
Information Sciences 176 (2006) 2227–2267

www.elsevier.com/locate/ins
Formalizing the specification and execution
of workflows using the event calculus

Nihan Kesim Cicekli a, Ilyas Cicekli b,*

a Department of Computer Engineering, METU, Ankara, Turkey
b Department of Computer Engineering, Bilkent University, Bilkent, 06800 Ankara, Turkey

Received 10 December 2004; received in revised form 7 October 2005; accepted 13 October 2005
Abstract

The event calculus is a logic programming formalism for representing events and their
effects especially in database applications. This paper proposes the event calculus as a
logic-based methodology for the specification and execution of workflows. It is shown that
the control flow graph of a workflow specification can be expressed as a set of logical for-
mulas and the event calculus can be used to specify the role of a workflow manager
through a set of rules for the execution dependencies of activities. The proposed frame-
work for a workflow manager maintains a history of events to control the execution of
activities. The events are instructions to the workflow manager to coordinate the execu-
tion of activities. Based on the already occurred events, the workflow manager triggers
new events to schedule new activities in accordance with the control flow graph of the
workflow. The net effect is an alternative approach for defining a workflow engine whose
operational semantics is naturally integrated with the operational semantics of a deductive
database. Within this framework it is possible to model sequential and concurrent activ-
ities with or without synchronization. It is also possible to model agent assignment and
execution of concurrent workflow instances. The paper, thus, contributes a logical per-
spective to the task of developing formalization for the workflow management systems.
� 2005 Elsevier Inc. All rights reserved.
0020-0255/$ - see front matter � 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.ins.2005.10.007

* Corresponding author. Tel.: +90 312 2901589; fax: +90 312 2664047.
E-mail addresses: nihan@ceng.metu.edu.tr (N.K. Cicekli), ilyas@cs.bilkent.edu.tr (I. Cicekli).

mailto:nihan@ceng.metu.edu.tr
mailto:ilyas@cs.bilkent.edu.tr

2228 N.K. Cicekli, I. Cicekli / Information Sciences 176 (2006) 2227–2267
Keywords: Event calculus; Workflow formalization; Temporal reasoning
1. Introduction

A workflow is a collection of cooperating, coordinated activities designed to
accomplish a completely or partially automated process. An activity in a work-
flow is performed by an agent that can be a human, a device or a program. A
workflow management system provides support for modeling, executing and
monitoring the activities in a workflow. There are many commercial products
to model and execute workflows [1,3,22,34] and there have been many formal
models proposed for the analysis and reasoning about the workflows
[4,9,16,17,26]. The most common frameworks for specifying workflows are
graph-based, event–condition–action rules, and logic-based methods.

Graph-based approaches provide a good way to visualize the overall flow of
control, where nodes are associated with activities and edges with control or
data flow between activities. Petri nets and state charts are graph-based gen-
eral-purpose process specification formalisms that have been applied to work-
flow specifications [23,31]. Event–condition–action rules have been widely used
in active databases and they have been adopted in the specification of work-
flows as well [5,12]. However, their expressive power is not as general as control
flow graphs. Logic-based formalisms, on the other hand, use the power of
declarative semantics of logic to specify the properties of workflows and the
operational semantics of logical systems to model the execution of workflows.
Logic-based approaches mostly deal with the verification of workflows with
global constraints [2,24].

We believe that logic-based methods have the benefit of well-defined declar-
ative semantics and well-studied computational models. In this paper we also
propose a logic-based framework for the specification and execution of work-
flows. We use a logic programming approach for the specification of control
flow graphs, execution dependencies between activities and scheduling of activ-
ities within a workflow. The paper formalizes some important properties of
workflow systems. These properties include the specification of main types of
flow controls, such as sequential, concurrent, alternative and iterative execu-
tion of activities. The paper also presents deductive rules for scheduling activ-
ities and assigning agents to perform these activities. As another important
issue, the paper deals with the execution of concurrent workflow instances.
Other issues such as representing the transactional properties of workflows,
or temporal constraints (global constraints) between workflow activities are
out of the scope of this paper.

The proposed approach is based on the Kowalski and Sergot�s Event Calcu-
lus [18]. Event calculus, abbreviated as EC, is a simple temporal formalism

N.K. Cicekli, I. Cicekli / Information Sciences 176 (2006) 2227–2267 2229
designed to model situations characterized by a set of events, whose occur-
rences have the effect of initiating or terminating the validity of determined
properties. Given a description of when these events take place and of the prop-
erties they affect, EC is able to determine the maximal validity intervals over
which a property holds uninterruptedly. The EC uses a polynomial algorithm
for the verification or calculation of the maximal validity intervals and its axi-
oms can easily be implemented as a logic program [6].

EC provides mechanisms for storing and querying the history of all known
events. Once the event occurrences until time t are known, the state of the
system can be computed at any point of time until t. In order to be able
to model the invocation of activities in a workflow, we need to be able to rep-
resent that certain type of event invariably follows a certain other type of
event, or that a certain type of event occurs when some property holds. In
our framework events are treated as triggers that denote the start or end
times of activities. We also consider a set of external events, which might
be recorded by the activities themselves or by the user externally. Once we
know the history of all events either explicitly recorded or automatically
generated by the system, the modeling of workflow execution becomes the
computation of new events from the history and thus executing new activities
until the end of the workflow is reached. The most important result made
possible by this approach is the definition of the operational semantics of
event detection, condition verification and activity scheduling in terms of a
well-defined semantics, which can be computed by that of a deductive system
and queries.

The paper presents a simple scheduling algorithm in which it is possible to
model agents as separate entities and assign agents to certain activities based
on their cost. The workflow manager is designed to choose the best agent to
perform the next scheduled activity among all available agents qualified to
do that activity. The representation of events, activities and agents in this
framework makes it also possible to model the execution of concurrent work-
flow instances over a single workflow specification.

The main contribution of the paper is to present the use of event calculus
approach in the formalization of an important set of properties of workflow
systems. The approach allows the user to specify sequential and concurrent
execution of activities; conditional transitions between activities; and also iter-
ation of activities. The given specification can be executed by means of some
deductive rules and queries. The proposed framework has been easily imple-
mented as a logic program. It can be used as a quick tool in the simulation,
and testing of experimental workflows. It can be used to analyze the behavior
of workflows for different control flows with different number of agents and
workflow instances. It may also serve the need for querying some piece of
information in the process history. Or it may serve the need for querying the
history of the workflow to analyze and assess the efficiency, accuracy and

2230 N.K. Cicekli, I. Cicekli / Information Sciences 176 (2006) 2227–2267
the timeliness of the activities by deriving the state of the workflow at any time
in the past.

To the best of our knowledge, we are not aware of any other logic-based for-
malism in which it is possible to specify all the activity execution routings that
we support in this paper and to execute concurrent workflow instances with
appropriate agent assignments within the same uniform framework. In the pre-
liminary versions of this paper [15,16], we propose an outline of the use of the
event calculus as a basis for complex workflow specifications where concurrent
activities, agents and concurrent workflow instances can be modeled. However
many of the axioms were application specific and a large set of rules must be
written to capture the different aspects of the workflow at hand. In this paper
we overcome these difficulties by proposing general rules that will be applicable
to any workflow specification that includes the set of activity dependencies cov-
ered by our formalism.

The rest of the paper is organized as follows. Section 2 summarizes the basics
of the event calculus by presenting the major axioms that are used in this paper.
Section 3 discusses control flow graphs, relationship between events and activ-
ities, and also proposes a naming convention to uniquely identify events and
activities to support concurrent workflow instances. Section 4 presents the rules
for the local execution dependencies of sequential, concurrent, alternative and
iterative activities in a workflow. The functionality of the workflow manager
is described in Section 5 by presenting rules to start and end activities and assign
agents to activities in concurrent workflow instances. The computational issues
are discussed in Section 6 which also describes the implementation of the
proposed framework. Section 7 presents a conceptual architecture of a work-
flow management system for a more realistic implementation of the framework.
Section 8 discusses the related work by comparing them with the proposed
approach in this paper. The paper is concluded by summarizing the features
of the proposed framework and possible future extensions in Section 9.
2. Event calculus

The event calculus is a logic programming formalism for representing
events and their effects, especially in database applications [18]. A number of
event calculus dialects have been presented since the original paper
[13,14,25]. The one described here is based on a later simplified version pre-
sented in [19]. In contrast with the definition in [19], two assumptions are made
in this version of the event calculus: the events have no extended duration, and
the properties that events initiate, hold in the period initiated by the event and
contain the said event. These assumptions simplify the formulation and imple-
mentation of the event calculus, but, otherwise nothing essential depends on
them.

