Optimizing low-order controllers for haptic systems under delayed feedback

Bogdan Liauc, Ahmet Taha Korub, Hitay Özbayb, Silviu-Iulian Niculescua,*, Claude Andriotc

a Laboratoire des Signaux et Systèmes (L2S), CNRS-SUPELEC, 3 rue Joliot Curie, 91192 Gif-sur-Yvette, France
b Department of Electrical & Electronics Engineering, Bilkent University, Ankara, Turkey
c CEA, LIST, Interactive Robotics Laboratory, Fontenay aux Roses, F-92265, France

A R T I C L E I N F O

Article info
Received 20 February 2012
Accepted 1 January 2013
Available online 1 March 2013

Keywords:
Haptics
Teleoperation
Time-delay
H-infinity optimization
Stability limits
PID control

A B S T R A C T

In this paper, a PD controller design for haptic systems under delayed feedback is considered. More precisely, a complete stability analysis of a haptic system where local dynamics are described by some second-order mechanical dynamics is presented. Next, using two optimization techniques (H∞ and stability, margin optimization) an optimal choice for the controller gains is proposed. The derived results are tested on a three degree-of-freedom real-time experimental platform to illustrate the theoretical results.

1. Introduction

During the last decade, virtual environments have become very popular and are largely used in many domains as, for example, prototyping (see, for instance, Fig. 1(a) for an appropriate example of prototyping using haptic interfaces and virtual environment (Sreng, Lécuery, Mégard, & Andriot, 2006), training for different devices and assistance in completing difficult tasks (see Fig. 1(b) for some virtual environment used for task assistance/supervision, David, Measson, Bidard, Rotinat-Libersa, & Russotto, 2007; Gosselin et al., 2010).

Understanding the interaction between humans and robots is at the origin of developing several control schemes for teleoperation systems. Roughly speaking, teleoperation extends at some level, the human capacity in manipulating objects remotely by providing the corresponding operator with similar conditions as those encountered at the remote location (see, for instance, the surveys by Hokayem & Spong, 2006; Sheridan, 1993). Among the recent applications, one may cite telesurgery and space telerobots (see, e.g., Aziminejad, Tavakoli, Patel, & Moallem, 2008 and the references therein), both involving long distance communication between master and slave devices. Furthermore, in both cases, haptic feedback proved its potential in improving corresponding task performance. In this context, time-delays appear as natural components of the closed-loop schemes in order to describe some of the dynamics induced by the communication channels with strong impact on (asymptotic) stability and transparency (see, e.g., Gil, Sanchez, Hulin, Preusche & Hirzinger, 2007). It is worth mentioning that, in haptic systems, excepting the communication channel, time-delays may appear also as intrinsic components of the processing time for the virtual reality environment. Indeed, in free motion, the delay effect can be felt by the viscosity phenomenon (high force feedback felt at the haptic interface end) and such a property is completely lost in the case of a “hard”-contact with the environment.

In the open literature, there exists several control methods used in teleoperation and further adapted for haptics. In this sense, the following methods are mentioned: Proportional-Derivative (PD) with local dissipation (Lee & Spong, 2006), PD with passivity observer (Artigas, Vilanova, Preusche, & Hirzinger, 2006; Ryu, Kwon, & Hannaford, 2002a,b), PD with passive set-point modulation (Lee & Huang, 2008), wave scattering transform (Niemeyer, 1996; Niemeyer & Slotine, 2004) and Smith predictor (Cheong, Niculescu, & Kim, 2009). Comparative studies of these methods in the case of teleoperation systems as well as of haptic
systems can be found in the literature, as for example, (Rodriguez-Seda, Lee, & Spong, 2009) or (Liau et al., 2012; Sankaranarayanan & Hannaford, 2008), respectively. For instance, Rodriguez-Seda et al. (2009) compares existing algorithms for motion and force control of some bilateral teleoperation schemes with a particular attention paid to Internet6-based teleoperation. Next, Sankaranarayanan and Hannaford (2008) focuses on the performances analysis of a peer-to-peer haptic collaborative system including two users manipulating same object simultaneously. Finally, Liau et al. (2012) presents a comparative study of some of existing control architectures for haptic systems subject to communication delays.

In the sequel, the closed-loop stability analysis of some class of practical bilateral haptic systems coupled with a virtual environment by using a standard proportional-derivative (PD) control law is addressed. The time-delays in the communication channels are assumed to be constant and, as it will be seen, only the overall time-delay (the sum of the forward and backward time-delays) needs to be known. There exists an abundant literature on PID control for time-delay systems (see for instance, O’Dwyer, 2000; Silva, Datta, & Bhattacharrya, 2005 and the references therein) and most of the existing methods are computationally involved.

The methods proposed in the paper are original, in our opinion, and they exploit the particular structure of the closed-loop quasi-polynomials. The derived stability conditions are necessary and sufficient and, to the best of the authors’ knowledge, such a characterization is new. Furthermore it allows a simple construction of the corresponding stability regions in the controller parameter-space. Next, as a byproduct of the analysis, the computation of the optimal controller gains by using two particular frequency-domain techniques (H_∞-based design and fragility2 analysis) is proposed. To the best of the authors’ knowledge, the optimization of the controllers’ gains represents a novelty making the contribution original. Finally, the derived control law are validated on some illustrative examples involving a virtual spherical mass moving in an appropriate 3D virtual scene and the study is performed by considering a complete scenario from free to some restricted motions.

