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This is a review article describing the recent developments in Video based Fire Detection (VFD). Video
surveillance cameras and computer vision methods are widely used in many security applications. It is
also possible to use security cameras and special purpose infrared surveillance cameras for fire detection.
This requires intelligent video processing techniques for detection and analysis of uncontrolled fire
behavior. VFD may help reduce the detection time compared to the currently available sensors in both
indoors and outdoors because cameras can monitor “volumes” and do not have transport delay that the
traditional “point” sensors suffer from. It is possible to cover an area of 100 km? using a single pan-tilt-
zoom camera placed on a hilltop for wildfire detection. Another benefit of the VFD systems is that they
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can provide crucial information about the size and growth of the fire, direction of smoke propagation.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Video surveillance cameras are widely used in security appli-
cations. Millions of cameras are installed all over the world in
recent years. But it is practically impossible for surveillance opera-
tors to keep a constant eye on every single camera. Identifying and
distilling the relevant information is the greatest challenge cur-
rently facing the video security and monitoring system operators.
To quote New Scientist magazine: “There are too many cameras
and too few pairs of eyes to keep track of them” [1]. There is a
real need for intelligent video content analysis to support the oper-
ators for undesired behavior and unusual activity detection before
they occur. In spite of the significant amount of computer vision
research commercial applications for real-time automated video
analysis are limited to perimeter security systems, traffic applica-
tions and monitoring systems, people counting and moving object
tracking systems. This is mainly due to the fact that it would be
very difficult to replicate general human intelligence.

Fire is one of the leading hazards affecting everyday life around
the world. Intelligent video processing techniques for the detection
and analysis of fire are relatively new. To avoid large scale fire and
smoke damage, timely and accurate fire detection is crucial. The
sooner the fire is detected, the better the chances are for survival.
Furthermore, it is also crucial to have a clear understanding of the
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fire development and the location. Initial fire location, size of the
fire, the direction of smoke propagation, growth rate of the fire
are important parameters which play a significant role in safety
analysis and fire fighting/mitigation, and are essential in assessing
the risk of escalation. Nevertheless, the majority of the detectors
that are currently in use are “point detectors” and simply issue an
alarm [2]. They are of very little use to estimate fire evolution and
they do not provide any information about the fire circumstances.

In this article, a review of video flame and smoke detection re-
search is presented. Recently proposed Video Fire Detection (VFD)
techniques are viable alternatives or complements to the existing
fire detection techniques and have shown to be useful to solve
several problems related to the traditional sensors. Conventional
sensors are generally limited to indoors and are not applicable in
large open spaces such as shopping centers, airports, car parks and
forests. They require a close proximity to the fire and most of them
cannot provide additional information about fire location, dimen-
sion, etc. One of the main limitations of commercially available fire
alarm systems is that it may take a long time for carbon particles
and smoke to reach the “point” detector. This is called the trans-
port delay. It is our belief that video analysis can be applied in
conditions in which conventional methods fail. VFD has the poten-
tial to detect the fire from a distance in large open spaces, because
cameras can monitor “volumes”. As a result, VFD does not have the
transport and threshold delay that the traditional “point” sensors
suffer from. As soon as smoke or flames occur in one of the camera
views, it is possible to detect fire immediately. We all know that
human beings can detect an uncontrolled fire using their eyes and
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vision systems but as pointed out above it is not easy to replicate
human intelligence.

The research in this domain was started in the late nineties.
Most of the VFD articles available in the literature are influenced
by the notion of ‘weak’ Artificial Intelligence (Al) framework which
was first introduced by Hubert L. Dreyfus in his critique of the
so-called ‘generalized’ Al [3,4]. Dreyfus presents solid philosoph-
ical and scientific arguments on why the search for ‘generalized’
Al is futile [5]. Therefore, each specific problem including VFD
fire should be addressed as an individual engineering problem
which has its own characteristics [6]. It is possible to approxi-
mately model the fire behavior in video using various signal and
image processing methods and automatically detect fire based on
the information extracted from video. However, the current sys-
tems suffer from false alarms because of modeling and training
inaccuracies.

Currently available VFD algorithms mainly focus on the detec-
tion and analysis of smoke and flames in consecutive video images.
In early articles, mainly flame detection was investigated. Recently,
smoke detection problem is also considered. The reason for this
can be found in the fact that smoke spreads faster and in most
cases will occur much faster in the field of view of the cameras.
In wildfire applications, it may not be even possible to observe
flames for a long time. The majority of the state-of-the-art de-
tection techniques focuses on the color and shape characteristics
together with the temporal behavior of smoke and flames. How-
ever, due to the variability of shape, motion, transparency, colors,
and patterns of smoke and flames, many of the existing VFD ap-
proaches are still vulnerable to false alarms. Due to noise, shadows,
illumination changes and other visual artifacts in recorded video
sequences, developing a reliable detection system is a challenge to
the image processing and computer vision community.

With today’s technology, it is not possible to have a fully reli-
able VFD system without a human operator. However, current sys-
tems are invaluable tools for surveillance operators. It is also our
strong belief that combining multi-modal video information using
both visible and infrared (IR) technology will lead to higher de-
tection accuracy. Each sensor type has its own specific limitations,
which can be compensated by other types of sensors. Although it
would be desirable to develop a fire detection system which could
operate on the existing closed circuit television (CCTV) equipment
without introducing any additional cost. However, the cost of using
multiple video sensors does not outweigh the benefit of multi-
modal fire analysis. The fact that IR manufacturers also ensure a
decrease in the sensor cost in the near future, fully opens the door
to multi-modal video analysis. VFD cameras can also be used to
extract useful related information, such as the presence of people
caught in the fire, fire size, fire growth, smoke direction, etc.

Video fire detection systems can be classified into various sub-
categories according to

(i) the spectral range of the camera used,
(ii) the purpose (flame or smoke detection),
(iii) the range of the system.

