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This paper aims at designing better performing feature-projection based classification algorithms and
presents two new such algorithms. These algorithms are batch supervised learning algorithms and rep-
resent induced classification knowledge as feature intervals. In both algorithms, each feature participates
in the classification by giving real-valued votes to classes. The prediction for an unseen example is the
class receiving the highest vote. The first algorithm, OFP.MC, learns on each feature pairwise disjoint
intervals which minimize feature classification error. The second algorithm, GFP.MC, constructs feature
intervals by greedily improving the feature classification error. The new algorithms are empirically eval-
uated on twenty datasets from the UCI repository and are compared with the existing feature-projection
based classification algorithms (FIL.IF, VFI5, CFP, k-NNFP, and NBC). The experiments demonstrate that
the OFP.MC algorithm outperforms other feature-projection based classification algorithms. The GFP.MC
algorithm is slightly inferior to the OFP.MC algorithm, but, if it is used for datasets with large number of
instances, then it reduces the space requirement of the OFP.MC algorithm. The new algorithms are insen-
sitive to boundary noise unlike the other feature-projection based classification algorithms considered

here.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Classifier learning is one of the central problems in machine
learning and data mining. Medical doctors, marketing profession-
als, curators of biological journal articles find rule-based classifiers
more comprehensible because their domain knowledge becomes
more transparent in those classifiers’ data representation and deci-
sions. Most practitioners already have some expectations about
each feature’s power to explain the variations in data. Therefore,
they are more confident in using simple rules directly based on fea-
tures, rather than on their complex combinations or transforma-
tions. Feature-projection based classifiers summarize labeled data
separately on each feature dimension by means of histograms like
Naive Bayes classifier or by pairwise disjoint intervals like FIL.IF,
VFI5, and CFP, which are explained in Section 2, and classify new
instances using these data representations. Therefore, those classi-
fiers are simple but effective and intuitively appealing tools for the
practitioners. In this paper, we aim at designing new feature-pro-
jection based classifiers which perform better than those previ-
ously proposed similar classifiers.

Some of the feature-projection based algorithms are feature
interval learning (FIL.IF) (Dayanik, 2010), voting feature intervals
(VFI5) (Demir6z & Giivenir, 1997; Giivenir, Demirdz, & Ilter,
1998; Giivenir & Emeksiz, 2000), k-nearest neighbor on feature
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projections (k-NNFP) (Akkus & Giivenir, 1996), classification by
feature partitioning (CFP) (Giivenir & Sirin, 1996), and Naive Bayes
classifier (NBC) (Domingos & Pazzani, 1997; Mitchell, 1997; Witten
& Frank, 2005), which are overviewed in Section 2. The k-NNFP
algorithm uses feature projections to find the nearest observations
on each feature dimension and then combines the predictions of
the features to make final decision. The CFP, VFI5, and FIL.IF algo-
rithms represent concept descriptions in the form of feature inter-
vals, which are learned separately for each feature. The main
difference among those algorithms is the way they construct the
feature intervals. Naive Bayes classifier assumes that features are
conditionally independent given the class, and uses the Bayes the-
orem to estimate the probability of each class given the feature val-
ues of the new example to be classified. Feature-projection based
learning algorithms are simple, effective, efficient and robust to
irrelevant features. They yield plausible concept descriptions,
enable fast classification, do not require normalization of feature
values, and handle missing feature values by simply neglecting
them.

In this paper, we propose two new feature-projection based
classification algorithms. They are batch supervised learning algo-
rithms and represent the induced classification knowledge as a set
of pairwise disjoint intervals on each feature dimension. In both
algorithms, each feature participates in the classification by giving
real-valued votes to classes. The prediction for an unseen example
is the class receiving the highest vote. The first algorithm, OFP.MC
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(learning by optimal feature partitioning based on misclassification
rates), learns feature intervals separately for each feature by opti-
mally partitioning feature values to minimize the feature classifi-
cation error. The second algorithm, GFP.MC (learning by greedy
feature partitioning based on misclassification rates), constructs
feature intervals in a greedy manner; it starts with point intervals
and merges two consecutive intervals which results in the smallest
immediate increase in the feature classification error, and repeats
the latter until target number of intervals is achieved. The number
of intervals for the final model is determined by comparing the fea-
ture classification errors for different number of intervals.

Both algorithms learn the partitions for every fixed number of
intervals on some training set. True misclassification error is then
estimated on a separate validation set. This is repeated five
times—for each fold of 5-fold cross-validation—and the best num-
ber of intervals is found by a one-standard-error rule. OFP.MC
learns the best partition on each training set using dynamic pro-
gramming, while GFP.MC combines consecutive intervals greedily
until the desired number of intervals is reached. In both algo-
rithms, each feature participates in the classification by giving
real-valued votes to classes. The prediction for an unseen example
is the class receiving the highest vote.

In this paper, we propose two new classification algorithms using
feature projections of the training data. On each feature dimension,
classification knowledge is learned by partitioning features into
pairwise disjoint intervals. Feature partitioning is related to discret-
ization of linear (continuous) features (Dougherty, Kohavi, & Sah-
ami, 1995; Liu, Hussain, Tan, & Dash, 2002; Yang & Webb, 2009).
Discretizing a linear feature transforms it into a nominal (categori-
cal) feature, where each value of the nominal feature corresponds
to an interval of values of the linear feature. However, our focus is
noton discretizing the linear features; we aim to develop better-per-
forming feature-projection based classification algorithms.

The new algorithms are empirically evaluated on twenty datasets
from the UCI repository and are compared with the existing feature-
projection based classification algorithms (FIL.IF, VFI5, CFP, k-NNFP
and NBC). The experiments demonstrate that the new algorithm
OFP.MC outperforms other feature-projection based algorithms.
The GFP.MC algorithm is slightly inferior to the OFP.MC algorithm,
but, if it is used for datasets with large number of instances, then it
reduces the space requirement of the OFP.MC algorithm. The new
algorithms are also insensitive to boundary noise unlike the fea-
ture-projection based algorithms VFI5, CFP, FIL.IF, and NBC.

