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Given an undirected network with positive edge costs and a positive integer d>2, the minimum-degree
constrained minimum spanning tree problem is the problem of finding a spanning tree with minimum
total cost such that each non-leaf node in the tree has a degree of at least d. This problem is new to the
literature while the related problem with upper bound constraints on degrees is well studied. Mixed-
integer programs proposed for either type of problem is composed, in general, of a tree-defining part and
a degree-enforcing part. In our formulation of the minimum-degree constrained minimum spanning tree
problem, the tree-defining part is based on the Miller–Tucker–Zemlin constraints while the only earlier
paper available in the literature on this problem uses single and multi-commodity flow-based formula-
tions that are well studied for the case of upper degree constraints. We propose a new set of constraints
for the degree-enforcing part that lead to significantly better solution times than earlier approaches when
used in conjunction with Miller–Tucker–Zemlin constraints.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Minimum spanning tree (MST) problems arise quite naturally in
transportation and communication network design when it is nec-
essary to provide a minimum-cost connectivity among a number of
geographically dispersed locations or system components. Various
examples of minimum cost tree networks are given by Ahuja et al.
[1] from network design in transportation, telecommunication, data
storage, and cluster analysis. We consider in this paper a topology
constrained version of the minimum spanning tree problem in which
a minimum cost spanning tree is sought for while requiring that
each node in the tree be either a leaf node or a central (non-leaf)
node that is adjacent to at least d nodes.

The minimum-degree requirement for central nodes may arise in
distribution networks when fixed charges associated with a facility
may be large enough to suggest that at least a certain number of
end-users be served by it to justify the opening and operation costs
associated with it. Minimum-degree constraints in tree networks
are also encountered in telecommunication networks in the process
of designing local access networks that feed traffic between a main
network and a large number of end-users (terminals) (e.g., Green
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[2]). Installation costs for network components (e.g., concentrators
and computers) can be better justified when the number of nodes
served by them is not less than an acceptable threshold. The problem
is also of interest from a modeling and computational standpoint
as approaches that are well studied for upper degree constrained
problems do not necessarily work well for lower degree constrained
problems.

To define the problem of interest, let G = (V , E) be an undirected
connected network with node set V , edge set E, and positive edge
costs ce (e ∈ E). A spanning tree of G is a connected sub-graph
of G that has no cycles and spans all nodes. Given a positive in-
teger d, a spanning tree is a minimum-degree constrained spanning
tree if the degree of each node relative to the tree is either 1 or at
least d. Fig. 1 gives two such trees for d = 4. From now on, we re-
fer to minimum-degree constrained spanning trees as feasible trees.
If d�2, all spanning trees are feasible trees and the degree con-
straints can be ignored. The distinction between feasible and infea-
sible trees becomes important for d>2. Note that if d�n ≡ |V|,
no feasible tree exists for G. We assume from this point on that
2<d<n.

We refer to the problem of finding a minimum cost spanning
tree of G as the minimum spanning tree problem and that of finding
a minimum cost feasible tree as the minimum-degree constrained
minimum spanning tree (MDC-MST) problem. While MST is solv-
able in low order polynomial time by the algorithms of Kruskal
[3] and Prim [4], MDC-MST is proven to be NP-hard for d�4
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Fig. 1. Two feasible solutions for MDC-MST with d = 4.

by Almeida et al. [5]. The complexity status of this problem is open for
d = 3.

The MDC-MST is new to the literature. To our knowledge, the first
and the only study in the literature on MDC-MST is that of Almeida
et al. [5] (referred to as AMS in the sequel). In their study, AMS in-
troduced the problem, discussed its properties and complexity, pre-
sented some properties regarding the number of leaf and non-leaf
nodes, gave single- and multi-commodity flow-based formulations
for the problem, and present computational results for their formu-
lations. Their reported results show that many of the test problems
with up to 50 nodes can be solved within 3h of CPU time, but there
are also many test problems in the same test bed that remain un-
solved within the 3h limit.

We propose in this research new formulations that give substan-
tially improved solution times for the same set of test problems. Ad-
ditional improvement has been obtained by observing that the linear
programming (LP) relaxations of the proposed formulations lead, in
general, to tighter bounds if the root node for the tree is more ju-
diciously selected. Based on this, we give a methodology to select a
root node for the tree that significantly improves solution times for
proposed and previous models.

MDC-MST is closely related to the degree-constrained minimum
spanning problem (DC-MST) where the degree requirement for non-
leaf nodes is an upper bound rather than a lower bound. DC-MST is
proven to be NP-hard by Garey and Johnson [7]. Unlike MDC-MST,
DC-MST is a well-studied problem. Some of the notable contributions
on DC-MST are Deo and Hakimi [8], Savelsbergh and Volgenant [9],
Zhou and Gen [10], Knowles and Corne [11], Caccetta and Hill [12],
Ribeiro and Souza [13], Andrade et al. [14], and Krishnamoorthy et
al. [15].

AMS compared DC-MST and MDC-MST by using flow-based for-
mulations of both. They observed that flow-based formulations of
MDC-MST show significantly poor performance with respect to LP
bounds and solution times when compared to flow-based formula-
tions of DC-MST. In this regard, MDC-MST appears to be quite elu-
sive, at least when compared to DC-MST.

The remainder of this paper is organized as follows. Section
2 reviews flow-based models of AMS. Section 3 gives our pro-
posed formulations. Section 4 gives our methodology to select
the root node. Section 5 gives computational results and com-
pares proposed and previous models. Section 6 concludes this
paper.

2. Review of the models of AMS

Minimum spanning tree problems with additional restrictions on
the structure of the tree (e.g., degree requirements) are formulated
in general using two sets of constraints, one set ensuring that a span-
ning tree is obtained and the other set ensuring that the resulting tree
satisfies the structural requirements. The structural requirement in
the problem we study is the minimum-degree requirement on non-
leaf nodes and will accordingly be referred to as degree-enforcing

constraints. The remaining portion of minimum spanning tree for-
mulations consists of constraints that ensure that the resulting set
of arcs is a spanning tree. We refer to this portion of the formula-
tions as tree-defining constraints. A number of different approaches
are available for modeling spanning tree features including formu-
lations based on packing, cut-sets, and flows (Magnanti and Wolsey
[16]). Among different formulations, flow-based formulations seem
to be a most preferred one because they are compact in the num-
ber of variables and that they, especially the multi-commodity
versions, give a better representation of the spanning tree poly-
hedron [16]. Following this fact, AMS use directed single- and
multi-commodity flow-based formulations to model spanning tree
features.

Flow-based formulations are defined on a directed network G′ =
(V ,A) obtained from G = (V , E) by replacing each undirected edge
{i, j} ∈ E, where i� j, by two directed arcs (i, j) and (j, i) with symmetric
costs cij = cji. A node r is selected as the root node and acts as a
single source for the flow to be sent to the remaining n − 1 nodes
each of which acts as a sink node with a demand of one unit. In the
single-commodity formulation, the root node has a supply of n − 1
units of a commodity and sends them out into the network to satisfy
the unit demand at each sink node. In the multi-commodity case,
the n − 1 demand nodes still have unit demands but each demand
is for a different commodity and the root node has a supply of one
unit of each commodity (e.g., Magnanti and Wolsey [16]). In either
case, the set of arcs with positive flows in a feasible solution define
an arborescence which is a directed tree such that every node other
than the root node has exactly one incoming arc while the root node
has no incoming arc.