N.K. Cicekli, I. Cicekli / Information Sciences 176 (2006) 2227–2267 2231
The event calculus is based on general axioms concerning notions of
events, properties and the periods of time for which the properties hold.
The events initiate and/or terminate periods of time in which a property
holds. As events occur in the domain of the application, the general axioms
imply new properties that hold true in the new state of the world being
modeled, and infer the termination of properties that no longer hold true
from the previous state.

The main axiom (also called the persistence axiom) used by the event calcu-
lus to infer that a property holds true at a time is described as follow1:

holds atðP ; T Þ
happensðE; T 1Þ; T 1 6 T ; initiatesðE; P Þ; not brokenðP ; T 1; T Þ.

Here, the predicate holds_at(P,T) represents that property P holds at time T;
the predicate happens(E,T) represents that the event E occurs at time T; the
predicate initiates(E,P) represents that the event E initiates a period of time
during which the property P holds; and the predicate broken(P,T1,T2) repre-
sents that the property P ceases to hold between T1 and T2 (inclusive) due to
an event which terminates it. The time points are ordered by the usual compar-
ative operators. The not operator is interpreted as negation-as-failure. The use
of negation-as-failure gives a form of default persistence into the future. Thus,
the persistence axiom states that once a property P is initiated by an event E at
time T1, it holds for an open period of time containing time point T1 (i.e.
[T1,T)), unless there is another event happened at some point of time after
T1, that breaks the persistence of property P.

Other axioms used in the body of this axiom are defined as follows. The
axiom for happens(E,T) is usually defined as an extensional predicate symbol
that records the happening of the event E at time point T. A particular course
of events that occur in the real world being modeled is represented with a set of
such extensional predicates. The axiom for broken(P,T1,T2) is defined by the
following clause:

brokenðP ; T 1; T 2Þ
happensðE; T Þ; terminatesðE; P Þ; T 1 6 T 6 T 2.

That is, the persistence of the property P is broken at time point T2 if a distinct
event E that happened at time T between T1 and T2 terminates the persistence
of P. Here the predicate terminates(E,P) represents that the event E terminates
any ongoing period during which property P holds.
1 The usual convention of using uppercase letters to represent logical variables is followed
throughout the paper.

2232 N.K. Cicekli, I. Cicekli / Information Sciences 176 (2006) 2227–2267
Finally the axioms for initiates and terminates are specific to the application
at hand. The problem domain is captured by a set of initiates and terminates

clauses. For instance, the following rule describes the effect of an event of pro-
moting an employee:

initiatesðE; rankðEmployee; TitleÞÞ
eventðEÞ; actðE; promoteÞ; actorðE;EmployeeÞ; roleðE; TitleÞ.

Here the property rank(Employee,Title) denotes a property in the application�s
database that starts to hold after the occurrence of the event E. The details of
the event specification can be given as a set of binary predicates (semantic net-
works) as described in [18].

When an employee leaves the job, the property rank(Employee,Title) ceases
to hold. This is described by the following rule in which the anonymous vari-
able underscore in logic programming is used in place of Title, since the title
value is not used in the body of the rule:

terminatesðE; rankðEmployee; ÞÞ
eventðEÞ; actðE; lay off Þ; actorðE;EmployeeÞ.

EC is defined as the collection of all types of axioms described above. Once
the event occurrences until time t are known, the state of the system can be
computed at any point of time until t using the holds_at predicate. The event
occurrences are recorded as an extensional database and snapshots of the data-
base state can be derived at any time using this history of events. We can extend
the EC by adding the definition of other predicates such as holds_for(Prop-

erty,TimePeriod) to find out the period of time for which a property holds:

holds forðP ; T 1; T 2Þ
happensðE1; T 1Þ; initiatesðE1; PÞ; happensðE2; T 2Þ;
terminatesðE2; PÞ; not brokenðP ; T 1; T 2Þ.

Alternatively, as in [11] we can define holdsNow(Property) to point implicitly to
the current state, under the assumption that Now can be initiated with the time
point that corresponds to the system clock at invocation time.

holdsNowðPropertyÞ
clockðNowÞ; holds atðProperty;NowÞ.

In [11], the event calculus is used to formalize a large set of syntactic and
semantic aspects of active databases. The approach to the formalization is cen-
tered on the idea of using a history as defined in the EC, to define event occur-
rences, database states, and actions on these. A history is a particular form of
an extensional database containing representations of event occurrences. The
authors show how the history is used with the event calculus to give rise to a

N.K. Cicekli, I. Cicekli / Information Sciences 176 (2006) 2227–2267 2233
sequence of extensional databases in the application. Broadly, event and con-
dition specifications are given a Datalog-related operational semantics, while
action specifications denote the addition of new axioms to the logical theory
that is the representation of the history.

In this paper, we show how the event calculus can be used in the specifica-
tion and the execution of workflows. That is, we show not only the activation
of event–condition–action rules but also other forms of activity invocations. A
workflow process definition contains a collection of activities and the order of
activity invocations or conditions under which activities must be invoked (i.e.
control flow) and also data flow between the activities. This paper proposes
a formalization of workflow process definitions and their executions within
the framework of the event calculus. In the proposed approach, events denote
the start and end time points of activities and the state of the workflow is
described by properties. Thus, events will be used to specify the control flow
and the effects of the events are used to describe the data flow within the
workflow.
3. Workflow concepts

In this section we briefly provide the definitions of basic concepts of
workflow systems that are used throughout the paper. Then, the basic con-
cepts of workflow systems are associated with the constructs of the event
calculus.

3.1. Basic definitions

A workflow is a process involving the coordinated execution of multiple
activities performed by different processing entities. Examples of workflows
are processing of purchase orders over the Internet, processing of insurance
claims, mail routing in an office, etc. An activity (task) defines some work to
be done. Examples of tasks include updating a database, generating a bill,
mailing a form. An agent is a processing entity that performs the activities.
An agent may be a person, a hardware device or a software system (e.g. a mai-
ler, an application program, a database management system). Human tasks
include interacting with computers such as providing input commands. A
workflow instance is an enactment of a workflow. It is possible that several
instances of a workflow can run concurrently. For example, a workflow man-
ager can execute several processing orders at the same time.

Specification (or design) of a workflow involves describing those aspects of
its constituent activities and the agents that execute them. It also defines the
relationships among activities and their execution requirements. Execution

of the multiple activities by different agents may be controlled by a human

2234 N.K. Cicekli, I. Cicekli / Information Sciences 176 (2006) 2227–2267
coordinator or by a software system called a workflow management system. In
this paper we are interested in designing a workflow manager within the frame-
work of the event calculus. For this purpose we first discuss the specification of
workflows in a logical framework. We then provide the rules to specify the
execution requirements of workflows.

3.2. Specification of workflows

The Workflow Management Coalition (WfMC) defines a reference model
that describes the major components and interfaces within a workflow architec-
ture [35]. In a workflow, activities are related to one another via flow control
conditions (transition information). It is possible to design workflow with
many different transition patterns [33]. Accordingly we identify the following
basic routings among the activities:

1. Sequential: Activities are executed in sequence (i.e. one activity is followed
by the next activity).

2. Parallel: Two or more activities are executed in parallel. Two building
blocks are identified: (a) AND-split and (b) AND-join. AND-split enables
two or more activities to be executed concurrently after another activity
has been completed. The AND-join synchronizes the parallel flows, one
activity starts only after all activities in the join have been completed.

