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Master Production Schedules (MPS) are widely used in industry, especially within Enterprise Resource
Planning (ERP) software. The classical approach for generating MPS assumes infinite capacity, fixed pro-
cessing times, and a single scenario for demand forecasts. In this paper, we question these assumptions
and consider a problem with finite capacity, controllable processing times, and several demand scenarios
instead of just one. We use a multi-stage stochastic programming approach in order to come up with the
maximum expected profit given the demand scenarios. Controllable processing times enlarge the solu-
tion space so that the limited capacity of production resources are utilized more effectively. We propose
an effective formulation that enables an extensive computational study. Our computational results
clearly indicate that instead of relying on relatively simple heuristic methods, multi-stage stochastic pro-
gramming can be used effectively to solve MPS problems, and that controllability increases the perfor-
mance of multi-stage solutions.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Master Production Schedules (MPS) are widely used by manu-
facturing facilities to handle production and scheduling decisions.
In current industry practice, the MPS produces production sched-
ules in a finite planning horizon, assuming infinite capacity, fixed
processing times, and deterministic demand.

Our study is motivated by the following application. The largest
auto manufacturer in Turkey recently introduced a new multi-pur-
pose vehicle to the market. The company installed a single produc-
tion line with a limited production capacity and dedicated it to this
particular model. Since the production facilities are flexible, the
processing times could be altered or controlled (albeit at higher
manufacturing cost) by changing the machining conditions in re-
sponse to demand changes. As this model is new, the company
generated different demand scenarios for each time period. One
of the important planning problems was to develop a master pro-
duction schedule to determine how many units of this new model
would be produced in each time period along with the desired cy-
cle time (or equivalently, the optimal processing times) to satisfy
the demand and available capacity constraints, with the aim of
maximizing the total profit. This plan will be used in their Enter-
prise Resource Planning (ERP) system as an important input to
the materials management module to explode the component
ll rights reserved.
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requirements and generate the required purchase and shop floor
orders for the lower level components.

Motivated by this application, we consider the following prob-
lem setting. We have a single work center with controllable pro-
cessing times. The work center produces a single product type
with a given price, manufacturing cost function, processing time
upper bound, i.e., processing time with minimum cost, and maxi-
mum compressibility value. As in the case of MPS, we have a finite
planning horizon. The orders arrive at the beginning of each period
and the products are replenished at the end of the period. There is
an additional cost of postponement if the replenishment cannot be
done by the end of the period.

The demand of the first period is assumed to be known with
certainty prior to scheduling. However, the demand of the other
periods are uncertain; possible scenarios for demand realizations
and their associated probabilities are known. In our MPS calcula-
tions, the number of units of demand is defined in terms of the
multiples of a base unit. Therefore, a job represents the amount
of one base unit. Our objective is to maximize the total expected
profit by deciding how many units to produce, when to produce,
and how to produce them, i.e., the required processing times.

Our aim in this paper is to question the basic assumptions of MPS
regarding infinite capacity, fixed processing times, and determinis-
tic demand, and to propose a new approach that overcomes to an
extent the disadvantages caused by these assumptions and is com-
putationally efficient. In the remaining part of this section, we briefly
summarize the existing work on MPS, scheduling with controllable
processing times, and multi-stage stochastic programming. We con-
clude the section with an example that motivates our study.

http://dx.doi.org/10.1016/j.ejor.2011.02.032
mailto:ekorpeog@andrew.cmu.edu
mailto:hyaman@bilkent. edu.tr
mailto:hyaman@bilkent. edu.tr
mailto:akturk@bilkent.edu.tr
http://dx.doi.org/10.1016/j.ejor.2011.02.032
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor


Fig. 1.1. A scenario tree for three periods.
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The classical approach for generating Master Production Sched-
ules assumes known demands, infinite capacity, and fixed process-
ing times. In the current literature on MPS, the demand uncertainty
is ignored during the schedule generation. As a result, the main re-
search focuses on the length of the frozen time period, i.e., the
number of periods in which production scheduling decisions are
not altered even when demand realizations turn out to be different
than the estimates. A longer frozen time period is less responsive
to demand changes, but creates less nervousness, while a shorter
one acts oppositely. Studies by Sridharan et al. (1987) and Tang
and Grubbström (2002) are examples that consider the effect of
the length of the frozen zone on production and inventory costs.
Based on his industry experience, Vieira (2006) points out that
the real complexity involved in making a master plan arises when
capacity is limited and when products have the flexibility of being
produced at different settings. As opposed to the current literature,
we consider different demand scenarios with given probabilities
along with the controllable processing times and finite capacity
of the available production resources while generating the
schedule.

There are several instruments that can be used to control pro-
cessing times. For example, in computer numerical control (CNC)
machining operations, the processing time can be controlled by
changing the feed rate and the cutting speed. As the cutting speed
and/or the feed rate increases, the processing time of the operation
compresses at an additional cost that arises due to increased tool-
ing costs, as discussed in Gurel and Akturk (2007). This scenario re-
sults in a strictly convex cost function for compression. Cheng et al.
(2006) study a single machine scheduling problem with controlla-
ble processing times and release dates. They assume that the cost
of compression is a linear function of the compression amounts.
Leyvand et al. (2010) provide a unified model for solving single-
machine scheduling problems with due date assignment and con-
trollable job-processing times. They assume that the job-process-
ing times are either a linear or a convex function of the amount
of a continuous and nonrenewable resource that is to be allocated
to the processing operations. In our study, we define the compres-
sion cost function f(y) = j � ya/b as discussed in Kayan and Akturk
(2005), where y is the amount of compression, a and b are two po-
sitive integers such that a > b > 0, and j is a positive real number.
We use a nonlinear compression cost function as opposed to a lin-
ear cost function as widely used in the literature, since it reflects
the law of diminishing marginal returns.

A review of scheduling with controllable processing times can
be found in Shabtay and Steiner (2007), in which they also summa-
rize possible applications in a steel mill and in an automated man-
ufacturing environment in addition to the automotive industry
example that we have discussed above. As far as our problem is
concerned, controllable processing times may constitute a flexibil-
ity in capacity since the maximum production amount can be in-
creased by compressing the processing times of jobs with, of
course, an additional cost. Thus, this scenario brings up the
trade-off between the revenue gained by satisfying an additional
demand and the amount of compression cost. The value of control-
lable processing times becomes even more evident during
economic crises, since they allow companies to adjust their pro-
duction quantities to meet the immediate demand that varies
significantly during the planning horizon more effectively.

Stochastic programming uses mathematical programming to
handle uncertainty. Although deterministic optimization problems
are formulated with parameters that are known with certainty, in
real life it is difficult to know the exact value of every parameter
during planning. Stochastic programming handles uncertainty
assuming that probability distributions governing the data are
known or can be estimated. The goal here is to maximize the
expectation of some function of the decisions and random vari-
ables. Such models are formulated, analytically or numerically
solved, and then analyzed in order to provide useful information
to a decision-maker.

Two-stage stochastic programs are the most widely used ver-
sions of stochastic programs. The decision maker takes some action
in the first stage, after which a random event occurs that affects the
outcome of the first-stage decision. A recourse decision can then be
made in the second stage to compensate for any negative effect
that might have been experienced as a result of the first-stage deci-
sion. A detailed explanation of stochastic programming, its applica-
tions, and solution techniques can be found in Birge and Louveaux
(1997) and a survey of two-stage stochastic programming is given
in Schultz et al. (1996). Using more than one stage in decision mak-
ing is also utilized in robust optimization. Atamturk and Zhang
(2007) apply two-stage robust optimization to network flow and
design problems. They give a numerical example that explains
the benefit of using two stages instead of a single one.

In multi-stage stochastic programming, decisions are made in
several decision stages instead of two. At each stage, a different
decision is made or recourse action is taken. Multi-stage stochastic
programming models may yield better results than two-stage
models since they incorporate data as they become available, and
hence enable a more certain environment for decision making.
On the other hand, they are generally more difficult to solve than
their two-stage counterparts, therefore, their applications are rare.

