect of ECN on streaming performance for ASFD

with Tp = 5 s.

498 E. Gürses et al. / Computer Networks 48 (2005) 489–501
at the bottleneck link marks the packets with the

corresponding probabilities as opposed to discard-

ing them. This congestion information is then fed

back in the TCP acknowledgements via which

the TCP sources adjust their window sizes. Since
all TCP senders are using ECN and all respond

to congestion before actually loosing a packet,

they tend to experience less the undesired data or

timer driven loss recovery phases of TCP. This

behaviour, as one might expect, leads to a signifi-

cant performance improvement especially in con-

gested network scenarios and for small initial

playout delays. This situation is depicted in Fig.
8 in which Tp is set to 2 s and the performance

of using TCP Reno without ECN and TCP Reno

with ECN are shown in terms of the average

PSNR values for varying C. For the heavy load

case, the performance gain with ECN is remark-

able (up to 2 db). The Tp = 5 s case is depicted in

Fig. 9 for which the ECN gains are smaller com-

pared to the Tp = 2 s case. For small playout de-
lays, it is more likely that a larger percentage of

the TCP�s retransmissions arrive at the receiver

later than their corresponding deadlines. With

ECN, losses in the network are reduced and so

are retransmissions. This is why the performance

gain of ECN is more significant in cases with small

playout delays. As shown in Fig. 8, Tp = 2 s of buf-

fering cannot tolerate the timer driven retransmis-
sions occuring in TCP, therefore a significant
18

20

22

24

26

28

30

32

50 100 150

A
ve

ra
ge

 P
S

N
R

(d
B

)

Average available bandwidth per source(kbps)

 ideal
 no-ECN
 with-ECN

Fig. 8. Impact of ECN on streaming performance for ASFD

with Tp = 2 s.
PSNR degredation is observed if ECN is not em-

ployed as compared to the Tp = 5 s case.

In the fourth experiment, we study the impact

of the playout delay Tp which is used in order to

compensate for the oscillations in the video bit rate

and available network bandwidth per user. The
playout delay Tp is varied from 1 s to 30 s and

the corresponding PSNR values are plotted with

respect to varying C in Fig. 10. The PSNR curves

saturate at around Tp = 15 s beyond which buffer-

ing only slightly improves the PSNR performance.

For small Tp (i.e., Tp = 1 s or 2 s), the playout

delay is comparable to the delays encountered in

TCP�s data/timer driven retransmissions and a lar-
ger percentage of the network losses result in
18

20

22

24

26

28

30

32

50 100 150

A
ve

ra
ge

 P
S

N
R

(d
B

)

Average available bandwidth per source(kbps)

 ideal
 Tp=1 sec

 Tp=2 sec

 Tp=5 sec

 Tp=15 sec

 Tp=30 sec

Fig. 10. Impact of Tp on average PSNR for ASFD algorithm.

14

16

18

20

22

24

26

28

30

32

50 100 150

A
ve

ra
ge

 P
S

N
R

(d
B

)

Average available bandwidth per source(kbps)

 ideal

 Diffserv+UDP

 ASFD+TCP

Fig. 11. PSNR plots using Diffserv + UDP and ASFD + TCP

scheme for Tp = 1 s scenario.

14

16

18

20

22

24

26

28

30

32

50 100 150

A
ve

ra
ge

 P
S

N
R

(d
B

)

Average available bandwidth per source(kbps)

 ideal

 Diffserv+UDP

 ASFD+TCP

Fig. 12. PSNR plots using Diffserv+UDP and ASFD+TCP

scheme for Tp = 5 s scenario.

E. Gürses et al. / Computer Networks 48 (2005) 489–501 499
missed playouts and thus reduced PSNRs. With

TCP, increasing Tp from 2 to 5 s increases the

streaming performance substantially by up to

3 dB.

Up to now, we assumed a best-effort Internet
and we proposed intelligent frame scheduling and

discarding techniques at the edge (i.e., at the appli-

cation layer) which operates in harmony with the

underlying transport protocol TCP. A network-

based alternative for frame discrimination is the

Internet Engineering Task Force (IETF) Differen-

tiated Services (Diffserv) architecture [37]. Diffserv

defines different service classes for applications
with different Quality of Service (QoS) require-

ments. An end-to-end service differentiation is ob-

tained by concatenation of per-domain services

and Service Level Agreements (SLAs) between

adjoining domains. Per domain services are real-

ized by traffic conditioning including classification,

metering, policing, shaping at the edge and simple

differentiated forwarding mechanisms at the core
of the network. One of the popular proposed for-

warding mechanisms is Assured Forwarding (AF)