3. Conditional: One of the alternative activities is executed. In order to model a
choice among two or more alternatives two blocks can be used: (a) XOR-
split and (b) XOR-join. In XOR-split, based on a condition check, only
one of several branches is chosen. In XOR-join it is assumed that none of
the alternative branches is ever executed in parallel.

4. Iteration: It may sometimes be necessary to execute an activity or a set of
activities multiple times.

Among the most common frameworks for specifying workflows, control
flow graphs are most appropriate for showing the execution dependencies of
the activities in a workflow. It provides a good way to visualize the overall flow
of control. In a control flow graph the vertices identify the names of activities.
The edges represent the successor relation on the activities. A typical graph
specifies the initial and the final activities in a workflow, the subsequent activ-
ities for each activity in the graph, and whether all of these subsequent activi-
ties must be executed concurrently, or it is sufficient to execute only one branch
depending on a condition.

Fig. 1 illustrates a control flow graph where the activity a is the initial task,
and i is the final activity. After the activity a, the subsequent activities b, c and d

are executed concurrently, which is indicated with the ‘‘AND’’ label. Activity e

ie f

g

h

XOR

cond1

cond2

AND XORAND

d

c

b

a

Fig. 1. An example control flow graph.

N.K. Cicekli, I. Cicekli / Information Sciences 176 (2006) 2227–2267 2235
can only start after activities b, c, and d are completed. After the activity e is
completed the activity f can start. The splitting branch labeled as ‘‘XOR’’ indi-
cates that when activity f is finished, there is a choice of executing g or h. By the
definition of XOR-split, only one of the conditions cond1 or cond2 will be true,
and either activity g or activity h will start executing depending on which con-
dition holds. The conditions are based on workflow control data and apply to
the current state of the workflow. The conditions can depend on some logical
status, or output generated by some prior activity in the workflow, or on the
value of some external variable (e.g. time). Activity i is enabled immediately
after either one of the activities g or h is completed.

As a real example, the control graph shown in Fig. 1 can be viewed as the
workflow of paper reviewing process. When a paper is submitted electronically
(external event), the workflow starts with the initial activity a, say select review-

ers. The agent of this activity is a person (the editor). Once three reviewers are
selected the paper is distributed to the reviewers and the reviewers (person
agents) review the paper concurrently (the concurrent activities b,c,d). The sub-
sequent activity e, say combine reviews is activated only when three reviews are
completed. The agent of this activity can be a computer program which notifies
the editor via email. Then the next activity f of decision making is done by the
editor and a decision of reject or accept will be made. If the decision is accept
the next activity g will be prepare an accept letter. If the decision is reject the
next activity h will be prepare a reject letter. Only one of the alternatives will
be executed. Finally, the review is forwarded to the author of the paper (activ-
ity i).

3.2.1. Control flow graph described as a set of logical formulas

A given control flow graph can be represented as a set of predicates in first-
order logic. In this paper, we consider five different successor relations between
activities. We represent these relations with separate predicate symbols which
are described in Table 1. For instance, the workflow depicted in Fig. 1 can
be described by a set of predicates as follows:

Table 1
Successor relationships between activities

Predicate Description

initial_activity(A) A is the first activity in the workflow
sequential(A1,A2) A2 follows A1 unconditionally
and_split(A,L) A is followed by a list of activities L

xor_split(A,ActCondPairs) A is followed by Ai in ActCondPairs if condition Condi is true
and_join(L,A) A starts after all the list L of activities complete
xor_join(L,A) A starts after one of the list L of activities completes
final_activity(A) A is the last activity in the workflow

2236 N.K. Cicekli, I. Cicekli / Information Sciences 176 (2006) 2227–2267
initial activityðaÞ.
and splitða; ½b; c; d�Þ.
and joinð½b; c; d�; eÞ.
sequentialðe; f Þ.
xor splitðf ; ½ðg; cond1Þ; ðh; cond2Þ�Þ.
xor joinð½g; h�; iÞ.
final activityðiÞ.

This example does not include an iterative execution structure. The specifica-
tion of iteration is described in Section 4.4 separately.

This set of predicates maps the formal structure of the control flow graph
directly into a set of logic formulas. The actual execution order of activities
is determined by the workflow manager. The workflow manager uses execution
dependency rules to determine which activity needs to be scheduled next. The
execution dependency rules are various scheduling pre-conditions and they are
described as axioms within the framework of the event calculus (see Section 4,
axioms (AxS1)–(AxS8)). However before introducing the axioms for execution
dependencies, we first describe the relationship between activities in a workflow
and the events in the event calculus.

3.2.2. Events and activities

In the event calculus, events have no duration. The occurrences of events are
considered as instantaneous happenings that are recorded in the database.
Activities in a workflow, however, have duration. Agents need time to carry
out their tasks. The period of time necessary to complete an activity can be
either fixed or varying depending on the nature of the activity. For instance
if the activity involves a mechanical task its duration may be fixed. However
if the activity is performed by a human the duration of the activity can be vary-
ing. In workflow systems, a workflow specification is generally not concerned
with the details of the internal operations of the activities, but rather with

N.K. Cicekli, I. Cicekli / Information Sciences 176 (2006) 2227–2267 2237
the way the activities are sequenced. A workflow manager is concerned only
with those aspects of an activity that are externally visible on the workflow
level. Thus for a workflow manager, an activity can be in one of the possible
execution states (such as initial, executing, committed, etc.) and state transi-
tions are enabled in terms of externally observable events, such as start and
commit. In our framework each activity is initiated by an event and its termi-
nation is regarded as another event that records the completion of that activity.
Thus each activity A has a starting event start(A) and an ending event end(A).
Once we know the times of these events, the duration of the activity can be
derived easily. The relationship between the activities and events is described
in Fig. 2. Notice that, between these two special events, the activity is in exe-
cution state and the internal operation of the activity is unknown to the work-
flow manager. We do not model the internal behavior of the activities in the
event calculus.

Activities are executed by agents. The workflow manager assigns activities
to agents and agents execute the activities. The workflow manager maintains
the states of activities by recording their starting and ending times. The starting
time of the activity corresponds to the time of its start event which is triggered
by the workflow manager. The ending time of the activity corresponds to its
end event which is sent by the agent to the workflow manager. If it is a fixed
duration activity (e.g. agent is a hardware device and performs an automatic
task), the end event will be sent by the agent within a predefined period of time.
If the duration of the activity varies, then its execution time period may depend
on some conditions or occurrences of some external events. The conditions that
describe the end of the activity may be produced by the agent performing
the activity. For instance, the activity may be a computer program and it
may finish only when the user of the program fills in and submits a form. Such
an input can be considered as an external event. Then the agent will terminate
its execution by sending end activity event to the workflow manager. The
execution duration of an activity is therefore application dependent and the
activity must be designed to inform the workflow manager of its completion.

In this paper we view the activities as independent modules executed by
proper agents and the implementation details of activities are out of the scope
of this paper. We consider only their interfaces with the workflow manager in
activity a

start(a)
at time T1

end(a)
at time T2

time line

Fig. 2. Events start and end activities.

2238 N.K. Cicekli, I. Cicekli / Information Sciences 176 (2006) 2227–2267
terms of their starting time, ending time and any relevant data that they gen-
erate to affect the workflow execution. In the event calculus, the interaction
of activities with the workflow manager is simulated by the use of axioms
(AxH3) and (AxH4) that are presented in Section 5.2.1.

3.2.3. Concurrent workflow instances and naming conventions
One of the objectives of this paper is to express the execution of concurrent

workflow instances over the same workflow specification. For instance, if the
workflow describes the activities in an order processing application, there
may be more than one order being processed at the same time. In order to
be able to model such concurrent instances of a given workflow and the execu-
tion of the same activities for different workflow instances, we use a special
naming convention.

Each workflow instance is given a unique name (identity). This unique iden-
tity is an atomic term and it can be generated by the system when the workflow
instance is started. Since each activity is executed at different times for different
workflow instances, their names must be associated with an execution id to
identify each of these executions. In its simplest form, this execution id
will be the workflow instance id. For example, an execution of activity e in
Fig. 1, in a workflow instance w1 can be represented by the term act(e,w1),
and when it is completed it can trigger the execution of the activity f with
the same workflow id, i.e. act(f,w1).