The next section starts with a review of the previous work on
feature-projection based classification algorithms. Section 3 pre-
sents the optimal feature partitioning learning algorithm for classi-
fication. Optimal partitioning of linear features are described and
illustrated on the iris dataset from the UCI repository in Section
4. Section 5 presents the greedy feature partitioning learning algo-
rithm for classification. Section 6 presents the empirical evaluation
of the algorithms on real-world datasets. The new algorithms are
compared to the previously proposed feature-projection based
algorithms. The complexity analysis of the algorithms is given in
Section 7. Section 8 concludes with some remarks and suggestions
for future research.

2. Previous work on feature-projection based algorithms

Feature-projection based classification algorithms represent the
instances with their projections on feature dimensions. Some of
the previously proposed such algorithms are feature interval learn-
ing (FIL.IF) (Dayanik, 2010), voting feature intervals (VFI5) (Demi-
réz & Giivenir, 1997; Giivenir et al., 1998; Giivenir & Emeksiz,
2000), k-nearest neighbor on feature projections (k-NNFP) (Akkus
& Glivenir, 1996), and classification by feature partitioning (CFP)

(Glivenir & Sirin, 1996). These algorithms were shown to be fast,
accurate, and robust to irrelevant features.

The CFP algorithm represents classification knowledge as sets of
disjoint feature segments. It partitions the feature values into seg-
ments that are generalized or specialized as the training instances
are processed. It constructs the segments incrementally, and the
resulting concept descriptions are sensitive to the processing order
of the training instances.

The VFI5 algorithm learns classification knowledge in batch
mode and represents it as multi-class feature intervals. It finds
on each linear feature and for each class the class endpoints, which
are the lowest and highest feature values with the same class la-
bels. Pairwise disjoint intervals are constructed at every endpoint
and between every pair of the closest endpoints of possibly differ-
ent classes. If the feature is nominal, then every distinct point
forms a point interval. The VFI5 algorithm has been implemented
in the WEKA machine learning workbench (Hall et al., 2009), and
has been used in several medical applications (Giivenir et al.,
1998; Giivenir & Emeksiz, 2000).

The FIL.IF algorithm is a batch supervised learning algorithm,
which learns the concept descriptions in the form of a set of dis-
joint intervals separately for each feature. On every linear feature,
a point interval is constructed at each observed feature value. The
algorithm then generalizes the point intervals into the range inter-
vals by merging all of the neighboring single-class point intervals
with the same class labels. However, multi-class point intervals
are left alone, and at the end of the training process, they are con-
verted to single-class point intervals by selecting the classes with
the highest relative representativeness values as their class labels.
The feature intervals are always disjoint. Nominal features have
only (possibly multi-class) point intervals.

The k-NNFP algorithm represents instances as separate collec-
tions of feature projections. Given a new example, it uses feature
projections to find the nearest observations on each feature dimen-
sion. Each feature has exactly k votes and distributes them be-
tween the classes of the k-nearest training observations. The
votes of the individual features are summed; the class with the
highest vote is predicted to be the class of the new example.

All feature-projection based algorithms predict the class of a
new example as the label with the highest total weighted votes
of the individual features. These algorithms allow faster classifica-
tion than other instance-based learning algorithms because sepa-
rate feature projections can be organized for faster classification.
These algorithms easily and naturally handle the missing feature
values by neglecting the class votes from the missing features.
The major drawback of these algorithms is that the descriptions
involving a conjunction between two or more features cannot be
represented. Despite of that, they are still reported to be successful
on real-world datasets (Akkus & Giivenir, 1996; Dayanik, 2010;
Giivenir et al., 1998; Giivenir & Sirin, 1996).

Bayesian classifiers from pattern recognition are based on prob-
abilistic approaches to inductive learning in statistical concept
learning tasks. The method estimates the posterior class probabil-
ity of an instance given its observed feature values. The class is pre-
dicted as the label with the highest estimated posterior probability
(Duda, Hart, & Stork, 2000; Fukunaga, 1990). Bayesian classifiers
assume in general that features are not statistically independent
unlike Naive Bayesian classifier (NBC) (Mitchell, 1997; Witten &
Frank, 2005). NBC has been successfully used in a wide variety of
problem domains (Chandra & Gupta, 2011; Chena, Huanga, Tiana,
& Qua, 2009; Hsu, Huang, & Chang, 2008; Kim, Han, Rim, & Mya-
eng, 2006; Lewis, 1998), and has been shown to perform well in
many domains even when the independence assumption is vio-
lated (Domingos & Pazzani, 1997). Domingos and Pazzani establish
the necessary and sufficient conditions for the optimality of NBC
under zero-one loss (Domingos & Pazzani, 1997).
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3. OFP.MC: Optimal feature partitioning learning algorithm for
classification

Here we describe the new feature-projection based algorithm
OFP.MC, which generalizes the class information on every feature
dimension in the form of pairwise disjoint intervals.

The algorithm aims at capturing the relation between the class
labels and feature values with the best possible choices of the
intervals. Therefore, the feature partition intervals are chosen so
as to minimize the total number of misclassifications on the train-
ing dataset.

In order to prevent the overfitting, the set of labeled examples is
divided into training and validation sets. Optimal feature partitions
are learned from the training set, but their unknown true mis-
classification rates on the unseen data are estimated from the test
results on the validation set.

In order to reduce the potential biases possibly introduced with
the arbitrary division of the labeled examples into training and valida-
tion sets, the average misclassification rates and their standard errors
are recalculated by a fivefold cross-validation. The final choices of the
optimal number of feature intervals are determined with a one-stan-
dard-error rule. The optimal feature partitions with the optimal num-
ber of feature intervals are finally found by minimizing the total
number of misclassifications on the entire set of labeled examples.
For every feature interval in the optimal feature partition, we calcu-
late the end-points, the class weights, and the class prediction, all of
which are needed for classification of new examples.