Per Hop Behavior (PHB) [33]. The AF PHB de-

fines four AF (Assured Forwarding) classes:

AF1–4. Each class is assigned a specific amount

of buffer space and bandwidth. Within each AF

class, one can specify three drop precedence val-

ues: 1, 2, and 3. In the notation AFxy, x denotes
the AF class number (x = 1, . . . , 4) and y denotes

the drop precedence (y = 1, . . . , 3).
In our final simulation experiment, we compare

the proposed edge-based server-side frame discard-

ing solution with the core-based Differentiated

Services (Diffserv) Assured Forwarding (AF) Per-

Hop-Behavior (PHB) architecture in the context

of stored video streaming and identify regimes in
which the former architecture outperforms the lat-

ter. For the Diffserv scenario, we mark packets

belonging to H-frames as AF11 and those of L-

frames as AF12. We use Weighted RED (WRED)

with the RED parameters (20,60,0.1) and

(10,30,0.25) for AF11 and AF12, respectively

[38]. We do not impose the use of any traffic con-

ditioner in this experiment but we make use of
only the differentiated forwarding paradigm of

Diffserv. We use User Datagram Protocol (UDP)

for the transport layer for this scenario. We will
refer to the combined scheme as Diffserv + UDP.

The number of video sources sharing the bottlenk

link are varied and PSNR values are plotted in

Fig. 11 for the case Tp = 1 s which demonstrates

that when the client playout delay Tp is small

and comparable to one Round Trip Time (RTT),

the Diffserv+UDP solution outperforms the pro-

posed ASFD+TCP approach. However, when Tp

is increased to 5 s, then the ASFD+TCP solution

gives better results than that of the Diffserv+UDP

solution (see Fig. 12). The reason for this behav-

iour is that when the client playout delay is large

enough then the TCP sender can retransmit not

ACKed packets without them missing their dead-

lines (as opposed to the Tp = 1 s case). Moreover,

it is the application layer that intelligently decides

500 E. Gürses et al. / Computer Networks 48 (2005) 489–501
on which frames to discard in ASFD + TCP by

taking into consideration their playout deadlines.

We�re led to believe that when the playout delays

are sufficiently large (i.e., Tp > 5 s) then the pro-

posed edge-based adaptive approach is superior
to the network-based Diffserv+UDP scheme which

is static in its parameter settings and which is not

aware of the playout deadlines.
4. Conclusions

Motivated by the extensive operation experience
behind TCP, we propose in this paper an easily

implementable stored video streaming system using

TCP transport. The proposed system consists of an

input buffer implemented at the application layer of

the server coupled with the congestion control

scheme of TCP at the transport layer. The pro-

posed frame discarding strategy dynamically and

intelligently discards low priority frames from its
head-end. Moreover, it is adaptive to changes in

the bandwidth available to the video stream. Our

simulation results demonstrate that scalable stored

video can efficiently be streamed over TCP with the

proposed adaptive frame discarding strategy if

the client playout delay is large enough to absorb

the fluctuations in the TCP estimation of the avail-

able bandwidth. As expected, the use of Explicit
Congestion Notification (ECN) in the network is

shown to slightly improve the throughput espe-

cially in congested network scenarios and for small

initial playout delays. Finally, we compare the pro-

posed edge-based server-side frame discarding

solution with the core-based Differentiated Services

(Diffserv) AF PHB architecture and identify re-

gimes in which the former architecture outper-
forms the latter. We show through a number of

simulations that if the playout delay is sufficiently

long (i.e., Tp > 5 s) then the proposed edge-based

solution outperforms the core-based Diffserv solu-

tion whereas this relationship is reversed otherwise.
References

[1] D. Wu, Y.T. Hou, Y.Q. Zhang, Transporting real-time

video over the Internet: Challenges and approaches, Proc.

IEEE 88 (12) (2000) 1855–1875.
[2] M. Civanlar, A. Luthra, S. Wenger, W. Zhu, Introduction

to the special issue on streaming video, IEEE Trans.

Circuits Syst. Video Technol. 11 (3) (2001) 265–268.

[3] N. Laoutaris, I. Stavrakakis, Intrastream synchronization

for continuous media streams: A survey of playout

schedulers, IEEE Network 16 (3) (2002) 30–40.

[4] M. Kalman, E. Steinbach, B. Girod, Rate-distortion

optimized video streaming with adaptive playout, in:

Proceedings of ICIP, Vol. 3, Rochester, NY, 2002, pp.