The remaining paper is organized as follows: in Section 2, a general haptic system scheme including communication channels is introduced. Next, Section 3 is devoted to the stability analysis in closed-loop in the presence of PD or PD-like control laws. In particular, the approach proposed allows recovering a stability condition derived in Nuno, Ortega, Barabanov, and Basanez (2008) by using a different methodology. Section 4 focuses on an appropriate optimal choice for the controller parameters by using the (frequency-domain) approaches mentioned above. The experimental validation of the proposed methodology is discussed in Section 5 on a simple three degree of freedom haptic system. Finally, some concluding remarks end the paper.

2. System description

In Fig. 2, a general scheme of a haptic system is presented. The ideal haptic system should satisfy simultaneously the following conditions:

- first, the position tracking error has to be as small as possible between the haptic interface and the virtual object,
- second, the system has to have a high degree of transparency, i.e. in the “free” motion case, the force feedback felt at the haptic interface end must be as small as possible and in the case of a “hard”-contact, a stiff response is desired.

Next, Fig. 3 presents the general control scheme of a haptic system and a virtual environment including control feedback. The starting point is represented by the classical dynamic (nonlinear) equations of motion for two robots in the haptics framework. More precisely, the corresponding dynamics write as

$$M_s(x_1)\ddot{x}_1(t) + C_1(x_1, \dot{x}_1)\dot{x}_1 = -F_1(t) - F_2(t),$$ \hspace{1cm} (1)

$$M_v(x_2)\ddot{x}_2(t) + C_2(x_2, \dot{x}_2)\dot{x}_2 = F_2(t) - F_4(t),$$ \hspace{1cm} (2)

where x_1, x_2 are the haptic interface/virtual object position, F_3, F_4 are the human/environmental forces, F_1, F_2 are the force control signals, M_s, M_v are the symmetric and positive-definite inertia matrices, and C_1, C_2 are the Coriolis matrices of the haptic interface and virtual object systems, respectively. The central idea of the control scheme is to use two similar PD controllers, one for controlling the haptic interface and another for the (corresponding) virtual object. In such a configuration, the controllers’ equations are then given as follows:

$$F_1(t) = K_{d_1}(x_1(t) - \dot{x}_1(t)) + K_{p_1}(x_1(t) - x_1(t - \tau_1)), \quad \text{delayed D-action, delayed P-action,}$$ \hspace{1cm} (3)

$$F_2(t) = K_{d_2}(\dot{x}_2(t) + \dot{x}_2(t - \tau_2)) + K_{p_2}(\dot{x}_2(t) + \dot{x}_2(t - \tau_1)), \quad \text{delayed D-action, delayed P-action,}$$ \hspace{1cm} (4)

where τ_1, τ_2 are the forward and backward finite constant time-delays and $K_{p_1}, K_{d_1}, K_{p_2}, K_{d_2}$ are the PD control gains corresponding to the haptic and virtual controller respectively, see Fig. 4.
Therefore, with the process (plant) and controller definitions (7)–(9), the characteristic equation of the feedback system in closed-loop can be written as follows:

\[
(1 + P(s)C(s))^2 - (P(s)C(s))^2 e^{-\tau_1} + \frac{1}{2} \omega_a^2 = 0,
\]

which is simply equivalent to

\[
\chi_1(s)\chi_2(s) = 0,
\]

where

\[
\chi_1(s) := (1 + P(s)C(s) + P(s)C(s)e^{-\tau_2}),
\]

\[
\chi_2(s) := (1 + P(s)C(s) - P(s)C(s)e^{-\tau_1}),
\]

and \(\tau := (\tau_1 + \tau_2)/2 \).

Remark 1. An analysis of equations of the form (12) has been given in Shayer and Campbell (2000) for some particular class of first-order quasipolynomials encountered in neural network models, without any attempt to consider the general case. Different approaches for the closed-loop stability analysis can be found in Morarescu, Mendez-Barrios, Niculescu and Gu (2011), Liacu, Mendez-Barrios, Niculescu, and Olaru (2010), Saeki (2007), Michiels and Niculescu (2007) and the references therein. In this paper, a different analytical approach is considered. Such an approach makes use of the gain and phase margins estimation in order to perform the stability analysis of such a feedback system.

The following result is obtained (see Appendix A for the proof)

Theorem 1. The bilateral haptic system is asymptotically stable independent of the delay values \((\tau_1, \tau_2)\) if the controller gains satisfy the condition

\[
K_d \geq \frac{m}{b} K_p.
\]

Furthermore, when \(K_d/K_p < m/b\), there exists two cases:

(a) If \(0 < mK_p - bK_d < b^2/2\), then the feedback system is stable independent of the delay values \((\tau_1, \tau_2)\).