In the context of production planning, the early work of Holt
et al. (1956) explicitly considers uncertain demand and flexible
workforce capacity, whereas Charnes et al. (1958), Bookbinder
and Tan (1988) and Orcun et al. (2009) use chance constraints to
address problems with uncertain demand. Furthermore, Peters
et al. (1977), Escudero et al. (1993), Voss and Woodruff (2006),
Karabuk (2008) and Higle and Kempf (2011) apply multi-stage sto-
chastic programming to production planning. Balibek and Koksalan
(2010) apply a multi-objective multi-stage stochastic program-
ming approach for the public-debt management problem. Guan
et al. (2006) study the uncapacitated lot-sizing problem and
Ahmed et al. (2003) study the capacity expansion problem with
uncertain demand and cost parameters. Huang and Ahmed
(2009) provide analytical bounds for the value of multi-stage sto-
chastic programming over the two-stage approach for a general
class of capacity planning problems under uncertainty. To the best
of our knowledge, there is no study in the literature that applies
multi-stage stochastic programming to master production sched-
uling. Stochastic programming problems are generally considered
difficult (Dyer and Leen, 2006).

When the uncertain parameters evolve as a discrete-time sto-
chastic process with finite probability space, the uncertainty can
be represented with a scenario tree; Fig. 1.1 depicts an example.
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The nodes of the tree represent demand scenarios for periods. For
each node, we give in parentheses, the node number, the probabil-
ity (not the conditional but the actual probability) of realization of
that node, and the corresponding demand realization. For instance,
node 2 corresponds to the scenario in which a demand of four is
realized at period 2 and its probability is 0.7. A path starting from
the root node and ending at a leaf node represents a scenario in the
decision tree and each scenario path can be uniquely defined by a
leaf node. For instance, 1–2–6 is a path that can uniquely be repre-
sented by node 6.

In our master production scheduling problem, we use a multi-
stage stochastic programming approach and a scenario tree in or-
der to handle the uncertainty in demand. Since information on
the demand of each period becomes available at the beginning of
the period, our decision stages correspond to periods. We use the
following example to highlight the main ideas behind the proposed
study.

Example 1. Consider the scenario tree in Fig. 1.1. In the classical
MPS, the planner needs to define fixed values for demand
realizations. There are several strategies available to choose this
single scenario:

(1) choosing the most likely scenario, which is 1–2–5,
(2) choosing the most optimistic scenario, which is 1–3–7,
(3) choosing the most pessimistic scenario, which is 1–2–4, and
(4) using rounded expected demand values; in our example, this

corresponds to the scenario in which the demands are 5, 5,
and 3 for the first three periods, respectively.

The fifth option is to use multi-stage stochastic programming.
Suppose that the compression cost function is f ðyÞ ¼ y

3
2, the net

unit revenue is 60, the time required to process a job at minimum
cost is 10 time units, the maximum compression amount is four
time units, and the capacity is 36 time units. For simplicity, we as-
sume that the postponement and the shortage costs are zero. The
cost incurred due to excess production is n per item. We do not as-
sign a value to n at this point since we do not want this assumption
to affect the overall results.

In Table 1.1, we report the maximum profits for each strategy
and scenario realization. Clearly, the solutions based on single sce-
narios have the best performance for their own scenarios. How-
ever, we observe that they have very poor results if the realized
Table 1.1
Maximum profits of different strategies.

Realized scenario Prob Possible strategies

Pessimistic Most likely

1–2–4 0.21 628.4 568.4 � n
1–2–5 0.28 628.4 672.6
1–2–6 0.21 628.4 672.6
1–3–7 0.12 628.4 672.6
1–3–8 0.18 628.4 672.6
Expected profit 628.4 650.7 � 0.2n

Table 1.2
Relative regrets of different strategies.

Realized scenario Prob Possible strategies

Pessimistic Most likely

1–2–4 0.21 0.0 11.1
1–2–5 0.28 6.6 0.0
1–2–6 0.21 11.3 5.1
1–3–7 0.12 25.7 20.5
1–3–8 0.18 11.3 5.1
Expected regret 10.0 7.1
scenario is different. The multi-stage stochastic programming solu-
tion has the best or second-best performance in all scenarios and
has the maximum expected profit.

Another measure that can be used to evaluate the strategy per-
formance is relative regret. The relative regret of a solution at a gi-
ven scenario is the percentage difference between the profit of this
solution and the optimal profit in that scenario. To calculate the
relative regrets, we need to assign a value to n. We consider a
somewhat small n = 10, and the results are given in Table 1.2.

Here we see that the relative regret of the multi-stage stochastic
programming solution is very small compared to those of the other
solutions when the solution is not optimal for the scenario in con-
sideration. In all cases, the profit of the multi-stage stochastic pro-
gramming solution is within 5% of the actual optimal profit, while
the profits of the other solutions may deviate up to 32%.

Therefore, we conclude that, in this example, using a multi-
stage stochastic programming approach instead of using fixed de-
mand estimates significantly improves the outcomes.

Using controllable processing times instead of fixed processing
times also increases schedule performance. For instance, in this
example, the profit of the multi-stage stochastic programming
solution decreases to 540 in every scenario if the processing times
are fixed, which clearly indicates that the controllability of pro-
cessing times enlarges our solution space and enables us to utilize
the limited capacity of the production resources more effectively.

The structure of the paper is as follows: In Section 2, we present
the notation and a nonlinear and a linear integer programming for-
mulation. Then we study two subproblems and use their outcomes
to derive an alternative linear integer programming formulation,
which turns out to be quite efficient. In Section 3, we present
and discuss the results of our computational study, with emphasis
on the assumptions of the traditional MPS on infinite capacity,
fixed processing times, and deterministic demand. We conclude
the paper in Section 4.

2. Multi-stage stochastic programming

As explained above, we consider a capacitated version of the
MPS where demand is uncertain and processing times are control-
lable. Thus, the decisions involved in this problem are how much to
produce, when to produce, and the required processing times.
Optimistic Expected demand Multi-stage

485.8 � 6n 588.4 � 2n 604.2
545.8 � 5n 648.4 � n 664.2
605.8 � 4n 708.4 708.4
845.8 708.4 845.8
605.8 � 4n 708.4 672.9
592.6 � 4.2n 666.4 � 0.7n 684.2

Optimistic Expected demand Multi-stage

32.2 9.5 3.9
26.3 5.1 1.2
20.1 0.0 0.0

0.0 16.2 0.0
20.1 0.0 5.0
21.2 5.5 2.0
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In this section, we first give a nonlinear formulation that deter-
mines when to produce and how much to produce, assuming that
the profit of producing a certain number of jobs is given. After
that, we introduce an equivalent linear integer programming
formulation.

Next, we study two subproblems. The outcomes of our study of
the first subproblem is used to decide on the optimal processing
times and to compute the profit of producing a given number of
jobs. We use the results of the second subproblem to reduce the
size of our formulation. Finally, we give an alternative linear for-
mulation using these results.

2.1. Notation and problem definition

Let T be the number of periods in the planning horizon. Let N be
the set of nodes of the scenario tree and Nt be the set of the nodes
of period t = 1,2, . . . ,T. For node i 2 N, let di be the demand estimate
in the corresponding scenario, Di be the set of descendants of i
including i, Bi be the set of predecessors of i including i, ci be the
probability of realizing node i with c1 = 1, and finally si be the per-
iod of node i. For i 2 N and j 2 Di, let Pij be the set of the nodes on
the path from i to j in the scenario tree.

We define the net unit revenue h as the difference between the
unit price and the sum of all unit costs, except compression and
postponement costs. We denote the processing time of a job with
minimum compression cost by p, the maximum compression
amount by u, and the capacity by C. We assume that h, p, and C
are positive, and u is non-negative. Let kmax be the maximum num-
ber of jobs that can be produced in a period without violating the
capacity constraint, i.e., kmax ¼ C

p�u

j k
. We denote the cost of post-

poning one job for t periods with b(t) and assume that b(t) is a con-
vex function with b(0) = 0.

