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ARTICLE INFO ABSTRACT
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In this paper a novel multi-modal flame and smoke detector is proposed for the detection of fire in large
open spaces such as car parks. The flame detector is based on the visual and amplitude image of a time-
of-flight camera. Using this multi-modal information, flames can be detected very accurately by visual
flame feature analysis and amplitude disorder detection. In order to detect the low-cost flame related
features, moving objects in visual images are analyzed over time. If an object possesses high probability
for each of the flame characteristics, it is labeled as candidate flame region. Simultaneously, the
amplitude disorder is also investigated. Also labeled as candidate flame regions are regions with high
accumulative amplitude differences and high values in all detail images of the amplitude image’s
discrete wavelet transform. Finally, when there is overlap of at least one of the visual and amplitude
candidate flame regions, fire alarm is raised. The smoke detector, on the other hand, focuses on global
changes in the depth images of the time-of-flight camera, which do not have significant impact on the
amplitude images. It was found that this behavior is unique for smoke. Experiments show that the
proposed detectors improve the accuracy of fire detection in car parks. The flame detector has an
average flame detection rate of 93%, with hardly any false positive detection, and the smoke detection
rate of the TOF based smoke detector is 88%.
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1. Introduction shows that these video-based fire detectors promise fast detec-

tion and can be a viable alternative or complement to the more

Video processing techniques for automatic flame and smoke
detection have become a hot topic in computer vision during the
last decade [1]. The different vision-based fire and smoke detec-
tors, as proposed in the literature, led to a large amount of
techniques for detecting the presence of fire and smoke at an
early stage. Current research, such as the work of Calderara et al. [2],
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traditional techniques. However, due to changing environmental
conditions and the variability of shape, motion, transparency,
colors and patterns of smoke, existing video fire detection (VFD)
approaches are still vulnerable to missed detections and false
alarms.

In order to avoid the disadvantages of using visual sensors
alone, we argue that the use of other types of video sensors can be
valuable. In previous work [3,4], we already investigated the
added value of infrared (IR) video for both flame and smoke
detection. It was found that the multi-modal processing of visual
and IR video leads to more accurate flame and smoke detection.
Nevertheless, IR has its own specific limitations, such as thermal
reflections, IR-blocking and thermal-distance problems. Further-
more, the purchase price of IR cameras is still very high. Recently,
as an alternative for IR sensors, time-of-flight (TOF) imaging
sensors are started to be used as a way to improve everyday
video analysis tasks. TOF cameras are a relatively new innovation,
capable of providing three-dimensional image data from a single
sensor. TOF imaging takes advantage of the different kinds of
information produced by the TOF cameras, i.e. depth and
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Fig. 1. Exemplary TOF images of indoor and outdoor fire tests: (a) depth maps and (b) corresponding amplitude images; (c) ordinary video (not registered).

amplitude information. The ability to describe scenes using a depth
map and an amplitude image, provides new opportunities in different
applications, including visual monitoring (object detection, tracking,
recognition and image understanding), human computer interaction
(e.g. gaming) and video surveillance. As the TOF sensor cost is
decreasing, it is even expected that this number of applications will
increase significantly in the near future.

The possibilities of TOF based fire detection have not yet been
investigated. As such, the TOF based flame and smoke detection
method presented in this paper, are the first attempts in this
direction. Preliminary experiments, of which some exemplary
TOF flame images are given in Fig. 1, already show that the
combination of amplitude, depth and visual information can be a
win-win. Thus, TOF cameras seem to have great potential for fire
detection. Flames, for example, generate many measurement
artifacts, i.e. a kind of TOF noise, which most likely can be
attributed to the emitted infrared (IR) light of the flames them-
selves. Contrarily to ordinary moving objects, such as people, the
amplitude of flames changes very rapidly in time and shows a
high degree of (spatial) disorder. Our experiments revealed that
the combination of these amplitude characteristics is unique
for flames, so that they are an appropriate feature for TOF-based
fire detection. For smoke, similar characteristics are found, as
discussed below.

The remainder of this paper is organized as follows. Section 2
gives a brief overview of the related work in TOF video analysis.
Section 3 describes the working principle and the advantages/
disadvantages of TOF imaging. Subsequently, Section 4 proposes
the novel TOF based flame detection algorithm. Flames are
detected by looking for regions which possess high probability
for each of the visual flame characteristics and which have high

temporal and spatial amplitude disorder. Finally, Section 5 presents
the novel multi-modal smoke detector. Smoke is detected as
global changes in the depth images, which do not have significant
impact on the amplitude images. Experimental results are given
in Section 6 and 7 summarizes the conclusions and directions for
future work.

