
European Journal of Operational Research 182 (2007) 455–465

www.elsevier.com/locate/ejor
O.R. Applications

A Lagrangean relaxation and decomposition algorithm for
the video placement and routing problem

Tolga Bektas� a,b,*, Osman Oğuz a, Iradj Ouveysi c

a Department of Industrial Engineering, Bilkent University, 06800 Ankara, Turkey
b Center for Research on Transportation, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Que., Canada H3C 3J7

c Department of Electrical and Electronic Engineering, The University of Melbourne, VIC 3010, Australia

Received 14 April 2005; accepted 18 July 2006
Available online 7 November 2006
Abstract

Video on demand (VoD) is a technology used to provide a number of programs to a number of users on request. In
developing a VoD system, a fundamental problem is load balancing, which is further characterized by optimally placing
videos to a number of predefined servers and routing the user program requests to available resources. In this paper, an
exact solution algorithm is described to solve the video placement and routing problem. The algorithm is based on Lagran-
gean relaxation and decomposition. The novelty of the approach can be described as the use of integer programs to obtain
feasible solutions in the algorithm. Computational experimentation reveals that for randomly generated problems with up
to 100 nodes and 250 videos, the use of such integer programs help greatly in obtaining good quality solutions (typically
within 5% of the optimal solution), even in the very early iterations of the algorithm.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Integer programming; Video on demand; Placement; Routing; Lagrangean relaxation; Decomposition
1. Introduction

Video on demand (VoD) is a service that provides tens to hundreds of videos (programs) to hundreds to
thousands of clients through a network. In other words, a VoD service can be described as a ‘‘virtual video
rental store’’ in which the users have the option to choose and watch any program on request, in the conve-
nience of their homes. Commercial VoD services are now being offered throughout the world due to the fact
that multimedia technologies are developing very fast. With such services, users can select any video programs
they like, and then after a short setup time, receive the video programs through the network. As for videotape,
they have greater flexibility in scheduling the viewing time and have fine-grained control: enabling them to
pause, resume, fast rewind and fast-forward the video.
0377-2217/$ - see front matter � 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.ejor.2006.07.031

* Corresponding author.
E-mail address: tolga@crt.umontreal.ca (T. Bektas�).

mailto:tolga@crt.umontreal.ca

456 T. Bektas� et al. / European Journal of Operational Research 182 (2007) 455–465
An in-depth treatment of the subject is given by Little and Venkatesh [9]. Here, we only provide a brief
description. A complete VoD system consists of three fundamental components which may be stated as
the storage server, the network on which the system is built and the user interface (e.g. the keyboard,
mouse, or voice commands, along with a translator). The requests made by the user through the interface
is forwarded to the network. Once the requested program is fetched from an available resource, it is served
to the user.

A central problem in structuring a VoD system is load balancing, which can be further separated into two
subproblems, as pointed out by Little and Venkatesh [9]. The first consists of deciding on program allocation
and the second is resource location and connection establishment.

Although with the advances in hardware technology the storage costs are getting cheaper, the relevant cost
still ‘‘makes it more difficult to build and operate a service that can successfully compete with the local video
hire store’’ [2] for many companies. A VoD application is not simply restoring data in a hard disk, and it needs
much more advanced and complicated technology to provide any kind of a fast-forward, rewind and pause
flexibility to the user. The functionality that is expected from a VoD server is beyond that of a personal com-
puter (PC), hence VoD providers need special equipment capable of performing such tasks. Additional func-
tionalities, coupled with basic overhead costs (such as maintenance and cooling), makes the hardware
associated to this technology quite expensive (see [11]). Notice that as shown in Wu et al. [15], Barnett and
Anido [1], and Liu et al. [10] the cost of a video server depends mainly on the server throughput, which is
defined as the number of simultaneous video streams which the video server can support for the guaranteed
quality of service. The number of simultaneous streams multiplied by the bandwidth requirement of each
stream will give an approximate value for the server throughput.

Several studies exist that address the problem of developing a VoD system. To mention a few, Kim et al. [7]
consider designing a VoD system on a network with storage capacity constraints on each node and no capacity
limitations on the links that are used to connect each pair of nodes. They present an integer linear program-
ming formulation of the problem and describe a tabu search algorithm for its solution. The authors present
computational results for networks with up to 40 nodes and 200 programs. Wang et al. [14] study the optimal
video distribution problem in VoD systems with multiple multicast sessions. Multicasting is performed when a
set of clients require the same program at approximately the same time. In this case, clients are grouped as a
multicast tree through which the server sends the program. The authors present a branch and bound algorithm
to find the optimal solution of the problem when the network is a directed acyclic graph and propose an
approximation algorithm for general graphs. Hwang and Chi [6] consider the problem of placing a number
of programs on a number of servers such that the total installation cost that is composed of the network trans-
mission cost and the video storage cost is minimized. Leung and Wong [8] address a different aspect of the
problem which consists of determining what kind of a charging scheme a service provider should adopt in
order to maximize the mean revenue. Ouveysi et al. [12] proposed an integer programming formulation to
determine the location of the programs in a VoD network that is subject to storage and transmission capacity
constraints, so as to minimize the total cost of storage and transmission. They refer to this problem as the
video placement and routing problem (VPRP) and describe heuristic approaches for its solution. Finally,
Huang and Fang [5] propose a dynamic load balancing algorithms among the servers in a multi-server
VoD system. Through simulations, the authors demonstrate that their algorithms perform well on an example
network.