Let P(k) be the maximum profit excluding the cost of postpone-
ment when k jobs are produced in a period. For the time being, we
assume that P(k) is given for all possible values of k. Later, we ex-
plain how this value is calculated.

Given the parameters above, the problem is to decide how
many units of the demand of each period to satisfy, and when
and with what processing time to produce it in each scenario so
that the capacities are respected and the expected profit is maxi-
mized. We refer to this problem as multi-stage master production
scheduling and abbreviate it as MMPS.

2.2. A nonlinear and a linear integer programming model

In this section, we first present a nonlinear formulation for
problem MMPS. We use the following decision variables: For node
j 2 N, we define yj to be the number of jobs produced at node j, and
zj to be the amount of demand of node j that is satisfied within the
planning horizon. For node i 2 N and for j 2 Bi, we define xij to be
the amount of demand of node j that is produced at node i.

Our first formulation for MMPS, referred to as MMPS-N, is as
follows:

ðMMPS-NÞ max
X
i2N

ci � ðPðyiÞ �
X
j2Bi

bðsi � sjÞ � xijÞ ð2:1Þ

s:t:
X
j2Bi

xij ¼ yi 8i 2 N; ð2:2Þ
X
i2Pjm

xij ¼ zj 8m 2 NT \ Dj; j 2 N; ð2:3Þ

zj 6 dj 8j 2 N ð2:4Þ
yj 6 kmax 8j 2 N; ð2:5Þ
xij 2 Zþ 8i 2 N; j 2 Bi; ð2:6Þ
zi 2 Zþ 8i 2 N; ð2:7Þ
yi 2 Zþ 8i 2 N: ð2:8Þ
The objective function (2.1) is equal to the total expected profit.
Constraints (2.2) link the variables xij’s and yi’s. The amount of pro-
duction at a given node i is equal to the sum of the amounts of pro-
duction done at node i to satisfy the demand of its preceding nodes.
Constraints (2.3) ensure that the amount of the demand satisfied for
a given node j is equal in all scenarios that include node j. To this
end, these constraints impose the requirement that zj, which is
the amount of demand of node j that is satisfied, is equal to the
sum of the amounts of production done to satisfy the demand of
node j over each path that starts at node j and ends at a descendant
leaf node. Constraints (2.4) ensure that the amount of demand of
node j that is satisfied within the planning horizon is no more than
the demand at node j. Capacity restrictions are imposed through
constraints (2.5). Finally, the integrality and nonnegativity of vari-
ables are given in constraints (2.6)–(2.8).

The model MMPS-N has a nonlinear objective function. Next, we
propose a linear integer programming formulation for problem
MMPS. To obtain this formulation, we rewrite the integer variables
yi’s as weighted sums of binary variables. We define wik to be 1 if k
jobs are produced at node i and 0 otherwise for all i 2 N and

k 2 {0,1, . . . ,kmax}. Clearly, we need
Pkmax

k¼0 wik ¼ 1 for all i 2 N. Now,

yi ¼
Pkmax

k¼0 k �wik and PðyiÞ ¼
Pkmax

k¼0 PðkÞ �wik for all i 2 N. Substitut-
ing in the above formulation, and adding the constraints that en-
sure that for each node i 2 N, exactly one k value in {0,1, . . . ,kmax}
is picked as the production amount, we obtain the following linear
integer programming formulation, referred to as MMPS-L1.

ðMMPS-L1Þ max
X
i2N

ci �
Xkmax

k¼0

PðkÞ �wik �
X
j2Bi

bðsi � sjÞ � xij

 !

s:t: ð2:3Þ; ð2:4Þ; ð2:6Þ; ð2:7Þ
Xkmax

k¼0

wik ¼ 1 8i 2 N;

X
j2Bi

xij ¼
Xkmax

k¼0

k �wik 8i 2 N;

wik 2 f0;1g 8i 2 N; k 2 f0;1; . . . ; kmaxg:

In this formulation, since wik values are defined only for feasible
production amounts, there is no need for capacity constraints (2.5).

In formulations MMPS-N and MMPS-L1, the maximum number
of jobs that can be produced in a period is computed using the
capacity restrictions and is equal to kmax. Moreover, we assume
that the values of the profit function P(k) for k in {0,1, . . . ,kmax}
are given. As the total profit is equal to the number of jobs times
unit revenue minus the manufacturing costs, this implies that
the optimal compression amounts have to be computed for each
k value. Next, we introduce two subproblems which are used to re-
duce the possible number of jobs produced in a given period and to
calculate the optimal compression amounts and maximum profits
for a given number of jobs.

2.3. The single-period capacitated deterministic scheduling problem
with a cost minimization objective

In this section, we introduce and study our first subproblem,
which is the single-period capacitated deterministic scheduling
problem with a cost minimization objective. The results that we
obtain for this problem are used to define the optimal compression
costs and the P(k) values.

In this problem, we have a single work center and identical
products. The work center has a finite capacity of C. Suppose that
the processing time of a job with the minimum compression cost
is p and the maximum compression amount is u. There are n 6 kmax

jobs in the work center. The compression cost function is
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f : Rþ ! Rþ and is strictly convex. The problem is to decide on the
compression amounts of the n jobs with the aim of minimizing the
total compression costs. We define the variable cj to be the com-
pression amount of job j in {1, . . . ,n}. Now, this problem can be for-
mulated as follows:

min
Xn

j¼1

f ðcjÞ ð2:9Þ

s:t: cj 6 u 8j 2 f1; . . . ;ng; ð2:10ÞXn

j¼1

ðp� cjÞ 6 C; ð2:11Þ

cj 2 Rþ 8 j 2 f1; . . . ; ng: ð2:12Þ

The objective function (2.9) is equal to the sum of the compres-
sion costs. Constraints (2.10) ensure that the compression amounts
do not exceed the maximum amount u and constraint (2.11) en-
sures that the sum of processing times does not exceed the capac-
ity. Constraints (2.12) are nonnegativity constraints.

In the following proposition, we characterize the optimal solu-
tion to this problem.

Proposition 2.1. Let n be a positive integer with n � (p � u) 6 C. If n
jobs are to be produced in a work center, then the solution with
cj ¼maxfp� C

n ;0g for all j = 1, . . . ,n is the unique optimal solution to
the above problem.
Proof. First, we show that in the optimal solution, the compres-
sion amount is equal for all the jobs in the work center. Let c be
an optimal solution. Suppose to the contrary that there exist jobs
i and j such that ci > cj. Let c be the same as c except ci ¼ cj ¼

ciþcj

2 .
The solution �c is feasible and by strict convexity of the cost func-
tion, f ðciÞ þ f ðcjÞ < f ðciÞ þ f ðcjÞ. This contradicts the optimality of
the initial solution c. Now, it follows immediately that cj ¼
maxfp� C

n ;0g for all j = 1, . . . ,n is an optimal solution. h

Proposition 2.1 is intuitive. As the compression cost function is
strictly convex, the greater the compression amount, the more the
marginal compression cost is incurred. Thus, in order to minimize
the total compression cost, the necessary compression amount
max{n � p � C,0} is evenly distributed among all jobs. Using Propo-
sition 2.1, it is possible to find the optimal compression amounts
for jobs, given the optimal allocation of jobs to the nodes. More-
over, we can compute the P(k) values using our compression cost
function f(y) = j � ya/b.

For x 2 Rþ, we define PðxÞ ¼ x � h� x � j � p� C
x

� �a
b if x > C

p ;

x � h otherwise:

(

Corollary 2.2. Let n be a positive integer with n � (p � u) 6 C. If n
jobs are to be produced at a work center in a period, then the
maximum profit at the work center is P(n).

Using Corollary 2.2, the profit function is calculated for all pos-
sible values of job numbers at a node and is given as an input to
formulations MMPS-N and MMPS-L1.

2.4. The single-period capacitated deterministic problem with a profit
maximization objective

In the previous sections, we make use of the fact that at most
kmax units can be produced due to capacity constraint. In this sec-
tion, we propose a tighter upper bound for the maximum possible
production using the concavity of the profit function and reduce
the size of formulation MMPS-L1 by reducing the number of wij
variables significantly. The following example illustrates the scope
of this reduction.