2. Related work: Time-of-flight based video analysis

To the best of our knowledge, the TOF-based flame and smoke
detection algorithms, described below, are the first attempt to
develop a fire detection system based on the use of a TOF depth
sensor. Nevertheless, the use of TOF cameras for video analysis is
not new. Recently, as an alternative for IR and visual sensors, TOF
imaging sensors are started to be used as a way to improve
everyday video analysis tasks. The results of these first
approaches seem very promising and ensure the feasibility of
TOF imaging in other domains, such as fire detection.

So far, TOF imaging devices are used for:

e Video surveillance: Hiigli and Zamofing [5] explore a remedy to
shadows and illumination problems in ‘conventional’ video
surveillance by using range cameras. Tanner et al. [6] and
Bevilacqua et al. [7] propose a TOF-based improvement for the
detection, tracking and counting of people. Similarly, Grassi
et al. [8] fuse TOF and IR images to detect pedestrians and to
classify them according to their moving direction and relative
speed. Tombari et al. [9] detect graffiti by looking for
stationary changes of brightness that do not correspond to
depth changes.
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e Image/video segmentation: In Bleiweiss et al. [10], state that the
fusion of depth and color images results in significant
improvements in segmentation of challenging sequences. For
example, in tracking algorithms [11], segmentation is performed
easily using a combination of a visual and a depth classifier,
which is shown to be more functional in cluttered scenes.

e (Deviceless) gaming: TOF imaging also increases the gaming
immersion, as with this technology people can play video
games using their body as controllers. This is achieved by
means of markerless motion capture, i.e. tracking and gesture
recognition, using a single depth sensor. The sensor smoothly
projects the player’'s movements onto the gaming character.
Recently, several companies, e.g. Omek Interactive and Soft-
kinetic, started to provide commercially available TOF tech-
nology for gesture based video gaming. Furthermore, Microsoft
also focuses on this new way of gaming with its recently
launched TOF-like Kinect.

o Human Computer Interaction: TOF cameras also pave the way to
new types of interfaces that make use of gesture recognition [12]
or the user’s head pose and facial features [13]. These novel
interfaces can be used in a lot of systems, e.g. view control in
3D simulation programs, video conferencing, support systems
for the disabled and interactive tabletops [14], which increase
the attractiveness of board games.

e Face detection/recognition: Hansen et al. [15] improve the
performance of face detection by using both depth and gray

Reflected light

~" Modulated light

Depthd =c At/2

Fig. 2. Working principle of TOF imaging: Modulated light is emitted from IR LEDs
on the sensor. Light is reflected on the object and captured by the sensor. The time
between emission and reception and the measured amplitude is used to generate
the depth and the intensity images.

scale images; Meers et al. [13] generate accurate TOF-based 3D
face prints, suitable for face recognition with minimal data and
search times.

e Other applications: e-health (e.g. fall detection [16]), interactive
shopping and automotive applications (e.g. driving assistance
and safety functions such as collision avoidance [17,18]).

Based on the analysis of this state-of-the-art in TOF video
analysis and the state-of-the art in VFD, discussed in earlier work
[19,20], a multi-modal visual-TOF flame detector and smoke
detector are presented in Sections 4 and 5 respectively. Before
going more into detail on each of these detectors, we first give a
brief introduction on the working principle of a TOF camera and
present its advantages and limitations. A basic knowledge of the
TOF working principle will facilitate the understanding of the
underlying ideas behind the detectors.

3. Working principle of time-of-flight camera

The working principle of TOF imaging is shown in Fig. 2.
In order to measure the depth for every pixel in the image, the
TOF camera is surrounded by infrared LEDs which illuminate the
scene with a frequency modulated IR signal. This signal is
reflected on the scene, and the camera measures the time
At needed by the signal to go back and forth. If the emitter and
the receiver are punctual and located at the same place, then At
provides a measure for the depth of each pixel: d=cAt/2, where
¢ is the signal’s speed (c ~ 3 x 108 m/s for light). Simultaneously,
the camera measures the strength of the reflected IR signal, i.e. its
amplitude, indicating the accuracy of the distance estimation [12].

As the depth and amplitude information is obtained using the
same sensor, the depth map (Fig. 3a) and the amplitude image
(Fig. 3b) are registered, i.e. they are aligned onto each other (Fig. 3c).
Compared to other multi-modal detectors, no additional processing
is required for correspondence matching, which is one of the
strengths of the TOF sensor. Other advantages of TOF imaging are:

e Not sensitive to light changes/shadows: the TOF camera uses its
own (invisible) light, which simplifies moving object detection
substantially.