The main motivation in this paper is to develop an exact solution algorithm for the integer linear program-
ming formulation of the VPRP that is introduced by Ouveysi et al. [12]. The algorithm is based on Lagrangean
relaxation and decomposition, coupled with some integer programming techniques to convert infeasible solu-
tions to feasible solutions. Our approach differs from similar algorithms in the literature in which mainly heu-
ristics are utilized for this purpose. Computational experimentation reveals that, although at the expense of
relatively higher solution times, the use of such integer programs help greatly in obtaining good quality solu-
tions even in the very early iterations of the algorithm.

The format of our paper is as follows. In the next section, we state a formal definition of the problem and
present the integer linear programming formulation. Section 3 provides the full details of the Lagrangean
relaxation and decomposition algorithm. Results of computational experiments with the proposed solution
approach are given in Section 4. Conclusions are stated in Section 5.

T. Bektas� et al. / European Journal of Operational Research 182 (2007) 455–465 457
2. Problem definition and formulation

The problem considered here is formally defined as follows. There exists a fully meshed network modelled
by an undirected graph G = (V,A), where V = {1,2, . . . ,n} is the set of nodes and A is the set of edges con-
sisting of the n(n � 1)/2 links of the network. Each link {i, j} 2 A has a transmission capacity that is denoted
by Sij. The set of programs (videos) is denoted by P = {1,2, . . . ,m}, where each program k 2 P has a capacity
requirement that is denoted by mk and a bandwidth requirement for transmission that is denoted by lk. Each
node j 2 V corresponds to a potential location for storing the programs (i.e., the video server) with capacity
denoted by Sj. In addition, each node has a unit demand for each program. The cost of storing a program
k 2 P at node j 2 V is denoted by ck

j and the cost of transmitting program k 2 P over link {i, j} 2 A is denoted
by ck

ij. A fully meshed VoD architecture with five servers is given in Fig. 1, where VS(i) denotes the ith video
server.

Each user of the system is connected to a single video server. If a user requested program is not found at the
corresponding server, the user can watch the program transparently from other servers in the system, however,
at the expense of additional cost.

Given the demand forecast of the programs, the problem considered in this paper consists of finding a
placement scheme for the programs (video placement) and deciding on which video server will address the
demand of a specific user (routing). The overall aim is to minimize total storage and transmission cost of
the system such that the demand of each node for each program is satisfied. We hereafter refer to this problem
as the video placement and routing problem (VPRP).

Ouveysi et al. [12] have proposed an integer linear programming formulation for the VPRP, using the fol-
lowing binary decision variables:
xk
ij ¼

1 if program k 2 P is transmitted to node j 2 V from node i 2 V ;

0 otherwise;

�

yk
j ¼

1 if program k 2 P is stored at node j 2 V ;

0 otherwise:

�

Fig. 1. A fully meshed VoD architecture with five servers.

458 T. Bektas� et al. / European Journal of Operational Research 182 (2007) 455–465
The formulation is given as follows (denoted by F):
ðFÞ minimize
X
k2P

X
j2V

ck
j yk

j þ
X
k2P

X
j2V

X
i2V ;i6¼j

ck
ijx

k
ij ð1Þ

subject to
X
k2P

mkyk
j 6 Sj 8j 2 V ; ð2ÞX

k2P

lkxk
ij 6 Sij 8i 6¼ j 2 V ; ð3ÞX

i2V ;i6¼j

xk
ij þ yk

j ¼ 1 8j 2 V ; k 2 P ; ð4Þ

xk
ij 6 yk

i 8i 6¼ j 2 V ; k 2 P ; ð5Þ
xk

ij; y
k
j 2 f0; 1g 8i 6¼ j 2 V ; k 2 P : ð6Þ
In this model, constraints (2) and (3) correspond to the capacity constraints related to the storage nodes and
transmission links, respectively. Constraints (4) state that each node either stores a program or receives it from
another node that stores it. Finally, constraints (5) imply that a program can be transmitted from a node only
if the program is stored at that node. Constraints (6) impose integrality restrictions on the decision variables.
Problem F has in general (n2m + nm)/2 binary variables and (n2m + n2 + n)/2 constraints.

It is clear that F only allows one-hop paths in transmitting a program. Ouveysi et al. [13] have studied the
generalization of this problem to two-hop paths. However, as one inevitably needs to figure out the working
paths between all pair of nodes in determining a routing scheme, it would be redundant to consider 2, 3 or 4
hop paths. Therefore, the approach taken here can be regarded as a more logical one compared to that pro-
posed in [13].