(b) If \(mK_p - bK_d > b^2/2\), then the closed-loop system is stable if and only if

\[
mK_p - bK_d < \frac{b^2}{2}(1 + \omega_a^2),
\]

where \(\omega_a > 0\) is the solution of the equation:

\[
\pi - 2 \left(\tan^{-1}(x) - \tan^{-1}\left(\frac{bK_d}{mK_p}\right) \right) = \frac{(\tau_1 + \tau_2)b}{2m}.
\]

From the conditions of Theorem 1, the allowable range of \(mK_p/b^2\) and \(K_d/K_p\) for all \(b/m > 0\) can be explicitly determined. The corresponding stability region is shown for three different time-delay values in Fig. 5 (and for some different large time-delay values in Fig. 6).

3.2. PD-like control

In Nuno et al. (2008), the authors proposed a PD-like controller, having the block scheme presented in Fig. 7.

More precisely, only the position error will be used in order to guarantee the passivity of the system. With this assumption, Eqs. (3) and (4) are rewritten as follows:

\[
F_1(t) = K_d x_1(t) + K_p (x_1(t) - x_2(t - \tau_2)),
\]

where \(x_1(t)\) and \(x_2(t)\) are the position available for the human operator and the measured process variable, respectively.

Fig. 2. General scheme of a haptic system.

Fig. 3. General PD control scheme for haptic systems.

Fig. 4. Bilateral haptic system.

3. Stability analysis

3.1. PD control

From Fig. 4, the equations describing the system response can be written as follows:

\[
X_1(s) = P_1(s)F_b(s) - C_1(s)(X_1(s) - e^{-\tau}X_2(s)),
\]

\[
X_2(s) = P_2(s)(-F_b(s) + C_2(s)(-X_2(s) + e^{-\tau}X_1(s))),
\]

where \(X_1(t)\) denotes the Laplace transform of the time signal \(x_1(t)\), \(i = 1, 2\); similarly for \(F_b(s)\) and \(E_b(s)\); here, \(\tau_1 > 0\) and \(\tau_2 > 0\) denote the corresponding (forward and backward) time-delays. Transfer functions \(P_1(s)\) and \(C_2(s)\) are taken as follows (position available for measurement and PD structure for the control law):

\[
P_1(s) = \frac{1}{s(mK_p + b)} = : P(s),
\]

\[
K_p = K_d = : K_p,
\]

\[
C_1(s) = C_2(s) = K_p + K_d = : C(s).
\]

It is worth mentioning that the robots are modeled as linear systems since the haptic interface does not present any particular behaviors that are not covered by the linear model, and the virtual robot is represented by an ideal case.

As far as the internal stability analysis is concerned, the above system is equivalent to a system where the controller is of PI type (of the form \(K_d + K_p/s\)), and the process (measured) variable is represented by the velocity, i.e., process given by: \((ms + b)^{-1}\).

By rearranging (5) and (6) above, one obtains:

\[
\begin{bmatrix}
1 + P_1(s)C_1(s) & -P_1(s)C_1(s)e^{-\tau_1} \\
-P_2(s)C_2(s)e^{-\tau_2} & 1 + P_2(s)C_2(s)
\end{bmatrix}
\begin{bmatrix}
X_1(s) \\
X_2(s)
\end{bmatrix}
= \begin{bmatrix}
P_1(s)F_b(s) \\
-P_2(s)E_b(s)
\end{bmatrix}
\]

Fig. 5. Delayed P-action.
Allowable region of controller parameters for stability of the bilateral haptic system.\[1+P_1(s)C_1(s)\quad -K_p P_1(s)e^{-Ts}\
-P_2(s)K_p e^{-Ts}+1+P_2(s)C_2(s)\]
\[X_1(s)\]
\[X_2(s)\]
\[P_1(s)\]
\[P_2(s)\]
\[F_h(s)\]
\[F_e(s)\]
\[P(s)\]
\[E(s)\]
\[e(t) := x_1(t)−x_2(t)\]
\[\frac{P(s)}{1+P(s)C(s)+P(s)C(s)e^{-Ts}(F_h(s)+F_e(s))}\]

Rearranging (18) and (19), it follows:

\[
\begin{align*}
1+P_1(s)C_1(s) & -K_p P_1(s)e^{-Ts} \\
-P_2(s)K_p e^{-Ts} & +1+P_2(s)C_2(s)
\end{align*}
\]
\[
\begin{pmatrix}
X_1(s) \\
X_2(s)
\end{pmatrix}
\]
\[
\begin{pmatrix}
P_1(s) \\
-P_2(s)
\end{pmatrix}
\]

Therefore, with the definitions (7)–(9), the new characteristic equation of the feedback system becomes

\[(1+P(s)C(s))^2-K_p^2 P(s)^2 e^{-T_2 s} = 0,\]

which is equivalent to

\[1+P(s)C(s) + K_p P(s) e^{-Ts} = 1 + K_p P(s) \left(K_d \frac{1}{s} + \frac{1 + e^{-Ts}}{s} \right) = 0.\]

Since \((K_p P(s))\) is positive real, in order to guarantee the stability, it is needed to ensure that

\[\text{Re} \left\{ \frac{K_d}{K_p} + \frac{1 + e^{-Ts}}{s} \right\} > 0 \quad \forall s \in \mathbb{C}_+.\]

Knowing that

\[\text{Re} \left\{ \frac{K_d}{K_p} + \frac{1 + e^{-j\omega t}}{j\omega} \right\} = \frac{K_d}{K_p} - \frac{\sin(\omega t \tau)}{\omega \tau} \geq \frac{K_d}{K_p} - \tau\]

and

\[\frac{1-e^{-j\omega t}}{j\omega} \leq \tau \quad \forall \omega \in \mathbb{R}_+,\]

the stability is guaranteed if the following condition holds:

\[K_d > \tau \Leftarrow K_d > K_p \tau.\]

The result obtained in Nuno et al. (2008), by using a different argument \(K_d, K_d > K_p, \tau_1 \tau_2\) is exactly the same with (23), under the assumption (8) and \(\tau_1 = \tau_2 = \tau\).