189–192.

[5] S. Floyd, K. Fall, Promoting the use of end-to-end

congestion control in the Internet, IEEE/ACM Trans.

Networking 7 (4) (1999) 458–472.

[6] J. Padhye, V. Firoiu, D. Towsley, J. Kurose, Modeling

TCP Reno performance: A simple model and its empirical

validation, IEEE/ACM Trans. Networking 8 (2) (2000)

133–145.

[7] S. Floyd, M. Handley, J. Padhye, J. Widmer, Equation-

based congestion control for unicast applications, in: ACM

SIGCOMM, Stockholm, Sweden, 2000, pp. 43–

56.

[8] A. Lippman, Video coding for multiple target audiences,

in: SPIE Conference on Visual Communications and

Image Processing, Vol. 3653, 1999, pp. 780–782.

[9] G.J. Conklin, G.S. Greenbaum, K.O. Lillevold, A.F.

Lippman, Y.A. Reznik, Video coding for streaming media

delivery on the Internet, IEEE Trans. Circuits Syst. Video

Technol. 11 (3) (2001) 269–281.

[10] Z.-L. Zhang, S. Nelakuditi, R. Aggarwal, R.P. Tsang,

Efficient selective frame discard algorithms for stored video

delivery across resource constrained networks, in: INFO-

COM, Vol. 2, 1999, pp. 472–479.

[11] B.G. Haskell, A. Puri, A.N. Netravali, Digital Video: An

Introduction to MPEG-2, Kluwer Academic Publishers,

Boston, MA, 1996.

[12] A. Puri, T. Chen, Multimedia Systems, Standards, and

Networks, Marcel Dekker, New York, 2000.

[13] Video coding for low bit rate communication, ITU-T

Recommendation H.263 (February 1998).

[14] G. Cote, B. Erol, M. Gallant, F. Kossentini, H.263+:

video coding at low bit rates, IEEE Trans. Circuits Syst.

Video Technol. 8 (7) (1998) 849–866.

[15] A. Luthra, G.J. Sullivan, T. Wiegand, Introduction to the

special issue on the H.264/AVC video coding standard,

IEEE Trans. Circuits Syst. Video Technol. 13 (7) (2003)

557–559.

[16] M. Ghanbari, Layered coding, in: M.T. Sun, A.R. Reib-

man (Eds.), Compressed Video Over Networks, Marcel

Dekker, New York, 2001, pp. 251–308.

[17] H. Radha, M. vanderSchaar, Y. Chen, The MPEG-4 fine-

grained scalable video coding method for multimedia

streaming over IP, IEEE Trans. Multimedia 3 (1) (2001)

53–68.

[18] R. Rejaie, M. Handley, D. Estrin, RAP: An end-to-end

rate-based congestion control mechanism for realtime

streams in the Internet, in: Proceedings of INFOCOM,

Vol. 3, 1999, pp. 1337–1345.

E. Gürses et al. / Computer Networks 48 (2005) 489–501 501
[19] D.Bansal, H. Balakrishnan, Binomial congestion control

algorithms, in: Proceedings of INFOCOM, Vol. 2, 2001,

pp. 631–640.

[20] Y. Yang, M. Kim, S. Lam, Transient behaviors of TCP-

friendly congestion control protocols, in: Proceedings of

INFOCOM, 2001, pp. 1716–1725.

[21] E. Kohler, M. Handley, S. Floyd, Datagram congestion

control protocol (DCCP), Internet draft draft-ietf-dccp-

spec-09.txt, work in progress, November 2004.

[22] S. Floyd, E. Kohler, J. Padhye, Profile for DCCP conges-

tion control ID3: TFRC congestion control, IETF

Internet-draft draft-ietf-dccp-ccid3-09.txt, November

2004.

[23] S. Floyd, E. Kohler, Profile for DCCP congestion control

ID2: TCP-like congestion control, IETF Internet-draft

draft-ietf-dccp-ccid2-08.txt, November 2004.

[24] M. Podolsky, S. McCanne, M. Vetterli, Soft ARQ for

layered streaming media, Tech. Rep. UCB/CSD-98-1024,

University of California, Computer Science Division,

Berkeley, November 1998.

[25] P. Chou, Z. Miao, Rate-distortion optimized streaming of

packetized media, Tech. Rep. MSR-TR-2001-35, Micro-

soft Research, February 2001.