We now study the complexity of the VPRP. Ouveysi et al. [12] mention the possibility that the VPRP may
be NP-hard. In the proposition stated below, we prove that it indeed is.

Proposition 1. The video placement and routing problem (VPRP) is NP-hard.

Proof. The proof is based on the following restriction. Consider a special case of the problem with P = {1},
and let l1 6 min{i,j}2A{Sij} and m1 6 mini2V{Si}. Since there is a single program, we can drop the index k in
the formulation. In this case, constraints (2) and (3), pertaining to node and link capacities, become redun-
dant. Now, partition the node set such that V = I [J where yj 6 0 for all j 2 J. Then, constraints (4) and
(5) can be written as

P
i2I xij ¼ 1; 8j 2 J and xij 6 yi, "i 2 I, j 2 J, respectively. But then F reduces to the

well-known uncapacitated facility location problem (see [3]) with I as the set of potential facility locations
and J as the set of customers. Since this problem is known to be NP-hard, the VPRP is also NP-hard. h

The complexity of the VPRP implies that the solution of F using standard off-the-shelf software will not be
practical, especially with the increasing size of the problem. In what follows, we describe an exact solution
algorithm for problem F that is based on Lagrangean relaxation and partitions the problem into smaller prob-
lems that are easier to solve.

3. A Lagrangean relaxation and decomposition algorithm

The algorithm is based on relaxing the capacity constraints (2) and (3) in a Lagrangean fashion, by asso-
ciating the Lagrange multipliers bj and aij, respectively. As a result, we obtain the following relaxed problem
(denoted by F(b,a)):
ðF ðb; aÞÞ minimize
X
k2P

X
j2V

ðck
j þ bjmkÞyk

j þ
X
k2P

X
j2V

X
i2V ;i6¼j

ðck
ij þ aijlkÞxk

ij � C0

subject to ð4Þ–ð6Þ;
where C0 ¼
P

j2V bjSj þ
P

i2V

P
j2V aijSij. Next, we observe that F(b,a) decomposes into jPj subproblems, one

for each program k 2 P, where each one is denoted by Fk(b,a) and is shown for a specific program k* as
follows:

T. Bektas� et al. / European Journal of Operational Research 182 (2007) 455–465 459
ðF k� ðb; aÞÞ minimize
X
j2V

ðck�

j þ bjmkÞyk�

j þ
X
j2V

X
i2V ;i 6¼j

ðck�

i;j þ aijlk� Þxk�

ij

subject to
X

i2V ;i6¼j

xk�

ij þ yk�

j ¼ 1 8j 2 V ;

xk�

ij 6 yk�

i 8i 6¼ j 2 V ;

xk�

ij ; y
k�

j 2 f0; 1g 8i 6¼ j 2 V :
Each subproblem has (n2 + n)/2 binary variables and (n2 + n)/2 constraints. Let v(F) denote the optimal objec-
tive function value of problem F. Then, as a result of the decomposition procedure, the optimal objective func-
tion of F(b,a) can be calculated as vðF ðb; aÞÞ ¼

P
k2P vðF kðb; aÞÞ � C0. We are now ready to provide a general

outline of the algorithm for the solution to problem F. This algorithm is based on the traditional subgradient
optimization scheme (see [4]).

3.1. The solution algorithm

• Start with an initial vector of multipliers b1, a1. Let the incumbent lower bound be lb = �1, incumbent
upper bound be ub =1 and t = 1.

• Perform the following until gap ¼ ub�lb
ub

< 1:00 or the maximum amount of iterations have been reached:
– Solve F(bt,at). Set lb = v(F(bt,at)) if v(F(bt,at)) > lb.
– Modify the solution of F(bt,at) into a feasible solution bF ðbt; atÞ using the two-stage procedure that will

be explained shortly. If vðbF ðbt; atÞÞ < ub, set ub ¼ vðbF ðbt; atÞÞ.
– Update the multipliers as follows:
btþ1 ¼ maxf0; bt þ st
1 � gt

1g;
atþ1 ¼ maxf0; at þ st

2 � gt
2g:
Here, gt
1 and gt

2 are the subgradient vectors. The jth component of gt
1 is defined as
ðgt
1Þj ¼

X
k2P

mkyk
j � Sj:
Similarly, the (i, j)th component of gt
2 is defined as
ðgt
2Þij ¼

X
k2P

lkxk
ij � Sij:
In updating the multipliers, the steplengths st
1 and st

2 are calculated as follows:
st
i ¼ k

1:05 � ub� vðV ðbt; atÞÞ
kgt

ik
2

; i ¼ 1; 2: ð7Þ

– Increment t as t + 1.

• Output ub as the best feasible solution.

In calculating the steplengths, Eq. (7) is used where k is a convergence parameter. More details on this
parameter will be provided in Section 4. The gap calculated at each iteration of the algorithm shows how
far the current feasible solution may be from the optimal solution. Therefore, in the case that the algorithm
is unable to find the optimal solution, it is capable of indicating the quality of the final solution.