Example 2. Suppose that h = 200, C = 30, p = 10, u = 8, and f(y) = y3.
Consequently, kmax = 15 meaning that MMPS-L1 requires 15jNj
binary variables (wij’s). However, as we propose in this section, the
maximum production in an optimal solution could be at most 4, so
that the required number of binary variables can be reduced to
4jNj.

To obtain the tight bound illustrated in Example 2, we consider
a subproblem in which we have a single work center with finite
capacity C and a single period with infinite demand. The objective
is to decide on the number of jobs to produce to maximize the total
profit.

We define the threshold value, denoted by s, to be the optimal
number of jobs to be produced at the work center so that the total
profit is maximized. Hence, the problem is:

max PðnÞ
s:t: n 6 kmax;

n 2 Zþ:

The value of s depends on both the available capacity and the rela-
tive profit gain of producing one more job. Although we could have
used an enumerative approach to compute s in O(kmax) time, we use
the following lemma to compute s analytically.

Lemma 2.3. The profit function P satisfies the following properties:

i. P(x) is continuously differentiable on Rþþ,
ii. P(x) is concave,

iii. if h < j � pa
b, there exists x⁄ in C

p ;þ1
� �

such that dP
dx ðx�Þ ¼ 0.
Proof. Let Pc : ðCp ;þ1Þ ! R be defined as PcðxÞ ¼ x � h� x � j�
ðp� C

x Þ
a
b. Then,

PðxÞ ¼
PcðxÞ if x > C

p ;

x � h otherwise:

(

When x < C
p ;PðxÞ is linear. When x > C

p ;PðxÞ ¼ PcðxÞ is a smooth
function since x – 0. Therefore, the only point that needs consider-
ation is x ¼ C

p. The first derivative of the Pc function with respect to
x is:

dPc

dx
ðxÞ ¼ h� j � p� C

x

� �a
b

� a
b
� j � p� C

x

� �a
b�1

� C
x
:

Therefore, the right limit of dP
dx ðxÞ at x ¼ C

p is h. The derivative of hx

with respect to x is h so the left limit of dP
dx ðxÞ at x ¼ C

p is also h.

Therefore, dP
dx ðxÞ is continuous on Rþþ, hence P(x) is continuously

differentiable on Rþþ.
The second derivative of Pc(x) with respect to x is:

d2Pc

dx2 ðxÞ ¼ �
a
b
� j � p� C

x

� �a
b�1

� C
x2 �

a
b
� a

b
� 1

� �
� j � p� C

x

� �a
b�2

� C
2

x3 þ
a
b
� j � p� C

x

� �a
b�1

� C
x2

¼ � a
b
� a

b
� 1

� �
� j � p� C

x

� �a
b�2

� C
2

x3 6 0

since a > b and x P C
p, dPc

dx ðxÞ is monotonically decreasing. Moreover,

h is monotonically nonincreasing. In addition to those, the deriva-
tive function of P(x) is continuous. Thus, dP

dx ðxÞ is monotonically
non-increasing and continuous, hence P(x) is concave.
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Now suppose that h < j � pa
b. When x tends to C

p, dPc

dx ðxÞ > 0 and

when x tends to infinity, dPcðxÞ
dx < 0 since h < j � pa

b. In addition to
that, the derivative function is continuous. Then, by the interme-

diate value theorem, there exists x⁄ in C
p ;þ1
� �

such that
dPc

dx ðx
�Þ ¼ 0. Since P(x) has the same values as Pc(x) on the domain

C
p ;þ1
� �

, then dP
dx ðx

�Þ ¼ 0: h

By Lemma 2.3, we know that the profit function is concave and
has a critical point within its domain if h < j � pa

b. Thus, one can find
this critical point and by concavity this critical point is the maxi-
mizing point within a continuous domain if h < j � pa

b. Obviously,
this does not immediately tell what the s value is since s is the
maximizing value among only integer points. Moreover, the critical
point does not take into account the capacity constraint. Proposi-
tion 2.4 uses Lemma 2.3 to compute the actual threshold value.

Proposition 2.4. Suppose that h < j � pa
b. Let x⁄ be the critical point of

Pc(x). Then,

s ¼
kmax if x� > kmax;

Pdx�e if x� 6 kmax and Pdx�e > Pbx�c;
Pbx�c otherwise:

8><
>:

On the other hand, if h P j � pa
b, then s = kmax.
Proof. Follows from the concavity of P(x). h

Using the threshold value, it is possible to reduce the size of for-
mulation MMPS-L1 such that kmax in the main formulation can be
replaced by s, as stated below. We omit the proof as it is easy.

Proposition 2.5. At an optimal solution to MMPS-N, the production
amounts of all nodes are less than or equal to the threshold value, s.
2.5. An alternative linear integer programming formulation

In this section, we give an alternative linear integer program-
ming formulation for MMPS. This formulation uses the results of
the previous sections on the concavity of the profit function and
the threshold value. In this formulation, we rewrite the integer
variables yi’s as the sum of binary variables. We define vik to be 1
if at least k jobs are produced at node i and 0 otherwise for all
i 2 N and k 2 {1, . . . ,s}. Then for i 2 N, yi ¼

Ps
k¼1v ik and PðyiÞ ¼Ps

k¼1ðPðkÞ �Pðk� 1ÞÞ � v ik with vik P vi(k+1) for all k 2 {1, . . . ,
s � 1}. This formulation, referred to as MMPS-L2, is as follows:

ðMMPS-L2Þ max
X
i2N

ci �
Xs

k¼1

ðPðkÞ�Pðk�1ÞÞ �v ik

 
ð2:13Þ

�
X
j2Bi

bðsi� sjÞ � xij

!

s:t: ð2:3Þ; ð2:4Þ; ð2:6Þ; ð2:7Þ;
v ik P v iðkþ1Þ 8i2N; k2 f1; . . . ;s�1g; ð2:14ÞX
j2Bi

xij ¼
Xs

k¼1

v ik 8i2N;

v ik 2 f0;1g 8i2N; k 2 f1; . . . ;sg:

Constraints (2.14) of MMPS-L2 ensure that if at least k + 1 jobs are
produced at a node, then clearly, at least k jobs are produced. These
constraints can be removed without changing the optimal value
since P(x) is concave. Let MMPS-L3 be the resulting formulation.

To conclude this section, we compute the number of variables
and constraints in formulations MMPS-L1 and MMPS-L3. The
number of variables xij’s is equal to
PT

t¼1jNt jt since a node in set
Nt has t predecessors including itself. The number of variables in
formulation MMPS-L1 is equal to

PT
t¼1jNtjt þ jNj þ jNjðkmax þ 1Þ

and the number of variables in formulation MMPS-L3 is equal toPT
t¼1jNt jt þ jNj þ jNjs. The number of constraints (2.3) is equal to

TjNTj. Consequently, the formulation MMPS-L1 has TjNTj + 3jNj con-
straints, whereas the formulation MMPS-L3 has TjNTj + 2jNj con-
straints. It can be seen that the sizes of both formulations
depend on the number of nodes in the scenario tree, which grows
exponentially with the degrees of the nodes and the number of
periods.

In Appendix A, we introduce two trivial cases and analyze two
special cases of the problem that are polynomially solvable.
3. Computational results

The computational study consists of three stages. In stage one,
we test the CPU time performance of the linear integer program-
ming formulations MMPS-L1 and MMPS-L3. We find that MMPS-
L3 proves to be very efficient in terms of CPU time, solving all
the test problems in at most four seconds. In the second stage,
we compare the performances of solutions obtained from single-
scenario strategies utilizing different production adjustment poli-
cies with the multi-stage stochastic programming solution. We
also make a thorough analysis on the significance of capacity on
solution quality. The results show that multi-stage stochastic pro-
gramming outperforms single-scenario strategies, and that capac-
ity has a statistically significant effect on solution quality,
regardless of the utilized strategy. Finally, in the third stage, we
investigate the effect of controllability, and our computational re-
sults clearly indicate that adding controllability in a capacitated
environment provides a notable improvement in the solution qual-
ity of multi-stage stochastic programming.
3.1. Experimental design

Although our study was initially motivated by an industrial
application, the master production scheduling setting in the paper
is quite general, i.e., can be applied to different production systems.
Therefore, we randomly generated data to test the proposed model
in different computational settings. In our test problems, we take
the number of periods T to be four, as weekly periods in a monthly
planning horizon. We set the coefficient of the compression cost
function j to one, and the net unit revenue h to 200. The processing
time with minimum cost p is Uniform[10,15] and the maximum
compression amount u is p � Uniform[0.5,0.9].