Fig. 3. Correspondence matching between (a) TOF depth map and (b) amplitude image; (c) registration check.
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Fig. 4. Measurement artifacts of TOF sensor: (a) poor illumination and (b) out of phase problem.

e Minimal amount of post-processing, giving more time to appli-
cation-processing for real-time detection.

e The depth map, the information of which represents the physi-
cal properties of object location and shape, can help dividing
the objects during occlusion or partial overlapping [21].

e Low price compared to other IR-based video surveillance cameras
in use today.

In general, it can be concluded that TOF data compensates for
disadvantages/weaknesses present in other data, such as noise
and other problematic artifacts [10]. However, TOF imaging also
has disadvantages:

e Low spatial resolution: The average commercially available TOF
camera has a rather low QCIF resolution (176-by-144 pixels).
However, as with traditional imaging technology, resolution is
steadily increases with each newly released model.

o Measurement artifacts: Objects that are too near-by can be
poorly illuminated, leading to low quality depth measurements
(Fig. 4a). Significant motion can also cause corrupt depth/
amplitude data, because the scene may change during conse-
cutive range acquisitions. The sensor also has a limited ‘non-
ambiguity range’ before the signals get out of phase (Fig. 4b). In
small rooms, this is no problem, but in large rooms this can
raise problems.

e Need for active illumination: This increases power consumption
and physical size, complicates thermal dissipation, but perhaps
most importantly, limits the useful operating distance of the
cameras. However, as the proposed detectors mainly focus on
the IR emitted by the flames themselves, this active illumina-
tion can (probably) be switched off.

Based on the working principle and the advantages/limitations
of the TOF sensor, several TOF related fire characteristics have
been derived and evaluated experimentally. The flame detector,
discussed next, is mainly based on these experiments.

4. Multi-modal time-of-flight based flame detection

The multi-modal time-of-flight based flame detector as pro-
posed, takes advantage of the different kinds of information
represented by visual and TOF imaging sensors. It is noteworthy
that, in order to perform this multi-modal analysis, the visual
and TOF sensor need to be registered, i.e. they need to be aligned
onto each other. Some types of TOF cameras, e.g. the OptriCam
[22], already offer both TOF sensing and RGB capabilities and
their visual and TOF images are already registered, but the
majority of TOF cameras do not have these RGB capabilities
yet. As such, the calculation of the visual-TOF transformation
parameters is necessary for the visual-TOF registration. For the
detectors as proposed, the registration between the sensors is
performed using the silhouette-based image registration method
described in [4,23]. The reader is referred to these references for
more details.

Experiments (Fig. 1 and 4b) revealed that only the TOF
amplitude images can be used for flame detection in large
open spaces, such as car parks. As TOF depth images are only
‘reliable’ for indoor detection within the range of the TOF
camera, they cannot be used in this kind of environments. In
outdoor situations or outside the range of the TOF camera
(distance > =10 m), the depth estimation fails. In order to cope
with this problem one could think of only using the TOF
amplitude information. However, relying on the amplitude alone
can cause many false detections. A better approach is thus
to combine the TOF amplitude detection with a visual flame
detector, which is done in the visual-TOF flame detector
presented in this section.

A general scheme of the visual-TOF based flame detector is
shown in Fig. 5. The algorithm consists of three stages. The first
two stages are processed simultaneously: the low-cost visual
flame detection and the amplitude disorder detection. The final
stage, i.e. the region overlap detection, investigates the overlap
between the resulting candidate flame regions from the prior
stages. If there is overlap, the fire alarm is raised. Each of the
stages mentioned is described next.
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Fig. 5. General scheme of the TOF-visual based flame detector.
MOVING OBJECT VISUAL FLAME FEATURE ANALYSIS
VIDEO DETECTION
BACKGROUND
ESTIMATION -——H DYNAMIC Flame Color Rate
BACKGROUND
VIDEO » SUBTRACTION
FRAME n
l Principal Orientation Disorder
. FLAME DETECTION
TEMPORAL FG object(s) —
FILTERING Bounding Box Disorder ¥ g;g:ﬁ;;tﬁ':ﬁ * ALARM

Fig. 6. Low-cost visual flame detection algorithm.