In a feasible arborescence, if the root node is a leaf node, it has
one outgoing arc but no entering arcs. Any demand node that is a
leaf node has one incoming arc but no outgoing arcs. If the root node
is a central node, it has d or more outgoing arcs but no incoming
arcs while a demand node that is a central node has one incoming
arc and at least d− 1 outgoing arcs. Two example arborescences are
shown in Fig. 2 for the case of d = 4.

AMS use three sets of decision variables to formulate MDC-MST:
(1) binary design variables xij that take on the value of 1 if arc (i, j) is
in the design and 0 otherwise, (2) binary node variables wi that take
on the value of 1 if node i is a central node and 0 if node i is a leaf
node, and (3) non-negative flow variables yij specifying the amount
of flow in arc (i, j) for the single-commodity flow formulation and
the flow variables f kij specifying the amount of flow sent from the
root node r to demand node k passing through arc (i, j) for the multi-
commodity flow formulation.

In the flow-based formulations that we give next, the degree
enforcing constraints are constraints (2)–(5). We refer to constraints
(2)–(5) as DEF1 (the first set of degree-enforcing constraints). The
remaining set of constraints, other than set restrictions and non-
negativity, constitutes the tree-defining part of the formulation.
The tree-defining part is different for single and multi-commodity
formulations.
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Fig. 2. Two feasible solutions on a directed graph with d = 4.

SCF/DEF1: Single-commodity flow model with the first set of
degree-enforcing constraints

z∗ = min
x,w

∑
(i,j)∈A

cijxij (1)

s.t.
∑
j

xij�1 + (d − 1)wi, i = r (2)

∑
j

xij�1 + (n − 2)wi, i = r (3)

∑
j� r

xij� (d − 1)wi, i ∈ (V − r) (4)

∑
j� r

xij� (n − 2)wi, i ∈ (V − r) (5)

∑
i� j

xij = 1, j ∈ (V − r) (6)

∑
i

yij −
∑
i� r

yji = 1, j ∈ (V − r) (7)

xij�yij, i ∈ V , j ∈ (V − i − r) (8)

yij� (n − 1)xij, i ∈ V , j ∈ (V − i − r) (9)

xij ∈ {0, 1}, i ∈ V , j ∈ (V − i − r) (10)

wi ∈ {0, 1}, i ∈ V (11)

yij�0, i ∈ V , j ∈ (V − i − r) (12)

Objective function (1) minimizes the total cost of the arcs in the
solution. DEF1 constraints are (2)–(5) and tree-defining constraints
are (6)–(9). Constraints (2) and (3) and constraints (4) and (5) define
lower and upper bounds on the number of outgoing arcs from the
root node and non-root nodes, respectively. Constraints (6) require
that the number of incoming arcs to any non-root node be equal to
1. Constraints (7) are flow-conservation constraints. Constraints (8)
and (9) are coupling constraints requiring that any arc with a positive
flow be in the design and that the amount of flow through an arc be
bounded above by n− 1. Even though this can be improved to n− 2
for non-root nodes, we retain n − 1 in (9) to be consistent with the
form used by AMS. Constraints (10)–(12) give the appropriate set
restrictions and non-negativity on the decision variables.

MCF/DEF1: Multi-commodity flow model with the first set of
degree-enforcing constraints.

In addition to (1)–(6), (10), and (11),
∑
i� k

f kij −
∑
i� r

f kji = 0, j, k ∈ (V − r), j� k (13)

∑
i

f jij = 1, j ∈ (V − r) (14)

f kij �xij, i ∈ V , j, k ∈ (V − i − r) (15)

f kij �0, i ∈ V , j, k ∈ (V − i − r) (16)

Constraints (13)–(15) together with constraints (6) are multi-
commodity flow-based tree-defining constraints. Constraints (13)
and (14) are flow-balance constraints and constraints (15) are
coupling constraints. Note that constraints (13) and (14) and con-
straints (15) are commodity-distinguished versions of constraints
(7) and constraints (8) and (9), respectively. Constraints (16) are
non-negativity restrictions on flow variables.

AMS define two valid inequalities which are added to the models
SCF/DEF1 andMCF/DEF1 to obtain a total of six different formulations
(three for each). These valid inequalities are

xij�wi, i, j ∈ (V − r), i� j (17)
∑
i∈V

wi�

⌊
n − 2
d − 1

⌋
(18)

Valid inequality (17) requires that a node be a central node if
there is an outgoing arc from it while valid inequality (18) defines
an upper bound on the number of central nodes in a solution. The
validity of the upper bound is proven by AMS. We use these valid
inequalities in our formulations as well. We refer to the version of
DEF1 that includes the valid inequalities (17) and (18) as DEF1′.

As to the number of constraints and variables, SCF/DEF1′ has
3n2−2n−1 constraints, n2−n binary variables, and n2−n continuous
variables while MCF/DEF1′ has n3 + n2 − n − 1 constraints, n2 − n
binary variables, and n3 − 2n2 continuous variables.

3. Proposed formulations for MDC-MST

In this section, we propose a new set of degree-enforcing con-
straints referred to as DEF2. We also propose to use Miller–Tucker–
Zemlin (MTZ) [6] constraints for the tree-defining part as an alter-
native to single or multi-commodity flow constraints.

3.1. DEF2: the proposed set of degree-enforcing constraints

Let wic and wil be a pair of binary variables associated with node
i with wic = 1 (wil = 1) if node i is a central (leaf) node and wic = 0
(wil = 0) if not. DEF2 constraints are as follows:

wic + wil = 1, i ∈ V (19)∑
j

xij�1, i = r (20)

∑
j� r

xij�dwic + wil, i = r (21)

∑
j� r

xij�1 + (n − 2)wic, i = r (22)

∑
j� r

xij� (d − 1)wic, i ∈ (V − r) (23)

∑
j

xji +
∑
j� r

xij�d − (d − 1)wil, i ∈ (V − r) (24)

∑
j

xji +
∑
j� r

xij�1 + (n − 2)wic, i ∈ (V − r) (25)

xij�wic, (i, j) ∈ A, i� r, j� r (26)

xij + wil + wjl�2, (i, j) ∈ A, j� r (27)
∑
i∈V

wic �

⌊
n − 2
d − 1

⌋
(28)

xij ≡ 0, (i, j) ∈ A, j = r (29)

xij + xji�1, (i, j) ∈ A, i< j (30)∑
j� i

xij = n − 1 (31)

wic,wil ∈ {0, 1}, i ∈ V (32)
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Constraints (19) require that each node be either a central node
or a leaf node. Constraints (20)–(31) express some structural prop-
erties of a feasible solution. Constraints (20)–(22) define lower and
upper bounds on the number of outgoing arcs from the root node.
Constraint (20) establishes that the number of outgoing arcs at the
root node r is at least 1. Constraints (21) and (22) require that the
number of outgoing arcs at the root node be equal to 1 when r is a
leaf node and be at least d and at most n−1 when r is a central node.
Constraint (20) is actually redundant; however, it helps to improve
the solution times. Constraints (21) and (22) are equivalent to con-
straints (2) and (3), respectively, in terms of the new node variables.