There are overlaps between the categories above. In this article,
video fire detection methods in visible/visual spectral range are
presented in Section 2. Infrared camera based systems are pre-
sented in Section 3. Flame and smoke detection methods using
regular and infrared cameras are also reviewed in Sections 2 and 3,
respectively. In Sections 4 and 5, wildfire detection methods using
visible and IR cameras are reviewed. Finally, conclusions are drawn
in the last section.

2. Video fire detection in visible/visual spectral range

Over the last years, the number of papers about visual fire
detection in the computer vision literature is growing exponen-
tially [2]. As is, this relatively new subject in vision research is in
full progress and has already produced promising results. However,
this is not a completely solved problem as in most computer vision
problems. Behavior of smoke and flames of an uncontrolled fire
differs with distance and illumination. Furthermore, cameras are
not color and/or spectral measurement devices. They have differ-
ent sensors and color and illumination balancing algorithms. They
may produce different images and video for the same scene be-
cause of their internal settings and algorithms.

In this section, a chronological overview of the state-of-the-art,
i.e.,, a collection of frequently referenced papers on short range
(<100 m) fire detection methods, is presented in Tables 1, 2 and 3.
For each of these papers we investigated the underlying algorithms
and checked the appropriate techniques. In the following, we dis-
cuss each of these detection techniques and analyze their use in
the listed papers.

2.1. Color detection

Color detection was one of the first detection techniques used
in VFD and is still used in almost all detection methods. The ma-
jority of the color-based approaches in VFD make use of RGB color
space, sometimes in combination with HSI/HSV saturation [10,24,
27,28]. The main reason for using RGB is that almost all visible
range cameras have sensors detecting video in RGB format and
there is the obvious spectral content associated with this color
space. It is reported that RGB values of flame pixels are in red-
yellow color range indicated by the rule (R > G > B) as shown in
Fig. 1. Similarly, in smoke pixels, R, G and B values are very close
to each other. More complex systems use rule-based techniques
such as Gaussian smoothed color histograms [7], statistically gen-
erated color models [15], and blending functions [20]. It is obvious
that color cannot be used by itself to detect fire because of the
variability in color, density, lighting, and background. However, the
color information can be used as a part of a more sophisticated
system. For example, chrominance decrease is used in smoke de-
tection schemes of [14] and [2]. Luminance value of smoke regions
should be high for most smoke sources. On the other hand, the
chrominance values should be very low.

The conditions in YUV color space are as follows:

Condition1: Y > Ty,
Condition2: |U —128| < Ty and |V —128| < Ty,

where Y, U and V are the luminance and chrominance values of
a particular pixel, respectively. The luminance component Y takes
values in the range [0, 255] in an 8-bit quantized image and the
mean values of chrominance channels, U and V are increased to
128 so that they also take values between 0 and 255. The thresh-
olds Ty, Ty and Ty are experimentally determined [37].

2.2. Moving object detection

Moving object detection is also widely used in VFD, because
flames and smoke are moving objects. To determine if the motion
is due to smoke or an ordinary moving object, further analysis of
moving regions in video is necessary.

Well-known moving object detection algorithms are back-
ground (BG) subtraction methods [16,21,18,14,13,17,20,22,27,28,
30,34], temporal differencing [19], and optical flow analysis [9,8,
29]. They can all be used as part of a VFD system.



Table 1

State-of-the-art: underlying techniques (PART 1: 2002-2007).

Paper Color Moving Flicker/energy Spatial Dynamic Disorder Subblocking Training Clean-up Localization/ Flame Smoke
detection object (wavelet) difference texture/pattern analysis (models, NN, post- analysis detection detection
detection analysis analysis analysis SVM, ...) processing
Phillips [7], 2002 RGB X X X X X
Gomez-Rodriguez X X X X
[8], 2002
Gomez-Rodriguez X X X X
[9], 2003
Chen [10], 2004 RGB/HSI X X X X
Liu [11], 2004 HSV X X X
Marbach [12], YUV X X X
2006
Toreyin [13], 2006 RGB X X X X
Toreyin [14], 2006 YUV X X X X
Celik [15], 2007 YCbCr/RGB X X
Xu [16], 2007 X X X X X
Table 2
State-of-the-art: underlying techniques (PART 2: 2007-2009).
Paper Color Moving Flicker/energy Spatial Dynamic Disorder Subblocking Training Clean-up Localization/ Flame Smoke
detection object (wavelet) difference texture/pattern analysis (models, NN, post- analysis detection detection
detection analysis analysis analysis SVM, ...) processing
Celik [17], 2007 RGB X X X X X
Xiong [18], 2007 X X X X
Lee [19], 2007 RGB X X X X X
Calderara [20], RGB X X X X X
2008
Piccinini [21], RGB X X X X
2008
Yuan [22], 2008 RGB X X X X
Borges [23], 2008 RGB X X
Qi [24], 2009 RGB/HSV X X X X
Yasmin [25], 2009 RGB/HSI X X X X X
Gubbi [26], 2009 X X X X
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Table 3

State-of-the-art: underlying techniques (PART 3: 2010-2011).
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detection
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XXX X

XXX X
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Chen [27], 2010

RGB/HSI

Gunay [28], 2010

Kolesov [29], 2010

Ko [30], 2010

RGB

Gonzalez-Gonzalez

[31], 2010
Borges [32], 2010

>

>

RGB

x

x

HSV

Van Hamme [33],
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2010
Celik [34], 2010

Yuan [35], 2011

CIE L*a*b*

YUV/RGB

Rossi [36], 2011

In background subtraction methods, it is assumed that the cam-
era is stationary. In Fig. 2, a background subtraction based motion
detection example is shown using the dynamic background model
proposed by Collins et al. [38]. This Gaussian Mixture Model based
approach model was used in many of the articles listed in Ta-
bles 1, 2 and 3.