At any step of the algorithm, the optimal solution of F(bt,at) will be integer and also feasible with respect to
constraints (4) and (5), but may not necessarily satisfy the capacity constraints (2) and (3). This (infeasible)
solution needs to be converted into a feasible solution with respect to problem F in order to be able to provide
the algorithm with an upper bound. The usual way to accomplish this is to use some fast heuristics to convert
the infeasible solution to a feasible solution, however, at the expense of a possibly bad feasible solution. In
contrast, we will use a reverse approach here and use integer programs (IPs) to obtain feasible solutions.

460 T. Bektas� et al. / European Journal of Operational Research 182 (2007) 455–465
Our motivation is to make use of the information provided by the relaxed solution as much as possible. Such
an approach, although at the expense of a higher computational effort, will be proven to be effective in quickly
obtaining feasible solutions of good quality. The details of our procedure are given as follows:

3.2. Obtaining feasible solutions

Let ŷk
j and x̂k

ij be the optimal solution of the F(b,a). Using this solution, we attempt to achieve a feasible
solution to F using a two-stage procedure (named as 2SP). In brief terms, the first stage of the 2SP attempts
to obtain a feasible configuration of y variables by using an IP model named FeasY. Using the result of the
first stage, we construct another IP model named FeasX in the second stage, whose solution provides a feasible
configuration of x variables. Details are provided below:

3.2.1. Stage 1

The first stage of the 2SP consists of converting the ŷk
j ’s so as to satisfy constraint (2) with a minimal amount

of modification. The modification is performed for each node j 2 V such that any program that violates the
capacity constraint is repositioned. For this purpose, we define the set Oðj; kÞ ¼ fj 2 V ; k 2 P j ŷk

j ¼ 1g. The
feasibility problem can then be solved by using the following IP model (henceforth denoted by FeasY):
ðFeasY Þ minimize
X
k2P

X
j2V

ck
j yk

j þ
X
k2P

X
j2V

Rmk
j ð8Þ

subject to
X
k2P

mkyk
j 6 Sj 8j 2 V ;

yk
j P 1� mk

j 8j; k 2 Oðj; kÞ; ð9ÞX
j2V

yk
j P 1 8k 2 P ; ð10Þ

yk
j 2 f0; 1g 8j 2 V ; k 2 P ;

mk
j 2 f0; 1g 8j; k 2 Oðj; kÞ: ð11Þ
In FeasY, the additional binary variable mk
j is equal to one if program k on node j is repositioned to another

node. To ensure that a minimal amount of modification is performed, a penalty is associated to each reposi-
tioning, which is reflected in the second summation of the objective function of FeasY by the penalty coeffi-
cient R. The motivation for such an approach is to benefit as much as possible from the information provided
by the relaxed Lagrangean solution. In FeasY, constraints (9) together with the objective function ensure that
if a program k already located at node j is repositioned to another node, then yk

j ¼ 0. Constraints (10) are used
to ensure that after the modification, each program is available on at least one node. The optimal solution of
FeasY yields a placement scheme for the programs such that no node constraint is violated. Below, we state a
proposition that eases the solution of FeasY.

Proposition 2. Let FeasY denote the formulation where constraints (11) are replaced by 0 6 mk
j 6 1 for every

pair (j,k) 2 O(j,k). Then, in an optimal solution to FeasY , no mk
j will attain a fractional value.

Proof. Let yk
j and mk

j denote the optimal solution to FeasY . We will consider two cases.

1. Let yk
j ¼ 1 for a given pair (j,k) 2 O(j,k). If mk

j > 0, then it is always possible to reduce mk
j to 0 to obtain a

solution that has a value Rmk
j less than that of the current one, while still satisfying constraint (9).

2. Let yk
j ¼ 0 for a given pair (j,k) 2 O(j,k). Then, mk

j should be equal to 1 in order to satisfy constraint
(9). h
The result of Proposition 2 implies that, instead of FeasY, one may solve FeasY which has a fewer number
of binary variables. As will be seen shortly, our computational experience confirms that FeasY is easily solved
to optimality with standard optimization software.

T. Bektas� et al. / European Journal of Operational Research 182 (2007) 455–465 461
3.2.2. Stage 2

In the second stage of the 2SP , we attempt to find a feasible configuration of xk
ij variables, based on the

optimal solution yk
j of FeasY. In other words, we would like to obtain a vector of x variables satisfying the

following IP model (henceforth referred to as FeasX):
ðFeasX Þ minimize
X
k2P

X
j2V

X
i2V ;i6¼j

ck
ijx

k
ij ð12Þ

subject to
X
k2P

mkxk
ij 6 Sij 8i 6¼ j 2 V : yk

i ¼ 1; yk
j ¼ 0; ð13Þ

X
i2V ;i6¼j;yk

i¼1

xk
ij ¼ 1 8j 2 V ; k 2 P : yk

j ¼ 0; ð14Þ

xk
ij 2 f0; 1g 8i 6¼ j 2 V : yk

i ¼ 1; yk
j ¼ 0; k 2 P : ð15Þ
Note that in model FeasX, the binary variables xk
ij are only defined if yk

i ¼ 1 and yk
j ¼ 0 for every triplet

(i 2 V, j 2 V,k 2 P). Therefore, the size of the model is greatly reduced as compared to problem F. The optimal
solution of the FeasX yields a feasible configuration of xk

ij variables, since constraints (13) will ensure that the
solution will obey the link capacities.