In a workflow specification, one may also use iteration of activities in the
specification of a workflow. An activity in an iteration block can be executed
more than once, and each execution of that activity should be uniquely identi-
fied. The block name together with an iteration number can be used to
uniquely identify each execution of an activity in the iteration block. This
means that the naming convention should be general enough to express the dif-
ferent executions of the same activity in different iterations.

In order to be able to successfully address these issues, we use the following
naming convention for identifying the different executions of activities: Each
activity execution is represented by a term act(ActName,EID) where ActName

is the name of the activity given by the user at the specification, and EID is the
execution id of the activity generated by the system. An execution id EID of an
activity is defined as follows:

(i) EID can be an atomic term, which is simply the workflow instance id. In
this case, the activity execution is identified with the activity name and the
workflow instance id only.

(ii) In case of specifying the execution of an activity within an iteration block,
EID can be a functional term of the form b(ParentEID,BlockName,
IterationNo) where ParentEID is the execution identity of the activity
after which this iteration block is started, BlockName is the name of

N.K. Cicekli, I. Cicekli / Information Sciences 176 (2006) 2227–2267 2239
the iteration block, and IterationNo represents the iteration number for
that block. The use of ParentEID allows us to uniquely identify the
executions of activities at any nesting level in the iteration blocks, as
described in Section 4.4.

For example, the workflow in Fig. 1 is actually translated into the following
predicates in our framework, using the naming conventions described here:

initial activityðactða;EIDÞÞ.
and splitðactða;EIDÞ; ½actðb;EIDÞ; actðc;EIDÞ; actðd;EIDÞ�Þ.
and joinð½actðb;EIDÞ; actðc;EIDÞ; actðd;EIDÞ�; actðe;EIDÞÞ.
sequentialðactðe;EIDÞ; actðf ;EIDÞÞ.
xor splitðactðf ;EIDÞ; ½ðactðg;EIDÞ; cond1Þ; ðactðh;EIDÞ; cond2Þ�Þ.
xor joinð½actðg;EIDÞ; actðh;EIDÞ�; actði;EIDÞÞ.
final activityðactði;EIDÞÞ.

We need to identify the event occurrences uniquely too. In a workflow sys-
tem, each activity is carried out by an agent and several agents may qualify to
execute one activity. The same activity may be executed by different agents in
different instances of the workflow. Thus, agent assignment is another consid-
eration in naming the events. We use the following naming convention in
describing the events that start and end an activity: The starting event for an
activity A that is to be carried out by the agent Ag in a workflow instance
W is described as start(A,Ag,W), and the ending event is identified as
end(A,Ag,W). The workflow instance id is already included in the naming of
the activity, however it is separately held in the naming of events too, because
it simplifies the rules that we describe below.
4. Execution dependencies of activities

This section presents a logic-based formalization for the execution
dependencies of activities in a workflow. The execution order of activities
depends on the successor relation among activities, and conditions that are cur-
rently satisfied on the system state. Since we support the execution of multiple
workflow instances, we include the workflow number in establishing the local
execution dependencies between the activities within the same workflow
instance.

The execution dependencies between the activities are described by rules for
defining the four argument predicate follows. The semantics of a formula in
the form: follows(Act1,Act2,W,T) represents the fact that, Act2 follows Act1
in the workflow instance W at time T. In the following subsections we present

2240 N.K. Cicekli, I. Cicekli / Information Sciences 176 (2006) 2227–2267
the rules for the predicate follows for each successor relation that we consider
in this paper. These rules, mainly, describe the scheduling pre-conditions
of activities and therefore they are named as axioms for scheduling (AxS in
short).

4.1. Sequential activities

Fig. 3 shows a graphical representation of sequential routing of activities.
When activity ai finishes, the next activity aj can start unconditionally. For
sequential activities, we can write the following execution dependency rule:

followsðAct1;Act2;W ; T Þ
sequentialðAct1;Act2Þ; happensðendðAct1; ;W Þ; T Þ.

ðAxS1Þ

i.e. Act2 follows Act1 in a workflow instance W at a time T when Act1 finishes
in that workflow instance W at the time T. The anonymous variable underscore
is used in place of the agent name to denote that the rule is valid for any agent.

4.2. AND-split and AND-join

In a workflow, activities after an AND-split are scheduled to be executed
concurrently. Fig. 4a illustrates an AND-split. When the activity ai finishes,
activities a1,a2, . . . ,an can start concurrently. Fig. 4b illustrates AND-join.
Here the activity aj can start when all the preceding activities b1,b2, . . . ,bm

finish.
ai aj

Fig. 3. Activity aj starts when ai finishes.

a1 b1

ai aj

a2

an

b2

bm

ANDAND

(a) (b)

Fig. 4. (a) AND-split and (b) AND-join.

N.K. Cicekli, I. Cicekli / Information Sciences 176 (2006) 2227–2267 2241
When the end of activity ai is recorded, all subsequent activities are sched-
uled. Similarly, the activity aj can be scheduled only when the ending events
of all its predecessor activities are recorded. Thus we represent the execution
dependency of an AND-split with the following rule:

followsðAct1;Act2;W ; T Þ
and splitðAct1;ActListÞ; happensðendðAct1; ;W Þ; T Þ;
memberðAct2;ActListÞ.

ðAxS2Þ

Here, predicate member will be true when Act2 is a member of the activity
list ActList in AND-split. The rule expresses the fact that every member of this
list must follow the activity at the branch.

The following rule is used to represent the execution of an AND-join of
activities:

followsðAct1;Act2;W ; T Þ
and joinðActList;Act2Þ;
findActEndTimePairsðActList;W ;ActEndTimePairsÞ;
actWithMaxEndTimeðActEndTimePairs;Act1; T Þ.

ðAxS3Þ

The rule uses the predicate findActEndTimePairs that holds when all predeces-
sor activities in ActList are completed in a workflow instance W. If this
predicate holds, ActEndTimePairs will be the list of all predecessor activi-
ties together with their ending times. Then the predicate actWithMaxEnd-

Time picks the predecessor activity with the latest ending time. In Fig. 4b,
activity aj must wait for the completion of all predecessor activities
b1, . . . ,bm. The last conjunct in this rule ensures that aj is scheduled at the
time of the last ending activity among activities b1, . . .,bm. The definitions
of predicates findActEndTimePairs and actWithMaxEndTime are given in
Appendix A.
4.3. XOR-split and XOR-join

In an XOR-split only one of the alternative activities is executed depending
on the evaluated condition. The important point here is that only one of the
conditions should hold true at the time of the decision in order to guarantee
that only one execution path is chosen.

In an XOR-split (Fig. 5a), when the activity ai ends, one of the activities
a1,a2, . . .,an can start depending on the condition satisfied at that time.
The conditions may be a state check (i.e. a holds_at predicate) to verify
that some property holds either in the underlying database or in the workflow
state.

 (a) (b)

an

ai aj

a1

a2

b1

b2

bm

XORXOR

condn

cond2

cond1

Fig. 5. (a) XOR-split and (b) XOR-join.

2242 N.K. Cicekli, I. Cicekli / Information Sciences 176 (2006) 2227–2267
followsðAct1;Act2;W ; T Þ
xor splitðAct1;ActCondPairsÞ; happensðendðAct1; ;W Þ; T 1Þ;
memberððAct2;Cond2Þ;ActCondPairsÞ;
initiatesðEv;Cond2Þ; happensðEv; T 2Þ;maxð½T 1; T 2�; T Þ;
holds atðCond2; T Þ.

ðAxS4Þ

Here we assume that one of the conditions at the split should evaluate to true.
If none of the conditions hold then none of the execution paths can be chosen.
The idea is to consider each alternate path one-by-one and check if its condi-
tion is true. This is achieved by the predicate member which is used to retrieve
activity–condition pairs one by one from the list of activities in the XOR-split.
The picked activity Act2 will be scheduled in a workflow instance W at time T

only if T is the later of the two time points: (i) the ending time of Act1, and (ii)
the time of the event that initiates the condition Cond2 for Act2. We must also
check that Cond2 still holds at time T.