In order to prevent possible parameter selection bias, we take
different settings for each parameter, which are determined based
on an intensive pre-experimental study. In particular, we parame-
terize the effect of the magnitude of the compression cost
exponent, the capacity tightness, the relative magnitude of post-
ponement costs, distributions that the node probabilities are gen-
erated from, the variability of demand over scenarios, and the
number of possible scenarios. We also investigate the effect of
the ratio between inventory holding and postponement costs in
our analysis of single scenario strategies. Table 3.1 summarizes
the factors that we find to be significant and the values that they
take throughout the study. We take five replications for each of
the 384 experimental settings, resulting in 1920 randomly gener-
ated scenario trees. All runs are performed using ILOG Cplex Ver-
sion 11.2 on a 2 � 2.83 gigahertz Intel Xeon CPU and 8 gigabytes
memory workstation HP with the operating system Ubuntu 8.04.

We use two alternatives for the compression cost function
exponent a/b, which are 2 and 3. In Fig. 3.1a, we depict the profit
function for a/b = 3 as an example. In this case, s = 3 < kmax = 10.



Table 3.1
Factors used in the experiments.

Factor Name Number
of levels

Factor combinations

1 2 3 4

A Compression cost
exponent a/b

2 2 3 – –

B Capacity scaling
factor f

4 0.2 0.4 0.6 0.8

C Postponement cost
scaling factor b

2 0.15 0.3 – –

D Probability type
(node probabilities)

2 Equal Normal
Dist.

– –

E Demand variability
[blow,bhigh]

3 [0,20] [10,30] [0, 40] –

F Degree factor 2 [0,14] [7,14] – –
G Inventory cost/

postponement cost
2 0.2 0.8 – –
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The profit function for a/b = 2 is given in Fig. 3.1b and here
s = kmax = 10. Consequently, with these two values for the compres-
sion cost function exponent, we capture both cases, where s < kmax

and s = kmax.
A scenario tree is defined by its nodes and their associated de-

mand scenarios and probabilities. We generate the nodes as fol-
lows. To determine the number of immediate descendants of a
node, we use the concept of ‘degree factor’. The number of imme-
diate descendants of a node is generated from either Uni-
form[0,14] or Uniform[7,14].

The demand realization at a node is generated by rounding the
random variate from Uniform[blow,bhigh]. We refer to this factor as
the ‘demand variability’. We use three alternative distributions to
check different demand variability levels: Uniform[0,20], Uni-
form[10,30], and Uniform[0,40]. Here, the first two alternatives
are used to compare alternatives with the same variance but differ-
ent means, whereas the last two are used to compare alternatives
with the same mean but different variances.

The assignment of probabilities to scenarios is a major compo-
nent of stochastic programming. Therefore, the final factor con-
cerning the scenario tree is the ‘probability factor’. Here we
consider two ways of assigning probabilities to the nodes of the
scenario. The first way is to assign equal probabilities to the imme-
diate descendants of a node. The second way is to use a normal dis-
tribution with mean l ¼ blowþbhigh

2 and standard deviation 0.5 l.
We compute the capacity of a period as C ¼ f� p � blowþbhigh

2 ,
where f is the capacity scaling factor. We use four alternatives
for f: 0.2, 0.4, 0.6, and 0.8. The postponement function is defined
as b(t) = b � h � t2 for t P 0, where b is the postponement cost scaling
factor and is taken as 0.15 and 0.3. When b is 0.3, we expect the
postponement cost to dominate the compression cost.
Fig. 3.1. Profit functions for a/b
In the existing literature, the capacity is taken as a fixed param-
eter. Therefore, in order to deal with demand fluctuations, typi-
cally, inventory is carried to future periods for a demand surge
that may or may not happen. As one of the important advantages
of having controllable processing times, the capacity is no longer
fixed and can be adjusted with respect to the immediate demand
information. As demonstrated in several just-in-time applications,
depending on the cost structures, this option could be more bene-
ficial than carrying inventories. Therefore, we do not consider car-
rying the inventory as an alternative in our model but instead use
the capacity as a buffer, if necessary. However, if a single scenario
is used to estimate the demand, inventory is inevitable when the
estimated scenario is not realized. Thus, in order to be able to make
a comparison, we assign the inventory holding cost a specific value.
In practice, the inventory holding cost is generally lower than the
postponement cost, thus, we take the inventory holding cost per
unit per period as 80% and 20% of the postponement cost coeffi-
cient (we assume a linear inventory holding cost function).
3.2. Computation times

In our first experiment, we investigate the performances of our
formulations MMPS-L1 and MMPS-L3 in terms of CPU times under
different input parameters. In this case, we consider two levels for
factor B (capacity scaling factor) since the performance of MMPS-L1
limited us in the total number of runs that could be taken. We con-
sider an additional level, 0.01, for the postponement cost ratio (fac-
tor C) in order to test the case where the postponement cost is
negligible. We do not use factor G since it will be used to evaluate
the single-scenario strategies below. Therefore, we have a total of
144 factor combinations and 720 randomly generated instances.

Formulation MMPS-L3 solves all the problem instances within
at most four seconds. Moreover, MMPS-L3 always gives better re-
sults in terms of CPU time than MMPS-L1. Formulation MMPS-L1
cannot prove optimality within one hour for 10 instances corre-
sponding to two factor combinations. In these instances, the factor
levels are: A = 2, B = 0.8, D = Normal, E = [0,40], and F = [7,14]. Fac-
tor D is 0.01 and 0.15. These correspond to cases where kmax is high
due to high capacity, the demand has a larger mean and variability,
the number of descendants has a high mean, and the tree is unbal-
anced in terms of the probabilities assigned to nodes. For the
remaining instances, the maximum computation time is 2160 sec-
onds with formulation MMPS-L1.

Our experimental results clearly indicate that MMPS-L3 outper-
forms MMPS-L1 and is very efficient in terms of computation time.
The significant reduction in computation time is mainly due to the
outcomes of Section 2 (such as the threshold value, s, and concav-
ity of the profit function) and the new formulation. Moreover, its
= 3 and a/b = 2 kmin ¼ C
p

j k� �
.
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performance is robust to changes in parameters. This enabled us to
perform an extensive computational study to test the quality of
multi-stage stochastic programming solutions.

3.3. Comparing multi-stage stochastic programming with single
scenario strategies

In the second experiment, we compare the performance of the
multi-stage stochastic programming solution (MSP) with the solu-
tions of single-scenario strategies, namely, choosing the most likely
scenario (ML), choosing the most optimistic scenario (OPT), choos-
ing the most pessimistic scenario (PES), or using rounded expected
demand values (EXP), as shown in Example 1 in the Introduction.

3.3.1. Adjustment policies
As the single-scenario strategies ignore uncertainty in demand,

we use two different adjustment policies to improve their
solutions.

� T-periods frozen policy (TPF): In this policy, demand values are
first estimated according to the given single-scenario strategy.
The production amounts are determined by solving MMPS-L3,
where the scenario tree is a path and the demand values are
taken as the estimated ones. These production amounts do
not change, regardless of the realized demand scenario, i.e., they
are frozen for T periods.

� One-period frozen myopic adjustments policy (OPF): In this pol-
icy, the initial production amounts are calculated just as in TPF.
If the estimated scenario is not realized, these production
amounts are adjusted myopically as follows: For any period t,
if there is positive inventory left from previous periods, the pro-
duction amount is decreased by the amount of inventory, and if
there is shortage, then the production is increased by the
amount of shortage. This policy corresponds to the chase policy
in master production scheduling, since production amounts are
more sensitive to immediate demand realizations.