As a result of stages 1 and 2, we obtain the optimal objective values for the formulations FeasY and FeasX.
The objective value of the corresponding solution for problem F is then found through vðFeasY Þþ
vðFeasX Þ �

P
k2P

P
j2V Rmk

j .

4. Computational results

In this section, we describe our computational results with the proposed algorithm on randomly generated
test problems. The Lagrangean relaxation and decomposition algorithm has been implemented in C and all
the tests are performed on a Sun UltraSPARC 12 · 400 MHz with 3 GB RAM, using CPLEX 9.0 as the opti-
mization package to solve the IPs.

For the computational experiments, a batch of 16 random problems have been generated with the number
of nodes (n) ranging from 50 to 80, and the number of programs (m) ranging from 20 to 50. As for the param-
eters, lk; c

k
ij; c

k
j are randomly generated from a continuous uniform distribution between 50 and 100. mk is

modelled as mk = lkTk, where Tk is the total transmission time for program k. In the experiments, Tk = 10
minutes for all k 2 P. Sij values have been chosen from the uniform distribution between maxk2K{lk} andP

k2Klk. The capacity of each node (Sj) is set to be 40% of the total size of all the programs and the penalty
parameter R is set to 10 �maxk2P ;j2V fck

jg.
The parameters for the algorithm are chosen as follows. The convergence parameter k is initially set to 2.00

and multiplied by 0.87 if there is not any improvement in the best known upper bound for five consecutive
iterations.

It was previously stated that the algorithm proposed here is a solution procedure that is capable of provid-
ing both upper and lower bounds at every iteration. This, in turn, outputs an integrality gap that is an indi-
cator of the quality of the solution found. Therefore, we do not compare our algorithm with the heuristic
procedure proposed by Ouveysi et al. [12]. However, we do compare it with CPLEX 9.0, a powerful commer-
cial optimization package. To be fair in comparisons, we impose a common time limit of 300 seconds on both
algorithms, considering the dynamic nature of the problem requiring repeated resolving to adopt to the
changes in the demand pattern and available programs.

We present the computational results in Table 1. Each row of the table contains the average values of five
randomly generated instances. The columns of the table are explained below:

• n: number of nodes;
• m: number of programs;
• nL: number of iterations required by the algorithm;
• tsub: average time required to solve all the subproblems to optimality (in seconds);
• tFeasY: average time required to solve FeasY to optimality (in seconds);

Table 1
Computational results for the Lagrangean relaxation and decomposition algorithm

n m nL tsub tFeasY tFeasX igap gap dCPLEX

50 20 13.2 13.78 0.12 0.53 3.23 2.03 0.82
60 20 12.4 23.91 0.15 0.78 4.04 2.20 0.91
70 20 7 36.45 0.17 1.08 3.37 1.82 0.12
80 20 6.4 58.20 0.20 1.39 2.92 2.45 �0.30

50 30 16.4 15.93 0.18 0.97 4.01 2.70 0.98
60 30 10 30.02 0.23 1.37 3.01 2.27 0.72
70 30 6.4 52.20 0.25 2.02 2.95 2.58 �2.74
80 30 4 76.55 0.31 2.47 2.65 1.99 �5.08

50 40 10.6 26.72 0.24 1.49 4.43 2.81 0.53
60 40 7.6 40.64 0.27 2.02 2.95 2.38 �0.56
70 40 5.4 61.94 0.34 2.77 2.56 2.26 �3.63
80 40 3.4 98.26 0.41 3.43 2.15 1.72 �4.80

50 50 9.4 33.75 0.30 2.01 3.28 2.67 �0.10
60 50 5.6 58.94 0.35 2.93 3.38 2.60 �2.61
70 50 4 90.00 0.40 3.83 2.92 2.56 �3.89
80 50 3 139.18 0.47 4.89 2.24 2.02 �4.07

462 T. Bektas� et al. / European Journal of Operational Research 182 (2007) 455–465
• tFeasX: average time required to solve FeasX to optimality (in seconds);
• igap: initial gap obtained at the beginning of the algorithm (%);
• gap: final gap obtained at the end of the algorithm (%);
• dCPLEX: comparison of the algorithm with CPLEX, which shows average percent difference between the

best solution found by the proposed algorithm (denoted by vopt) and that of CPLEX (denoted by vC) within
the given time limit, and calculated as

vopt�vC

vopt
� 100.