Some of the early VFD articles simply classified fire-colored
moving objects as fire but this approach leads to many false
alarms, because falling leaves in autumn or fire-colored ordinary
objects, etc., may all be incorrectly classified as fire. Further analy-
sis of motion in video is needed to achieve more accurate systems.

2.3. Motion and flicker analysis using Fourier and wavelet transforms

As it is well known, flames flicker in uncontrolled fires, there-
fore flicker detection [24,18,12,13,27,28,30] in video and wavelet-
domain signal energy analysis [21,14,20,26,31,39] can be used to
distinguish ordinary objects from fire. These methods focus on the
temporal behavior of flames and smoke. As a result, flame colored
pixels appear and disappear at edges of turbulent flames. The re-
search in [16,18] shows experimentally that the flicker frequency
of turbulent flames is around 10 Hz and that it is not greatly af-
fected by the burning material and the burner. As a result, it is
proposed to use frequency analysis to differentiate flames from
other moving objects. However, an uncontrolled fire in its early
stage exhibits a transition to chaos due to the fact that combustion
process consists of nonlinear instabilities which result in transition
to chaotic behavior via intermittency [40-43]. Consequently, turbu-
lent flames can be characterized as a chaotic wide band frequency
activity. Therefore, it is not possible to observe a single flicker-
ing frequency in the light spectrum due to an uncontrolled fire.
This phenomenon was observed by independent researchers work-
ing on video fire detection and methods were proposed accord-
ingly [14,44,27]. Similarly, it is not possible to talk about a specific
flicker frequency for smoke but we clearly observe a time-varying
meandering behavior in uncontrolled fires. Therefore, smoke flicker
detection does not seem to be a very reliable technique but it can
be used as part of a multi-feature algorithm fusing various vision
clues for smoke detection. Temporal Fourier analysis can still be
used to detect flickering flames, but we believe that there is no
need to detect specifically 10 Hz. An increase in Fourier domain
energy in 5 to 10 Hz is an indicator of flames.

The temporal behavior of smoke can be exploited by wavelet
domain energy analysis. As smoke gradually softens the edges in
an image, Toreyin et al. [14] found the energy variation between
background and current image as a clue to detect the presence of
smoke. In order to detect the energy decrease in edges of the im-
age, they use the Discrete Wavelet Transform (DWT). The DWT is
a multi-resolution signal decomposition method obtained by con-
volving the intensity image with filter banks. A standard halfband
filterbank produces four wavelet subimages: the so-called low-low
version of the original image C;, and the horizontal, vertical and
diagonal high frequency band images H;, V;, and D;. The high-
band energy from subimages H¢, V¢, and Dy is evaluated by divid-
ing the image I; in blocks bj of arbitrary size as follows:

E(le,by) = ) HZ(G, j)+ V2, j)+ DEG, j). (1)

i, jebyg

Since contribution of edges are more significant in high-band
wavelet images compared to flat areas of the image, it is possible
to detect smoke using the decrease in E(I¢, by). As the energy value
of a specific block varies significantly over time in the presence of
smoke, temporal analysis of the ratio between the current input
frame wavelet energy and the background image wavelet energy is
used to detect the smoke as shown in Fig. 3.



A.E. Cetin et al. / Digital Signal Processing 23 (2013) 1827-1843 1831

R:109
G:119
B:108

R:245
G:119
B:57

R:207
G:101
B:37

Fig. 1. Color detection: smoke region pixels have color values that are close to each other. Pixels of flame regions lie in the red-yellow range of RGB color space with
R > G > B. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

DYNAMIC BG MODEL

S
BG SUBTRACTION 4

Fig. 2. Moving object detection: background subtraction using dynamic background model.

2.4. Spatial wavelet color variation and analysis

Flames of an uncontrolled fire have varying colors even within
a small area. Spatial color difference analysis [24,13,28,32] focuses
on this characteristic. Using range filters [24], variance/histogram
analysis [32], or spatial wavelet analysis [13,28], the spatial color
variations in pixel values are analyzed to distinguish ordinary
fire-colored objects from uncontrolled fires. In Fig. 4 the concept
of spatial difference analysis is further explained by means of a

histogram-based approach, which focuses on the standard devia-
tion of the green color band. It was observed by Qi and Ebert [24]
that this color band is the most discriminative band for recogniz-
ing the spatial color variation of flames. This can also be seen by
analyzing the histograms. Green pixel values vary more than red
and blue values. If the standard deviation of the green color band
exceeds ty =50 (~ Borges [32]) in a typical color video the region
is labeled as a candidate region for a flame. For smoke detection,
on the other hand, experiments revealed that these techniques are
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Fig. 3. DWT based video smoke detection: when there is smoke, the ratio between the input frame wavelet energy and the BG wavelet energy decreases and shows a high

degree of disorder.

not always applicable, because smoke regions often do not show
as high spatial color variation as flame regions. Furthermore, tex-
tured smoke-colored moving objects are difficult to distinguish
from smoke and can cause false detections. In general, smoke in
an uncontrolled fire is gray and it reduces the color variation in
the background. Therefore, in YUV color space we expect to have
reduction in the dynamic range of chrominance color components
U and V after the appearance of smoke in the viewing range of
camera.

2.5. Dynamic texture and pattern analysis

A dynamic texture or pattern in video, such as smoke, flames,
water and leaves in the wind can be simply defined as a texture
with motion [45,46], i.e., a spatially and time-varying visual pat-
tern that forms an image sequence or part of an image sequence
with a certain temporal stationarity [47]. Although dynamic tex-
tures are easily observed by human eyes, they are difficult to dis-
cern using computer vision methods as the spatial location and
extent of dynamic textures can vary with time and they can be
partially transparent. Some dynamic texture and pattern analysis
methods in video [29,33,35] are closely related to spatial difference
analysis. Recently, these techniques are also applied to the flame
and smoke detection problem [46]. Currently, a wide variety of
methods including geometric, model-based, statistical and motion
based techniques are used for dynamic texture detection [48-50].