3.3.2. Relative regret as a measure of quality
We compare the solution quality of the single-scenario strate-

gies coupled with the two different production policies (resulting
in eight different strategy – policy combinations, e.g., ML-TPF de-
notes choosing the most likely strategy with the T-periods frozen
policy) to the quality of the multi-stage stochastic programming
solution. We use relative regret as the metric of comparison for
two reasons. First, it measures how our solutions perform com-
pared to an optimal solution that we would have if we had perfect
knowledge about the input parameters, and hence gives insight
into the performance of our methods to hedge against uncertainty.
Second, profit values may differ significantly among different set-
tings and may thus cause settings with higher profit values to
dominate the results. Relative regret provides a scaled measure
to compare performance under different settings.

As discussed above, there are 1920 randomly generated sce-
nario trees. Since the single-scenario strategies are deterministic,
it is not possible to compare expected profits or propose a common
ground for comparison. Therefore, we use ex-post profit gained by
applying the schedules generated by MSP and the other single-sce-
nario strategy – policy combinations. Namely, for each problem in-
stance, we first generate 10 randomly selected scenarios (i.e., select
10 nodes from the leaf nodes of the scenario tree) which represent
10 ex-post demand realizations. Afterwards, for each strategy-pol-
icy combination, we compute the production amounts. The total
profit is calculated for the given values of the production amounts
and demand realizations of the randomly generated scenario. We
calculate the relative regret R as follows:
R ¼ 100�
profitoptimal � profitstrategy

profitoptimal
:

To compute the optimal profit for each scenario, we give the
realized demand values as an input to MMPS-L3 and solve a sin-
gle-scenario model.

The following example explains the procedure in detail.

Example 3. Consider the numerical example given in the Intro-
duction. Suppose that scenario 8 is realized (i.e., the randomly
selected scenario is scenario 8). Corresponding (ex-post) demand
realizations of periods 1, 2, and 3 are 5, 7, and 1, respectively.
Suppose that we select the pessimistic strategy, where the
estimated demands are 5, 4, and 2, respectively. Next, we explain
how two adjustment policies are applied in this case.

� T-periods frozen policy: If the TPF policy is applied, MMPS-L3 is
solved for a single-path scenario where the demands are the
estimated demands, which are 5, 4, and 2. The optimal produc-
tion amounts are 4 in the first period, 4 in the second period,
and 3 in the last period.
� One-period frozen myopic adjustments policy: In OPF, first,

MMPS-L3 is solved and the optimal production amounts of 4,
4, and 3 are obtained as explained above. In the first period, 4
units are produced. In the second period, the production of 4
units takes place but a demand of 7 is realized instead of 4. This
is compensated for in period 3; the production amount in this
period is changed to 3 + 7 � 4 = 6. In summary, the production
amounts are 4, 4, and 6 for periods 1, 2, and 3, respectively.

Now we explain how we compute the profits. Suppose that the
TPF policy is chosen. The realized demands are 5, 7, and 1 and the
production amounts are 4, 4, and 3. Therefore, there is a total post-
ponement of 4 units and a shortage of 2 units. There is no excess
and no inventory. We assume that postponement and shortage
costs are zero. In total, 11 units are produced, and so there is a prof-
it of 2 �P(4) + P(3) = 628.4.

The optimal policy in this case is to produce 5, 4, and 4, which
yields a total profit of 728.4. Thus the relative regret is 11.3% for
the PES strategy – TPF policy combination.
3.3.3. The effects of shortage and excess production costs
Excess production or shortage may occur within the planning

horizon if the total demand of the realized scenario is less or more
than the demand of the estimated scenario. Here we analyze the
effects of shortage and excess production costs. In order to have
comparable numbers, we define a ‘shortage factor’ df and an ‘excess
factor’ nf. We assume a linear cost function for excess and shortage
costs. The unit costs per period are obtained by multiplying the
associated factor by per unit profit h, such that they take a value
in the range of h � Uniform[0,2]. We compare the mean of the re-
gret values of the eight strategy – policy combinations described
above with the regret value of MSP for different shortage and ex-
cess factor values.

If we consider nf and df as exogenous variables, we have a three-
dimensional profit function. Fig. 3.2 displays a cross-section from
this profit function, where the excess and shortage cost factors
are equal. We observe here that the multi-stage solution is always
better than the solutions of other strategies, regardless of the val-
ues of the excess and shortage factors.

In the figure, some strategy – policy combinations exceed 100%
regret (their profit drops to negative) and becomes out of scale.
When shortage and excess costs equally increase, the relative dif-
ference between MSP and other strategies tends to increase as
well. As we checked for isolated effects of increases in shortage
and excess costs, we encountered a similar result: MSP always out-



Fig. 3.2. Cross-section of the regret function where shortage and excess are equal.

Table 3.3
Pairwise statistics of differences of regret levels.

95 % CI for TPF policy 95 % CI for OPF policy

Lower Upper Lower Upper

ML–MSP 11.4 11.9 16.0 16.4
OPT–MSP 8.4 8.7 13.5 13.8
PES–MSP 47.9 48.6 23.5 23.9
EXP–MSP 5.5 5.8 12.5 12.8
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performs other strategies and as the excess/shortage cost in-
creases, the gap between MSP and the other strategies increases
as well, since MSP considers recourse explicitly when computing
the optimal policy. Therefore, adding a shortage or excess cost fa-
vors MSP against all other strategy – policy combinations. In order
not to affect the outcome of the analysis in favor of MSP, we take
shortage and excess costs as zero in the remainder of the analysis,
noting that all the results we present below can be extended to the
case with non-zero excess and shortage costs as well.

3.3.4. Analysis of regret values
In this section, we first present a general discussion on our re-

sults. Then we summarize our findings for the experimental factors
other than the capacity factor. We defer the discussion on the ef-
fect of capacity to the next section.

Table 3.2 gives the average relative regret values of each strat-
egy and policy combination and the number of times a strategy –
policy combination gives the minimum regret value for different
capacity levels.

As the table suggests, using multi-stage stochastic program-
ming gives a smaller average relative regret value than all other
strategies regardless of the adjustment policy. Moreover, MSP
Table 3.2
Average relative regrets and the number of times a strategy - policy combination gives th

Policies f Performance metric ML

TPF 0.2–0.4 Average regret 15.63
# of times min 2099

0.6–0.8 Average regret 12.60
# of times min 95

All Average regret 14.12
# of times min 2194

OPF 0.2–0.4 Average regret 18.21
# of times min 1583

0.6–0.8 Average regret 19.02
# of times min 9

All Average regret 18.61
# of times min 1592

a The multi-stage solution is not dependent on policy changes.
has a significant dominance in terms of the number of minimum
regret values. The difference between MSP’s regret and those of
other strategies is significantly high (as much as 50%). Moreover,
MSP dominates other strategy-policy combinations in terms of
the number of times it achieves the minimum regret values (as
high as 99.5%).

Table 3.3 gives the statistics and confidence intervals regarding
the differences between the solution quality of single-scenario
strategies and multi-stage stochastic programming. As the table
shows, the solutions of multi-stage stochastic programming are
statistically significantly better than the solutions of all other strat-
e minimum regret value.

OP PES EXP MSPa

13.34 50.69 9.29 4.80
2766 56 2904 7363
8.56 50.69 6.92 0.05
15 0 210 9416
10.95 50.69 8.11 2.42
2781 56 3114 16779

15.63 27.15 14.78 4.80
1822 475 1913 8403
16.47 25.12 15.41 0.05
14 0 35 9560
16.05 26.13 15.09 2.42
1836 475 1948 17963
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egies regardless of the adjustment policy. Moreover the 95%-confi-
dence-interval lower bounds of each strategy – policy combination
are considerably high, indicating the superiority of MSP over the
single-scenario strategies.