Constraints (23)–(25) set upper and lower limits on the degree of
non-root nodes. Constraints (23) require, as constraints (4), that the
number of outgoing arcs from a non-root node be at least d−1 if the
node is a central node. Constraints (24) state that the total number
of outward and inward arcs of each non-root node is at least d when
a non-root node is a central node and at least 1 when a non-root
node is a leaf node. Constraints (24) are similar to constraints (23),
and hence to constraints (4), except that constraints (24) take into
account both inward and outward arcs while constraints (23) take
into account only outward arcs. Constraints (24) can be obtained
by adding constraints (4) and (6) in terms of new variables, i.e.,
constraints (23) and (6). Because each non-root node is required to
have exactly one incoming arc by constraints (6), constraints (24)
are actually nothing more than adding the same terms to the left-
and right-hand sides of constraints (4).

Constraints (25) restrict the number of inward and outward arcs
of a non-root node to be at most 1 when the node is a leaf node
and at most n− 1 when the node is a central node. Constraints (25)
can be obtained by adding constraints (5) and (6) in terms of new
variables. Thus, the relationship between constraints (25) and (5) is
similar to that between constraints (24) and (4).

Constraints (26) are exactly the valid inequalities (17) in terms of
wic. They require that a non-root node be a central node if there is
an outgoing arc from it. Note that constraints (5) can be obtained by
summing both sides of constraints (26) over all nodes j adjacent to
node i, i.e., constraints (26) are a disaggregated version of constraints
(5).

Constraints (27) prevent arcs between pairs of leaf nodes. Con-
straints (28) are the valid inequalities (18) in terms of the new vari-
ables. Constraints (29) do not allow any arcs incoming to the root
node. Constraints (30) state that a pair of arcs of opposite directions
between a pair of nodes is not possible. This set of constraints is ac-
tually a set of valid inequalities. Constraints (31) require that the to-
tal number of arcs in the solution be equal to n−1, which is a known
fact for a tree (e.g., [1]). Finally, constraints (32) give the zero/one
restrictions on the decision variables wic and wil.

Note that constraints (26) and (27), and (29)–(31) must be sat-
isfied by any tree problem and are not particular, in this sense, to
MDC-MST. They are not an essential part of degree-enforcing con-
straints, but we keep them there because their presence leads to bet-
ter computational performance than their omission. Note that these
constraints are not an essential part of tree-defining constraints, ei-
ther.

New flow-based formulations for MDC-MST can easily be ob-
tained by replacing DEF1 constraints (2)–(5) with DEF2 constraints
(19)–(32). In fact, DEF2 (or any other set of degree-enforcing con-
straints) can be coupled with any set of tree-defining constraints
to obtain a new formulation. For instance, MCF/DEF2, the multi-
commodity flow-based model with the proposed set of constraints,
is composed of the objective function (1) and constraints (6), (10),
(13)–(16), and (19)–(32).

Proposition 1. Let DEF1P and DEF2P be two different formulations
of MDC-MST where DEF1 and DEF2 are used as degree-enforcing

constraints in the two formulations, respectively, while all remaining
constraints, including tree-defining constraints and integer restrictions,
are common. Denoting by F(PLP) the set of feasible solutions of the
LP relaxation of any integer linear programming problem P, we have
F(DEF2PLP) ⊆ F(DEF1PLP). Accordingly, DEF2 dominates DEF1.

Proof. Let (x, y,wc,wl) ∈ F(DEF2PLP) where x, y, wc, and wl are the
vectors of variables xij, yij , wic, and wil, respectively. Put w=wc. We
now prove (x, y,w) ∈ F(DEF1PLP). It suffices to show that (x, y,w) sat-
isfies constraints (2)–(5) as the only constraints that are in DEF1PLP
that are not included in DEF2PLP are these constraints. The feasibility
of (x, y,wc,wl) to DEF2PLP implies that (x, y,wc,wl) satisfies the DEF2
constraints (19)–(32) as well as the tree-defining constraints (6)–(9).
Constraint (2) is implied by (19), (21), and the fact that w=wc. Con-
straint (3) is implied by (22) and w=wc. Constraints (4) are implied
by (23) andw=wc. Constraints (5) are implied by (6), (25) andw=wc.
Hence, (x, y,w) ∈ F(DEF1PLP) and the proof is complete. �

We remark that the proof of the proposition is still valid if we
change DEF1 to DEF1′ in the proposition. This follows from the fact
that constraints (17) and (18) of DEF1′ are nothing but constraints
(26) and (28) of DEF2, respectively, upon replacing w with wc.

Proposition 2 is an immediate consequence of Proposition 1 and
the foregoing remarks when the problem under consideration is
taken to be a flow-based formulation, MCF or SCF.

Proposition 2.

(i) F(MCF/DEF2LP) ⊆ F(MCF/DEF1′
LP) ⊆ F(MCF/DEF1LP).

(ii) F(SCF/DEF2LP) ⊆ F(SCF/DEF1′
LP) ⊆ F(SCF/DEF1LP).

While it is possible to drop the variables wil from DEF2 by replac-
ing wic with wi and wil by 1 − wi, the presence of the variables wil
in DEF2 produces on the average better solution times than when
they are absent. We attribute this to different branch-and-bound
structures and cuts that may be generated by the solver when these
variables are present than when they are absent.

Computational studies indicate that flow-based models with
DEF2 show better performance with respect to both LP bounds
and solution times than the ones with DEF1 and DEF1′. The so-
lution times for problems solved to optimality are almost halved.
In particular, MCF/DEF2 gives considerably better LP bounds than
SCF/DEF1 or SCF/DEF1′ (discussed in Section 5). However, due to
relatively high memory storage requirements of MCF/DEF2, it can-
not solve most of the problems with 50 nodes within the 3-h limit
of CPU time. SCF/DEF2 can solve more problems than MCF/DEF2;
however, there still remain problems not solved within the al-
lotted time. For these reasons, we use the Miller–Tucker–Zemlin
constraints (Miller et al. [6]) as an alternative to flow-based
formulations.

3.2. Formulations based on the Miller–Tucker–Zemlin sub-tour
elimination constraints

Formulations based on MTZ constraints also create a rooted ar-
borescence. In this regard, the directed network structure defined
above is used.

To formulate MTZ constraints, in addition to the binary design
variables xij, non-negative node-labeling variables ui are used. These
labels are assigned in such a way in any feasible solution that each
directed arc included in the arborescence is directed from a node
with a lower label into a node with a higher label. This ensures that
the node labels form an increasing sequence on any directed path
so that any node previously visited on a directed path cannot be
re-visited, thereby preventing formation of sub-tours.