In Fig. 5, dynamic texture detection and segmentation exam-
ples are shown, which use video clips from the DynTex dynamic
texture and Bilkent databases [51,52,50,47]. Contours of dynamic
texture regions, e.g., fire, water and steam, are shown in this fig-

ure. Dynamic regions in video are seemed to be segmented very
well. However, due to the high computational cost, these gen-
eral techniques are not used in practical fire detection algorithms
which should run on low-cost computers, FPGAs or digital sig-
nal processors. If future developments in computers and graphics
accelerators could lower the computational cost, dynamic texture
detection methods can be incorporated into the currently available
video fire detection systems to achieve more reliable systems.
Ordinary moving objects in video, such as walking people, have
a pretty stable or almost periodic boundary over time. On the
other hand, uncontrolled flame and smoke regions exhibit chaotic
boundary contours. Therefore disorder analysis of boundary con-
tours of a moving object is useful for fire detection. Some exam-
ples of frequently used metrics are randomness of area size [23,
32], boundary roughness [14,11,28,32], and boundary area disor-
der [18]. Although those metrics differ in definition, the outcome
of each of them is almost identical. In the smoke detector de-
veloped by Verstock [2], disorder analysis of the Boundary Area
Roughness (BAR) is used, which is determined by relating the
perimeter of the region to the square root of the area (Fig. 6). An-
other technique is the histogram-based orientation accumulation
by Yuan [22]. This technique also produces good disorder detection
results, but it is computationally more complex than the former
methods. Related to the disorder analysis is the growing of smoke
and flame regions in the early stage of a fire. In [31,34], the growth
rate of the region-of-interest is used as a feature parameter for fire
detection. Compared to disorder metrics, however, growth analysis
is less effective in detecting the smoke especially in wildfire detec-
tion. This is because smoke region appears to grow very slowly in
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Fig. 4. Spatial difference analysis: in case of flames the standard deviation o¢

BAR = 2.282 BAR = 2.139 BAR = 1.729

Fig. 6. Boundary area roughness of consecutive flame regions.
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wildfires when they are viewed from long distances. Furthermore,
an ordinary object may be approaching to the camera.

2.6. Spatio-temporal normalized covariance descriptors

A recent approach which combines color and spatio-temporal
information by region covariance descriptors is used in European
Commission funded FP-7 FIRESENSE project [54-56]. The method
is based on analyzing the spatio-temporal blocks. The blocks are
obtained by dividing the fire and smoke-colored regions into 3D
regions that overlap in time. Classification of the features is per-
formed only at the temporal boundaries of blocks instead of per-
forming it at each frame. This reduces the computational complex-
ity of the method.

Covariance descriptors are proposed by Tuzel, Porikli and Meer
to be used in object detection and texture classification prob-
lems [54,55]. In [57] temporally extended normalized covariance
descriptors to extract features from video sequences are proposed.

Temporally extended normalized covariance descriptors are de-
signed to describe spatio-temporal video blocks. Let I(i, j,n) be
the intensity of (i, j)th pixel of the nth image frame of a spatio-
temporal block in video. The property parameters defined in equa-
tions below are used to form a covariance matrix representing
spatial information. In addition to spatial parameters, temporal
derivatives, I; and I are introduced, which are the first and sec-
ond derivatives of intensity with respect to time, respectively. By
adding these two features to the previous property set, normal-
ized covariance descriptors can be used to define spatio-temporal
blocks in video. (See Fig. 7.)

For flame detection:

Ry j.n = Red(i, j,n), (@)
Gi jn = Green(i, j,n), 3)
Bi j.n = Blue(i, j.n), )
Ij j.n = Intensity (i, j, n), (5)
dlntensity(i, j,n)
IXijjn=|—""F7"—"| ®)
ai
dlntensity(i, j, n)
Iyiin= ‘— , (7)
]
d%Intensity(i, j, n)
IxXj jn= Y L 8)
ai
d2Intensity(i, j,n)
lyy; i = | Intensity@, j.n) | 9
YYi,jn 3j2 ®)
dlntensity(i, j,n
- ‘ dntensty®. 1. M| g (10)
on
d%Intensity(i, j, n)
LJ.n an2 )
For smoke detection:
Y; j.n = Luminance(i, j, n), (12)
U;,j.n = Chrominance U (i, j, n), (13)
Vi jn = Chrominance V (i, j,n), (14)
Ij j o = Intensity(i, j,n), (15)
dlntensity(i, j, n)
I 1 = | PIRCERSIYG o) | (16)
ai
dlntensity(i, j,n)
I‘yi’j’n:‘a—j 5 (]7)

Block N

Block N+2

Block N+1

Block N-1

Classification Points

Fig. 7. An example for spatio-temporal block extraction and classification.

X% jn = 821nten2iit;/(i,j,n) ’ (18)
lyyijn= W , (19)
It = ‘Blntensgil/(i, j,n) ’ (20)
Itt; jn = 821nten;i1?21(i, j.n) 21)

Computation of normalized covariance values in spatio-temporal blocks.
The video is divided into blocks of size 10 x 10 x Fyqte Where Figee i
the frame rate of the video. Computing the normalized covariance
parameters for each block of the video would be computationally
inefficient. Therefore, only pixels corresponding to the non-zero
values of the following mask are used in the selection of blocks.
The mask is defined by the following function:

1 ifMG,j,n) =1,

. (22)
0 otherwise

v, j,n= {
where M(.,.,n) is the binary mask obtained from color detection
and moving object detection algorithms. A total of 10 property pa-
rameters are used for each pixel satisfying the color condition (RGB
version of the formula is used for flame detection). If we use all 10
property parameters we obtain % =55 correlation values. This
means that the feature vector for each spatio-temporal block has
55 elements. To further reduce the computational cost, the nor-
malized covariance values of the pixel property vectors