The results presented in Table 1 indicate that the algorithm presented here is able to produce good quality
solutions (typically around 2% of the optimal), even in the first iteration for most of the problems. In addition,
the proposed algorithm is observed to be capable of providing better solutions than those found by CPLEX in
the same amount of time, especially as the instances grow in size. As can also be seen in Table 1, the time
required to obtain a feasible solution at every step of the algorithm is quite small. However, one drawback
of the algorithm lies in obtaining lower bounds, where the required computation time tsub increases heavily
with the number of nodes. This is due to the fact that, at every iteration, the algorithm needs to solve m integer
subproblems to optimality. This, in turn, makes the algorithm computationally inefficient for large size
instances since the number of subproblems will increase with the number of programs. To overcome this draw-
back, we propose a simple modification to the algorithm that appears to be quite efficient and is as described
below in detail.

4.1. A modified algorithm

Since solving m integer subproblems at every iteration of the algorithm is costly, we propose a modification
to the algorithm that consists of solving the LP-relaxation of each integer subproblem F k� ðb; aÞ as opposed to
solving it as a binary program. In this case, the lower bound obtained will surely be below the lower bound
obtained by the original algorithm, but solving linear programs instead of binary programs at each iteration
will expectedly help in speeding up the algorithm. The only complication with this modification is that the
optimal solutions of the LP-relaxations of the subproblems will in general be fractional, if not always. As
the two-stage procedure requires integer variables as input, such fractional solutions can not be used in obtain-
ing feasible solutions. However, this situation can be fixed through rounding up (to 1) every fractional variable
with value greater or equal to 0.50, and rounding down (to 0) the rest. Using the rounded solution, a feasible
solution can then be computed using 2SP, as discussed previously.

T. Bektas� et al. / European Journal of Operational Research 182 (2007) 455–465 463
Our computational experience with this version of the algorithm shows that such a modification greatly
helps in reducing the solution time for lower bound calculation at each iteration of the algorithm. We dem-
onstrate this in Table 2, where the original and the modified algorithms are compared on some test problems.
The first seven columns of this table are as explained above. In the next three columns, we report the average
computation time required to find lower bounds (denoted by t̂sub), to solve problem FeasY (denoted by t̂FeasY)
and to solve FeasX (denoted by t̂FeasX) with the modified algorithm.

In the modified algorithm, one may expect that the performance in terms of the final gaps will deteriorate
since one is solving linear programming problems instead of integer programs. To see how much is lost in
terms of the gaps produced by this modification, we provide two additional columns digap and dgap that report
the initial and final gaps found by the modified algorithm, respectively. Finally, the last column denoted by
imp in Table 2 shows the amount of improvement one obtains in the solution time of lower bound computa-
tion with the use of the suggested modification (calculated as tsub�t̂sub

tsub
� 100).

The numerical values given in Table 2 show that our modification proposal does not have any effect on
reducing the computation times to obtain feasible solutions. However, it does have a tremendous effect in
reducing the necessary computation times to find lower bounds. As indicated under column imp, the time sav-
ings can be as high as 90%. Furthermore, these results indicate that not much is lost with respect to the final
gaps output by the algorithm since the solutions obtained are still near-optimal (typically around 5% of the
optimal solution). Based on these results, we proceed on solving larger instances with the modified algorithm,
where the number of nodes range from 50 to 100, and the number of programs range from 50 to 90. In solving
these instances, we keep all the algorithm parameters as previously explained. This time 30 problems have
been generated. The results are presented in Table 3, where each row contains the average values calculated
over four random instances. The columns of Table 3 are as explained previously. The only additional column
Table 2
Comparison of the original and modified algorithm in terms of solution time and gap

n m Original algorithm Modified algorithm imp

tsub tFeasY tFeasX igap gap t̂sub t̂FeasY t̂FeasX digap dgap

50 10 11.31 0.07 0.23 13.51 7.78 2.15 0.07 0.25 13.71 8.63 81.03
60 10 22.75 0.08 0.32 7.91 6.91 3.05 0.08 0.33 8.59 6.42 86.59
70 10 41.12 0.09 0.48 7.73 4.76 4.29 0.09 0.46 8.16 5.37 89.58
80 10 51.54 0.11 0.58 5.47 3.70 6.02 0.10 0.53 6.69 6.10 88.32
90 10 22.71 0.11 0.76 3.63 2.44 7.93 0.11 0.78 4.69 2.24 65.07

100 10 64.31 0.13 0.90 3.82 3.64 9.83 0.12 0.87 7.00 6.38 84.71

50 20 18.08 0.11 0.52 5.01 2.31 4.31 0.12 0.58 8.27 3.89 76.18
60 20 30.34 0.16 0.77 3.19 3.10 6.25 0.15 0.80 4.75 3.71 79.39
70 20 29.33 0.16 1.11 3.46 2.36 8.60 0.16 1.13 6.26 5.04 70.68
80 20 35.42 0.18 1.31 1.30 1.12 11.42 0.19 1.33 4.01 3.47 67.76
90 20 74.56 0.20 1.88 2.32 1.91 15.87 0.24 1.70 3.40 3.34 78.72