In an XOR-join (Fig. 5b) if any one of the incoming activities is finished, the
activity at the join can start executing. Given that no parallel execution of alter-
native threads can occur, this pattern corresponds to a simple merge. Thus we
represent the XOR-join by the following rule:

followsðAct1;Act2;W ; T Þ
xor joinðActList;Act2Þ;
findOneActEndTimePairðActList;W ;Act1; T Þ.

ðAxS5Þ

The rule uses the predicate findOneActEndTimePair which holds when one of
predecessor activities in ActList is completed in a workflow instance W. If this
predicate holds, Act1 will be the completed predecessor activity and T will be
its ending time. Thus, the subsequent activity is scheduled at time T of the first
ending activity. The definition of predicate findOneActEndTimePair is given in
Appendix A.

N.K. Cicekli, I. Cicekli / Information Sciences 176 (2006) 2227–2267 2243
4.4. Iteration

In some workflow applications it might be necessary to execute a group of
activities one or more times. The number of times these activities are executed
may depend on some workflow state, or it can be a fixed number. Fig. 6
sketches a control flow graph which includes such a loop structure. The graph
illustrates a post-condition checking loop structure. That is, the activities a1

to an are executed at least once, then the iteration condition is checked.
While the condition holds, the activities are executed again. The activities a1

through an can be arranged in any of the transition types that we have dis-
cussed above.

4.4.1. Specification of the loop structure

In our framework, the body of the loop structure is considered as a block
and each block is given a unique name. We use the predicate serial in the spec-
ification of the workflow, in order to describe that a block follows an activity,
or a block is followed by an activity. Each block has an initial and final activity.
Since the activities within the block are executed several times within a work-
flow instance, each execution must be identified uniquely within the history of
events. For this purpose, we use the naming conventions for the activities
described in Section 3.2.3 for the loop structures while translating the iteration
into a set of logic formulas. Each execution of an activity in a loop is identified
with a term of the form:

actðActName; bðParentID;BlockName; IterationNoÞÞ

where ActName is the user defined name for the activity, and b(Paren-

tID,BlockName, IterationNo) is the execution id of this activity. For instance,
the activity a1 is represented with the term act(a1,b(w1,b1, I)), where w1 is
the workflow-id of the workflow instance which starts the iteration block b1,
and I represents the iteration number during execution. Thus, the specification
of block b1 in Fig. 6 includes the following formulas:
block: b1

am

loopcond

Yes

No
a1 an

a0

Fig. 6. Activities a1 to an are executed while the condition is true.

2244 N.K. Cicekli, I. Cicekli / Information Sciences 176 (2006) 2227–2267
serialðactða0;EIDÞ; blockðb1;EIDÞÞ.
serialðblockðb1;EIDÞ; actðam;EIDÞ; loopcondÞ.
initialðblockðb1;EIDÞ; actða1; bðEID; b1; IÞÞ.
finalðblockðb1;EIDÞ; actðan; bðEID; b1; IÞÞÞ.

The set of logical formulas above for the iteration block b1 indicates that
after the activity a0 with an execution id EID, the iteration block b1 with the
same execution id EID will start. The activity am will start with the same exe-
cution id (EID) after the block b1 if the condition loopcond does not hold at the
time when the last activity of this block is completed. If the execution id of the
block is w1, the execution ids of all activities in this block will be b(w1,b1, I).
The predicates used for the representation of blocks in a workflow graph are
listed in Table 2. The control flow structures between activities within the block
are still described with the predicates that we introduced in Table 1 using the
naming conventions described in Section 3.2.3. For instance, a sequential tran-
sition between two activities, say a1 and a2, in the block is described as:

sequentialðactða1;EIDÞ; actða2;EIDÞÞ.
Since EIDs carry the block name and the iteration number, activity a2 in block
b1 follows a1 at every iteration sequentially.

4.4.2. Rules for the execution dependency of a block
In the following we introduce three rules to describe the execution depen-

dency of a block in a workflow in our framework. The first rule is used to start
the first activity in a block with iteration number 1:

followsðAct1; InitAct;W ; T Þ
serialðAct1;BÞ; happensðendðAct1; ;W Þ; T Þ;
initialðB; InitActÞ; setIterationNoðInitAct; 1Þ.

ðAxS6Þ

The rule states that, after activity Act1, the next activity is the initial activity
InitAct of block B if block B is in sequence with activity Act1 in the workflow
W at time T. The iteration number for the initial activity InitAct is set to 1 since
this is going to be its first execution in the current workflow instance (see
Table 2
Predicates to represent blocks

Predicate Description

initial(B,Act) Act is the first activity in block B

serial(Act,B) Block B is subsequent to activity Act

serial(B,Act, Cond) Subsequent to block B is activity Act with the loop condition Cond

final(B,Act) Act is the last activity in block B

N.K. Cicekli, I. Cicekli / Information Sciences 176 (2006) 2227–2267 2245
Appendix A for the definition of the predicate setIterationNo). The next rule
represents the case of exiting the block:

followsðFnlAct;Act2;W ; T Þ
serialðB;Act2;CondÞ; finalðB; FnlActÞ;
happensðendðFnlAct; ;W Þ; T Þ; not holds atðCond; T Þ.

ðAxS7Þ

The rule states that in a workflow instance W, the next activity after the final
activity of a block is activity Act2, if the block is followed by activity Act2 and
the loop condition does not hold at the time of the final activity is completed.
Finally, we describe the iteration of the activities in the block with the follow-
ing rule:

followsðFnlAct; InitAct;W ; T Þ
initialðB; InitActÞ; finalðB; FnlActÞ; serialðB; ;CondÞ;
happensðendðFnlAct; ;W Þ; T Þ; holds atðCond; T Þ;
getIterationNoðFnlAct; IÞ; J ¼ I þ 1; setIterationNoðInitAct; JÞ.

ðAxS8Þ
This rule states that if the final activity of a block with the iteration number I is
completed in the workflow W at time T, the initial activity of that block can
start with iteration number I + 1 if the loop condition holds at time T (see
Appendix A for the definition of the predicate getIterationNo).

We assume that the condition of a loop can be initiated and terminated by
either external events or system-generated events for activities. In this section
we described the specification of a post-condition checking loop structure.
However, it is possible to describe pre-condition checking loop structures in
a similar fashion.

The naming convention used in identifying the execution of activities within
a block allows us to represent nested loop structures in a control flow graph
too. The execution id of an activity in the nested block will carry the execution
id of the activities in its outer loop (parent block). Thus an activity in an inner
loop will be initiated with an id which includes the id of this parent block activ-
ities. This allows us to uniquely identify the execution of the activities in the
inner loop(s). For instance, assuming that there is another block, say b2,
defined inside block b1 in Fig. 6, the execution id of an activity in block b2
in a workflow instance w1 will be: b(b(w1, b1, I), b2,J). Here b(w1,b1, I) is the
execution id of the activity in the parent block b1 after which b2 is started
and I represents the correct iteration number during execution; b2 is the current
block name, and J is the iteration within the inner loop. This nesting of execu-
tion ids through the parent id makes it possible to nest several loop structures
within the same workflow.

The specifications and rules for the iterative structures that we discussed in
this section can be extended to represent sub-workflows in a workflow. A

2246 N.K. Cicekli, I. Cicekli / Information Sciences 176 (2006) 2227–2267
sub-workflow can be viewed as a block with a unique name. A sub-workflow
can start after an activity of the workflow instance, and when that sub-work-
flow is completed another activity in that workflow instance can start. Each
activity in a sub-workflow instance can be uniquely identified with the unique
name assigned to that sub-workflow instance and the unique name assigned to
the instance of the workflow that started that sub-workflow instance. The nam-
ing convention described in this section can easily be extended to cover
sub-workflows too. However we will not discuss the details of executing sub-
workflows any further in this paper.
5. Workflow management

A workflow management system must permit the specification and execu-
tion of activities. We have so far presented the axioms necessary for the spec-
ification of workflow activities and the description of scheduling pre-conditions
among the activities within the current logical framework. In this section, we
explain the execution semantics of the workflows through the event calculus.
We first describe the representation of the system state maintained by the
workflow manager; next we present the rules for the execution of activities
by appropriate agents.