4.1. Low-cost visual flame detection

The low-cost visual flame detection (Fig. 6) starts with a
dynamic background (BG) subtraction [24,25]. Moving objects
are extracted by subtracting the estimated background from the
video frames. The estimated background consists of everything in
the scene that remains constant over time. Next, in order to avoid
unnecessary computational work and in order to decrease the
number of false alarms caused by noisy objects, the temporal
filtering removes objects that are not detected in multiple
successive frames. Each of the remaining foreground (FG) objects
in the video images is then further analyzed using a set of visual
flame features, namely the bounding box disorder BBD (Eq. 1), the
principal orientation disorder POD (Eq. 2) and the flame color rate
FCR (Eq. 3). In case of a fire object, the selected features vary
considerably in time. Due to this high degree of disorder, extrema
analysis is chosen as technique to easily distinguish between
flames and other objects. It is related to the number of local
maxima and minima within the set of data points. Only objects
with a high ‘global flame probability’ Pueme (Eq. (4)) receive ‘label 1’
in the candidate flames image Flames!*“e! . Other objects get ‘label
0’. For more detailed information concerning the visual flame
detection the reader is referred to previous work [19,26]. Fig. 7
shows some exemplary ‘visual’ candidate flame regions from our
car park ‘car fire’ tests.

|extrema(BBY4™)| 4 |extrema(BBI“E")|

BBD = N 1)

where BB"4" and BB"®#"* are the width and height of the bounding
box around the object region.

|extremal(oiy.n)|

POD = N2

2

where o equals the angle between the x-axis and the major axis of
the ellipse that has the same second-moments as the object region.

#r_y(Q2)
#pixels(g)
which is the ratio of the number of pixels #z_y () within the red-

yellow range (R>G>B) and the total number of pixels #piis(£2)
within the object region Q.

BBD+POD+FCR
3 @

FCR= 3)

Pflame =

4.2. Amplitude disorder detection

For the amplitude disorder detection, the accumulated frame
difference AFD{™ is calculated first. It is the sum of the differ-
ences between the current amplitude frame F;™ and the previous
and subsequent amplitude frames (Eq. (5)). Rounding the abso-
lute frame differences (using the [...+0.5] round operation), the
use of AFDY™ already allows distinguishing rapidly changing
flames from more slowly moving ordinary objects. The [...+0.5]
operation can be interpreted as thresholding. It provides the
closest integer to the absolute frame differences. If the fractional
part is greater than or equal to 0.5, the absolute frame differences
are round up (~thresholded) to a larger integer. If not, they are
rounded down to a lower integer.

AFDY™ = [|Fam™ —F3™P, | 4 |Fam™P —F™ | 40.5] )

n+1

As high AFDI™ values also occur at the boundary pixels of
ordinary moving objects that are close to the TOF sensor, this feature
is not enough by itself to guarantee accurate flame detection.
In order to distinguish flame pixels from such boundary pixels, the
discrete wavelet transform (DWT) [27] of the amplitude image is
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gt

Fig. 7. Visual candidate flame regions: (a) input video sequences and (b) detected flame regions.

Fig. 8. Discrete wavelet transform of amplitude image: flames show high values in horizontal (H), vertical (V) and diagonal (D) detail images.

also investigated. Experiments (Fig. 8) revealed that flame regions are
uniquely characterized by high values in the horizontal H, vertical V
and diagonal D detail images of the DWT. In case of fire, many of the
flame pixels reach the maximum H, V, and/or D value of 1. As such,

multiplying max(Hg), max(V) and max(Dg) is equal to 1 for (most)
flame objects. Ordinary ‘close’ moving objects do not have this
characteristic. For this reason, an AFDJ™ region Q with high
accumulated amplitude differences is only labeled as candidate
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a Consecutive amplitude images

N\

b Flames3™P

Fig. 9. Amplitude disorder detection: (a) consecutive TOF amplitude images and their (b) morphologically and DWT filtered accumulated depth differences (Flamess™).

Fig. 10. Region overlap detection:

flame region (‘label 1°) in Flamesa™ if max(Hgo) x max(Vg)x

max(Dg) =1, where max() denotes the maximum operator, and x
is the product operator. Other regions receive ‘label 0° Eq. (6)
and (7).

1 if max(Hg) x max(Vg) x max(Dg) =1
0 otherwise

DWT?;tail — { (6)

amp detail _
Flamesa™ = 1 where IT‘FDn >0 and DWTH"™ =1 @)
0 otherwise

Next, morphological closing with a 3 x 3 structuring element
connects neighboring candidate flame pixels (with ‘label 1’ in
Flamesa™). Subsequently, a morphological opening filters out iso-
lated candidate flame pixels using the same structuring element. The
resulting connected flame pixel group(s) of Flamesa™ form(s) the
amplitude candidate flame region(s). An example of the amplitude
disorder detection is given in Fig. 9.

4.3. Region overlap detection

This final stage investigates the overlap between the visual
(Flames?*'@") and the amplitude (Flames;™) candidate flame
region(s), performing a logical AND operation to Flames’s“? and
Flames;™. If the resulting binary image contains one or more
‘common’ pixels, i.e. pixels with a value of 1, the fire alarm is

c) logical AND of (a) visual and (b) amplitude candidate flame regions.

raised. In Fig. 10, an example of this region overlap detection
is shown.