The independent optimizations of the number and breakpoints
of the feature intervals balance the trade-off between model bias
and model variance. On the one hand, the optimal choice of the
interval breakpoints on the training data explains the labeled
examples in the best possible way and reduces the final model’s
bias. On the other hand, the optimal choice of the number of inter-
vals on the validation set eliminates the unnecessarily complex
models and reduces the final model’s variance.

The classification with OFP.MC is simple and fast. For each non-
missing feature value of a given test example, the interval into
which the feature value falls is identified. Then the class weights
of those intervals are summed, and the class with the largest total
weight is predicted. The training and classification algorithms are
precisely stated in Figs. 1 and 2, respectively. The numerical results
and comparisons to other feature-projection based learning algo-
rithms are discussed in Section 6.

In the next section, the details of the training in OFP.MC algo-
rithm are explained, and both its training and classification pro-
cesses are illustrated on the iris dataset from the UCI repository.

4. Optimal partitioning of linear features in the training of
OFP.MC

Suppose that a set of labeled examples with several features is
given. The examples have exactly one of L distinct class labels. For
every fixed feature, we solve the following optimal feature parti-
tioning problem.

Suppose that N distinct feature values b; < - -- < by are observed,
at each of which there may be multiple instances with the same
and/or different class labels. The optimal feature partitioning prob-
lem is

(i) to attach class labels to by,...,by so as to minimize the total
number of misclassified examples on the same feature, with
at most k label switchings along the same feature dimension,
and at the same time,

(ii) to choose the maximum number of label switchings 0 < k <
N — 1 in order to minimize the generalization error.

The consecutive feature values with the same labels are later
grouped together to form at most k + 1 pairwise disjoint feature
intervals.

This problem is solved in two stages. In the first stage, for every
fixed integer 0 < k < N — 1, an optimal labeling of the feature val-
ues with at most k label switchings is found on some training data.
The misclassification rate of each labeling is then evaluated on an
independent validation set.

While the misclassification rate on the same training set is al-
ways a nonincreasing function of k, it typically decreases first
and increases later with k on the validation data. To avoid over-fit-
ting to data, optimal k is chosen based on the misclassification
rates estimated on the validation set.

The sampling errors in the estimates of the misclassification
rates are likely to obscure the real differences between the unob-
served true misclassification rates for different k values. In order
to reduce the sampling variances of those estimates on the final
choice of optimal maximum number of switchings k, both the opti-
mal labeling of feature values with at most k label switchings and
the independent assessment of its misclassification rate for each
0< k< N-1 are repeated on several different disjoint training
and validation sets, which are obtained in this paper from applying
fivefold cross-validation to a given set of labeled examples.

For every 0 < k < N — 1, the sample average and sample stan-
dard deviation of five misclassification rates are calculated. The
average misclassification rates are plotted against k, and its mini-
mum K, is found. In general, the sampling errors may make the
misclassification rates for the values of k near ku;, look different,
but this difference is often statistically insignificant. We therefore
set our final choice kop of maximum number of label switchings
to the smallest of all k values with an average misclassification rate
less than the (minimum) average misclassification rate plus its
standard error at kop.. The main steps of the outlined method will
now be given in more details.

4.1. Optimal feature partitioning by using dynamic programming

On every fixed feature of a given training data, optimal labeling of
N distinct feature values b; < - - - < by with at most k label switchings
can be found simultaneously for all 0 < k < N — 1 by using dynamic
programming. Let us add an artificial point by.; > by with no actual
labeled data. Forn=1,...,N,¢=1,...,L,and k=0,1,...,N— 1, let us
define the value function
v(n, ¢, k) = minimum total number of misclassified examples on
{by,...,by} obtainable by a labeling of
bq,...,by if b, already has label ¢
and at most k abel switchings are allowed on
{br,....ba}

and the misclassification function

e(¢,n) = the number of misclassified examples at
b, if every example with feature value
b, is assigned label /.

The value function satisfies the boundary conditions
e((,1), ifk=0
mine(/,1), if k>0

1<e<L

and k=0,1,....N - 1.

v(1,6,k) = forevery ¢=1,...,L

The minimum number of misclassifications achievable on the train-
ing set by any labeling of the feature values with at most k label
switchings equals
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train( Training Set)
begin
for each fold of 5-fold cross-validation on training set
divide training set into train and validation data
for each linear feature f
sort train data on feature f
partition feature f optimally using dynamic programming (DP), compute
value function (minimum number of misclassified examples) and
policy function (optimal first labels of feature values )
for each k from 0 to the number of distinct feature values on feature f
find optimal labels on feature f from wvalue and policy functions ...
using at most k breakpoints
construct intervals on sorted train data using optimal labels
evaluate intervals on feature f using validation data, ...
compute misclassification error
for each feature f
if f is linear then
choose optimal number of breakpoints kopy by analyzing the performance curve
(average misclassification error from 5-fold cross-validation versus k)
sort entire training set on feature f
partition f using DP, compute value and policy functions
find optimal class labels for feature values from value and policy functions ...
using at most kopt breakpoints
construct intervals on sorted train data using optimal class labels
else
/* if f is a nominal feature, no generalization is done */
each distinct point forms a point interval
compute-interval-classweights(intervals)
end.
compute-interval-classweights(intervals)
begin
let class.count[c] be the number of instances with class ¢ in training set
for each interval
for each class c
compute interval.countc], the number of feature values with class ¢ in the interval
interval.classweight[c] = interval.count[c]/class.count|c]
normalize-interval-classweights so that ) interval.classweight[c] = 1

end.