[26] M. Hemy, U. Hengartner, P. Steenkiste, MPEG systems in

best-effort networks, in: Packet Video Workshop, New

York, 1999.

[27] H. Cha, J. Oh, R. Ha, Dynamic frame dropping for

bandwidth control in MPEG streaming system, Multi-

media Tools Appl. 19 (2003) 155–178.

[28] Y. Dong, R. Rakshe, Z.-L. Zhang, A practical technique to

support controlled quality assurance in video streaming

across the Internet, in: International Packet Video Work-

shop, Pittsburgh, Pennsylvania, USA, 2002.

[29] P. Mehra, A. Zakhor, TCP-based video streaming using

receiver-driven bandwidth sharing, in: International Packet

Video Workshop, Nantes, France, 2003.

[30] C. Krasic, K. Li, J. Walpole, The case for streaming

multimedia with TCP, in: 8th International Workshop on

Interactive Distributed Multimedia Systems (iDMS 2001),

2001.

[31] I.V. Bajic, O. Tickoo, A. Balan, S. Kalyanaraman, J.

Woods, Integrated end-end buffer management and con-

gestion control for scalable video communications, in:

International Conference on Image Processing, Vol. 3,

2003, pp. 257–260.

[32] S. Floyd, TCP and explicit congestion notification, ACM

Comput. Commun. Rev. 24 (5) (1994) 10–23.

[33] J.Heinanen, F. Baker, W. Weiss, J. Wroclawski, Assured

forwarding PHB group, RFC 2597, IETF, June

1999.

[34] S. Floyd, TCP extensions for high performance, RFC 1323,

IETF (May 1992).

[35] UCB/LBNL/VINT, The Network Simulator - ns-2. URL

http://www.isi.edu/nsnam/ns/.

[36] S. Floyd, V. Jacobson, Random early detection gateways

for congestion avoidance, IEEE/ACM Trans. Networking

1 (4) (1993) 397–413.
[37] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W.

Weiss, An architecture for differentiated service, RFC

2475, IETF, December 1998.

[38] U. Bodin, U. Schelen, S. Pink, Load-tolerant differentia-

tion with active queue management, ACM Computer

Communication Review 30 (3) (2000) 4–16.

Eren Gürses received the B.S. and M.S.
degrees from Middle East Technical
University, Turkey, in 1996 and 1999,
respectively, in Electrical and Elec-
tronics Engineering where he is cur-
rently pursuing his Ph.D. degree. His
current research interests are multi-
media communications over packet
networks and rate adaptive video
coding.
Gozde Bozdagi Akar received the B.S.
degree from Middle East Technical
University, Turkey, in 1988 and M.S.
and Ph.D. degrees from Bilkent Uni-
versity, Turkey, in 1990 and 1994,
respectively, all in electrical and elec-
tronics engineering. She was with the
University of Rochester and Center of
Electronic Imaging Systems as a visit-
ing research associate from 1994 to
1996. From 1996 to 1998, she worked
as a member of research and technical
staff at Xerox Corporation—Digital

Imaging Technology Center, Rochester. From 1998 to 1999 she

was with Baskent University, Department of Electrical and
Electronics Engineering. During the summer of 1999, she
worked as a visiting researcher at the Multimedia Labs of
NJIT. Currently, she is an Associate Professor with the
Department of Electrical and Electronics Engineering, Middle
East Technical University. Her research interests are in video
processing, compression, motion modeling and multimedia
networking.

Nail Akar received the B.S. degree
from Middle East Technical Univer-
sity, Turkey, in 1987 and M.S. and
Ph.D. degrees from Bilkent University,
Turkey, in 1989 and 1994, respectively,
all in electrical and electronics engi-
neering. From 1994 to 1996, he was a
visiting scholar and a visiting assistant
professor in the Computer Science
Telecommunications program at the
University of Missouri-Kansas City.
In 1996, he joined the Technology
Planning and Integration group at the

Long Distance Division, Sprint, Kansas, USA, where he held a

senior member of technical staff position from 1999 to 2000.
Since 2000, he is an assistant professor at Bilkent University.
His current research interests include performance analysis of
computer and communication networks, queueing systems,
traffic engineering, network control and resource allocation,
and multimedia networking.

http://www.isi.edu/nsnam/ns/

	A simple and effective mechanism for stored video streaming with TCP transport and server-side adaptive frame discard
	Introduction
	Video streaming architecture
	Scalable video coding
	Selective frame discarding
	Static and adaptive selective frame discard algorithms

	Simulation results
	Conclusions
	References