76 �I. Akgün, B. Tansel / Computers & Operations Research 37 (2010) 72 -- 82

r r

4

3

5

6

07 1

3 2

2 4

20 1 4 7

Fig. 3. Two feasible spanning trees with labels assigned by MTZ constraints.

The basic MTZ constraints [6] are given below. The term “basic”
is used here because these constraints are changed later to obtain
an improved version of these constraints.

BMTZ: Basic Miller–Tucker–Zemlin sub-tour elimination con-
straints

ui − uj + nxij�n − 1, (i, j) ∈ A, j� r (33)

ui�n − 1, i ∈ (V − r) (34)

ui�1, i ∈ (V − r) (35)

ui ≡ 0, i = r (36)

ui�0 ∀i (37)

MTZ constraints are originally defined for the traveling salesman
problem (TSP) (Lawler et al. [17], Padberg and Sung [18], Nemhauser
and Wolsey [19]). In the context of TSP, MTZ constraints eliminate
all sub-tours that do not contain the base (root) node r by assigning
unique labels ui to nodes such that the label of a node represents
the rank-order in which the node is visited in a traveling salesman
tour. That is, base node r is assigned a label of 0 while the i-th node
visited after node r is assigned a label of i. In our case, constraints
(33) prevent sub-tours by ensuring that each arc included in the ar-
borescence is directed from a lower labeled node to a higher labeled
node. The uniqueness of node labels is not required. Constraint (36)
assigns a label of 0 to the root node, while constraints (34) and (35)
define upper and lower bounds on the labels that can be assigned
to non-root nodes, respectively. In the original paper [6], the ui vari-
ables are unrestricted. Bounds (34) and (35) are introduced later on.

Two new formulations of MDC-MST where the tree-defining part
consists of MTZ constraints while the degree-enforcing part is either
DEF1 or DEF2 are given below:

BMTZ/DEF1: Basic MTZ model with the first set of degree-enforcing
constraints.
Objective function (1), constraints (2)–(6), (10) and
(11), and (33)–(37).

BMTZ/DEF2: Basic MTZ model with the proposed set of degree-
enforcing constraints.
Objective function (1), constraints (6), (10), and
(19)–(37).

By specializing Proposition 1 to the Basic MTZ-based formula-
tions, we have the following.

Proposition 3. F(BMTZ/DEF2LP)⊆F(BMTZ/DEF1′
LP)⊆F(BMTZ/DEF1LP).

In the context of TSP, uj = ui + 1 whenever xij = 1 given that j� r
and hence the whole range of label values is used. In our formulation
of MDC-MST, the fact that the same label value may be assigned to
more than one node results in not using the whole range of label
values. This actually allows feasible solutions with different labeling
structures. For example, a feasible solution where the same label
is not assigned to all nodes at the same distance from the root is
possible. Specifically, in the assignment of labels to nodes, there are
three possible cases for an edge {i, j}: either xij = 1, or xji = 1, or

both xij = 0 and xji = 0. If xij = 1, then uj�ui + 1. Similarly, if xji = 1,
then ui�uj + 1. If both xij = 0 and xji = 0, then ui − uj�n − 1 and
uj −ui�n−1. In this respect, any assignment of labels satisfying the
aforementioned conditions gives a feasible solution. Two example
feasible solutions are given in Fig. 3.

The special structure of MDC-MST allows us to make some im-
provements in the MTZ constraints that improve both the LP bounds
and the solution times. These improvements are obtained in two
steps.

In the first step, constraints are added to allow feasible solutions
with a certain labeling structure. In a feasible solution of MDC-MST,
each node is either a central node or a leaf node. Because a non-root
leaf node has one incoming arc whose origin is necessarily a central
node, then a feasible solution can be obtained by requiring that the
labels of all non-root leaf nodes be greater than the highest possible
label of central nodes. This condition is easily fulfilled if we assign the
label value n−1 to each non-root leaf node while permitting central
nodes to take label values of at most n−2. If all nodes other than the
root node are leaf nodes, then the root node receives the node label
0 and all other nodes receive node labels of n − 1. If there is a non-
root central node, then its label will be between 1 and n−2. Thus, in
finding feasible solutions for MDC-MST, looking only for solutions in
which the label values of non-root leaf nodes are restricted to n− 1
and the label values of central nodes are restricted to be less than
or equal to n − 2 is sufficient.

In the second step, the range of labels is restricted to a certain
interval so that the feasible region of the linear programming re-
laxation is further decreased. Recalling that the number of central
nodes is bounded above by

⌊
n−2
d−1

⌋
, it is direct to conclude that the

labels of non-root central nodes may be restricted to the interval
from n−1−

⌊
n−2
d−1

⌋
to n−2. The label of the root node is not included

in this interval because it is not known a priori if the root node will
be a central node or not. Thus, the label of the root node is set to
n − 1 −

⌊
n−2
d−1

⌋
− 1. Two such feasible solutions with d = 4 are given

in Fig. 4. Note that non-root central node in the graph on the right
can also take on the value of 6.

We now give IMTZ, the Improved MTZ constraints.
IMTZ: ImprovedMiller–Tucker–Zemlin sub-tour elimination con-

straints
In addition to (33) and (34), and (37),

ui� (n − 1)wil, i ∈ (V − r) (38)

ui� (n − 1) − wic, i ∈ (V − r) (39)

ui ≡ (n − 1) −
⌊
n − 2
d − 1

⌋
− 1, i = r (40)

ui� (n − 1) −
⌊
n − 2
d − 1

⌋
, i ∈ (V − r) (41)

Constraints (38), together with constraints (34) that give an upper
bound on the node labels ui, establish that the labels of all non-root
leaf nodes are equal to n − 1. Constraints (39) restrict the labels of
central nodes to be at most n − 2. Constraint (40) sets the label of
the root node to n− 1−

⌊
n−2
d−1

⌋
− 1. Constraints (41) require that the

label values of non-root nodes be at least n − 1 −
⌊
n−2
d−1

⌋
.
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Fig. 4. Two feasible spanning trees with labels assigned by MTZ constraints with d = 4.

Table 1
Characteristics of test problems.

Pr. ID Pr. type |V| d Instance r = m∗

1 SYM 30 3 1 29
2 SYM 30 3 2 10
3 SYM 30 3 3 17
4 SYM 30 5 1 29
5 SYM 30 5 2 10
6 SYM 30 5 3 17

7 SYM 50 3 1 5
8 SYM 50 3 2 6
9 SYM 50 3 3 12
10 SYM 50 5 1 5
11 SYM 50 5 2 6
12 SYM 50 5 3 12
13 SYM 50 10 1 5
14 SYM 50 10 2 6
15 SYM 50 10 3 12

16 CRD 30 3 1 21
17 CRD 30 3 2 16
18 CRD 30 3 3 20
19 CRD 30 5 1 21
20 CRD 30 5 2 16
21 CRD 30 5 3 20

22 CRD 50 3 1 32
23 CRD 50 3 2 42
24 CRD 50 3 3 26
25 CRD 50 5 1 32
26 CRD 50 5 2 42
27 CRD 50 5 3 26
28 CRD 50 10 1 32
29 CRD 50 10 2 42
30 CRD 50 10 3 26

Proposition 4. Let BMTZP and IMTZP be two different formulations for
MDC-MST where BMTZ and IMTZ are used as tree-defining constraints,
respectively, together with a set of degree-enforcing constraints, e.g.,
DEF1 or DEF2. Then, F(IMTZPLP) ⊆ F(BMTZPLP), i.e., IMTZP dominates
BMTZP.