Fig. 1. The training process of the OFP.MC algorithm.

min v(N, ¢, k) for every k=0,1,...,N—1, for every n=1,...,N, ¢=1,...,L, k=0,1,...,N—1; see Fig. 3. The

1<i<L

optimal label for b,, when at most k label switchings is left for label-

and we can find ¢(N,(,k) forevery ¢=1,...,Landk=0,1,....N=1by ing the feature values in {by,...,b,} and by, already has label ¢ is

recursively calculating the optimality equations given by
v(n, £, k) = min {e(é, n)+vn-—1,4k), l, v(n,0,k)—v(n—1,4,k)=e((,n),
- - p.LK) =1 arg min [e(f,n)+v(n—1,0,k=1)], v(n,tk)—v(n—1,0k) <e(l,n).
min [e(4,n)+v(n—1,0,k— l)]} 1stel bt
1<e<L 0
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classify(test)
begin
for each class ¢
vote[c] = 0
for each feature f
if feature value testy of test is known

interval = search-interval(f, testy)

/* each feature contributes for each class proportional to its weight */

for each class ¢

feature.vote[c|] = interval.classweight|c]

vote[c] = vote[c] + feature.vote[c] x weight][f]

return the class ¢ with the highest votelc]
end.

search-interval(f, value)

begin
return interval containing value on feature f
end.
Fig. 2. The classification process of the OFP.MC algorithm.
’U(17~,k7):(i S Dl=0y+ P . S o
(1) {I}“ﬂi%}[ e(£,1)1 {10y ming (N, £, k) =7 at most k switchings left
> forward induction —— | f f { {
I i i 1 I i i i
bl bn bN bN+1 bl bnf 1 bn bn+1
vin—1,0,k) + e(l,n)
(a) (c)
at most k switchings left at most k — 1 switchings left
i o ¢ i Vol#e
I | ! I ! ! !
I i i I i i i
bl bn bn+1 bl bn—l bn bn+1
vin—1,0,k—1) + e(l,n)
(b) (d)

Fig. 3. The dynamic programming algorithm: we start in (a) with known boundary condition and proceed forward to determine the optimal labels of the feature values. As
we find in (b) the optimal labeling of b, when b,.; has label ¢ and at most k label switchings are left for {b;,...,b,}, we must compare the minimum remaining number of

misclassifications under the two alternative decisions depicted by (c) and (d).

For every fixed k, optimal labels of by,...,by can now be deter-
mined in backwards direction by means of the policy function

p(-,--). Let
kvi1 =k and ¢y =arg min (N, ¢ kyq).
1<l

After the optimal labels of by+1,bp,. . .,bn+1 are found, then an opti-
mal label of b, and the maximum remaining number of label
switchings are, respectively, given by

by=p(N,lni1,kny1) and Ky =kni1 —1(, »4,,,) forevery1<n<N,

where 1, » py equals 1 if a # b and 0 otherwise.

Let us emphasize that optimal labeling ¢4,...,¢y of feature val-
ues, respectively, by,...,by with “at most k label switchings” will
contain strictly less than k label switchings if this gives statistically

same or strictly smaller overall misclassification rate than that of
exactly k label switchings. The dynamic programming formulation
favors the smallest possible number of label switchings (and num-
ber of intervals) on each feature dimension among all choices
which have statistically similar powers to explain the labeled
examples.

4.2. The construction of optimal feature intervals corresponding to
maximum k label switchings

After optimal labels of feature values are found for any given
fixed maximum number of label switchings k, we collapse all con-
secutive feature values with identical class labels into one and the
same interval and assign to the interval the same common class
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label of all member feature values. The left (respectively, right)
boundary of the leftmost (respectively, rightmost) interval is set
to minus (respectively, plus) infinity. The consecutive intervals
are extended halfway toward each other with the midpoint in-
cluded at random to one of those intervals.

For each interval, we record its left- and right-endpoints, its class
prediction, and for each class its class weight, which is calculated as
the fraction of all examples of that class in the union of training
and validation sets which fall into that interval. The interval’s class
prediction is a class label with the highest class weight of the
interval.

4.3. The performance evaluation of optimal feature intervals
corresponding to maximum k label switchings

For every maximum k number of label switchings, the dynamic
programming solution readily provides the minimum misclassifi-
cation rate

min; <., (N, £, k)
number of training examples

on the training set, but this is typically an optimistic estimate of the
misclassification rate of the model on unseen examples. A more
realistic estimate is obtained on an independent validation set,
and it is calculated as the fraction of the examples of the validation
set which have different class labels than class predictions of the fea-
ture intervals into which they fall.

4.4. The calculation of the performance curve and optimal choice of the
maximum number of label switchings

A given set of labeled examples is divided into five approxi-
mately equal parts. Each part is used exactly once as a validation
set, while the union of remaining four parts is used as the training
set.

For each maximum number of label switchings k, optimal fea-
ture intervals are learned from the training data and the perfor-
mance (the misclassification rate) is calculated on the validation
set. This is repeated five times, giving five estimates of the mis-
classification rate of optimal feature intervals corresponding to
each k.

The average misclassification rate and its standard error are cal-
culated for every k. The minimum average misclassification rate is
attained at some kp,, value. The final choice kop: of the maximum
number of label switchings is set to the smallest of all those k val-
ues having average misclassification rate less than or equal to the
sum of the average misclassification rate and its standard error
both corresponding to Kpyp.

4.5. The construction of the final feature intervals for classification

After the final maximum number of label switchings ko is deter-
mined, we use the dynamic programming on the entire set of labeled
examples to find the optimal labeling of the feature values with at
most ko label switchings, from which we construct the feature
intervals. For each of those intervals we determine left- and right-
endpoints, class prediction, and class weights as described earlier.

4.6. lllustration on the iris dataset

The optimal partitioning of linear features is central to the
training process of the new classification algorithm, which was
listed in Fig. 1. Here we shall illustrate it on the iris dataset from
the UCI repository (Asuncion & Newman, 2007). Fig. 4 displays
the labeled examples projected on each of four feature dimensions.