As we do not have enough space to discuss the effects of all se-
ven factors here, we summarize our findings on six factors and give
our results concerning the capacity factor in more detail in the next
section as it plays an important role in questioning one of the basic
assumptions of the traditional MPS: the infinite capacity assump-
tion. Figs. 3.3 and 3.4 illustrate the average relative regret values
Fig. 3.3. Average regrets of strategy – policy combinations a

Fig. 3.4. Average regrets of strategy policy combinations a
for each strategy – policy combination and the multi-stage stochas-
tic programming for factors A, C, D (23 = 8 different settings) and E,
F, and G (3 � 22 = 12 different settings), respectively. We separated
these factors to reduce the number of settings displayed at one time
and hence make the figures easier to interpret. In Fig. 3.3, the pes-
simistic strategy combined with the TPF policy is not illustrated
since it is grossly out of scale (its regret values are approximately
80%). As is clear in both figures, the average regret performance of
multi-stage stochastic programming is significantly better in all
settings than other strategy – policy combinations.
nd multi-stage for combinations of factors A, C, and D.

nd multi-stage for combinations of factors E, F, and G.
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3.3.5. The effect of capacity
Here we investigate the effect of capacity on our results. First, in

Table 3.2, where the average relative regret values of each strategy
and policy combination are given, we can see that the available
capacity significantly affects the overall results. The average regret
for multi-stage stochastic programming decreases from 4.80% to
0.05% as we relax the capacity. This actually points out that assum-
ing infinite capacity in master production scheduling is unreason-
able because solutions are very sensitive to changes in capacity.

To further analyze the effects of the capacity factor on the dif-
ferences between the solution performances of multi-stage sto-
chastic programming and other strategies, we use paired sample
t-tests. In Table 3.4, we present the statistics and significance val-
ues for the eight strategy – policy combinations and multi-stage
stochastic programming.

In all cases, the MSP solution is statistically significantly better
than the other solutions, however, the performance difference
changes with respect to the capacity factor. For the first three strat-
egies, the capacity effect has a triangular shape as the regret takes
its maximum in the middle and its minimum at very low and very
high capacity values. EXP has an interesting structure; it has a
decreasing regret as capacity becomes looser but an increasing re-
gret as the capacity becomes very loose. For MSP, as capacity de-
creases, regret increases. This result is quite expected because
tighter capacity results in postponing jobs, thus MSP loses its flex-
ibility to adjust to changes in demand. In the OPF policy, the signif-
icance of capacity for the first four strategies decreases although
capacity still affects solution performance. In general, all strategies
are quite sensitive to the available capacity, thus it is essential to
revise the unrealistic infinite capacity assumption of the existing
MPS algorithms.

3.4. The effect of controllability

In this stage of the experiment, we aim to test the role of con-
trollability on the solution performance of multi-stage stochastic
programming. To this end, we generate the same scenario tree
with the same parameters and solve the multi-stage stochastic
Table 3.4
Pairwise statistics of regret differences for different levels of the capacity factor.

95 % CI for TPF Policy 95 % CI for OPF Policy

f = 0.2 f = 0.4 f = 0.2 f = 0.4

LB UB LB UB LB UB LB UB

ML vs. MSP 5.9 6.9 14.7 15.7 8.3 9.1 17.7 18.5
OPT vs. MSP 2.2 2.9 14.1 15.0 5.6 6.2 15.4 16.0
PES vs. MSP 37.2 38.7 53.3 54.4 17.5 18.5 26.3 27.1
EXP vs. MSP 1.3 1.9 7.1 7.6 5.7 6.4 13.6 14.2

f = 0.6 f = 0.8 f = 0.6 f = 0.8

ML vs. MSP 12.6 13.5 11.7 12.5 18.3 19.0 18.9 19.6
OPT vs. MSP 10.9 11.5 5.7 6.0 16.0 16.6 16.2 16.9
PES vs. MSP 51.0 52.4 48.8 50.3 25.4 26.2 24.0 24.8
EXP vs. MSP 6.2 6.6 7.1 7.6 14.5 15.1 15.6 16.3

Table 3.5
Comparing the multi-stage solution with and without controllability.

Processing times Capacity Expected profit

Average Num. best

Controllable (MSPC) 0.2–0.4 56869 9600
0.6–0.8 70061 9600
Total 63465 19200

Fixed (MSPF) 0.2–0.4 37135 118
0.6–0.8 66105 4766
Total 51620 4884
programming formulation with and without controllability. We
denote the one with controllability as MSPC and the one without
controllability as MSPF. The input parameters and factors are the
same as those used in the previous experiment.

Table 3.5 summarizes the results of this study. We use three dif-
ferent performance metrics to compare MSPC and MSPF. The first
performance metric compares the expected profit values of MSPC
and MSPF. The calculation for the scenario-based metric is the
same as that used in Section 3.3. We randomly generate 10 scenar-
ios and compare the profits of MSPC and MSPF when these 10 sce-
narios are realized. In the first two metrics we take the shortage
cost as zero. In the third metric, we compare the amount of short-
age incurred when the randomly generated scenarios used for met-
ric 2 are realized. Note that for the first two metrics, a higher value
is better, but for the third one, a lower value is better. We first cal-
culate the average performance of two alternatives using each of
these metrics. Then, we make a pairwise comparison of MSPC
and MSPF using each metric and calculate the number of times that
one is at least as good as the other.

In Table 3.5, the first two columns give the average and number
of times best values for the first metric of expected profit. The re-
sults show that in terms of average expected profit, controllability
provides an improvement of approximately 23%. The third and
fourth columns in the table show the average profit and number
of times best values when the scenario-based metric is used. Sim-
ilar to the first result, controllability improves the solutions
approximately 27% on the average, and MSPC finds a solution that
is at least as good as MSPF in 99.8% of 19,200 randomly generated
runs. Finally, the last two columns give the average (in terms of
shortage factor df) and the number of times best values with re-
spect to the third metric. Using controllability decreases the short-
age cost by approximately 80% on the average and always gives a
shortage value at least as good as the one without controllability.
Thus, controllability has a very significant effect on the solution
performance of multi-stage stochastic programming.

The significance of capacity is another observation that we
make based on the results in Table 3.5; capacity drastically affects
the improvement provided by controllability. If capacity is tight,
controllability provides an improvement of up to 80%, but this
improvement decreases to between 5% and 10% when the capacity
is loose. This result is intuitive; controllability provides flexibility
in capacity and as capacity gets tighter, flexibility becomes more
and more critical.

4. Conclusion

The existing algorithms in the literature to solve the MPS
problem are generally based on limiting assumptions of infinite
capacity, fixed processing times, and fixed and known demand
realizations, despite the fact that there may be few applications
where these assumptions can be justified. In this paper, we ques-
tioned these assumptions and devised a model with finite capacity,
controllable processing times, and uncertain demand values. We
used multi-stage stochastic programming to handle this uncer-
Scenario-based Shortage cost

Average Num. best Average Num. best

51765 9578 5847df 9600
63771 9586 2df 9600
57768 19164 2924df 19200

30002 118 27878df 0
60766 4766 2658 df 1440
45384 4884 15268df 1440
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tainty and proposed a very effective formulation that solves large
instances in a short computation time, i.e., in a maximum of four
seconds. This ability enabled us to conduct an extensive computa-
tional study, and our results showed that using multi-stage sto-
chastic programming instead of single-scenario strategies
significantly improved the solution quality. Moreover, using con-
trollability provided improvements up to 80% in the total profit. Fi-
nally, capacity had a large impact on the solution performances of
the single-scenario strategies and the multi-stage stochastic pro-
gramming approach. Therefore, our computational results suggest
that changing these three unrealistic assumptions of MPS provides
a huge improvement with little computational cost. The efficiency
of our formulation enables further analysis with various different
factors, strategies, and policies. Moreover, it provides the time flex-
ibility to conduct sensitivity and what-if analysis.

Being aware of the severe limitations of the MPS algorithms in
the current ERP software, firms are making significant investments
in new advanced planning and scheduling (APS) software. Unfortu-
nately, these systems rely on relatively simple heuristic methods
(such as capable-to-promise, etc.) to solve the MPS problems.
Our computational results indicate that the multi-stage stochastic
programming approach can be used effectively to solve MPS
problems.