In an ideal case, the detection criteria, i.e. the number of
‘common’ pixels, should depend on the environmental character-
istics, such as the size of the room and the camera position.
However, no method yet exists to automatically relate these
characteristics to the detection criteria. Related to this, it is also
important to discuss the noise sensitivity of the proposed algo-
rithm. First of all, isolated candidate flame pixels are filtered out
using a 3 x 3 morphological opening filter (as is mentioned on
Section 4.2). This already removes the ‘single-pixel’ noise from
each of the image modalities. Furthermore, one ‘common’ (multi-
modal) pixel will only give a fire alarm if it is noise in both image
modalities, i.e. if it is incorrectly detected as candidate flame
region in the amplitude and the visual image. The likelihood of
such simultaneous false positive detection in both images is low.

Before discussing the preliminary experimental results of the
proposed flame detector (~ Section 6), the following section
introduces our novel multi-modal TOF smoke detector.

5. Multi-modal time-of-flight based smoke detection

By further analyzing the TOF video sequences of our prelimin-
ary fire experiments, it was noticed that smoke causes a kind of
global changing in the depth images. The observed phenomenon
(Fig. 11) can best be described as if the scene is floating in depth
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Fig. 11. TOF smoke behavior: global change of the scene depth. Average depth change between (a) start of smoke and (d) smoke at 30 s is almost 1 m.
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Fig. 12. General scheme of the TOF based smoke detector.

direction. Furthermore, it was noted that these smoke related
‘depth changes’ have no significant impact on the amplitude
images. Based on this TOF related smoke behavior, the development
of a novel TOF based smoke detector was initiated. Although this
detector has not yet been fully evaluated, its preliminary results
show that a TOF sensor will be able to detect smoke when it
appears in its field of view.

A general scheme for the smoke detector is provided in Fig. 12.
The algorithm consists of three stages. The first two stages are
processed simultaneously: the amplitude based detection of
background blocks and the average depth change detection. The
final step, namely the block overlap detection, checks the overlap
between BG amplitude blocks and moving depth blocks. Over-
lapping blocks, i.e. blocks with an average depth change which
does not cause changes in the amplitude values, are labeled as

candidate smoke. If several candidate smoke blocks occur in
consecutive images, the fire alarm is raised.

The algorithm performs the smoke detection on a block
level, rather than on pixel level. Each input frame F¥" and
Fi™ is subdivided into ‘n x n’ size blocks, in order to reduce
measurement disturbances, i.e. in order to filter out errors and
measurements inaccuracies. Depending on the camera resolu-
tion and the scene characteristics, an appropriate blocksize
must be chosen. In our experiments, blocks of 8 x 8 pixels
proved to be the most successful. For each depth block
beP™ij], an average depth value FIP™[ij] is computed as
the average of all the pixel values FeP™[ij] in that block
(Eq. (8)).

S S )
nxn ®

Fngth[i,j] —

5.1. Amplitude based background detection

Experiments revealed that smoke has no significant impact
on the TOF amplitude images. When smoke appears in the field
of view of the TOF camera, the amplitude images remain
practically unchanged. In the depth images, on the other hand,
smoke causes a global change in the depth direction (as
discussed below). In order to detect the non-changing part of
the amplitude images, i.e. the amplitude BG blocks, we perform
a kind of moving object detection. However, instead of looking
for blocks with certain level of motion, we look for blocks that
do not change significantly. A BG amplitude block is deter-
mined by comparing the amplitude values of the block b}™[i,j]
in the current frame Fi™ with the values of the corresponding
block in the BG model BG;™. If the sum dif};"?[i,j] of the absolute
differences of the block pixels (Eq. (9)) is lower than the
dynamic threshold tg’”, the block is labeled as BG block
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PANASONIC 3D IMAGE SENSOR "D-IMAGER"  (EKL3104)
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Fig. 13. D-Imager and its technical specification.

(Eq. (10)). For more information on the dynamic threshold, the
reader is referred to [28,29].

. .. (i+1)xn—1 G+ 1xn—1
dif™if1= D i Dy Fn T XYI-BGIxY]] )
BG if dify"P[i,j] < tpr?