4. Optimal gains

In this section, optimal gains \(K_p\) and \(K_d\) (\(H_\infty\)-base, non-fragility) are presented and discussed, for the PD control configuration studied in Section 3.1.

4.1. \(H_\infty\)-based design

Let us define the position tracking error

\[e(t) := x_1(t)−x_2(t).\]

From (10), it is computed

\[E(s) = \frac{P(s)}{1+P(s)C(s)+P(s)C(s)e^{-Ts}(F_h(s)+F_e(s))}.\]

While trying to make the error small, one may be forced to use “high” command signals which may lead to actuator saturation. Since large control signals are not desirable, it is also wanted to “penalize” the control. Again, from (10), the output of the controller, \(F_2(t)\), on the virtual side can be computed as

\[F_2(s) = C(s)e^{-Ts}X_1(s)−X_2(s)\]

In particular, when \(F_e = 0\)

\[\begin{align*}
F_2(t) &= -K_d x_2(t) + K_p e^{-Ts} X_1(t) (t-t_1) \\
\end{align*}\]
where $T(s) = P(s)C(s)(1 + P(s)C(s))^{-1}$. Therefore, optimal gains from the H_{∞} control point of view are the ones which solve the problem

$$\min_{K_{p}, K_{d}} \| P(s) \left[\frac{1}{1 + P(s)C(s)(1 + e^{-s})} \right] \|_{\infty},$$

where p is a design parameter which represents the "trade-off" between small tracking error e and small control action F_2. Depending on the values of p, the optimal K_{p} and K_{d} are obtained, for each fixed $m = 1$, $b = 0.1$ and $\tau = 0.05$, as shown in Table 1.

It is easy to see that for large values of p, the optimal gains are in the order of $K_{p} \approx [240, 310]$ and $K_{d} = \{40, 55\}$. The next subsection includes a comparison between this set of values and another set of gains obtained from a different optimality criterion.

4.2. Stability margin optimization

Introduce now: $\alpha := (bk_{p})(mk_{p})$ and assume that $\alpha < 1$. Let ω_{p} be the smallest $\omega > 0$ satisfying

$$\tan^{-1}(\alpha \omega) = \tan^{-1}(\omega) - \frac{h \omega}{2} = -\pi,$$

where $h = ((\tau_1 + \tau_2)b)/(2m)$.

As mentioned in the proof of Theorem 1 (see Appendix A), one of the stability conditions is

$$\left(\frac{b^2}{mk_{p}} \right) \left(\frac{1 + \omega_0^2}{2(1-\alpha)} \right) > 1.$$

Note that $\omega_{b} < \omega_{p}$ so, defining

$$GM_1 := \frac{b^2}{mk_{p}} \left(\frac{1 + \omega_0^2}{2(1-\alpha)} \right),$$

then $GM_1 > 1$ implies (28). So, one will try to make GM_1 as large as possible. On the other hand, for large bandwidth in the system (fast response) it is required that ω_{c} is as large as possible, i.e.

$$\omega_{c}^2 + 1 = \frac{mk_{p}}{b^2} 2(1-\alpha),$$

should be as large as possible. But this conflicts with GM_1 should be large condition. So, blending these two conflicting objectives and trying to maximize

$$\min \left\{ \alpha, \frac{1}{\rho_1} GM_1 \right\},$$

where ρ_1 assigns a relative weight for each component of the problem. The solution of this problem gives

$$\frac{mk_{p}}{b^2} = \frac{1}{\rho_1^2} \frac{1}{\rho_1} GM_1$$

Under this choice, it follows:

$$GM_1 = \rho_1 \sqrt{1 + \omega_0^2}.$$

Note that the right hand sides of (32) and (33) are functions of α once ρ_1 and $h = tb/m$ are fixed.

Now, (mk_{p}/b^2) is the controller gain, and to avoid actuator saturations, this gain should not be too high. So, one can define a new cost function which tries to make GM_1 large and K_{p} small, the objective here is to minimize the following cost function by appropriately chosen K_{p}:

$$\text{Cost} := \left(\frac{\rho_2}{\rho_1^2 + \omega_0^2} + \frac{b^2}{mk_{p}^2} \frac{1}{\rho_1^2} \frac{1}{\rho_1} GM_1 \right).$$

where ρ_2 assigns relative weights for GM_1 and K_{p}. Note that ρ_1 does not play a role in the solution of (34). Once ρ_2 and $h = tb/m$ are fixed, the cost function defined in (34) depends on α only. Minimizing the cost function gives optimal α, then this gives ω_{b} and K_{p} via (32); and once K_{p} is known, $K_{d} = \tau m K_{p}/b$ can be found.