The average misclassification rates and their standard errors
corresponding to optimal feature partitions with at most k label
switchings are calculated for each feature by a fivefold cross-vali-
dation. The second row in Fig. 5 presents the plots of the average
misclassification rates and their one-standard-error confidence
bounds for each value of k calculated on the validation sets. On
every feature, we first find the maximum number of label switch-
ings ki, at which the average misclassification rate is minimized.
On each figure, ki, is marked by a vertical dashed line. The hori-
zontal dashed line goes through the upper one-standard-error con-
fidence bound of the average misclassification rate at kn,. The
final maximum number of label switchings kop is the smallest k
value whose average misclassification rate is below the dashed
horizontal one-standard-error line; its place is marked by a solid
vertical line in each plot.

Evident from Fig. 4, the labeled examples are more separable on
features 3 and 4 than on 1 and 2. Therefore, the average misclassi-
fication rates plotted in the second row of Fig. 5 decrease first and
increase later on features 1 and 2. The standard errors of the aver-
age misclassification rates are also larger on features 1 and 2 than
on 3 and 4. The optimal Ko value coincides with the minimum
kmin value on features 1, 3, and 4, but kp is strictly less than ki,
on feature 2. More precisely, the optimal number of label switch-
ings kope are 2, 1, 2, and 2 for features 1, 2, 3, and 4, respectively.
By using the entire set of labeled examples and the dynamic pro-
gramming algorithm, those features are partitioned optimally into
at most kope + 1, namely, 3, 2, 3, and 3 pairwise disjoint intervals,
respectively. The second row in Fig. 6 shows the optimal partition-
ing of the features into intervals. The vertical solid lines mark the
boundaries of the intervals, and the class labels under the horizon-
tal axes indicate the class predictions of the intervals. For each fea-
ture interval, the class weights are calculated as in Table 1 and
visually displayed by the barplots of Fig. 7.

The first rows of Figs. 5 and 6 display, respectively, the mis-
classification rates calculated on the training sets and the feature
partitions found with the one-standard-error rule applied to the
rates just described. The misclassification rates calculated in
the first row of Fig. 5 on training sets are optimistic estimates of
the misclassification rates of the OFP.MC learning algorithm on
the unseen examples. These estimates are lower and have smaller
confidence intervals than those calculated in the second row of
Fig. 5 from the validation sets. Moreover, the plots in the first
row of Fig. 5 are always nonincreasing. Therefore, the one-stan-
dard-error rule typically returns large values of kopc and suggests
that the features be partitioned into large number of intervals.
However, when the corresponding optimal feature intervals are
plotted in the first row of Fig. 6, one realizes that the additional
intervals do not appear to capture any new and meaningful pat-
terns present in the labeled examples. In other words, the number
of intervals found with the one-standard-error rule applied to mis-
classification rates calculated on the training set leads to a model
which severely overfits to the data.

Let us next illustrate how the model of feature intervals classi-
fies the test example

((7.0,3.2,4.7,1.4),1),

which has feature values 7.0, 3.2, 4.7, 1.4 on features 1, 2, 3, 4,
respectively, and true class label 1. We start by finding on each fea-
ture an interval which contains the feature value of the test exam-
ple. We then collect the class weights of the intervals and sum the
weights for each class. The class with the largest total weight is pre-
dicted. Table 2 shows the details of the calculations. While features
1 and 2 predict classes 2 and 0, respectively, features 3 and 4 predict
class 1. In the end the sum 2.18 of the weights of all four features
decisively predict Class 0, which also turns out to be the true class
label of the test instance.
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Fig. 4. Iris dataset. There are three classes 0, 1, and 2, which are jittered in order to identify distinct examples with the same feature values.
Table 1
Class weights learned by OFP.MC algorithm for iris dataset.
Feature 1 Feature 2
Intervals (—00,5.45] (5.45,6.15] (6.15,00) (—o0,3.05] (3.05,)
Class 0 091 0.08 0 0.09 0.61
Class 1 0.09 0.70 0.26 0.52 0.12
Class 2 0 0.21 0.74 0.39 0.27
Feature 3 Feature 4
Intervals (~00,2.60] (2.60,4.95] (4.95,0) (~c0,0.80] (0.80,1.75] (1.75,00)
Class 0 1 0 0 1 0 0
Class 1 0 0.90 0.05 0 0.90 0.03
Class 2 0 0.10 0.95 0 0.10 0.97
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Fig. 5. The curves of average misclassification rates and their one standard error confidence intervals calculated on training sets, above, and validation sets, below.
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Fig. 6. Optimal feature partitions using misclassification rates on training sets, above, and validation sets, below. Interval boundaries and class predictions are shown.

Additional intervals found above do not seem to capture new meaningful patterns.
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Fig. 7. The barplots of the feature interval class weights reported in Table 1 for iris dataset. The bar heights of different colors equal the interval class weights of the
corresponding classes. Features 3 and 4 seem to separate the labeled examples better than features 1 and 2.

5. GFP.MC: greedy feature partitioning learning algorithm for
classification

For the classification problems with a lot of training instances,
optimal partitioning of the features into disjoint intervals may require
prohibitively large storage space for the value and policy functions.

Table 2

Ilustration of the classification of the test example ((7.0,3.2,4.7,1.4),1). Bold
numbers highlight the largest class weights on each feature and the overall weight
of the winning class.

Feature 1 Feature 2 Feature 3 Feature 4
Value 7.0 3.2 4.7 1.4
Interval (6.15,00) (3.05,00) (2.60,4.95] (0.80,1.75]

Class weights Sum Prediction
Class0 O 0.61 0 0 0.61
Class1 0.26 0.12 0.90 0.90 2.18 Class 1
Class2 0.74 0.27 0.10 0.10 1.21

Here we would like to describe a greedy feature partitioning learning
algorithm, GFP.MC, which requires significantly less storage space.
The algorithm is suboptimal, as an example below shows, in the sense
that it does not always find a partition with the smallest possible
number of misclassifications on the training set, but still competes
on the numerical examples with the optimal feature partitioning
learning algorithm OFP.MC; see Table 4 and Fig. 10 of Section 6.