10
FG otherwise 19

by, = {

5.2. Average depth change detection

The average depth change detection performs a temporal
analysis of the average depth values (Eq. (8)) of the current block
b2eP™i,j] and the previous blocks b{®™[i,j]. If the standard devia-
tion of these average depth values exceeds the tPth threshold of
0.1, the block is labeled as moving depth block

: depth - depth
e MOVING if a(bkin [1,]]) > ¢4
NON-MOVING otherwise

an

5.3. Block overlap detection

The block overlap detection, the final step of our TOF based
smoke detector, checks the overlap between BG amplitude blocks
b*™P[i,j] and moving depth blocks b%™[i j]. Overlapping blocks, i.e.
blocks with an average depth change that does not cause changes
in the amplitude values, are labeled as candidate smoke block (Eq.
(12)). If several candidate smoke blocks occur in consecutive TOF
images, the fire/smoke alarm is raised.

byfij] — | SMOKE if bdP™(j jj = MOVING and b2™][i,j] = BG
" NON-SMOKE  otherwise
(12)

If necessary, one can also use a visual smoke detector [19] in
addition to, or as a complement for, the amplitude and/or depth
detection steps. However, as the experimental results in the next
section show, the detector as proposed already gives very
promising results. As such, investigating the benefit/added value
of using an additional visual smoke detector is considered beyond
the scope of the present paper.

6. Experimental setup and results

The TOF camera used in this work is the Panasonic D-Imager
[30]. The D-imager is one of the leading commercial products of
its kind. Other appropriate TOF cameras are the CanestaVision
from Canesta, the SwissRanger from Mesa Imaging, the PMD
[vision] CamCube and the Optricam from Optrima [22]. The
technical specifications of the D-Imager are shown in Fig. 13.

The visual camera, the images of which were registered [4,23]
onto the TOF images, is a Linksys WVC2300 camera, a standard
security camera. The image processing code was written in
MATLAB and is sufficiently simple to operate in real-time on a
standard desktop or portable personal computer.

In order to illustrate the potential use of the proposed multi-
modal flame and smoke detector, several fire and non-fire
experiments have been performed in a car park. Besides the fire,
also ordinary moving objects occur in each of the fire sequences.
An example of one of the fire experiments, i.e. the ‘car fire 1’ test,
is shown in Fig. 14. As can be seen in the amplitude images, the
amplitude of flames contains a high degree of temporal and
spatial disorder. Even between two consecutive frames, these
high amplitude differences are noticeable at the boundaries of the
flames. The histograms of the depth images, on the other hand,
show the depth changing related to the smoke.

In order to evaluate the detection results of the proposed
methods in an objective manner, the detection rate metric
(Eq. (13)) is used. This metric is comparable to the evaluation
methods used by Celik et al. [31] and Toreyin et al. [32]. The
detection rate equals the ratio of the number of correctly detected
flame/smoke frames, i.e. the detected flame/smoke frames minus the
number of falsely detected frames, to the number of frames with
‘fire’, i.e. flames or smoke, in the manually created ground truth (GT).

(#detected—#false_detections)
#GT_fire_frames

detection_rate = (13)
6.1. Performance evaluation of multi-modal flame detector

The results in Table 1 show that robust flame detection can be
obtained with relatively simple multi-modal visual/TOF image
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Fig. 14. Fire experiment (car fire 1): (a) TOF amplitude images and (b) TOF depth images; (c) visual images.

Table 1

Performance evaluation of TOF-visual flame detector. A comparison is made between the proposed multi-modal flame detection method (Method 1), the flame detector by
Celik and Demirel [31] (Method 2), which uses a rule-based generic color model for flame pixel classification, and the feature-based flame detection method by Borges
et al. [33] (Method 3).

Video sequence (distance in m) # Flame frames GROUND TRUTH  # Detected flame frames # False positive frames Detection rate’
(~false alarms)

1 min videos at 30fps — 1800 frames 1 GT frame/5 frames Method Method Method

1 2 3 1 2 3 1 2 3
Car fire 1 (13 m) 1280 1194 1088 1103 0 10 14 092 084 0385
Car fire 2 (19 m) 1055 961 942 959 0 22 18 091 087 0.89
Paper fire (10 m) 565 521 502 497 0 9 11 092 087 0.86
Christmas tree fire (10 m) 630 604 569 582 0 8 5 096 089 0.92
Fire fighters ( > 10 m) 0 2 21 14 2 21 14 - - -
Moving crowd (7 m) 0 0 17 25 0 17 25 - - -

1 detection rate=(# detected flame frames —# false alarms)/# GT flame frames.

processing. The state-of-the-art methods, chosen for comparison classification, and the feature-based flame detector by Borges
to the proposed flame detection algorithm (Method 1), are the et al. [33] (Method 3). Compared to these state-of-the-art VFD
flame detection method by Celik and Demirel [31] (Method 2), detection results, with an average detection rate of 87% and an
which uses a rule-based generic color model for flame pixel average false positive rate of 3%, the proposed flame detector,
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b

Fig. 15. Evaluation test set of fire and non-fire experiments.

Table 2
Performance evaluation of TOF based smoke detector. A comparison is made between the proposed multi-modal smoke detection method (Method 1), the contour/wavelet
based smoke detector by Toreyin et al. [32] (Method 2) and the feature-based smoke detection method by Xiong et al. [34] (Method 3).