Table 1

H_{∞} optimal gains for different ρ.

<table>
<thead>
<tr>
<th>ρ^2</th>
<th>0.01</th>
<th>0.1</th>
<th>1</th>
<th>10</th>
<th>50</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_{p}</td>
<td>0.8</td>
<td>17.1</td>
<td>85.0</td>
<td>246</td>
<td>305</td>
<td>310</td>
</tr>
<tr>
<td>K_{d}</td>
<td>8.8</td>
<td>10.2</td>
<td>15.2</td>
<td>43</td>
<td>55</td>
<td>51</td>
</tr>
</tbody>
</table>

Table 2

Optimal gains and GM_1 for different ρ_2, when $\tau = 0.05$, $m=1$, and $\rho_1 = b^2 = 0.01$.

<table>
<thead>
<tr>
<th>ρ_2</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>80</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_{p}</td>
<td>94</td>
<td>207</td>
<td>301</td>
<td>389</td>
<td>425</td>
<td>436</td>
<td>446</td>
<td>453</td>
</tr>
<tr>
<td>K_{p}</td>
<td>2.4</td>
<td>6.3</td>
<td>12.7</td>
<td>34.3</td>
<td>82</td>
<td>127</td>
<td>207</td>
<td>291</td>
</tr>
<tr>
<td>GM_1</td>
<td>1.33</td>
<td>2.9</td>
<td>4.2</td>
<td>5.5</td>
<td>6.0</td>
<td>6.1</td>
<td>6.16</td>
<td>6.2</td>
</tr>
</tbody>
</table>

Table 3

Allowable perturbations of delay for H_{∞} optimal gain parameters when $m=1$ and $b=0.1$.

<table>
<thead>
<tr>
<th>K_{p}</th>
<th>17.1</th>
<th>85.0</th>
<th>246</th>
<th>305</th>
<th>310</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_{d}</td>
<td>10.2</td>
<td>15.2</td>
<td>43</td>
<td>55</td>
<td>51</td>
<td>40</td>
</tr>
<tr>
<td>τ_{min}</td>
<td>0.458</td>
<td>0.181</td>
<td>0.120</td>
<td>0.110</td>
<td>0.108</td>
<td>0.087</td>
</tr>
</tbody>
</table>

Fig. 8. System is stable for $\tau < 0.0876$, marginally stable for $\tau = 0.0876$ and unstable for $\tau > 0.0876$ when $K_{p}=400$ and $K_{p}=40$.

B. Liu et al. / Control Engineering Practice 21 (2013) 655–668
Table 2 shows the optimal gains for varying \(\rho_2 \) when \(\rho_1 = b^2 = 0.01 \), \(m = 1 \) and \(h = \tau b/m = 0.005 \) are fixed.

Table 2 shows that \(GM_1 \) increases with increasing \(\rho_2 \), but for \(\rho_2 \geq 50 \) additional gain in \(GM_1 \) is very small. Therefore, a meaningful choice would be \(K_p \in [390, 410] \) and \(K_d \in [35, 45] \). Compared to the \(H_\infty \) optimal gains corresponding to relatively large \(\rho \) values, the above \(K_p \) values are about 1.3–1.5 times higher, whereas \(K_d \) values are 1.14–1.25 times lower. For the experimental tests, the values \(K_p = 400 \) and \(K_d = 40 \) are used and results are reported in the next section. These correspond to \(\rho_2 \approx 42 \) in the above table. For the \(H_\infty \) optimal gains one may select \(K_p = 275 \) and \(K_d = 45 \); the stability margins are expected to be larger in this case, but the response will be slower. For relatively small \(\rho \) values in the \(H_\infty \) optimal design, i.e. \(K_p = 85 \) and \(K_d = 15 \) (e.g. for \(b^2 \rho = 1 \)) in which case the emphasis on tracking performance is diminished compared to larger \(\rho \) values. In the next section, experimental results for the above mentioned parameters are illustrated.

5. Robustness analysis

5.1. Delay perturbations

Smallest time delay which destabilizes the feedback system for a given set of controller and plant parameters can be calculated using Theorem 1. This can be seen as the largest tolerable delay. Time-domain simulation in Fig. 8 illustrates the results found in Table 3 (Fig. 9).

5.2. Parametric plant perturbations

Introducing

\[
C(s) := C_1(s) = C_2(s), \quad L_1(s) := P_1(s)C(s), \quad L_2(s) := P_2(s)C(s),
\]

leads to the characteristic equation of the form

\[
1 + L_1(s) + L_2(s) + L_1(s)L_2(s) - L_1(s)L_2(s)e^{-2\tau s} = 0.
\]

After some algebraic manipulations, the characteristic equation can be written as

\[
\frac{1}{P_1(s)} = m_1s + b_1 = \frac{(1 + L_2(s) - L_2(s)e^{-2\tau s})C}{-1 - L_2(s)} = : H(s).
\]

Parameters pairs \(m_1^* \) and \(b_1^* \) may be found for marginally stable characteristic equation (37) as in Morarescu, Niculescu, and Gu (2010).

\[
m_1^* = \frac{\text{Im}(H(j\omega))}{\omega}, \quad b_1^* = \text{Re}(H(j\omega))\omega.
\]

Fig. 9 shows the allowable parameter region determined from (38), as well as time domain responses for two different choices of the parameters.