¢C010r(i7jvn): [Y(lsjvn) U(iaj7n) V(i,j,n)]T (23)

and

roIG, j,n 7
Ix(, j,n)
Iy(, j,n)
Ixx(i, j,n) (24)
Iyy(, j,n)
It(, j,n)

L Ite(i, j,n) |

Dt (i, j,n) =

are computed separately. Therefore, the property vector @0, (i,
j,n) produces % =6 and the property vector &sr(i, j,n) pro-
duces 7%8 = 28 correlation values, respectively and 34 correlation
parameters are used in training and testing of the Support Vector

Machine (SVM) instead of 55 parameters.
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During the implementation of the correlation method, the first
derivative of the image is computed by filtering the image with
[—1 0 1] and second derivative is found by filtering the image with
[1 —2 1] filters, respectively. The lower or upper triangular parts
of the matrix C(a,b) is obtained by normalizing the covariance
matrix ¥ (a, b) form the feature vector of a given image region:

=~ 1
3(a,b)= H(ZZ@, J@; j(b) —CN) (25)
i

Cn = %(ZZ@L ,(a)) (Z Y o j(b)), (26)
J J

i i

. v X(a,b) ifa=b,
Cla.b)= Sb) otherwise. 7)

VZ(@a)/Eb.b)

Entries of f(a,b) matrix are processed by a Support Vector
Machine which had been previously trained with fire and smoke
video clips.

In order to improve the detection performance, the majority of
the articles in the literature use a combination of the fire feature
extraction methods described above. Depending on the fire/envi-
ronmental characteristics, one combination of features will out-
perform the other and vice versa. In Section 4, we describe an
adaptive fusion method combining the results of various fire de-
tection methods in an online manner.

It should be pointed out that articles in the literature and those
which are referenced in this state-of-the-art review indicate that
ordinary visible range camera based detection systems promise
good fire detection results. However, they still suffer from a sig-
nificant amount of missed detections and false alarms in practical
situations as in other computer vision problems [5,6]. The main
cause of these problems is the fact that visual detection is of-
ten subject to constraints regarding the scene under investigation,
e.g., changing environmental conditions, different camera param-
eters and color settings and illumination. It is also impossible to
compare the articles with each other and determine the best one.
This is because they use different training and data sets.

A data set of fire and non-fire videos is available to the research
community in European Commission funded FIRESENSE project
web-page [56]. These test videos were used for training and testing
purposes of the smoke and flame detection algorithms developed
within the FIRESENSE project. Thus, a fair comparison of the algo-
rithms developed by individual partners could be conducted. The
test database includes 27 test and 29 training sequences of visi-
ble spectrum recordings of flame scenes, 15 test and 27 training
sequences of visible spectrum recordings of smoke scenes, and
22 test and 27 training sequences of visible spectrum recordings
of forest smoke scenes. This database is currently available to
registered users of the FIRESENSE website [Reference: FIRESENSE
project File Repository, http://www.firesense.eu, 2012].

2.7. Classification techniques

A popular approach for the classification of the multi-di-
mensional feature vectors obtained from each candidate flame or
smoke blob is SVM classification, typically with Radial Basis Func-
tion (RBF) kernels. A large number of frames of fire and non-fire
video sequences need to be used for training these SVM classi-
fiers, otherwise the number of false alarms (false positives or true
negatives) may be significantly increased.

Other classification methods include the AdaBoost method [22],
neural networks [29,35], Bayesian classifiers [30,32], Markov mod-
els [28,33] and rule-based classification [58].

As in any video processing method, morphological operations,
subblocking and clean-up post-processing such as median-filtering
are used as an integral part of any VFD system [21,22,25,20,26,33,
36,59].

2.8. Evaluation of visible range video fire detection methods

An evaluation of different visible range video fire detection
methods is presented in Table 4. Table 4 summarizes compara-
tive detection results for the smoke and flame detection algorithm
by Verstockt [2] (Method 1), a combination of the flame detection
method by Celik et al. [60] and the smoke detection by Toreyin
et al. [14] (Method 2) and a combination of the feature-based
flame detection method by Borges et al. [23] and the smoke de-
tection method by Xiong et al. [18] (Method 3). Among various
algorithms, Verstockt’s method is a relatively recent one whereas
flame detection methods by Celik and Borges and the smoke de-
tection methods by Toreyin and Xiong are commonly referenced
methods in the literature.

Test sequences used for performance evaluation are captured in
different environments under various conditions. Snapshots from
test videos are presented in Fig. 8. In order to objectively evaluate
the detection results of different methods, the ‘detection rate’ met-
ric [61,2] is used which is comparable to the evaluation methods
used by Celik et al. [60] and Toreyin et al. [13]. The detection rate
equals the ratio of the number of correctly detected frames as fire,
i.e., the detected frames as fire minus the number of falsely de-
tected frames, to the number of frames with fire in the manually
created ground truth frames. As results indicate, the detection per-
formances of different methods are comparable with each other.

3. Video fire detection in infrared (IR) spectral range

When there is no or very little visible light or the color of the
object to be detected is similar to the background, IR imaging sys-
tems provide solutions [62-68]. Although there is an increasing
trend in IR-camera based intelligent video analysis, the number of
papers in the area of IR-based fire detection is few [64-68]. This
is mainly due to the high cost of IR imaging systems compared to
ordinary cameras. Manufacturers predict that IR camera prices will
go down in the near future. Therefore, we expect that the number
of IR imaging applications will increase significantly [63]. Long-
Wave Infrared (8-12 micron range) cameras are the most widely
available cameras in the market. Long-Wave Infrared (LWIR) light
goes through smoke therefore it is easy to detect smoke using
LWIR imaging systems. Nevertheless, results from existing work al-
ready ensure the feasibility of IR cameras for flame detection.