Proof. We note first that all constraints of IMTZP and BMTZP are
alike except that (35) and (36) in BMTZP are replaced by (38)–(41)
in IMTZP. Consider now any feasible solution (x,u,wc,wl) to IMTZPLP
where u includes all node variables except ur which is just a constant
defined by (40). This constant is replaced by another constant defined
by (36) in BMTZP. The solution (x,u,wc,wl) satisfies all constraints of
BMTZPLP since the range [1,n−1] for node labels ui(i� r) in BMTZPLP
includes the range

[
(n − 1) −

⌊
n−2
d−1

⌋
,n − 2

]
imposed on central nodes

by constraints (39) and (41) in IMTZPLP as well as the range [n−1,n−
1] imposed on leaf nodes by constraints (34) and (38) in IMTZPLP.
This implies (x,u,wc,wl) ∈ F(BMTZPLP) and completes the proof. �

Due to Proposition 4, the LP polytope of IMTZP is a subset of the
LP polytope of BMTZP. Computational studies in Section 5 (Table 1)
verify this fact empirically.

We give below two new formulations of MDC-MST where the
tree-defining part consists of IMTZ:

IMTZ/DEF1: Improved MTZ model with the first set of degree-
enforcing constraints.
Objective function (1), constraints (2)–(6), (10) and
(11), (33) and (34), and (37)–(41).

IMTZ/DEF2: Improved MTZ model with the proposed set of degree-
enforcing constraints.
Objective function (1), constraints (6), (10), (19)–(32),
(33) and (34), and (37)–(41).

As a corollary to Propositions 1 and 3, we can state the following
proposition.

Proposition 5.

(i) F(IMTZ/DEF2LP) ⊆ F(IMTZ/DEF1′
LP).

(ii) F(IMTZ/DEF1′
LP) ⊆ F(BMTZ/DEF1′

LP).
(iii) F(IMTZ/DEF2LP) ⊆ F(BMTZ/DEF2LP).

IMTZ/DEF2 has 3.5n2 + 5.5n− 4.5 constraints, n2 + n binary vari-
ables, and n continuous variables and is much more compact than
MCF/DEF1 with respect to the number of variables and constraints.
On the other hand, IMTZ/DEF2 has more constraints but fewer vari-
ables than SCF/DEF1.

A feasible solution requires that each non-root node has exactly
one inward arc, which is provided by constraints (6). However, com-
putational studies show that better solution times are obtained by
using them in “�” form, i.e.,

∑
ixij�1. In this regard, all solution

times for models using DEF2 are obtained by using this form. The
inequality form of (6) is well justified by the presence of constraint
(31) that limits the number of arcs in the solution to n− 1. Without
(31), a solution resulting from the inequality form of constraints (6)
may violate the tree structure if the arc costs do not satisfy the tri-
angle inequality and if the whole range of labels is not used, but this
will not occur with (31).

MTZ constraints are attractive due to their compactness. How-
ever, they are well known for producing weak LP relaxation bounds.
Orman and Williams [20] compared the strengths of several formu-
lations of TSP by their LP relaxation bounds. They found that the LP
relaxation polytope obtained by MTZ constraints contains some of
the seven existing formulations. Specifically, the formulation with
MTZ constraints gives weaker LP bounds than the ones based on
single- and multi-commodity flow formulations. This has led to var-
ious studies that augment the MTZ constraints to strengthen the LP
bounds (e.g., Desrochers and Laporte [21]; Gouveia [22]; Gouveia and
Pires [23]; Sherali and Driscoll [24]). Although most studies focus on
the TSP or TSP-related problems, the formulations or liftings in those
studies can be adapted to other problems where sub-tours are not
allowed. For instance, Gouveia [22] used MTZ constraints in the con-
text of hop-constrained MST (HMST) where each path starting from
the root is required to have at most a fixed number of hops (arcs)
and offers liftings to constraints (33)–(35). We try those liftings and
the ones by Desrochers and Laporte [21] in our study as well. The
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Fig. 5. Two feasible spanning trees with uj = ui + 1 whenever xij = 1.

liftings contribute to increase the LP relaxation bounds significantly
for BMTZ/DEF1 and IMTZ/DEF1 but do not increase or slightly in-
crease (under 1%) the LP bounds for BMTZ/DEF2 and IMTZ/DEF2.
However, the liftings do not help to improve the solution times,
which is in compliance with what Gouveia [22] has obtained for
HMST. Because the contributions of the liftings to LP bounds and
computation times are very marginal for DEF2, we decide not to use
the liftings in our models to better assess the computational effects
of our proposed formulations. Note also that by augmenting MTZ
constraints (e.g., [21]), it is actually possible to have uj =ui +1 when
xij = 1. In this case, solutions such as the ones given in Fig. 5 are ob-
tained. However, this prevents us from using constraints (38), i.e.,
the first improvement suggested above.

4. Root node selection

Clearly, the optimal solution values of MDC-MST instances do
not change depending on the root node. However, the LP relaxation
bounds or how the solver proceeds may change, affecting the so-
lution times significantly. Of the models of AMS, only MCF/DEF1 is
symmetric relative to the root and hence the LP relaxation bounds
are the same for all roots [5]. All other models given in the paper are
not symmetric and hence the LP bounds may change. AMS empiri-
cally showed that solution timesmay change significantly evenwhen
the formulation is symmetric and suggested that the selection of the
root node may be of importance. However, they do not propose any
methodology to select the root node. They test the performance of
their models by selecting the first node as the root node. In our stud-
ies, we obtain results for two different root nodes, namely the first
node and the node selected by a new methodology proposed herein.

The methodology consists of (1) finding the smallest three values
in each row of the cost matrix, (2) finding the sum of the three
smallest values in each row, and (3) selecting the node corresponding
to the row with the smallest sum found in step (2). The methodology
is based on the idea that arcs with lowest costs are likely to be
in the solution. Empirical results show that the solution times are
improved significantly for the models of AMS and IMTZ/DEF2 when
the root node is selected with the proposed methodology. The root
nodes m∗ calculated by using the methodology are given in the last
column in Table 1.

5. Computational studies

Computational studies are performed by using specially struc-
tured, hard CRD and SYM instances which are complete graphs with
Euclidean costs set to integer units (e.g., [15]). CRD instances are
2-dimensional Euclidean problems where the points are generated
randomly with a uniform distribution in a square. SYM instances are
analogous to CRD instances but with points generated in higher di-
mensional Euclidean space. These problems have been widely used
in the literature to test DC-MST (e.g., [9,25,26]).