5.3. Robustness against unmodeled dynamics

The plant model used can be slightly different than the real model due to uncertainties such as unmodeled dynamics and approximation of the parameters. To avoid undesirable effects of these uncertainties, the controller gains used should stabilize all possible plants. Defining one of the plants as

\[
P_i(s) = P(s) + \Delta_i(s),
\]

the robust stability test may be applied. Characteristic equation of the perturbed system is

\[
(1 + P(s)C(s))(1 + (P(s) + \Delta_i(s))C(s)) - (P(s) + \Delta_i(s))P(s)C(s)^2 e^{-2\tau s} = 0.
\]

After some algebraic manipulations, characteristic equation becomes the characteristic equation of nominal plant multiplied by a function with perturbed terms.

\[
(1 + P(s)C(s)(1 + T(s)e^{-2\tau s})(1 + G(s)f_C(s)) + 1 + \Delta_m \left[\frac{T(s)}{1 + T(s)e^{-2\tau s}} \left(1 + G(s)f_C(s) \right) \right],
\]

where

\[
\Delta_m := \frac{P_i(s) - P(s)}{P(s)}f_C(s) = \frac{1 - e^{-\tau s}}{s}.
\]

![Fig. 9. Allowable plant parameters for \(m_1 = 1, b_1 = 0.1, K_p = 400, K_d = 40, \tau = 0.085 \).](image-url)
In (41), the transfer functions $T(s)$ and $G(s)$ are as (see also Appendix A)

$$G(s) = \frac{K_p + K_d s}{ms + b}, \quad T(s) = \frac{K_p + K_d s}{s^2 + K_p s + K_d s},$$

and A_m is called multiplicative perturbation. In “Optimal Gains” section, controller parameters are provided for which the nominal feedback system is stable and performance criteria is satisfied. For robust stability, these parameters should also satisfy following inequality:

$$\left| A_m(s) \left(\frac{T(s)}{1 + T(s)e^{-\tau}} \right) \right|_{\infty} < \frac{1}{|R(j\omega)|}.$$ \hspace{1cm} (44)

By using Eq. (44), the allowable magnitude of perturbation can be derived

$$|A_m(j\omega)| < \frac{1}{|R(j\omega)|}. \hspace{1cm} (45)$$

Fig. 10 shows that the only frequency range where tolerable uncertainty bound is less than 100% is between 20 rad/s and 50 rad/s (where tolerable uncertainty bound is between 50% and 100%); any unmodeled lightly damped flexible modes in this frequency range may destabilize the feedback system, otherwise the system is quite robust to unmodeled dynamics.

To illustrate this result, the system is perturbed with

$$W(s) = \frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2},$$

which represents an unmodeled flexible mode of the system. The perturbed plant is defined as follows:

$$P_1(s) = P(s) + P(s)W(s).$$

Corresponding simulation results with different ζ and ω_n are shown in Fig. 11.

6. Experimental results

6.1. Experimental setup

In order to guarantee a full control of the communication time-delays and processing time, all the control algorithms (for haptic interface/virtual object) and virtual environment simulations will be run on the same computer.

The haptic interface, Fig. 12a and b, consists of three direct-drive motor and three optical quadrature encoder with 1000 pts/rev (with a gear ratio of 1/10). The controllers and the virtual simulation are running in real time mode (on RTAI Linux) with a sampling time of 1 ms. Fig. 12c illustrates the virtual scene and the virtual object.

The virtual object is modeled to be some spherical mass (equal to the haptic interface mass) ($M_h = M_v$). The environmental force (F_{ex}, F_{ey}, F_{ez}) resulting in case of an impact with the virtual environment is defined by the following equation:

$$F_e = K_{wall}(P_v - P_{wall}) + B_{wall} \dot{P}_v,$$

with

$$F_e = \begin{pmatrix} F_{ex} \\ F_{ey} \\ F_{ez} \end{pmatrix}, \quad P_v = \begin{pmatrix} x_v \\ y_v \\ z_v \end{pmatrix}, \quad P_{wall} = \begin{pmatrix} x_{wall} \\ y_{wall} \\ z_{wall} \end{pmatrix}.$$ \hspace{1cm} (48)

Fig. 10. $m = 1, b = 0.1, \tau = 0.05, K_p = 400, K_d = 40.$

Fig. 11. $m = 1, b = 0.1, \tau = 0.05, K_p = 400, K_d = 40.$
where $K_{\text{wall}} = 20,000$ and $B_{\text{wall}} = 10$ represent the stiffness and the damping used to compute the virtual force environment. P_{wall} is the virtual wall position (x, y, z) and P_v, \dot{P}_v are the virtual object position and velocity, respectively.

The testing scenarios are the same for each experimental category:

- free motion (random motions on each axis)
- restricted motion (wall contact on each axis).