Video sequence (distance in m) # Smoke frames GROUND TRUTH  # Detected smoke frames # False positive frames Detection rate®
(~false alarms)

Method Method Method
1 min videos at 30fps— 1800 frames 1 GT frame/5 frames 1 2 3 1 2 3 1 2 3
Car fire 1 (13 m) 690 623 616 598 18 23 14 088 086 0.85
Car fire 2 (19 m) 835 744 757 732 0 12 17 0.89 0.89 0.86
Paper fire (10 m) 340 290 309 291 0 13 9 085 087 083
Christmas tree fire (10 m) 870 804 783 772 11 8 5 091 0.89 0.88
Fire fighters (> 10 m) 0 0 0 4 0 0 4 - - -
Moving crowd (7 m) 0 5 23 17 5 23 17 - - -

2 detection rate=(# detected smoke frames—# false alarms)/# GT smoke frames.
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a) Outdoor daytime fire
+ moving person
with reflective coat

b) Car park entrance
+ headlights of
moving car

c) Outdoor nighttime fire
+ fire reflections

d) Outdoor car park
+ headlights and signal
lights of moving car

e) Indoor car park fire
+ smoke spreading

SMOKE

Fig. 16. Challenging test sequences.

with its 93% detection rate and hardly any falsely positive
detection, performs better for the evaluation test set of fire and
non-fire experiments.

In order to test the detection range of the proposed multi-
modal detector, the distance between the sensors and the fire/
moving objects has also been varied during the experiments.
Increasing the distance between the cameras and the fire source
does not affect the detection results substantially. For example,
the detection rate of ‘car fire 2’ test (at 19 m distance) is 91%,
which is almost as good as the 93% of ‘car fire 1’ test (at 13 m
distance). In Fig. 15, we show visual screenshots for each of the
tested sequences. The multi-modal smoke detector, discussed
hereafter, is evaluated on the same set of fire and non-fire
experiments.

Remark on BG estimation models: It is important to mention
that most of the (visual) background estimation models fail to
generate a robust background image in case of fires, resulting in
fluctuated illuminations. In order to cope with this fire-related
illumination problem, the authors investigated the added value of
wavelet-based background subtraction methods. The results of

this research have recently been presented in [34]. Wavelet based
methods are shown to yield better fire detection results than non-
wavelet based background subtraction methods. Especially when
there are many flame reflections and other fire-related illumina-
tion changes, fewer false alarms and missed detections occur in
the wavelet-based setups.

6.2. Performance evaluation of multi-modal smoke detector

The results in Table 2 show that the multi-modal smoke detector
as proposed (Section 5) is able to accurately detect the smoke. The
state-of-the-art methods, chosen for comparison to the proposed
smoke detection algorithm (Method 1), are the contour/wavelet
based smoke detector by Toreyin et al. [32] (Method 2) and the
feature-based smoke detection method smoke detection method by
Xiong et al. [35] (Method 3). Compared to these state-of-the-art VFD
detection results, with an average detection rate of 87% and an
average false positive rate of 3%, the proposed flame detector, with
its 88% detection rate and 1% false positive detections, achieves
practically similar detection results. Depending on the environment
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Table 3

Performance evaluation of more challenging tests. A comparison is made between the proposed multi-modal flame detection method (Method 1), the flame detector by
Celik and Demirel [31] (Method 2), which uses a rule-based generic color model for flame pixel classification, and the feature-based flame detection method by Borges
et al. [33] (Method 3). For the last test, we also compared our own smoke detection results with the contour/wavelet based smoke detector by Toreyin et al. [32] (Method

2) and the feature-based smoke detection method by Xiong et al. [34] (Method 3).

Video sequence (distance in m)

# Flame frames GROUND TRUTH

# Detected flame # False positive frames Detection rate®

frames (~false alarms)
Method Method Method
1 min videos at 30fps— 1800 frames 1 GT frame/5 frames 1 2 3 1 2 3 1 2 3

Outdoor daytime fire (13 m)+reflective coat 1685 1594 1486 1535 O 7 11 0.95 0.88 0.90
Car park entrance (9 m)+ headlights of moving car 0 0 22 6 0 22 6 - - -
Outdoor night-time fire (11 m)+fire reflections 1800 1636 1549 1522 O 0 0 0.91 0.86 0.85
Outdoor car park (3 m)+headlights and signal lights 0 0 66 45 0 66 45 - - -
Indoor car park fire (10 m)+smoke spreading 1560 (flame/smoke frames) 1455 1464 1343 9 0 19 0.93 094 0.85

@ detection rate=(# detected flame frames — # false alarms)/# GT flame frames.

characteristics and the fire type, the TOF smoke detector can
outperform the visible detector and vice versa. Therefore, we argue
that only by using both a visual and a TOF based smoke detector, a
‘better’ detection can be achieved with high accuracy under all
circumstances.