Following AMS, CRD and SYM instances defined on networks with
30 and 50 nodes are used in our computational studies. For each
network size, three different instances are tested for different values
of d. Table 1 summarizes the characteristics of test problems.

Computational tests are performed on a PC with a 3.0GHz Intel
Core 2 duo processor and 3GB of RAM by using ILOG CPLEX 9.0. The
models are run until optimality is attained or for 3h (10,800CPUs)
at maximum and by using default settings of CPLEX (e.g., moving
the best bound strategy for branching is used, cuts are allowed, see
[27]) except that file storage is set to 3, which allows tree file to
be stored on the hard disk when it reaches the default limit in or-
der not to run out of memory. To compare our results to those
of AMS, we have modeled and solved the models of AMS on the
same PC.

In the tables presenting computational studies, LP relaxation
bounds, run times, optimal objective function values, and relative
optimality gaps are given. Relative optimality gap is defined as
|BP−BF|/(1−10+|BP|), where BP is the objective function value of the
best integer solution and BF is the best remaining objective function
value of any unexplored node (see [27]). Underlined values in the
tables show that the problem is not solved to optimality within the
allotted time of 10,800 s.

5.1. Comparison of MTZ-based models among themselves

Table 2 gives computational results for BMTZ/DEF1, BMTZ/DEF2,
IMTZ/DEF1, and IMTZ/DEF2 for r = 1.

In terms of LP bounds, the results show that the weakest LP
bounds are obtained for BMTZ/DEF1. The bounds for IMTZ/DEF1 are
better than those for BMTZ/DEF1 implying that IMTZ constraints
are stronger than BMTZ constraints. The difference between BMTZ
and IMTZ when they are used with DEF1 is not observed when
they are used with DEF2. Both BMTZ/DEF2 and IMTZ/DEF2 give the
same LP bounds which are much better than those obtained from
IMTZ/DEF1. The fact that both basic and improved versions of MTZ
give the same bounds when used with DEF2 indicates that DEF2
dominates and overshadows any contributions that might have been
coming from the improved structure of IMTZ over BMTZ. The fact
that IMTZ/DEF2 (as well as BMTZ/DEF2) produces much better LP
bounds than IMTZ/DEF1 indicates that the major contribution to
the improvement in the LP bounds comes from DEF2. This shows
that DEF2 is significantly stronger in producing LP bounds than
DEF1.

In terms of solution times, IMTZ/DEF2 gives the best perfor-
mance with respect to CPU times. Even though the performance of
BMTZ/DEF2 is close to that of IMTZ/DEF2 for SYM instances, the su-
perior performance of IMTZ/DEF2 in CPU time becomes more pro-
nounced for CRD instances. In this regard, we take IMTZ/DEF2 as the
main model to compare with the flow-based models.

5.2. Comparison of degree-enforcing constraints based on LP bounds

Table 3 gives LP relaxation bounds for MCF/DEF1′, MCF/DEF2,
BMTZ/DEF1, and BMTZ/DEF2 (IMTZ/DEF2). The last two columns
clearly indicate that, as explained in Section 5.1, DEF2 is strongly
better than DEF1 when used with MTZ constraints. The columns for
MCF/DEF1′ and MCF/DEF2 give further evidence for the dominance
of DEF2 over DEF1. Its dominance becomes more apparent as the
degree requirement d increases.
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Table 2
Solution times, integrality gaps, and LP relaxation bounds for BMTZ/DEF1, BMTZ/DEF2, IMTZ/DEF1, and IMTZ/DEF2 with r = 1.

Pr. ID BMTZ/DEF1 IMTZ/DEF1

BP Gap (%) Time (s) zLP BP Gap (%) Time (s) zLP

1 1197 0.00 2.02 752.21 1197 0.00 1.41 761.73
2 1435 0.00 0.42 1060.66 1435 0.00 0.16 1071.53
3 1408 0.00 0.09 1142.45 1408 0.00 0.11 1149.40
4 1765 0.00 1.38 752.21 1765 0.00 2.13 779.00
5 2090 0.00 1.42 1060.66 2090 0.00 1.47 1091.25
6 2008 0.00 1.39 1142.45 2008 0.00 3.14 1162.00

16 4026 0.00 9473.05 2915.17 4026 0.00 2794.86 2948.00
17 3796 6.93 10, 800.00 2505.90 3793 6.26 10, 800.00 2521.67
18 4293 0.00 256.09 3109.59 4293 0.00 90.19 3152.13
19 5026 0.00 1315.56 2915.17 5026 0.00 229.73 3007.50
20 4648 0.00 108.73 2505.90 4648 0.00 47.25 2550.25
21 5425 0.00 267.78 3109.59 5425 0.00 258.83 3229.25

Pr. ID BMTZ/DEF2 IMTZ/DEF2
BP Gap (%) Time (s) zLP BP Gap (%) Time (s) zLP

1 1197 0.00 0.22 1148.50 1197 0.00 0.11 1148.50
2 1435 0.00 0.05 1395.00 1435 0.00 0.05 1395.00
3 1408 0.00 0.06 1390.00 1408 0.00 0.06 1390.00
4 1765 0.00 1.20 1645.57 1765 0.00 1.33 1645.57
5 2090 0.00 1.38 1928.27 2090 0.00 1.14 1928.27
6 2008 0.00 0.16 1967.92 2008 0.00 0.13 1967.92

7 1278 0.00 21.64 1227.50 1278 0.00 27.73 1227.50
8 1178 0.00 0.77 1120.25 1178 0.00 0.92 1120.25
9 1615 0.00 16.91 1576.50 1615 0.00 2.20 1576.50
10 2054 0.00 7.08 1840.23 2054 0.00 10.06 1840.23
11 1760 0.00 3.53 1639.70 1760 0.00 3.73 1639.70
12 2525 0.00 24.14 2340.57 2525 0.00 26.66 2340.57
13 4121 0.00 8.61 3724.49 4121 0.00 7.47 3724.49
14 4166 0.00 10.81 3628.90 4166 0.00 9.66 3628.90
15 4979 0.00 30.27 4373.40 4979 0.00 21.20 4373.40

16 4026 0.00 5176.73 3582.50 4026 0.00 2009.00 3582.50
17 3848 6.57 10, 800.00 3091.50 3796 3.45 10, 800.00 3091.50
18 4293 0.00 25.44 3842.50 4293 0.00 53.83 3842.50
19 5026 0.00 38.83 4482.36 5026 0.00 35.47 4482.36
20 4648 0.00 18.42 4135.02 4648 0.00 12.36 4135.02
21 5425 0.00 34.00 4929.83 5425 0.00 13.50 4929.83

22 5522 4.30 10, 800.00 4838.17 5525 4.15 10, 800.00 4838.17
23 5813 1.33 10, 800.00 5239.00 5814 1.19 10, 800.00 5239.00
24 5590 0.00 2865.11 5130.67 5590 0.00 1891.31 5130.67
25 6971 3.63 10, 800.00 6072.89 6915 1.88 10, 800.00 6072.89
26 7204 0.00 1413.20 6646.51 7204 0.00 1030.52 6646.51
27 7279 1.58 10, 800.00 6511.21 7279 1.36 10, 800.00 6511.21
28 9633 0.00 25.52 8928.31 9633 0.00 20.11 8928.31
29 9743 0.00 22.53 9347.30 9743 0.00 15.94 9347.30
30 9855 0.00 34.17 9413.84 9855 0.00 20.95 9413.84

Underlined values show that the problem is not solved to optimality.