6.2. Results

The haptic systems must be analyzed in two distinct situations: free and restricted motion, respectively. A constant time-delay $\tau_1 = \tau_2 = 50$ ms will be considered for all the experiments.

In Fig. 13, it is presented the free motion case for $K_p = 85$, $K_d = 15$, as discussed in Table 1.

The obtained results are “good”, in the sense that the curves corresponding to the haptic interface and virtual object are almost identical, which shows a low tracking error. The system appears to be stable in closed-loop and robust to perturbations and the force feedback is small, i.e. the viscosity effect is low.

Next, in Fig. 14, using the same gains, the results for the restricted motion case are presented.

As expected, the tracking error is important and the contact effect felt by the end user is low, because the tuning strategy is contradictory. More precisely, for “good” results in free motion, small gains are desired (exactly what was obtained), but in restricted motion, in order to have a small tracking error and a stiff response, high gains are explicitly needed.
In order to decrease the tracking error and to provide a more accurate contact feeling in restricted motion case, the following values will be used (as presented in Table 1):

\[K_p = 250, \quad K_d = 45. \]

Figs. 15 and 16 presents the results in free and restricted motion for the new values of the PD gains.

In free motion, it can be observed that there is a slightly degradation with respect to the previous example in terms of force feedback, i.e. the force is more important. The viscosity effect is still low, the manipulation can be made in a pleasant way without feeling a disturbing force. From the perspective of tracking error, the performances are good, as the curves demonstrate, similar to the previous case. In restricted motion, there is an important amelioration compared to the previous case, but still the performances are not the desired ones. More precisely, the impact moment is not sufficiently stiff in order to provide to the end user an accurate contact feeling. The overall performances of this example are better than the previous one.

Further on, Figs. 17 and 18 present the results in free and restricted motion for

\[K_p = 400, \quad K_d = 40, \]

as proposed in Section 4.2.

In free motion, the viscosity effect is more important and it appears to be less pleasant to manipulate than the previous case, but in restricted motion the tracking error is considerably lower and the response is stiffer. As the curves illustrate, in free motion the tracking error is low, i.e. the performances are good as in the previous cases.

As expected, for good results in free motion, small gains are required and for restricted motion, high gains are desired. Any “trade-off” made in one sense or another will result in some overall performance degradation.

In order to validate the theoretical result obtained here on stability, the gains were pushed over the limit of stability and in Fig. 19 is presented an unstable behavior of the system.

More precisely, for \(K_d = 40 \), the maximum allowable \(K_p \) is about 1000. Considering the model uncertainties, the system’s frictions and the operator’s hand the system is still stable at this value. Another reason is that it is difficult to obtain high frequencies and the haptic interface input. Starting from \(K_p = 1100 \) the system becomes unstable.

7. Conclusions

In this paper, a complete stability analysis for a bilateral haptic system coupled to a virtual environment and affected by time-delays is presented.

First, appropriate necessary and sufficient condition have been derived to guarantee the closed-loop stability. Such conditions are analytical and allow an easy characterization of the stability regions in the controller parameter-space. Next, using optimization techniques and based on the stability limits, optimal controllers from the tracking error point of view are proposed. More precisely, the PD gains are tuned according to a maximum allowed tracking error. Furthermore, a robustness analysis is performed in order to highlight the limitations in terms of maximum time-delay, parametric plant perturbations and unmodeled dynamics.

To obtain good performance from the transparency point of view in free and restricted motion, using the same PD gains, a compromise must be made in order to guarantee minimal
Fig. 15. Free motion for $K_p = 250$ and $K_d = 45$.

Fig. 16. Restricted motion for $K_p = 250$ and $K_d = 45$.
Fig. 17. Free motion for $K_p = 400$ and $K_d = 40$.

Fig. 18. Restricted motion for $K_p = 400$ and $K_d = 40$.
performance in both cases. The proposed controllers have been tested and validated on a 3 degree-of-freedom haptic system in free and restricted motions. Another solution is to use a gain scheduling approach in order to switch from small to high gains depending on the case. A special attention is needed for this approach since both controllers must be updated, and since the system is affected by time-delays, there is a “critical” moment when the gains will be different at each side, moment that can induce unwanted effects and behaviors. The stability analysis in this case would fall into the framework of switched time-delays systems and stability can be guaranteed for a sufficiently large dwell time, see for example Calvin, Özbay, and Niculescu (2011), Yan and Özbay (2008), Yan, Özbay, and Şansal (2011) and their references.

Acknowledgments

The authors wish to thank associate editor and anonymous reviewers for their useful comments and remarks that helped us to improve the overall contribution of the paper.

This work is supported in part by the French-Turkish PIA Bosphorus (TUBITAK Grant no. 109E127 and EGIDE Project no. 22974WJ). The work of Bogdan Liacu was financially supported by CEA LIST, Interactive Robotics Laboratory BP 6, 18 route du Panorama, F-92265 Fontenay-aux-Roses, France. Hitay Özbay and Ahmet Taha Koru acknowledge partial financial support by DPT-HAMIT project.