5.1. Workflow state

At any time the execution state of a workflow can be defined as a collection
of states of its constituent activities and agents. As event occurrences are
recorded and activities are executed, the state of the workflow changes. The
state of the workflow is derived through the event calculus axioms. The work-
flow manager keeps track of agent assignment and schedules new activities
according to the workflow specification. At any point in time, it is desirable
to check which activities are being executed, which ones are completed, which
agents are idle and which ones are assigned to tasks, etc.

Each activity is characterized with a set of executable states and transitions
between these states. An activity may be in either of the following states: an
initial state (waiting), executing state (active) and done state (completed). When
the workflow manager determines the next activity to be executed, it puts the
activity into the worklists of all agents that can perform that activity; and
the activity enters in waiting state. When an agent retrieves the activity from
its worklist and starts executing it, the activity enters in active state. When
the agent finishes executing the activity, it enters the completed state.

Each agent is associated with a worklist that shows which activities are wait-
ing for that agent. The property waiting is also used to represent the worklists
of agents since it includes the information about which activity is waiting for

N.K. Cicekli, I. Cicekli / Information Sciences 176 (2006) 2227–2267 2247
which agent. The property waiting(Act,Agent,W,T) describes that activity Act

is waiting for agent Agent in a particular workflow instance W. The time var-
iable T denotes the point of time at which the activity started waiting for the
agent. An agent can be in either of the following two states: idle or assigned.
An agent is in idle state when there is no activity in the worklist of the agent
and the agent is not assigned to any activity. The agent is in assigned state when
an activity is in active state with that agent. We describe these two states of an
agent with two predicates: idle(Agent) and assigned(Agent,Activity,W). The
state of the agent may be changed by two events: assign(Agent,Activity,W)
and release(Agent,Activity,W).

In addition to the time dependent description of the workflow state, there
are also static properties of the workflow. The agent definitions, the activities
for which they are qualified, the cost of each agent for each activity are static
properties of the workflow and they are defined in the workflow specification.
For simplicity, we assume that the cost of an agent is the amount of time that
an agent requires to perform an assigned activity. In order to represent the
relationship between the activities and agents we use the predicate quali-

fied(Ag,Act,Cost) which is true when it takes Cost units of time for an agent
Ag to finish the activity Act.

The time-dependent states for activities and agents together with the events
causing the transitions between these states are summarized in Tables 3 and 4
respectively. The time dependent states of activities and agents are initiated and
terminated by events occurring in the workflow system. The third columns in
the tables show these events. The axioms of the event calculus will be used
in reasoning with these events and their effects. In the following we present
Table 3
Execution states of activities

State of Activity Meaning Initiating event

active(Act,Ag,W) Activity Act is being executed by
agent Ag in workflow instance W

start(Act,Ag,W)

completed(Act,Ag,W) Activity Act is completed in
workflow instance W

end(Act,Ag,W)

waiting(Act2,Ag2,W,T) Activity Act2 is in the worklist of
agent Ag2 in W with timestamp T

release(Ag1,Act1,W)

Table 4
States of agents

State of agent Meaning Initiating event

idle(Ag) Agent Ag is idle release(Ag,Act,W)

assigned(Act,Ag,W) Agent Ag is carrying out the
activity Act in workflow instance W

assign(Ag,Act,W)

2248 N.K. Cicekli, I. Cicekli / Information Sciences 176 (2006) 2227–2267
the rules to describe how these events cause state transitions and these rules are
named as axioms for initiates/terminates (AxIT in short) for reference
purposes.

An activity becomes active in a workflow instance when its starting event is
recorded in the database. An event recording the end of an activity sets up a
completed state for that activity, terminating its active state. Thus we write

initiatesðstartðAct;Ag;W Þ; activeðAct;Ag;W ÞÞ. ðAxIT1Þ
initiatesðendðAct;Ag;W Þ; completedðAct;Ag;W ÞÞ. ðAxIT2Þ
terminatesðendðAct;Ag;W Þ; activeðAct;Ag;W ÞÞ. ðAxIT3Þ

When an activity starts being executed by an agent, the agent is not idle any
more and it is assigned to that activity until it finishes the activity. When the
activity is finished, the agent is released and it is ready to execute the next activ-
ity. Thus, we write the following rules:

terminatesðassignðAg; ; Þ; idleðAgÞÞ. ðAxIT4Þ
initiatesðassignðAg;Act;W Þ; assignedðAg;Act;W ÞÞ. ðAxIT5Þ

When an agent finishes its task and it is released, it becomes idle. If the
worklist of the agent is empty, the agent remains in the idle state. If there
are one or more activities waiting for that agent in the agent�s worklist, the
agent is assigned to the next activity in its worklist. The assignment of the agent
to the next activity is described in Section 5.2.2 (see axioms (AxH5) and
(AxH6)). Here, we present the rules that describe the effects of the event release

on the system state.

initiatesðreleaseðAg; ; Þ; idleðAgÞÞ. ðAxIT6Þ
terminatesðreleaseðAg;Act;W Þ; assignedðAg;Act;W ÞÞ. ðAxIT7Þ

The use of the property waiting(Act,Agent,W,T) is twofold. First, it is used
to represent the state of an activity. Second it is used to represent the worklists
of agents. An is released when it completes an activity and the subsequent
activity is enabled by the workflow manager (using the axioms (AxS1)–
(AxS8)). The subsequent activity is inserted to the worklists of all agents qual-
ified to do that activity. The following axiom is describing this behavior:

initiatesðreleaseðAg1;Act1;W Þ;waitingðAct2;Ag2;W ; T ÞÞ
followsðAct1;Act2;W ; T Þ; qualifiedðAg2;Act2; Þ.

ðAxIT8Þ

The rule states that when an agent Ag1 is released from an activity Act1 in a
workflow W at time T1, the subsequent activity Act2 is made waiting for all
qualified agents in the workflow instance W, with the timestamp T.

When an activity is assigned to an agent, the activity is no longer in waiting
state. It is removed from all worklists:

N.K. Cicekli, I. Cicekli / Information Sciences 176 (2006) 2227–2267 2249
terminatesðassignð ;Act;W Þ;waitingðAct; ;W ; ÞÞ. ðAxIT9Þ

This rule has the effect of removing the activity from all worklists, because it
is used to terminate the property waiting(Act, _,W, _) which represents
the set of all agents that the activity Act in workflow instance W has been
waiting.
5.2. Workflow execution

A critical issue in workflow management is the assignment of activities to
appropriate agents in order to execute the workflow. Many different scheduling
and optimizing algorithms may be proposed for this purpose. In this paper, we
formalize a simple agent assignment algorithm. The activity is assigned to the
best agent among all available agents qualified to perform that activity. The
best agent is determined by comparing the estimated costs of the candidate
agents. When an agent pulls the activity from its worklist, the activity is
removed from the worklists of all other agents too (see axiom (AxIT9)). Choos-
ing always the best available agent may not result in an optimized execution of
the workflow, however, optimizing the execution of a workflow is out of the
scope of this paper.

In this section, we first present the rules to start the execution of activities
and to record the end of activities. We, then, present the rules for actually
assigning tasks to agents and rules to release agents. The rules listed below,
describe the generation of new events to trigger the desired functionalities.
They are used to record new event occurrences in the history through the pred-
icate happens. Therefore we name these rules as axioms for happens (AxH in
short).
5.2.1. Rules for triggering events

The execution of an activity can start only when an agent is assigned to that
activity. As soon as the agent is assigned, the starting event of the activity is
generated, which is described by the following rule:

happensðstartðAct;Ag;W Þ; T Þ
happensðassignðAg;Act;W Þ; T Þ.