Owrutsky et al. [64] worked in the near infrared (NIR) spectral
range and compared the global luminosity L, which is the sum of
the pixel intensities of the current frame, to a reference luminos-
ity Lb and a threshold Lth. If there are a number of consecutive
frames where L exceeds the persistence criterion Lb + Lth, the
system goes into an alarm stage. Although this fairly simple algo-
rithm seems to produce good results in the reported experiments,
its limited constraints do raise questions about its applicability in
large and open uncontrolled public places and it will probably pro-
duce many false alarms to hot moving objects such as cars and
human beings. Although the cost of NIR cameras are not high, their
imaging ranges are shorter compared to visible range cameras and
other IR cameras.

Toreyin et al. [65] detect flames in LWIR by searching for
bright-looking moving objects with rapid time-varying contours.
A wavelet domain analysis of the 1D-curve representation of the
contours is used to detect the high frequency nature of the bound-
ary of a fire region. In addition, the temporal behavior of the region
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Fig. 8. Snapshots from test sequences with and without fire.

Table 4

Comparison of the smoke and flame detection method by Verstockt [2] (Method 1), the combined method based on the flame detector by Celik et al. [60] and the smoke
detector described in Toreyin et al. [14] (Method 2), and combination of the feature-based flame detection method by Borges et al. [23] and the smoke detection method by

Xiong et al. [18] (Method 3).

Video sequence # Fire frames # Detected fire frames

# False positive frames Detection rate*

(# frames) ground truth Method Method Method

1 2 3 1 2 3 1 2 3
Paper fire (1550) 956 897 922 874 9 17 22 0.93 0.95 0.89
Car fire (2043) 1415 1293 1224 1037 3 8 13 0.91 0.86 0.73
Moving people (886) 0 5 0 28 5 0 28 - - -
Wood fire (592) 522 510 489 504 17 9 16 0.94 0.92 0.93
Bunsen burner (115) 98 59 53 32 0 0 0 0.60 0.54 0.34
Moving car (332) 0 0 13 11 0 13 11 - - -
Straw fire (938) 721 679 698 673 16 21 12 0.92 0.93 0.92
Smoke/fog machine (1733) 923 834 654 789 9 34 52 0.89 0.67 0.80
Pool fire (2260) 1844 1665 1634 1618 0 0 0 0.90 0.89 0.88

* Detection rate = (# detected fire frames - # false alarms) | # fire frames.

is analyzed using a Hidden Markov Model (HMM). The combina-
tion of both spatial and temporal clues seems more appropriate
than the luminosity approach and, according to the authors, their
approach greatly reduces false alarms caused by ordinary bright
moving objects. A similar combination of temporal and spatial fea-
tures is also used by Bosch et al. [66]. Hotspots, i.e., candidate
flame regions, are detected by automatic histogram-based image
thresholding. By analyzing the intensity, signature, and orienta-
tion of these resulting hot objects’ regions, discrimination between
flames and other objects is made. Verstockt [2]| also proposed
an IR-based fire detector which mainly follows the latter feature-
based strategy, but contrary to Bosch et al.’s work [66] a dynamic
background subtraction method is used, which aims at coping with
the time-varying characteristics of dynamic scenes.

To sum up, it should be pointed out that it is not straightfor-
ward to detect fires using IR cameras. Not every bright object in
IR video is a source of wildfire. It is important to mention that
IR imaging has its own specific limitations, such as thermal re-
flections, IR blocking and thermal-distance problems. In some sit-
uations, IR-based detection will perform better than visible VFD,
but under other circumstances, visible VFD can improve IR flame
detection. This is due to the fact that, smoke appears earlier and
becomes visible from long distances in a typical uncontrolled fire.
Flames and burning objects may not be in the viewing range of the
IR camera. As such, higher detection accuracies with lower false
alarm rates can be achieved by combining multi-spectrum video
information. Various image fusion methods may be employed for
this purpose [69,70]. Clearly, each sensor type has its own specific
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Fig. 9. Snapshot of typical wildfire smoke captured by a forest watch tower which
is 5 km away from the fire (rising smoke is marked with an arrow).

limitations, which can only be compensated by other types of sen-
sors.

4. Wildfire smoke detection using visible range cameras

As pointed out in the previous section, smoke is clearly visi-
ble from long distances in wildfires and forest fires. In most cases
flames are hindered by trees. Therefore, IR imaging systems may
not provide solutions for early fire detection in wildfires but ordi-
nary visible range cameras can detect smoke from long distances.
(See Fig. 9.)

Smoke at far distances (>100 m to the camera) exhibits differ-
ent spatio-temporal characteristics than nearby smoke and fire [71,
59,13]. This demands specific methods explicitly developed for
smoke detection at far distances rather than using nearby smoke
detection methods described in [72]. Cetin et al. proposed wildfire
smoke detection algorithms consisting of five main sub-algorithms:
(i) slow moving object detection in video, (ii) smoke-colored region
detection, (iii) wavelet transform based region smoothness detec-
tion, (iv) shadow detection and elimination, (v) covariance matrix
based classification, with individual decision functions, Di(x,n),
D;(x,n), D3(x,n), Da(x,n) and D5(x, n), respectively, for each pixel
at location x of every incoming image frame at time step n. Deci-
sion results of individual algorithms are fused to obtain a reliable
wildfire detection system in [67,37].

The video based wildfire detection system described in this sec-
tion has been deployed in more than 100 forest look out towers
in the world including Turkey, Italy and the US. The system is
not fully automatic because forestal scenes vary over time due to
weather conditions and changes in illumination. The system is de-
veloped to help security guards in look out towers. It is not feasible
to develop one strong fusion model with fixed weights in forestal
setting which has a time-varying (drifting) nature. An ideal online
active learning mechanism should keep track of drifts in video and
adapt itself accordingly. Therefore in Cetin et al.’s system, decision
functions are combined in a linear manner and the weights are de-
termined according to the weight update mechanism described in
the next subsection.