The dominance of DEF2 over DEF1 can be better assessed by
comparing the columns for MCF/DEF2 and BMTZ/DEF2. Even though
MCF constraints are known to give much stronger representation of
the spanning tree polytope than that of the MTZ constraints (e.g.,
Orman and Williams [20]), BMTZ/DEF2 becomes competitive with
MCF/DEF2 especially for SYM instances. For CRD instances, MCF/DEF2
gives better LP relaxation bounds than BMTZ/DEF2. In this regard, the
dominance of MCF constraints over BMTZ is not compensated for by
DEF2. However, DEF2 considerably decreases the gap between the
LP relaxation bounds of MCF- and MTZ-based formulations implying
its strength over DEF1.

5.3. Comparison of results for different root nodes

Table 4 gives LP relaxation bounds of MCF/DEF1′, MCF/DEF2, and
IMTZ/DEF2 for r = 1 and r = m∗, i.e., the methodology-selected root
node. The table demonstrates that LP relaxation bounds obtained
with r = m∗ are better in general than the ones obtained with r = 1.

That is, the methodology does not guarantee a node with the best
LP bound; computational studies show that LP bounds are on the
average better (sometimes the best) at least for the problems studied.
However, Table 5 indicates that significant improvements in solution
times of IMTZ/DEF2 are realized for r = m∗, for which more details
are given in Section 5.4. As Table 6 demonstrates, the solution times
of MCF/DEF1 are also significantly improved, implying that using
r=m∗ improves the solution times of the flow-based models as well,
especially for harder CRD instances. For example, the solution times
of 734.23, 2480.11, and 5769.39 s for Pr. 16, 20, and 21, respectively,
are improved to 88.72, 888.61 and 3097.06 s.

5.4. Comparison of IMTZ/DEF2 and flow-based models with respect to
solution times

Table 5 gives computational results for IMTZ/DEF2 and the flow-
based models of AMS. In reporting the computational results for the
flow-based models, results are not given for each model separately.
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Table 3
Comparison of degree-enforcing constraints by LP relaxation bounds with r = 1.

Pr. ID MCF BMTZ

DEF1′ DEF2 DEF1 DEF2 (IMTZ/DEF2)

1 1112.70 1148.63 752.21 1148.50
2 1395.25 1395.25 1060.66 1395.00
3 1391.33 1393.67 1142.45 1390.00
4 1598.76 1647.62 752.21 1645.57
5 1935.14 1939.46 1060.66 1928.27
6 1930.10 1968.30 1142.45 1967.92

7 1223.50 1235.84 920.33 1227.50
8 1127.50 1127.50 893.88 1120.25
9 1589.50 1589.50 1251.71 1576.50
10 1748.77 1840.23 920.33 1840.23
11 1647.89 1662.87 893.88 1639.70
12 2325.89 2352.78 1251.71 2340.57
13 3500.07 3724.49 920.33 3724.49
14 3444.14 3647.60 893.88 3628.90
15 4258.41 4374.45 1251.71 4373.40

16 3761.65 3764.33 2915.17 3582.50
17 3601.50 3613.67 2505.90 3091.50
18 4124.50 4124.50 3109.59 3842.50
19 4626.44 4626.96 2915.17 4482.36
20 4294.35 4437.56 2505.90 4135.02
21 4922.35 5034.61 3109.59 4929.83

22 5202.50 5202.50 3786.33 4838.17
23 5365.43 5456.25 3999.45 5239.00
24 5286.08 5391.18 3369.61 5130.67
25 6300.55 6340.89 3786.33 6072.89
26 6692.43 6762.99 3999.45 6646.51
27 6568.32 6694.90 3369.61 6511.21
28 8682.90 9120.48 3786.33 8928.31
29 9202.11 9391.19 3999.45 9347.30
30 9301.64 9482.44 3369.61 9413.84

Table 4
LP relaxation bounds of different models for different root nodes.

Pr. ID MCF/DEF1′ MCF/DEF2 IMTZ/DEF2

(r = 1) (r = m∗) (r = 1) (r = m∗) (r = 1) (r = m∗)

1 1112.70 1135.35 1148.63 1135.35 1148.50 1133.17
2 1395.25 1395.25 1395.25 1395.25 1395.00 1395.00
3 1391.33 1408.00 1393.67 1408.00 1390.00 1406.00
4 1598.76 1658.35 1647.62 1658.35 1645.57 1653.03
5 1935.14 1929.23 1939.46 1966.72 1928.27 1944.10
6 1930.10 1945.67 1968.30 1950.47 1967.92 1950.47

16 3761.65 3819.90 3764.33 3819.90 3582.50 3684.00
17 3601.50 3605.37 3613.67 3605.37 3091.50 3085.50
18 4124.50 4076.00 4124.50 4076.00 3842.50 3889.00
19 4626.44 4720.77 4626.96 4724.13 4482.36 4591.56
20 4294.35 4414.88 4437.56 4428.45 4135.02 4101.42
21 4922.35 4957.21 5034.61 5012.76 4929.83 4914.17

For r = m∗ , see Table 1.

In all cases, the best objective function value (BP), the run time, and
the optimality gap of the model with the best results (the smallest
solution time for the problems solved to optimality and the small-
est optimality gap for the problems not solved to optimality) are
reported.

Computational results show that the flow-based models of AMS
can optimally solve all 12 problem instances with 30 nodes by at
least one of their formulations. The solution times change from 0.91
to 14.00 s for SYM instances and from 67.42 to 734.23 s for CRD
instances. Regarding problems with 50 nodes, flow-based models
of AMS cannot optimally solve 6 instances, all of which are CRD
instances, out of 18 within the allotted time. For 12 solved problems
(of which 9 are SYM and 3 are CRD instances), the solution times

change from 113.88 to 1701.56 s for SYM instances and from 124.16
to 661.77 s for CRD instances. These results show that the solution
times of SYM instances are much better than those of CRD instances.

Computational results for IMTZ/DEF2 show that, when the root
node is the first node, IMTZ/DEF2 can solve all instances with 30
nodes except Pr. 17. For all solved problems except Pr. 16, the so-
lution times are incomparably better than those of AMS. The solu-
tion times change from 0.05 to 1.14 s for SYM instances and from
12.36 to 53.83 s for CRD instances. As to the problems with 50 nodes,
IMTZ/DEF2 can solve all instances solved by AMS with incompara-
bly much better solution times. The solution times change from 0.92
to 27.73 s for SYM instances and from 15.94 to 20.95 s for CRD in-
stances. IMTZ/DEF2 cannot solve four instances, which are also not
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Table 5
Solution times and integrality gaps.