In the training phase and on every feature dimension, the greedy
algorithm initially forms one point interval at every feature value
and assigns to it the label of the majority class at that feature value.
Then neighboring intervals with the same interval class labels are
merged. The number of feature intervals and the number of misclas-
sifications on the independent validation set are counted and stored.

There are always two neighboring intervals such that merging
and relabeling them with the label of the majority class in the new
interval increases the total misclassifications on the training data
by the least possible number. We find any of those two
neighboring intervals, merge them, and assign to the new interval
the label of the majority class in that interval. The number of feature
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train( Training Set)
begin

for each fold of 5-fold cross-validation on training set

divide training set into train and validation data

for each linear feature f
sort train data on feature f

partition feature f using greedy approach:

each distinct point forms a point interval

merge neighboring intervals with same class label into range intervals

extend intervals to midpoints

for each k from the number of intervals on feature f to 0

mergeBest Twolntervals(intervals)

merge neighboring intervals with same class labels

evaluate intervals on feature f using validation data, ...

compute misclassification error

for each feature f
if f is linear then

sort entire training set on feature f

choose optimal number of intervals kqp; by analyzing the performance curve

(average misclassification error from 5-fold cross-validation versus k)

partition f using greedy approach:

each distinct point forms a point interval

merge neighboring intervals with same class labels

extend intervals to midpoints

while (number of intervals > kopt)

MergeBest Twolntervals(intervals)

merge neighboring intervals with same class labels

else

/* if f is a nominal feature, no generalization is done */

each distinct point forms a point interval

compute-interval-classweights(intervals) /* from Figure 1 */

end.
mergeBestTwolntervals(intervals)
begin

for each interval in intervals

compute the change in error if it is merged with the interval on the right

pick the interval and its neighbor on the right giving the smallest increase in error, and merge them

end.

Fig. 8. The training process of the GFP.MC algorithm.

intervals and the number of misclassifications on the independent
validation set are counted and stored. This procedure is repeated
as long as there is at least one interval which can be eliminated.
The entire procedure is repeated five times with fivefold cross-
validation. The average number of misclassifications and their
standard errors are calculated for each maximum number of fea-
ture intervals. The greedy selection of the number of intervals for
the final model is found by using the same one-standard-error rule
described for the optimal feature partitioning algorithm OFP.MC in
Section 4.4. The greedy partitioning algorithm is then run on the
entire set of labeled examples until we find the first partition with
the (largest) number of intervals less than or equal to the number
found by the one-standard-error rule. For each interval in this final
partition, the endpoints are extended, the class weights are calcu-
lated, and the interval predictions are determined as in exactly the
same way as it was done for the optimal feature partitioning learn-
ing algorithm in Section 4.2. The procedure is repeated for every
feature. The training process of the GFP.MC algorithm is given in

Fig. 8. The classification process is the same as that of the OFP.MC
algorithm; see Fig. 2.

A counterexample showing that GFP.MC is suboptimal. Sup-
pose that eight labeled examples have feature values and class la-
bels, respectively, as in

<17C1>7 <27C1>’ <37C0>7 <47C0>7 <57C1>7 <5aC1>7 <57C1>7 <6aC0>~,

after the examples are projected on some fixed feature dimension.
In Fig. 9, every feature interval is shown by a box, below and above
which its class label and the number of examples from different
classes in it are stated. The feature intervals with class labels C;
and Cy have, respectively, dark and light colors. The greedy partition
with at most two pairwise disjoint intervals makes three misclassi-
fications, while there is a partition which makes two misclassifica-
tions with two pairwise disjoint intervals. This example illustrates
that the greedy algorithm may return a suboptimal feature partition
which makes more misclassifications on the training set than the
minimum achievable with at most the same number of feature
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Fig. 9. The greedy feature partitioning learning algorithm GFP.MC can be strictly suboptimal in the sense that it does not always find a partition with the least possible
number of misclassifications on the training set. In the example above, every greedy partition with at most two intervals makes three misclassfications, while at least one
partition with two intervals makes two misclassifications on the training data.

Table 3
Properties of twenty real-world datasets from UCI-Repository.
Dataset Size # Of features # Of linear features # Of classes Baseline accuracy (%)
arrhythmia 452 279 272 16 54
bcancerw 699 10 10 2 66
cleveland 303 13 6 2 54
dermatology 366 34 33 6 31
echocardio 74 7 6 2 68
glass 214 9 9 6 36
haberman 306 3 3 2 74
heart 270 13 7 2 56
horse 368 22 7 2 63
hungarian 294 13 6 2 64
ionosphere 351 34 34 2 64
iris 150 4 4 3 33
mammog.-mas. 961 5 3 2 54
new-thyroid 215 5 5 3 70
parkinsons 195 22 22 2 75
segmentation 2310 19 19 7 14
sonar 208 60 60 2 53
vehicle 846 18 18 4 26
wine 178 13 13 2 40
yeast 1484 8 8 10 31

intervals. In this sense, the greedy feature partitioning learning
algorithm should not be expected to be optimal.

6. Experimental results

This section presents empirical evaluations of the OFP.MC and
GFP.MC algorithms. The algorithms are compared to previously

proposed feature-projection based algorithms, FIL.IF, VFI5, CFP, k-
NNFP, and NBC.

All of those algorithms are evaluated on twenty datasets from
the UCI machine learning repository (Asuncion & Newman,
2007). Table 3 describes each dataset, including the number of in-
stances, features, linear features, classes, and the baseline classifi-
cation accuracy, which is obtained by predicting the class of every
test instance with the most frequent class in the dataset.
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Table 4

The average percentage accuracy results of OFP.MC, GFP.MC, FIL.IF, VFI5, CFP, k-NNFP, and NBC algorithms. For each data set, the accuracy of the best performing algorithm is

shown in boldface.