Decision functions Dj, i =1,..., M, of sub-algorithms do not
produce binary values 1 (correct) or —1 (false), but they produce
real numbers centered around zero for each incoming sample x.
Output values of decision functions express the confidence level of

each sub-algorithm. The higher the value, the more confident the
algorithm.

Morphological operations are applied to the detected pixels to
mark the smoke regions. The number of connected smoke pixels
should be larger than a threshold to issue an alarm for the region.
If a false alarm is issued during the training phase, the oracle gives
feedback to the algorithm by declaring a no-smoke decision value
(y = —1) for the false alarm region. Initially, equal weights are
assigned to each sub-algorithm. There may be large variations be-
tween forestal areas and substantial temporal changes may occur
within the same forestal region. As a result, weights of individ-
ual sub-algorithms will evolve in a dynamic manner over time. In
Fig. 10, the flowchart of the weight update algorithm is given for
one image frame.

4.1. Adaptive Decision Fusion (ADF) framework

Let the compound algorithm be composed of M-many detection
sub-algorithms: D1,..., Dy. Upon receiving a sample input x at
time step n, each sub-algorithm yields a decision value D;(x,n) € R
centered around zero. If D;j(x,n) > 0, it means that the event is
detected by the ith sub-algorithm.

Let D(x,n) =[D1(x,n), ..., Dy (x,n)]T be the vector of decision
values of the sub-algorithms for the pixel at location x of input im-
age frame at time step n, and w(x, n) = [wi(x,n), ..., wy(x,n)]’
be the current weight vector.

4.1.1. Entropic projection (e-projection) based weight update algorithm

In this subsection, we review the entropic projection based
weight update scheme [73,37,67]. The e-projection onto a closed
and convex set is a generalized version of the metric projection
mapping onto a convex set [74]. Let w(n) denote the weight vec-
tor for the nth sample. Its’ e-projection w* onto a closed convex
set C with respect to a cost functional g(w) is defined as follows:

w* =arg mi? L(w, w(n)) (28)
we

where

L(w, w(n)) = gw) — g(w(n)) — (Vgw), w — w(n)) (29)

and (.,.) represents the inner product.

In the adaptive learning problem, we have a hyperplane
Hx,n): DT(x,n).w(n + 1) = y(x,n) for each sample x. For each
hyperplane H(x,n), the e-projection (28) is equivalent to

Vg(wn+1)) = Vg(w(n)) + AD(X, n), (30)
DT (x,n).w(n+1) = y(x,n) (31)

where A is the Lagrange multiplier. As pointed out above, the e-
projection is a generalization of the metric projection mapping.

When the cost functional is the entropy functional g(w) =
> wi(n)log(w;(n)), the e-projection onto the hyperplane H(x,n)
leads to the following update equations:

win+ 1) = wi()e*Pi®m =12 ... M, (32)

where the Lagrange multiplier A is obtained by inserting (32) into
the hyperplane equation:

DT(x, mwn+ 1) = y(x,n) (33)

because the e-projection w(n + 1) must be on the hyperplane
H(x,n) in Eq. (31). When there are three hyperplanes, one cycle
of the projection algorithm is depicted in Fig. 11. If the projections
are continued in a cyclic manner the weights will converge to the
intersection of the hyperplanes, w,.
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Fig. 10. Flowchart of the weight update algorithm for one image frame.
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Fig. 11. Geometric interpretation of the entropic-projection method: weight vectors
corresponding to decision functions at each frame are updated to satisfy the hy-
perplane equations defined by the oracle’s decision y(x,n) and the decision vector
D(x,n).

It is desirable that each sub-algorithm should contribute to the
compound algorithm because each characterizes a feature of wild-
fire smoke for the wildfire detection problem. Therefore weights of
algorithms can be set between 0 and 1 representing the contribu-
tion of each feature. We want to penalize extreme weight values
0 and 1 more compared to values in between them, because each
sub-algorithm is considered to be “weak” compared to the final al-
gorithm. The entropy functional achieves this. On the other hand,
the commonly used Euclidean norm penalizes high weight values
more compared to zero weight.

In real-time operating mode, the PTZ cameras are in continu-
ous scan mode visiting predefined preset locations. In this mode,
constant monitoring from the oracle can be relaxed by adjusting
the weights for each preset once, and then use the same weights
for successive classifications. Since the main issue is to reduce false
alarms, the weights can be updated when there is no smoke in the
viewing range of each preset and after that, the system becomes
autonomous. The cameras stop at each preset and run the detec-
tion algorithm for some time before moving to the next preset.

4.2. Fire and smoke detection criteria
In VFD, cameras are used for fire detection. In many cases there

will be a large distance between the PTZ camera and the wildfire.
Therefore, it is important to define when the wildfire is visible by

the camera. For this purpose, we propose Johnson’s criteria used
in the infrared camera literature [75].

Johnson’s criteria are about “seeing a target” in an infrared cam-
era. The first criterion defines detection: In order to detect an
object its critical dimension needs to be covered by 1.5 or more
pixels in the captured image. Therefore the wildfire is detectable
when it occupies more that 1.5 pixels in video image. This is the
ultimate limit. One or two pixels can be easily confused with noise.
In Fig. 12, minimum smoke size versus detection range is shown
for wildfire smoke using a visible range camera.

Curvature of the earth also affects the detection range. For
ranges above 20 km, smoke should rise even higher to compen-
sate for the earth’s curvature. A sketch depicting a wildfire smoke
detection scenario from a camera placed on top of a 40-m-mast is
presented in Fig. 13. At a distance of 40 km, a 40 m x 40 m smoke
has to rise an additional 20 m to be detected by the camera on top
of the mast.