6.3. Performance evaluation of more challenging tests

In this section, we investigate the effectiveness of the proposed
flame and smoke detector in more challenging environments.
In order to prove the validity of the proposed methods under
varying circumstances, we analyze the influence of reflections and
lights (e.g. by headlight of moving cars) and try to detect the
occurrence of smoke/flames at daytime/night-time in an indoor/
outdoor area. Some screenshots of these more challenging tests
are given in Fig. 16. For each test, the left-most image is the
recorded visual camera and the other two images are two
consecutive TOF images. The detected flame and smoke objects
are enclosed by their bounding box. By pure visual evaluation it is
already clear that the proposed methods also perform well for
these more challenging test sequences. However, more objective
results are given in Table 3. Again, the proposed methods out-
perform visual SOTA alternatives, i.e. the flame detection rate is
higher and the number of false alarms is lower.

In the first challenging test (Fig. 16a) a person with reflective
coat is walking close to an outdoor daytime fire. Only the fire is
detected as a flame object. The reflective coat is not detected
and does not disturb the fire detection itself. In the ‘car park
entrance’ test (Fig. 16b) the headlights of moving cars, entering or
leaving the car park, do not generate false alarms. Similarly,
the ground reflections of the fire in the ‘outdoor night-time fire’
test (Fig. 16c) are eliminated by combining the visual and
TOF detection results. Furthermore, the ‘outdoor car park’ test
(Fig. 16d) shows that car signal/turn lights do not cause mis-
detections, either. Finally, in the ‘indoor car park fire’ test both
smoke and flames are detected.

Remark on performance evaluation of video-based detectors:
It is important to mention that, in order to better evaluate video-
based fire detectors and to facilitate comparison with SOTA alter-
natives, there is need for exemplary/training fire dataset(s) and
standardized evaluation metrics. For video based fire detection,
however, neither of them exists (yet). This also explains why the
test set throughout this paper is rather limited. Fire tests involving
full size car fires in full size car parks are very expensive and are not
easy to be conducted frequently. International standard organiza-
tions, such as the National Institute of Standards and Technology
(NIST), recently started to tackle this problem and are developing

standard datasets and testing protocols. However, no TOF-based
datasets (yet) exist.

7. Conclusions

In this paper, two novel multi-modal detection methods have
been proposed for the detection of fire in large open spaces, such
as car parks. The first method is a visual-TOF flame detection
method, combining the detection results of ordinary video images
and the amplitude images of a time-of-flight (TOF) camera. The
second method is a multi-modal smoke detector, based on TOF
depth and amplitude images.

By fusing visual and TOF multi-modal information, the proposed
flame detector can detect flame regions very accurately. In order to
do this, regions are labeled as candidate flame regions if they have
high accumulative amplitude differences and high values in all
detail images of the amplitude image’s discrete wavelet transform.
Simultaneously, moving objects in the visual images are investi-
gated. Objects which possess the experimentally found low-cost
flame features are also labeled as candidate flame region. If the
resulting visual and amplitude candidate flame regions overlap, the
fire alarm is raised. The smoke detector, on the other hand, focuses
on global changes in the depth images of the TOF camera, which do
not affect the amplitude images substantially. It was found that this
behavior is unique for smoke.

Fire and non-fire experiments, in which the flame and smoke
detection capabilities of the proposed methods have been tested
in a car park, show that the novel multi-modal detectors improve
the accuracy of fire detection in car parks. The flame detector has
an average flame detection rate of 93% with hardly any falsely
positive detection and the smoke detection rate of the smoke
detector is 88%.

The proposed work is complementary to previous work [19],
in which a multi-view localization framework for 3D fire analysis
has been proposed. While the previous work focuses on fire
analysis by combining multi-view detection results, considered
the next step in an intelligent video-based fire detection system,
the present paper focuses on increasing the detection perfor-
mance. The present work can thus be used as ‘input’ in the multi-
view localization framework.

Finally it is stressed that, although the paper is more applica-
tion oriented and TOF images are already widely used in the
computer vision field, the paper also addresses some technical/
fundamental problems, such as the multi-modal image proces-
sing/registration, fire detection outside the range of the TOF
detector and false alarm reduction. The main contribution of the
paper is the fusion of (existing) video analysis techniques into a
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novel algorithm for multi-modal flame and smoke detection.
Contrary to many other research approaches, the proposed
optimization for the detection of flames/smoke is more based
on a breadth than on a depth research. To the best of our
knowledge, this has not been done before within the fire context.
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