Pr. ID SCF/MCF with DEF1 or DEF1′ (r = 1) IMTZ/DEF2 (r = 1) IMTZ/DEF2 (r = m∗)

BP Gap (%) Time (s) BP Gap (%) Time (s) BP Gap (%) Time (s)

1 1197 0.00 7.48 1197 0.00 0.11 1197 0.00 0.14
2 1435 0.00 7.91 1435 0.00 0.05 1435 0.00 0.05
3 1408 0.00 1.78 1408 0.00 0.06 1408 0.00 0.05
4 1765 0.00 14.00 1765 0.00 1.33 1765 0.00 1.53
5 2090 0.00 4.92 2090 0.00 1.14 2090 0.00 1.11
6 2008 0.00 0.91 2008 0.00 0.13 2008 0.00 0.63

7 1278 0.00 917.98 1278 0.00 27.73 1278 0.00 0.44
8 1178 0.00 532.05 1178 0.00 0.92 1178 0.00 0.53
9 1615 0.00 217.16 1615 0.00 2.20 1615 0.00 0.52
10 2054 0.00 824.25 2054 0.00 10.06 2054 0.00 10.08
11 1760 0.00 1031.64 1760 0.00 3.73 1760 0.00 2.22
12 2525 0.00 1701.56 2525 0.00 26.66 2525 0.00 41.03
13 4121 0.00 113.88 4121 0.00 7.47 4121 0.00 5.80
14 4166 0.00 226.84 4166 0.00 9.66 4166 0.00 8.70
15 4979 0.00 664.47 4979 0.00 21.20 4979 0.00 24.05

16 4026 0.00 734.23 4026 0.00 2009.00 4026 0.00 15.06
17 3793 0.00 508.25 3796 3.45 10, 800.00 3793 0.00 945.16
18 4293 0.00 124.20 4293 0.00 53.83 4293 0.00 6.86
19 5026 0.00 237.50 5026 0.00 35.47 5026 0.00 4.03
20 4648 0.00 67.42 4648 0.00 12.36 4648 0.00 7.17
21 5425 0.00 91.84 5425 0.00 13.50 5425 0.00 6.91

22 5594 5.15 10, 800.00 5525 4.15 10, 800.00 5522 2.67 10, 800.00
23 5826 8.79 10, 800.00 5814 1.19 10, 800.00 5813 0.68 10, 800.00
24 5681 4.80 10, 800.00 5590 0.00 1891.31 5590 0.00 400.53
25 6964 7.03 10, 800.00 6915 1.88 10, 800.00 6915 0.00 1980.20
26 7230 3.01 10, 800.00 7204 0.00 1030.52 7204 0.00 549.17
27 7286 5.35 10, 800.00 7279 1.36 10, 800.00 7277 0.00 3421.89
28 9633 0.00 661.77 9633 0.00 20.11 9633 0.00 28.61
29 9743 0.00 216.11 9743 0.00 15.94 9743 0.00 15.28
30 9855 0.00 124.16 9855 0.00 20.95 9855 0.00 14.56

Underlined values show that the problem is not solved to optimality. For r = m∗ , see Table 1.

Table 6
Solution times and integrality gaps of flow-based models for different root nodes.

Pr. ID MCF/DEF1 (r = 1) MCF/DEF1 (r = m∗)

BP Gap (%) Time (s) BP Gap (%) Time (s)

1 1197 0.00 44.84 1197 0.00 31.53
2 1435 0.00 12.50 1435 0.00 12.53
3 1408 0.00 13.81 1408 0.00 5.61
4 1765 0.00 225.27 1765 0.00 127.83
5 2090 0.00 257.36 2090 0.00 203.14
6 2008 0.00 88.69 2008 0.00 63.98

16 4026 0.00 734.23 4026 0.00 88.72
17 3793 0.00 502.63 3793 0.00 148.02
18 4293 0.00 56.94 4293 0.00 80.33
19 5026 0.00 3336.22 5026 0.00 2157.56
20 4648 0.00 2480.11 4648 0.00 888.61
21 5425 0.00 5769.39 5425 0.00 3097.06

For r = m∗ , see Table 1.

solved by AMS. However, IMTZ/DEF2 can solve two CRD instances
unsolved by AMS. The solution times for those problems are 1030.52
and 1891.31 s, which are also incomparably better.

Computational results for IMTZ/DEF2 show that, when the root
node is selected by using the proposed methodology, the solution
times obtained with the first node being root node are improved
significantly. For example, the solution time of 2009.00 s for Pr. 16
is improved to 15.06 s and Pr. 17 not solved in 10,800 s is solved in
945.16 s. In this case, four problems out of the six that are not solved
by AMS are now solved to optimality with solution times chang-
ing from 400.53 to 3421.89 s. For unsolved problems, IMTZ/DEF2
with r=m∗ has smaller optimality gaps than flow-based models and

IMTZ/DEF2 with r=1. Moreover, it has better objective function val-
ues and lower bounds. Specifically, the lower bounds for Pr. 22 are
5306, 5295.76, and 5374.72 for flow-based model, IMTZ/DEF2 with
r = 1, and IMTZ/DEF2 with r = m∗, respectively. For Pr.23, the lower
bounds are 5314.01, 5744.66, and 5773.27. In this regard, because
increasing the lower bounds constitutes most of the solution time,
it is highly likely that optimality will be reached in shorter times
when r = m∗.

When the results are considered as a whole, it is observed that
the solution times of IMTZ/DEF2 are incomparably better than those
of the flow-based models in general. This combined with the fact
that the test problems are specially structured leads us to conclude
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that IMTZ/DEF2 can solve larger instances with average difficulty in
reasonable times.

Even thoughMCF/DEF2 is tighter than IMTZ/DEF2, this dominance
is not reflected in the solution times. This is probably due to the
large number of constraints and variables in MCF/DEF2. We think
that IMTZ/DEF2 solves the test instances appropriately because it
is much more compact than MCF/DEF2 and the highly developed
solution procedures for linear integer programs in CPLEX facilitate
its solution. In this regard, IMTZ/DEF2 may be more appropriate to
use when there is a good optimization package to use.

6. Conclusions

This paper studies the MDC-MST which consists of finding a
spanning tree with minimum total cost such that each node i ∈ V
either has a degree of at least d or is a leaf node. The paper pro-
poses a new set of degree-enforcing constraints and proposes to
use the Miller–Tucker–Zemlin sub-tour elimination constraints as
an alternative to single or multi-commodity flow constraints for
the tree-defining part of the formulation. Various formulations can
be obtained by coupling a degree-enforcing set with a tree-defining
set. Our computational tests indicate that the proposed degree-
enforcing constraints are significantly stronger than the earlier
degree-enforcing constraints in terms of LP bounds as well as in
solution times. The best performance is obtained from a coupling of
the proposed set of degree-enforcing constraints with an improved
version of Miller–Tucker–Zemlin constraints. This last model gives
incomparably better solution times than those proposed earlier in
the literature. Additional improvements in computational times are
obtained by a more judicious choice of the root node for which we
also give a method of selection.
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