ðAxH1Þ

This rules states that when the event of assigning the agent Ag to activity Act in
workflow instance W happens, the starting event of activity Act happens at the
same time. The event assign(Ag,Act,W) is generated by the workflow manager
as described in Section 5.2.2 (see axioms (AxH5) and (AxH6)).

When an activity is completed, the ending event of the activity is recorded
and the agent that completed the activity is released. This is represented by
the following rule:

2250 N.K. Cicekli, I. Cicekli / Information Sciences 176 (2006) 2227–2267
happensðreleaseðAg;Act;W Þ; T Þ
happensðendðAct;Ag;W Þ; T Þ.

ðAxH2Þ

In a real workflow, the end of an activity would be sent to the workflow
manager by the agent performing that activity, and the end of that activity is
saved in the database. Some activities may be completed in a fixed amount
of time. For some other activities, the duration may not be predicted; the
end of the activity may depend on the occurrence of an external event. The
application must include rules to determine the end of the activity. In our
framework, in order to simulate the execution of fixed time and varying time
activities we write rules (AxH3) and (AxH4). In (AxH3) we assume that the
time required for a fixed duration activity is determined by the assigned agent.
Thus, we write the following rule for fixed-time activities:

happensðendðAct;Ag;W Þ; T Þ
happensðstartðAct;Ag;W Þ; TsÞ; fixed activityðActÞ;
qualifiedðAg;Act; TdÞ; T ¼ Tsþ Td.

ðAxH3Þ

That is, the agent Ag finishes the activity Act in Td time units after the starting
event of the activity. For varying time activities, we assume that an external
event (e.g. a user input) is waited to finish the activity. The end of the activity
depends on the time required by the assigned agent and the time of the occur-
rence of the external event. The end of the activity is described as the time
whichever happens later.

happensðendðAct;Ag;W Þ; T Þ
happensðstartðAct;Ag;W Þ; TsÞ; varying activityðActÞ;
end eventðAct;ExtEventÞ; happensðExtEvent; TeÞ;
qualifiedðAg;Act; TdÞ; TfisTsþ Td;maxð½Te; Tf �; T Þ.

ðAxH4Þ
5.2.2. Rules for assigning agents to activities

The scheduled activities wait in the worklists of the qualified agents. An
agent keeps checking its worklist when it is idle or when it is released after
the completion of an activity. If worklist is not empty, the agent pulls the activ-
ity that has been waiting for the longest time from the list. The following rule
describes the assignment of an agent to the longest waiting activity as soon as it
is released from another activity.

happensðassignðAg;Act;W Þ; T Þ
happensðreleaseðAg; ; Þ; T Þ;
holds atðwaitingðAct;Ag;W ; T 1Þ; T Þ;
holds atðidleðAgÞ; T Þ; notwaiting longerðAct;Ag; T 1; T Þ;
not better agentðAg;Act; T Þ.

ðAxH5Þ

N.K. Cicekli, I. Cicekli / Information Sciences 176 (2006) 2227–2267 2251
If there are two or more activities waiting for the agent with the same time-
stamp, the conjunct holds_at(idle(Ag),T)) in the body of the rule guarantees
that we assign the agent to only one of these waiting activities. This condition
will be true before any assignment, but it will not hold at the time immediately
after the first assignment.

The rule for waiting_longer checks for any other activity in the worklist of
the agent that has been waiting longer than this activity. It looks up the system
state at time T to find out which activities are waiting for this agent and com-
pares their timestamps:

waiting longerðAct;Ag; T 1; T Þ
holds atðwaitingðAct2;Ag;W ; T 2Þ; T Þ;Act 6¼ Act2; T 2 < T 1.

The check for better_agent is necessary in order not to assign the same task to
different agents. Since one or more qualified agents may be available at the
same time, we make sure that the activity is assigned to one of them (the best
available one) only. The rule for better_agent checks if there are other less
costly agents qualified for the activity. If two agents have the same cost, the
first considered one is selected.

better agentðAg1;Act; T Þ
qualifiedðAg1;Act;C1Þ; qualifiedðAg2;Act;C2Þ;C2 < C1;

holds atðidleðAg2Þ; T Þ.

As long as the worklist of an agent is empty, the agent stays in the idle state.
However, when an activity is inserted into its worklist, it is assigned to the
activity if there is no better agent to do that activity. An activity may be placed
into the worklist of an agent at any time. As discussed in Section 5.1, the prop-
erty waiting is initiated for an activity when the workflow manager determines
that activity to be the subsequent activity (see (AxIT8)). The agent checks its
worklist at every time point that it is released from an activity (see (AxH5)).
If there is no activity in its worklist, it continues to be idle. There must be a
way of triggering the agent to check its worklist when it is idle. This is achieved
by the following rule, which triggers the event assign every time an activity is
placed into an empty worklist of an idle agent:

happensðassignðAg;Act;W Þ; T Þ
initiatesð ;waitingðAct;Ag;W ; T ÞÞ;
holds atðwaitingðAct;Ag;W ; T Þ; T Þ;
holds atðidleðAgÞ; T Þ; not better agentðAg;Act; T Þ.

ðAxH6Þ

Here, the condition initiates(_ ,waiting(Act,Ag,W,T)) is necessary to find the
time point T at which the activity is placed into the worklist. The anonymous
variable represents any event that may initiate the property waiting. As soon as

2252 N.K. Cicekli, I. Cicekli / Information Sciences 176 (2006) 2227–2267
such an event happens, the idle agent is assigned to the waiting activity. There
may be one or more activities that have been inserted to the worklist of an
agent at the same time when the agent is in idle state. The conjunct holds_ at

(idle(Ag), T) is used to make sure that the agent is assigned to only one of these
activities.
5.3. Starting a workflow instance

The workflow manager is an interpreter to generate events that start and
assign agents to activities through the event generation rules. In order to start
generating the events (and thus, start the execution of workflow instances), the
manager needs to know what initiates the workflow and also the initial state of
the system. In our framework there must be an external event to start the work-
flow. For instance, in an order processing workflow, the initial event may be
the submission of an order request form by the user. This initial event must
be defined in the workflow specification. In addition, all agents are in idle state
at the beginning.

In order to set all agents idle initially, we define an event, called free_
agent(Ag), whose effect is to initiate the idle property for all agents. This can
be represented by the rule:

initiatesðfree agentðAgÞ; idleðAgÞÞ. ðAxIT10Þ

If we assume that the time is set to zero initially, we can set all agents idle
with the following rule:

happensðfree agentðAgÞ; 0Þ agentðAgÞ. ðAxH7Þ

The manager starts a workflow instance when an initial external event hap-
pens (e.g. submit an order). When that starting external event is recorded, the
manager schedules the first activity of the workflow by inserting it into the
worklists of all agents qualified to perform that activity. Once the first activity
is inserted into the worklists, the event generation rules (AxH1)–(AxH6) will be
activated so that it is assigned to the best qualifying agent. The workflow
manager will keep scheduling the next activity for each completed activity
using the execution dependency rules (AxS1)–(AxS8) and event generation
rules (AxH1)–(AxH6) until the end of the workflow is reached (or until the
current time). In order to start this process, we write the following rule, so that
when the initial event happens, the first activity can be scheduled:

initiatesðEv;waitingðAct;Ag;W ; T ÞÞ
initial activityðActÞ; startsðEv;W Þ; happensðEv; T Þ;
setEIDðAct;W Þ; qualifiedðAg;Act; Þ.

ðAxIT11Þ

N.K. Cicekli, I. Cicekli / Information Sciences 176 (2006) 2227–2267 2253
The starting event is defined with the predicate starts. The predicate starts also
generates a unique workflow instance id W. Thus, this rule represents that
when the event which starts the workflow instance W happens at time T, the
first activity of the workflow starts waiting for all qualified agents. The predi-
cate setEID sets the execution id of the initial activity of the workflow instance
to the workflow id W. The workflow manager will assign the first activity to
one of the agents through the rule (AxH6) in Section 5.2.
6. Implementation issues

In this section we first discuss the computational aspects of the logical
description given in this paper. We then present a case study to illustrate the
capabilities of the system.