Dataset OFP.MC GFP.MC FIL.IF CFP VFI5 k-NNFP NBC
arrhythmia 65.27 59.20 56.38" 54.223* 61.60"" 54.223* 58.06>"
bcancerw 96.57 96.57 96.42 95.713* 95.19° 95.422 97.40%
cleveland 82.12 82.98 83.58%" 77.70° 82.12 81.46 79.94%
dermatology 95.19 95.46 63.77%* 50.00%* 96.72% 52.24%* 77.93%
echocardio 71.90 69.70 67.26% 69.43' 70.30 68.10" 70.59
glass 64.37 61.86 54.662* 48.03%" 60.55' 60.48 53.923*
haberman 71.18 72.68 72.75 74.12'- 59.48%* 73.53 70.98
heart 82.52 82.37 80.74 76.67°" 81.11 79.56 79.77°*
horse 78.75 77.93" 77.19% 66.76>* 78.64 69.58 80.27%
hungarian 82.92 83.61 84.15 68.71%" 84.96'~ 74.97%* 82.58
ionosphere 89.23 89.35 92,533~ 86.78%" 80.97>* 88.09%* 88.42
iris 93.07 92.93 93.33 84.80° 95.73% 94.80'~ 92.94
Mmammog.-mas. 82.58 82.57 79.94% 80.423* 78.58>" 82.96 82.56
new-thyroid 94.51 94.05 95.07 80.47%* 92.28% 88.37%* 93.84
parkinsons 79.80 84.00? 87.49° 77.03 70.26%* 78.77 77.65
segmentation 80.80 80.80 74.24%* 73.26> 76.88 77.22%* 80.46
sonar 74.35 75.68 67.70> 59.923* 61.19° 72.99 67.88%
vehicle 59.50 58.96 58.80% 56.95%" 57.09%* 59.48 61.76°
wine 93.49 92.48 95.622~ 79.023* 96.423~ 96.17°~ 93.48
yeast 52.33 47.56% 41.04% 32.08%* 42.74% 37.63% 46.45%"
Average 79.52 79.03 7613 69.60%* 76.14% 74.30" 76.84%
Attained significance level 0.33126 0.03918 0.00021 0.00251 0.01529 0.00985
#OFP.MC better/worse 2/1 10/4 18/1 12/4 11/2 73
100 superscript means that the difference between the accuracies of
- T - - o the OFP.MC and the algorithm are statistically insignificant at
00 1 1 1 ; . : 0.05 level. The last row counts for each algorithm the number of
- ' ! datasets on which the accuracy of OFP.MC is significantly better/
1 worse than the accuracy of that algorithm. The grand means of
80 ? average accuracies over twenty datasets of all methods are re-
ported on the row starting with “Average”, and the attained signif-
_ : icance levels (p-values) of the paired t-tests applied to their
°\; 707 1 1 ‘ differences are reported in the following row.
8 : ‘ ! According to paired t-test results, OFP.MC outperforms/under-
g 60 — 1 1 ! ‘ | performs GFP.MC on 2/1, FILIF on 10/4, CFP on 18/1, VFI5 on 12/
! 1 j 1 ! 4, k-NNFP on 11/2, and NBC on 7/3 out of 20 datasets at some levels
_ 1 ; : : of statistical significance. Over twenty datasets, the average accu-
50 1 e 1 ! racy of OFP.MC equals 79.52% and is statistically better than that
1 1 1 ! - of FIL.IF and k-NNFP at 0.05 significance level, those of VFI5 and
0 - - 1 NBC at 0.01 significance level, and that of CFP at 0.001 significance
1 — level. The difference between the average accuracies of OFP.MC
S and GFP.MC is statistically insignificant at 0.05 level.
30 - ‘ ‘ ‘ ‘ ‘ ‘ ‘ In Fig. 10, the boxplots of the classification accuracies of the learn-
ofpmc  gfpmc filif cip vii5  knnfp  nbc ing algorithms on twenty datasets show that OFP.MC and GFP have

Fig. 10. The boxplots of the average accuracies of the learning algorithms on
twenty datasets, reported in Table 4.

Table 4 reports the classification accuracies of the OFP.MC,
GFP.MC, FIL.IF, VFI5, CFP, k-NNFP, and NBC algorithms. The results
are based on the average of the accuracies over five repetitions of
5-fold cross-validation runs. For k-NNFP algorithm, optimal k is
set to an odd integer between 1 and 45 which maximizes the clas-
sification accuracy found by 5-fold cross-validation over the train-
ing set; ties are broken in favor of the largest values.

For each dataset, the best classification accuracy is shown in
boldface. OFP.MC attains the largest average accuracies on 6 data-
sets, FILIF and VFI5 on 4 datasets, NBC on 3 datasets, finally,
GFP.MC, CFP and k-NNFP on 1 dataset.

To assess the statistical significance of the differences between
the accuracies of OFP.MC and other algorithms on every dataset,
we perform paired t-tests. If the difference between the accuracies
is found statistically significant at 0.05, 0.01, or 0.001 levels, then
this is indicated, respectively, by 1, 2+, or 3+ in the superscript at-
tached to the accuracy of the competing algorithm, where + (resp.,
—) means OFP.MC is better (resp., worse) than the algorithm. No

higher median accuracies than those of all other feature-projection
based algorithms. The comparisons of lower and upper quartiles
show that the distributions of the average classification accuracies
of OFP.MC and GFP.MC are tilted significantly more toward the higher
values than those of the other feature-projection based methods.
Even though GFP.MC has slightly higher median accuracy than that
of OFP.MC, the distribution of the OFP.MC accuracy results concen-
trates on a range of values slightly higher than that of GFP.MC.