The second criterion defines recognition which means that it is
possible to make the distinction between a person, a car, a truck
or wildfire. In order to recognize an object it needs to occupy at
least 6 pixels across its critical dimension in a video image. The
third criterion defines identification. This term relates to the mili-
tary terminology. The critical dimension of the object should be at
least 12 pixels so that the object is identified as “friend or foe”. We
can use the Johnson’s identification criterion for wildfire identifi-
cation because the white smoke may be due to a dirt cloud from
an off-road vehicle or may be a cloud or it may be fog rising above
the trees.

These criteria applied to IR-camera based wildfire flame detec-
tion are summarized in the following figure. In Fig. 14, minimum
flame sizes versus varying line-of-sight ranges are shown for de-
tection, recognition and identification using an MWIR InP camera
with a spectral range of 3-5 um. Note that, a minimum flame size
of 1 m? is enough to identify a wildfire at a range of 1.8 km and
it is enough to recognize it at a range of 2.7 km. However, at a
distance of 11 km, one can only detect the same fire.

5. Wildfire smoke detection using IR camera

The smoke of a wildfire can be detected using a visible range
camera as explained in the previous section (cf. Fig. 15). On the
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Fig. 14. Minimum fire sizes versus detection, recognition and identification ranges.

other hand, wildfire smoke detection using an ordinary LWIR cam-
era with spectral range 8-12 pm is very difficult as smoke is
invisible (cf. Fig. 16). This is evident from the snapshots below
corresponding to tests using both LWIR and visible range cam-
eras.

Wildfire flame detection is possible using an IR camera (cf.
Fig. 16). However, in most wildfires, smoke appears first. There-
fore, it is not necessary to employ an expensive IR camera to spot
flames which may be occluded by tree trunks.

On the other hand, IWIR cameras are extremely useful to pin-
point hotspots and flames from a fire extinguishing helicopter be-
cause they have the capability to see through smoke. Therefore,
they are invaluable tools during wildfire fighting.

Smoke detection can be made possible by joint analysis of visi-
ble and IR range camera outputs, as well. A method for smoke de-
tection exploiting both modalities is proposed in [2]. The two-step
method, called LWIR-visual smoke detection, comprises the silhou-

ette coverage analysis step and disorder analysis of visual silhou-
ette step. The LWIR-visual smoke detector analyzes the silhouette
coverage of moving objects in visible range and long-wave infrared
images. Moreover, the flicker in the silhouette of visual smoke
regions is taken into account as an additional clue for smoke pres-
ence within the viewing range of the camera [14].

A comparison of performances of the LWIR-visual smoke de-
tector of Verstockt [2] and visible range camera based smoke de-
tectors of Xiong et al. [18], Calderara et al. [20] and Toreyin et
al. [14] is presented in Table 5. Among these methods, Xiong et
al. [18] proposed a visible range smoke detection algorithm based
on background subtraction and flicker/disorder analysis. Calderara
et al.’s method is based on mixture of Gaussians (MoG) of dis-
crete wavelet transform energy variations and color blending [20].
On the other hand, smoke detection method developed by Toreyin
et al. [14] is based on block-based spatial wavelet analysis and
HMM.
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Fig. 16. Wildfire smoke and fire in Fig. 15 captured using an LWIR camera.

Five different setups are formed for test purposes: car fire,
straw fire, moving people, moving car, and paper fire. For each
of these fire and non-fire test setups, several video sequences are
generated. The test set contains 18 multi-modal fire and 13 non-
fire video sequences under different lighting conditions. For each
of these sequences, ground truth fire decisions are generated man-
ually. Comparative performance results in terms of alarm percent-
ages with respect to ground truth are presented in Table 5.

The method which exploits both visible and IR range data,
namely the LWIR-visual smoke detector, yields best detection/false
alarm ratio among other methods which only analyze data from
the visible range of the spectrum. The detection performance of
visible range smoke detectors degrades substantially for the se-
quences where the scene is not well lit yielding a poor visibility
for smoke. On the contrary, the multi-modal method takes ad-
vantage of silhouette coverage analysis step which compares the
silhouettes covered in both LWIR and visible range images. This

Table 5

A comparison of performances of the LWIR-visual smoke detector of Verstockt [2]
and visible range camera based smoke detectors of Xiong et al. [18], Calderara et
al. [20] and Toreyin et al. [14].

Method Fire alarm
Fire tests (%) Non-fire tests (%)
Xiong et al. 68 7
Calderara et al. 83 4
Toreyin et al. 86 4
Verstockt 98 2

analysis step helps to result in a better detection performance for
the multi-modal method.

6. Conclusion

The concept of artificial intelligence and artificial systems capa-
ble of perceiving their environment and taking necessary actions
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was introduced 68 years ago in 1955 by John McCarthy. There has
been significant progress in some applications such as restricted
speech recognition, character recognition, chess and game playing,
etc. On the other hand, there is very little progress even in some
simple recognition problems. Humans can easily recognize uncon-
trolled fire whenever they see it even from long distances. Com-
puters cannot imitate human intelligence whose operation princi-
ples are not clearly understood as of today. It is possible to achieve
significant progress when an intelligent task is described in terms
of mathematical and physical terms. This is usually a slow and dif-
ficult process but it has produced results in the past as in speech
recognition. We believe that VFD falls into this category of prob-
lems that can be reduced to an engineering description.

During the last two decades video fire detection research led
to commercial and experimental VFD systems. They are especially
used in high risk buildings and areas. Hundreds of video smoke
detection systems are installed in lookout towers and poles for
wildfire detection. Although they are not fully automated systems
they are invaluable tools for security personel. Whenever the VFD
system produces an alarm, the operator can check if it is a real
fire or a false alarm. In this way the operator can handle multiple
cameras.

We believe that further research will improve the detection per-
formance of the VFD systems while reducing the false alarm rates.
We also believe that multi-modal systems employing IR and regu-
lar cameras will provide fully reliable VFD solutions. Such systems
are currently expensive, but they will be feasible with the decline
of IR camera costs in the near future.
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