100 20 157.08 0.23 2.13 2.66 2.12 21.29 0.29 2.22 4.09 3.78 86.45

50 30 12.96 0.16 0.88 3.89 3.26 6.49 0.18 0.88 6.22 4.94 49.94
60 30 19.88 0.26 1.46 3.80 2.49 9.41 0.22 1.22 5.25 4.95 52.68
70 30 31.16 0.24 2.46 2.42 2.41 13.17 0.34 1.79 3.56 2.59 57.73
80 30 112.63 0.23 2.20 2.49 1.95 17.26 0.43 2.19 4.29 3.29 84.68
90 30 136.87 0.31 3.13 2.87 2.29 24.40 0.33 2.88 6.37 5.21 82.17

100 30 143.16 0.34 3.68 2.15 2.11 30.93 0.36 3.55 4.62 4.16 78.39

50 40 25.67 0.25 1.77 3.45 2.27 8.76 0.24 1.27 5.72 3.77 65.90
60 40 36.17 0.24 1.85 3.78 2.45 12.93 0.30 1.92 6.47 5.28 64.25
70 40 43.29 0.31 2.93 2.64 2.62 17.96 0.35 2.80 4.49 4.05 58.52
80 40 111.22 0.40 3.47 2.31 2.04 24.92 0.40 3.50 4.67 4.09 77.60
90 40 132.14 0.42 4.53 2.61 2.07 32.48 0.35 4.41 5.82 5.07 75.42

100 40 142.76 0.47 5.23 1.05 1.05 41.22 0.47 4.89 3.24 3.24 71.13

Table 3
Comparison results of the modified Lagrangean relaxation and decomposition algorithm with CPLEX

n m nL t̂sub t̂FeasY t̂FeasX igap gap dCPLEX ns

50 50 20.25 10.94 0.32 4.36 6.25 5.41 2.55 4/4
60 50 15.75 16.02 0.41 3.47 5.84 5.35 �0.35 4/4
70 50 11 23.04 0.45 6.68 5.36 5.12 �2.34 4/4
80 50 9 31.09 0.44 4.96 4.33 4.29 �2.19 4/4
90 50 6.25 40.46 0.65 6.78 3.93 3.82 �2.52 1/4

100 50 5.25 51.72 0.72 7.96 4.07 3.82 – 0/4

50 60 17.5 13.27 0.47 3.70 6.86 6.22 0.23 4/4
60 60 12.5 19.66 0.47 4.62 5.33 5.01 �1.99 4/4
70 60 9.25 27.51 0.54 5.85 5.35 4.85 �1.47 4/4
80 60 7 36.86 0.67 7.16 3.98 3.92 �2.14 3/4
90 60 5.75 48.60 0.68 9.40 4.65 4.56 – 0/4

100 60 4.5 62.12 0.69 17.33 3.71 3.63 – 0/4

50 70 15.25 15.81 0.53 3.90 6.70 5.90 �0.40 4/4
60 70 10.5 23.40 0.52 6.59 4.82 4.72 �0.64 4/4
70 70 7.25 31.86 0.61 11.80 5.43 5.27 �1.44 4/4
80 70 6 43.86 0.83 11.75 4.90 4.81 – 0/4
90 70 4.75 56.46 0.75 14.68 4.39 4.31 – 0/4

100 70 4 72.83 0.88 19.48 4.82 4.70 – 0/4

50 80 12 17.93 0.61 7.86 5.57 5.03 �0.59 4/4
60 80 8.75 25.84 1.05 10.23 5.48 4.96 �1.62 4/4
70 80 7 36.42 0.77 8.48 5.11 4.89 – 0/4
80 80 5 49.00 0.79 24.38 4.43 4.43 – 0/4
90 80 4 66.66 0.97 18.51 4.40 4.30 – 0/4

100 80 3 82.40 0.88 21.07 4.07 4.07 – 0/4

50 90 9.75 20.78 0.67 27.61 6.46 5.72 �0.99 4/4
60 90 6.5 29.05 0.75 26.30 5.10 5.06 �1.06 4/4
70 90 4.25 40.61 0.94 42.21 5.38 5.28 – 0/4
80 90 3.5 56.13 1.10 81.74 5.27 4.95 – 0/4
90 90 4 73.68 1.02 18.23 4.28 4.25 – 0/4

100 90 3 95.17 1.21 22.85 4.40 4.35 – 0/4

464 T. Bektas� et al. / European Journal of Operational Research 182 (2007) 455–465
is ns, which denotes the number of instances out of four for which CPLEX was able to find an integer feasible
solution within the given time limit.

Looking at the results given in Table 3 we see that the modified algorithm provides good quality solutions
(typically with a gap below 5%) in a reasonable amount of time. CPLEX, on the other hand, fails to find an
integer feasible solution within the given time limit, as problems grow larger in size.

We have also carried out additional experiments in comparing the proposed algorithm and CPLEX on
problems of larger size. We compare the algorithm with two variants of CPLEX, i.e., one with CPLEX’s
emphasis on optimality and the other with an emphasis on feasibility. The second variant will make sure that
better feasible solutions will be generated earlier during the solution process.