We also examine the sensitivities of the algorithms to the errors
in the class boundaries. The plots on the left in Fig. 11 are gener-
ated from randomly distributed 55 points on [0,0.5] and [0.5,1]
with class labels 0 and 1, respectively. The original data plotted
in the top left corner is perfectly separable: all of the class O (resp.,
1) examples have feature values less (resp., greater) than 0.5. Sup-
pose that five randomly selected points from classes 0 and 1 are
moved by mistake to 0.8 and 0.2, respectively, outside their class
boundaries, which results in the plot in the bottom left corner.
The classification algorithms are run on ten replicas of both noise-
less and noisy data generated as above. On the right of Fig. 11 are
the boxplots of the classification accuracies of the algorithms run
on those ten replicas before and after the noise is introduced. In
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Fig. 11. The sensitivity of the learning algorithms to the noise in class boundaries.

the presence of noise, OFP.MC, GFP.MC, and k-NNFP maintain high
levels of classification accuracy, but VFI5, FIL.IF, CFP, and NBC algo-
rithms do not. Moreover, the performances of the VFI5 and NBC
algorithms are drastically reduced by the noise. Indeed, both box-
plots of OFP.MC, GFP.MC, and k-NNFP remain relative close to the
top line, while the boxplots of other methods are far away either
from the top line or from each other.

7. Complexity analysis

We analyze the algorithms in terms of space and time complex-
ities. Time complexity analysis is presented for the training process
and for the classification of a single test example. We shall denote
by M, N, and K the number of training instances, number of fea-
tures, and number of classes.

7.1. Space complexity analysis

In the training phase of the OFP.MC algorithm, feature intervals
for concept descriptions are constructed on each feature dimen-
sion. The space required for storing intervals will be proportional
to M N K at worst case. The space required for storing value and
policy functions is proportional to M?K at worst case. Therefore,
the space complexity of the OFP.MC algorithm is O(M(M + N)K).

The space complexities of the FIL.IF and CFP algorithms are O(M
N), whereas the space complexities of the GFP.MC and VFI5 algo-
rithms are O(M N K) and O(N K2), respectively.

The k-NNFP algorithm stores all instances as feature projec-
tions. Therefore, the space required by the k-NNFP algorithm is
O(M N). Because the NBC algorithm computes and stores a distribu-
tion for each value on each feature dimension for each class, the
space complexity of the NBC algorithm is O(N M K).

7.2. Time complexity analysis of the training processes

For a dataset with M training instances, feature projections on a
feature dimension are sorted with time complexity O(MlogM).

In the OFP.MC algorithm, for each feature, computing value and
policy functions using sorted feature projections has time complex-
ity O(M?K?) and finding optimal class labels has time complexity
O(M K). From optimal class labels, feature intervals are constructed
in O(M K) time. The total complexity of the constrction of intervals

on a feature dimenion is O(MlogM + M?K? + M K) = O(M?K?). There-
fore, the overall time complexity of the OFP.MC algorithm for train-
ing is O(N M?K?). However, in general, the number of classes in
classification problems is constant. In that case, the time complexity
of the OFP.MC algorithm for training is O(N M?).

In the GFP.MC algorithm, for each feature, constructing intervals
using sorted feature projections has time complexity O(M?K). The
overall complexity of the construction of intervals on a feature
dimension is O(MlogM + M?K) = O(M?K). Therefore, the overall time
complextiy of the GFP.MC algorithm for training is O(N M2K). If the
number of classes is constant, then the time complexity of the
GFP.MC for training is O(N M?).

The training time complexities of the FILIF and CFP algorithms
are O(N MlogM) (Dayanik, 2010; Giivenir & Sirin, 1996). The training
time complexity of the k-NNFP is O(N MlogM) (Akkus & Giivenir,
1996). The training time complexity of the NBC and the VFI5 algo-
rithms is O(N M K). If the number of classes is constant, then the
training time complexity of the NBC and VFI5 algorithm is O(N M).

7.3. Time complexity analysis of a single classification process

During the classification process, the function search-inter-
val(f,value) finds the interval containing feature value of the test
instance on the feature dimension f by a binary search and deter-
mines the class votes of that feature. The number of intervals on
a feature dimension is at most equal to the number of training in-
stances M. Hence, the worst case time complexity of the search
process on a feature dimendion is O(logM + K) for a feature. Since
the final classification is based on the votes of all features, single
instance classification time complexity of the OFP.MC and GFP.MC
algorithms is O(NlogM + N K) = O(NlogM) because the number of
classes, K, is usually constant.

The classification time complexities of the FILIF, CFP, and k-
NNFP algorithm is O(NlogM) if M > K (Dayanik, 2010; Giivenir &
Sirin, 1996; Akkus & Giivenir, 1996), whereas the classification
time complexity of the VFI5 algorithm is O(N K). The classification
time complexities of the NBC algorithm is O(NlogM K).

8. Conclusion

Feature-projection based classification algorithms are simple,
yet effective and efficient, produce easy-to-understand concept



4544 A. Dayanik / Expert Systems with Applications 39 (2012) 4532-4544

descriptions, enable fast classification, and handle missing feature
values naturally by simply neglecting them. This paper introduced
two new feature-projection based classification algorithms which
represent induced classification knowledge as collections of fea-
ture intervals. The first algorithm, OFP.MC, optimally partitions
each feature using dynamic programming to minimize the feature
classification error, while the second algorithm, GFP.MC, greedily
partitions each feature to reduce the space requirement of the
OFP.MC algorithm.

We showed that the OFP.MC algorithm performs better than the
previously proposed feature-projection based classification algo-
rithms on most of the real-world datasets. In the meantime, the
new algorithms are insensitive to boundary noise unlike the other
feature-projection based classification algorithms considered here.

Although the GFP.MC algorithm is suboptimal in the sense that
it does not always find a partition with the smallest possible num-
ber of misclassifications on the training set, experimental results
indicate that it is competitive with OFP.MC on twenty datasets
from the UCI-Repository.

One important future research direction is to learn concept-
dependent feature votes for the feature-projection based classifica-
tion algorithms. Another direction is to investigate better ways to
combine predictions of features.
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