As a future research, we could extend the proposed MPS ap-
proach to handle a multi-product and multi-resource case. In the
proposed approach, node probabilities can be generated from
any stochastic process and do not depend on any assumption
on the structure of the underlying stochastic process. In the
computational study, we employed two different techniques in
generating node probabilities, but the demand at a node is inde-
pendent of the location of the node in the tree. Since the sto-
chastic process that generates node probabilities may be a
significant factor, another possible future research direction is
the inclusion of the demand correlation over time as one of
the factors in the experimental design. Finally, the proposed ap-
proach could be implemented using a rolling horizon scheduling
approach such that the MPS problem may be solved over the en-
tire planning horizon, but only the imminent period‘s decision is
implemented. Then, the new period‘s information is appended to
maintain a constant length of planning horizon. This new
implementation could create a nervousness since the optimum
solution may not be the same between two consecutive imple-
mentations, which create a necessity to develop a new MPS
algorithm to minimize the nervousness in addition to maximiz-
ing the overall profit function.
Appendix A. Easy special cases

In this section, we first give some trivial instances of the prob-
lem. Afterwards, we introduce two polynomially solvable special
cases, namely, the case where there is no postponement cost and
the case with the deterministic demand. Finally, we have a nega-
tive result: The technique that we use to establish the polynomial
solvability of these special cases is not valid for the general case.

A.1. Sufficient conditions for optimality

Suppose that the demand at each node is no more than the
threshold value and equal to each other. Then, by Proposition
4.1, the solution where each job is produced at its own node (the
node in which the demand of the job is realized) is optimal.

Proposition 4.1. Suppose that di = d 6 s for all i in set N. Then, the
solution where all the demand is satisfied and each job is produced at
its own node is optimal.
Another easy case arises when the demand is not less than the
threshold value at all nodes. A sufficient condition for optimality in
this case is given in Proposition 4.2.

Proposition 4.2. Suppose that di P s for all i 2 N. Then, the solution
where s jobs are produced at all nodes is optimal.
A.2. The stochastic problem with no postponement cost

We propose a different formulation for MMPS without any post-
ponement costs. This formulation is based on a simple observation:
As we do not have postponement costs, we do not need to keep
track of the demands of which periods are satisfied from the pro-
duction. Therefore, it is sufficient to impose the requirement that
we do not produce more than the demand. This special case can
be formulated as follows:

ðMMPS-N1Þ max
X
i2N

ci �PðyiÞ

s:t:
X
j2P1i

yj 6
X
j2P1i

dj 8i 2 N; ðA:1Þ

yi 6 s 8i 2 N;

yi 2 Zþ 8 i 2 N:

We call this formulation MMPS-N1. Here, constraints (A.1) en-
sure that for any node the total production amount along the path
from node 1 to this node does not exceed the total demand on the
same path. Formulation MMPS-N1 is nonlinear. We use it to estab-
lish the complexity status of our problem without postponement
costs.

An integral matrix A is totally unimodular if each square matrix
of A has a determinant equal to 0, 1, or �1. Hochbaum and Shant-
hikumar (1990) show that minimizing a convex separable objec-
tive function over a set of constraints with a totally unimodular
constraint matrix and integer variables is polynomially solvable.

Lemma 4.3. The constraint matrix of MMPS-N1 is totally unimodular.
Proof. The constraint matrix consists of three submatrices; the
first submatrix consists of the coefficients of constraints (A.1),
the second submatrix consists of the coefficients of the upper
bound constraints, and the third submatrix consists of the coeffi-
cients of the nonnegativity constraints. The last two submatrices
are identity matrices. Therefore, it is sufficient to prove that subm-
atrix one is totally unimodular. Each row of submatrix one corre-
sponds to a node in the scenario tree. If we sort the rows of this
matrix using the order of a depth-first search on the scenario tree,
then this sorted submatrix satisfies the consecutive one’s property
and thus is totally unimodular (Fulkerson and Gross, 1965). h
Theorem 4.4. Problem MMPS with no postponement costs is polyno-
mially solvable.
Proof. For i in N,ci �P(yi) is a concave function. The summation of
these terms over all i 2 N generates a concave separable objective
function. Moreover, by Lemma 4.3, the constraint matrix is totally
unimodular. Now, using Hochbaum and Shanthikumar (1990)’s
result, we can conclude that this special case is polynomially
solvable. h
A.3. The deterministic problem

In this section, we consider the problem with deterministic
demand. In the deterministic case, the scenario tree is a path. As
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a result, our first nonlinear formulation MMPS-N simplifies as fol-
lows. We redefine the decision variables; yj is the amount of pro-
duction in period j 2 {1, . . . ,T} and xij is the amount of demand of
period j that is satisfied from the production in period i for
i 2 {1, . . . ,T} and j 2 {1, . . . , i}.

The deterministic problem can be formulated as follows.

ðMMPS-N2Þ max
XT

i¼1

PðyiÞ �
Xi

j¼1

bðsi � sjÞ � xij

 !

s:t:
Xi

j¼1

xij ¼ yi 8i 2 f1; . . . ; Tg; ðA:2Þ

XT

i¼j

xij 6 dj 8j 2 f1; . . . ; Tg; ðA:3Þ

yj 6 s 8j 2 f1; . . . ; Tg; ðA:4Þ
xij 2 Zþ 8 i 2 f1; . . . ; Tg; j 2 f1; . . . ; ig;
yi 2 Zþ 8i 2 f1; . . . ; Tg:

We note here that our model has similarities with the transporta-
tion model of Bowman (1956) for multiperiod production planning;
but in our model we do not impose to satisfy all the demand and we
maximize profit rather than minimize cost.

Lemma 4.5. The constraint matrix of formulation MMPS-N2 is totally
unimodular.
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Proof. We show that given any subset of rows of the constraint
matrix of formulation MMPS-N2, it is possible to find a partition
of these rows into two sets such that the difference of row sums
over these two sets is a vector with entries equal to 1, 0, or �1.
Here, we ignore the nonnegativity constraints. Given a set of rows,
we put the rows corresponding to constraints (A.2) into set one and
the rows corresponding to constraints (A.3) and (A.4) into set two.
Then the vector of differences of the sums of rows of sets one and
two has entries that are equal to either 1, 0, or �1. Therefore, the
matrix is totally unimodular (Schrijver, 1998). h
x 6
2

0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
Theorem 4.6. The deterministic problem is polynomially solvable.
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Proof. The objective function is a separable concave function since
for i in {1, . . . ,T}, P(yi) is concave and b(x) is convex, which leads to
�b(x) being concave. Moreover, by Lemma 4.5, the constraint
matrix is totally unimodular. By Hochbaum and Shanthikumar
(1990)’s result, the deterministic version of the problem is polyno-
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fo
rm

ul
at

io
n

M
M

PS
-N

fo
r

th

x 3
2

x 3
3

x 4
1

x

0
0

0
0

0
0

0
0

1
1

0
0

0
0

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

1
0

0
0

1
0

0
0

0
1

0
1

0
1

0
0

1
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

A.4. The constraint matrix of MMPS-N

In the previous sections, we proved that some special cases of
the problem are polynomially solvable. We achieved these results
by suggesting formulations with totally unimodular constraint
matrices and concave separable objective functions. In this section,
Fig. A.1. A counter-example for total unimodularity of the constraint matrix of
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we show that the constraint matrix of MMPS-N may not be totally
unimodular.

Example 4. Consider the scenario tree given in Fig. A.1. The
constraint coefficient matrix of formulation MMPS-N for this
scenario tree is given in Table A.1.

This matrix has at least one submatrix with a determinant
different than 1, 0 or �1. For instance, the submatrix consisting of
the intersection of rows four to 12 and columns four to 12 in Table
A.1 has a determinant of 2. Therefore, the constraint coefficient
matrix is not totally unimodular. Consequently, the computational
complexity of the general stochastic problem with postponement
costs is an open question.
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