As far as the results are concerned, for an instance with n = 50 and m = 200, the proposed algorithm was
able to produce an integer feasible solution within 2 minutes of solution time, whereas both variants of
CPLEX are only able to output an integer feasible solution after 10 minutes of solution time. In addition,
CPLEX can produce a solution dominating that of the proposed algorithm only after 20 minutes of solution
time for this instance. For an even larger problem with n = 100 and m = 250, the proposed algorithm was able
to produce an integer feasible solution within 5 minutes of computing time, whereas CPLEX could not dis-
cover a feasible solution even after 60 minutes (1 hour). These results suggest that the proposed algorithm
is a viable alternative to CPLEX, especially when good quality solution needed in a short amount of time.
This is a desirable characteristic in a solution algorithm for such a problem as the VPRP, where the parameters
of the problem (e.g., demand) may change on an hourly basis.

T. Bektas� et al. / European Journal of Operational Research 182 (2007) 455–465 465
5. Concluding remarks

In this paper, we have presented a Lagrangean relaxation and decomposition algorithm for the resolution
of the video placement and routing problem (VPRP). Our algorithm is capable of producing good quality
solutions in considerably short running times and provides a benchmark to measure the quality of the output
results. The algorithm proposed in this paper is different from similar existing algorithms because we achieve
the feasible solutions through the use of integer programming techniques and this is the reason that our solu-
tion methodology results in good quality solutions even at the earlier iterations of the algorithm. Computa-
tional results indicate that the proposed algorithm is able to outperform a state-of-the art commercial
optimization package with respect to obtaining near-optimal solutions.

It is clear that obtaining the optimal solution of the model considered here will get harder as the problem
sizes increase. In such cases, fast heuristic algorithms can be of use. However, one must be aware that such
algorithms are incapable of providing the quality of the solution found unless additional lower bounding tech-
niques are employed.

References

[1] S.A. Barnett, G.J. Anido, A cost comparison of distributed and centralized approaches to video-on-demand, IEEE Journal on
Selected Areas in Communications 14 (6) (1996) 1173–1182.

[2] J. But, D. Egan, Designing a scalable video-on-demand system, in: International Conference on Communications, Circuits and
Systems (ICCCAS02), 2002, pp. 559–565.

[3] G. Cornuejols, G.L. Nemhauser, L.A. Wolsey, The uncapacitated facility location problem, in: P.B. Mirchandani, R.L. Francis
(Eds.), Discrete Location Theory, John Wiley & Sons, 1990, pp. 119–171 (Chapter 3).

[4] M. Held, P. Wolfe, H.P. Crowder, Validation of subgradient optimization, Mathematical Programming 6 (1974) 62–88.
[5] Y.-F. Huang, C.-C. Fang, Load balancing for clusters of VOD servers, Information Sciences 164 (2004) 113–138.
[6] R.-H. Hwang, P.-H. Chi, Fast optimal video placement algorithms for hierarchical video-on-demand systems, IEEE Transactions on

Broadcasting 47 (4) (2001) 357–366.
[7] Y.K. Kim, J.Y. Kim, S.S. Kang, A tabu search approach for designing a non-hierarchical video-on-demand network architecture,

Computers and Industrial Engineering 33 (3–4) (1997) 837–840.
[8] Y.-W. Leung, E.W.M. Wong, An incentive charging scheme for video-on-demand, Journal of the Operational Research Society 52

(2001) 55–63.
[9] T.D.C. Little, D. Venkatesh, Prospects for interactive video-on-demand, IEEE Multimedia 1 (3) (1994) 14–24.

[10] J.C.L. Liu, J. Hsieh, D.H.C. Du, M.J. Lin, Performance of a storage system for supporting different video types and qualities, IEEE
Journal on Selected Areas in Communications 14 (7) (1996) 1314–1331.

[11] X. Liu, S.T. Vuong, Supporting low-cost video-on-demand in heterogeneous peer-to-peer networks, in: Seventh IEEE International
Symposium on Multimedia, 2005, pp. 523–533.

[12] I. Ouveysi, L. Sesana, A. Wirth, The video placement and routing problem, in: Operations Research/Management Science at Work:
Applying Theory in the Asia Pacific RegionInternational Series in Operations Research and Management Science, vol. 43, Kluwer
Academic Publishers, 2002, pp. 53–71.

[13] I. Ouveysi, K.-C. Wong, S. Chan, K.T. Ko, Video placement and dynamic routing algorithms for video-on-demand networks, in:
Proceedings of the IEEE Globecom’98 Conference, vol. 2, 1998, pp. 658–663.

[14] C.-F. Wang, B.-R. Lai, R.-H. Jan, Optimum multicast of multimedia streams, Computers and Operations Research 26 (1999) 461–
480.

[15] T.H. Wu, I. Korpeglu, B.C. Cheng, Distributed interactive video system design and analysis, IEEE Communications Magazine 35 (3)
(1997) 100–108.

	A Lagrangean relaxation and decomposition algorithm for the video placement and routing problem
	Introduction
	Problem definition and formulation
	A Lagrangean relaxation and decomposition algorithm
	The solution algorithm
	Obtaining feasible solutions
	Stage 1
	Stage 2

	Computational results
	A modified algorithm

	Concluding remarks
	References