Appendix A. Reduction of the stability conditions

Since \((1 + PC)^{-1}\) is a stable transfer function, from (12) it is worth mentioning that the feedback system is stable if and only if the following two equations do not have zeros in \(C_+ = \{s : \text{Re}(s) \geq 0\}:

\[
1 + G(s) \left(1 - \frac{e^{-ts}}{s}\right) = 0, \quad \text{where } G(s) = \frac{K_p + K_d s}{ms + b},
\]

(A.1)

\[
1 + T(s) e^{-ts} = 0, \quad \text{where } T(s) = \frac{K_p + K_d s}{s(ms + b) + K_p + K_d s}.
\]

(A.2)

Now define

\[K := \frac{K_p}{b}, \quad \tau_c := \frac{K_d}{K_p}, \quad \tau_p = \frac{m}{b},\]

then \(G(s)\) and \(T(s)\) can be re-written as

\[G(s) = K \frac{1 + \tau_c s}{1 + \tau_p s^2},\]

(A.3)

\[T(s) = \frac{K(1 + \tau_c s)}{\tau_p s^2 + (1 + \tau_c K)s + K}.\]

(A.4)

Further, a frequency normalization can be made

\[\tilde{s} = \tau_p s,\]

(A.5)

and introduce new definitions

\[L = \frac{1}{K \tau_p} = \frac{b^2}{mk_p}, \quad \tau_c = \frac{bK_d}{mk_p}, \quad \tau_p = \frac{\tau_c}{\tau_p} = \frac{(\tau_1 + \tau_2)b}{2m},\]

(A.6)

so that the characteristic Eqs. (A.1) and (A.2) can be re-written as

\[1 + \frac{1}{L} \left(1 + zs\right) \left(1 - \frac{e^{-\tilde{s}z}}{\tilde{s}}\right) = 0,
\]

(A.7)

Fig. 19. Unstable behavior for \(K_p=1100\) and \(K_d=40\).
The next step is to find the controller parameters L and x (which define K_p and K_d), as functions of h, that place all the roots of (7) and (8) in C.

Using this identity, after algebraic manipulations and for $x < 1$, (A.12) is now equivalent to

$$L > \frac{2(1-z)}{\omega_p^2+1},$$

where ω_p is determined from (A.14).

Now consider (A.8). The cross-over frequency $\omega_c > 0$ where

$$\left| \frac{1+j2\omega_c}{1-L\omega_c^2+j(L+z)\omega_c} \right| = 1,$$

can be found as the feasible root of

$$L^2\omega_c^2 \left(\omega_c^2+\frac{2(1-z)}{L} \right) = 0.$$

Clearly, this has a non-zero real solution if an only if the following condition holds:

$$2(1-z) > L,$$

in which case

$$\omega_c = \sqrt{\frac{2(1-z)}{L} - 1}.$$

This means that if (A.16) is not satisfied, then $|T(j\omega)|$ is a uniformly decreasing function with $T(0) = 1 = \|T\|_{\infty}$, which, by the small gain theorem, implies that all the roots of (A.8) are in C, independent of h.

Since ω_p is a positive real number, the condition (A.15) also holds regardless of delay value h when (A.16) is not satisfied. To complete the analysis, now assume (A.16) is satisfied and ω_c is as defined by (A.17). In this case, by the Nyquist criterion, all the roots of (A.8) are in C, if and only if $\tan^{-1}(\omega_c) - \tan^{-1}(\omega_p) - \frac{\omega_c}{\omega} \neq -\pi$.

Recall from (A.19) and (A.14) that ω_c is restricted to satisfy $\omega_p > \omega_c$, where ω_p is defined from

$$2(\pi - \tan^{-1}(\omega_p) - \tan^{-1}(\omega_c)) \omega_c^2 > h.$$

Recall from (A.19) and (A.14) that ω_c is restricted to satisfy $\omega_p > \omega_c$, where ω_p is defined from

$$2(\pi - \tan^{-1}(\omega_p) - \tan^{-1}(\omega_c)) \omega_c^2 > h.$$

Resuming, the system is stable independent of delay h if $x \geq 1$; or if $x \leq 1$ and $L > 2(1-z)$. Furthermore, the analysis for the case $x < 1$ and $2(1-z) > L$ reduces to the following. Define

$$g_c(x) = \frac{\pi-2(\tan^{-1}(x) - \tan^{-1}(2x))}{x},$$
\[g_p(x) = \frac{2(\pi - (\tan^{-1}(x) - \tan^{-1}(z(x))))}{x}. \]

(A.23)

Clearly, \(g_p \) and \(g_c \) are uniformly decreasing functions and \(g_p(x) > g_c(x) \) for all \(x > 0 \). So, if \(\omega_p \) is defined as the solution of the equation \(g_p(x) = h \), and \(\omega_c \) as the solution of the equation \(g_c(x) = h \), then \(\omega_c < \omega_p \) and hence, for \(\alpha < 1 \) and \(2(1-\alpha) > L > 0 \), the feedback system shown in Fig. 4 is stable if and only if \(\omega_c < \omega_p \), which is equivalent to:

\[L < \frac{2(1-\alpha)}{1+\omega_p^2} \quad \text{where} \quad \omega_p > 0 \quad \text{is the solution of} \quad g_p(x) = h. \]

(A.24)

References