6.1. Implementation of the theory

The theory can be implemented in several different ways. One approach is to
write the axioms more or less directly in Prolog. However as they stand, the
general structure of the search space that would be explored by SLDNF reso-
lution is riddled with non-terminating loops and redundancy. Because the
definition of holds_at includes calls to happens and the definition of happens
includes calls to holds_at, this can cause non-terminating loops. Similarly,
the definitions of happens, initiates and follows also include calls to happens that
can cause non-terminating loops.

The major reason of the problem of getting infinite loops is that, in the exe-
cution of holds_at, after finding a relevant event, all events (past or possible
future events) must be searched again in order to show that there is no other
event affecting the established relation. This is because of the negation in the
formulation of holds_at. Therefore we must restrict the search space in such
a way that only the past relevant events (i.e. events which have occurred)
should be searched.

We have overcome this problem by rewriting the axioms so that they are
more suitable for SLDNF resolution. We rewrite the clauses so that a Prolog
interpreter can proceed forwards in time from the earliest known event, main-
taining a list of ongoing events. Since we know the causality relation between
the events (i.e. which events will occur after which events), we can compute the
entire history given the initial event(s). We proceed roughly in a bottom-up
manner: we compute what events the initial events cause in the history, then
compute what events these new events cause in the history, and so on.

In order to achieve this, we replace all calls to happens in the bodies of the
rules for holds_at, happens, initiates, and follows with calls to a new predicate
called happened. The happened predicate represents all events that are known

2254 N.K. Cicekli, I. Cicekli / Information Sciences 176 (2006) 2227–2267
to have happened in the history. The history of happened events is populated
by using happens rules level by level. With these clauses, a Prolog interpreter
proceeds forwards in time from the earliest event, maintaining a list of all
occurred events. For example, the new version of (AxH1) is rewritten as
follows:

happensðstartðAct;Ag;WÞ;TÞ
happenedðassignðAg;Act;WÞ;TÞ.

Likewise, all occurrences of the predicate happens in the bodies of
rules (AxH2)–(AxH7), (AxS1)–(AxS8) and (AxIT1)–(AxIT11) are replaced
with the predicate happened. The new definition of holds_at is now given as
follows:

holds atðState;TimeÞ
initiatesðEv;StateÞ;happenedðEv;T1Þ;
T1 6 Time;not brokenðState;T1;TimeÞ.

brokenðState;T1;T2Þ
terminatesðEv;StateÞ;happenedðEv;TÞ;T1 6 T 6 T2.

Instead of searching all events, the new definition searches only the past
events which are known to have occurred already (i.e. represented by the hap-
pened relation). These new axioms can be directly translated into a Prolog pro-
gram. After all the events in the system are generated, it is possible to ask
queries of the form

?� holds atðState;t1Þ.
to find out the state of the system at a time t1 after the given initial event.

The algorithm in Fig. 7 explains the behavior of the Prolog interpreter to
find all happened events and record them in an extensional database of history
of events. All happened events are found level by level. First, we find all hap-
pened events at time 0, then at time 1, and so on. The outer loop in the algo-
rithm quits when all possible events are generated and recorded in the history.
The inner do-while loop finds all happened events at time T. The innermost
for-loop checks whether each of possible events described by the axioms for
happens (AxH1)–(AxH7) can happen at time T depending on the conditions
induced by the already happened events in the happened database. This algo-
rithm and all axioms presented in this paper are implemented in Prolog and
tested in the simulation of some prototype workflow systems.

6.2. Case study

We illustrate the use of the axioms presented so far with a case study. Con-
sider an order processing system shown in Fig. 8. Activity a1 takes the order.

Fig. 7. Algorithm to find happened events.

a4

a1

Order
Collection

Order
Processing

Package

a2

AND split Arrange
Shipping

a5

a3

By
Air

a7

a8

a6

Archive

Surface
mailsurface

air

XOR split

Billing

Fig. 8. Order processing workflow.

N.K. Cicekli, I. Cicekli / Information Sciences 176 (2006) 2227–2267 2255
Activity a2 processes the order by updating the inventory. Activities a3 and a4

then start concurrently. Activity a3 removes the product from the warehouse
and packages the item. Activity a4 performs the billing function. After both
activities are completed, activity a5 arranges shipping by initiating either activ-
ity a6 or activity a7. Finally when the delivery is successful, the database is
updated to indicate that the order has been fulfilled.

In order to model and manage the execution of this workflow in our frame-
work first the workflow graph definition must be given using the predicates
shown in Table 1. Thus the example workflow is translated into the following:

initial activityðactðorder collection;EIDÞÞ.
sequentialðactðorder collection;EIDÞ;actðorder processing;EIDÞÞ.
and splitðactðorder processing;EIDÞ; ½actðpackage;EIDÞ;actðbilling;EIDÞ�Þ.
and joinð½actðpackage;EIDÞ;actðbilling;EIDÞ�;actðarrange shipping;EIDÞÞ.
xor splitðactðarrange shipping;EIDÞ; ½ðactðby air;EIDÞ;selectionðEID;airÞÞ;

ðactðsurface mail;EIDÞ;selectionðEID;surfaceÞÞ�Þ.
xor joinð½actðby air;EIDÞ;actðsurface mail;EIDÞ�;actðarchive;EIDÞÞ.
final activityðactðarchive;EIDÞÞ.

2256 N.K. Cicekli, I. Cicekli / Information Sciences 176 (2006) 2227–2267
The list of qualified agents must be given with their timing constraints. In our
prototype implementation, the agent information is defined as follows:

qualifiedðagent1;actðorder collection; Þ;1Þ.
qualifiedðagent2;actðorder processing; Þ;2Þ.
qualifiedðagent3;actðorder processing; Þ;5Þ.
qualifiedðagent4;actðbilling; Þ;1Þ.
qualifiedðagent5;actðpackage; Þ;8Þ.
qualifiedðagent6;actðarrange shipping; Þ;2Þ.
qualifiedðagent7;actðby air; Þ;2Þ.
qualifiedðagent8;actðby surface; Þ;1Þ.
qualifiedðagent6;actðarchive; Þ;3Þ.

In this example we assume that activities a1, a2, a4, a5 and a8 are computer
programs that execute in fixed period of time. Activities package, by_air,
and surface_mail are varying time activities. These activities need human
interference, thus their termination need some external event such as waiting
for the user to enter some data. For instance, activity package needs the oper-
ator to input data that the packaging is finished. The actual shipment of the
package (by air or surface mail) is done by a person, thus the completion of
this activity must be recorded by an input and this is considered as an external
event. In order to simulate the end of varying time activities, the external events
that finish those activities must be given to be used by the axiom (AxH4).

end eventðactðpackage;EIDÞ;finish packingðEIDÞÞ.
end eventðactðby air;EIDÞ;sentðEIDÞÞ.
end eventðactðsurface mail;EIDÞ;sentðEIDÞÞ.

In addition, for each external event, its occurrence time must be recorded with
a happened clause. The workflow is initiated by an external event which is the
submission of an order request form. Every time this event is entered to the sys-
tem a new workflow instance is started. The following rule is used to specify the
initialization of a workflow instance:

startsðEv;WnoÞ :�
ext eventðEvÞ;
Ev¼ submitðOID;CustID;CName;Caddress;ProductID;QtyÞ;
Wno¼ OID.

where external event submit includes the information about the customer,
product and order. The order id (OID) is assumed to be unique for each order,
and therefore it is used as the workflow instance id (which is equivalent to the

N.K. Cicekli, I. Cicekli / Information Sciences 176 (2006) 2227–2267 2257
EID). The time of this submit event should also be recorded by a happened

clause. Note that we simplified event representations to simple atomic terms. In
a real application the details of events can be specified using several binary
predicates [18].

The workflow specification for the given graph is now complete. In addition
we have the axioms presented in this paper: (AxS1)–(AxS8), (AxIT1)–(AxIT11)
and (AxH1)–(AxH7). The external events to initiate the workflow instances, to
end varying activities must be input to the system at various points in time.
Then, the deductive framework allows us to query the system in different ways.
Some possible queries are:

?�happenedðEv;TÞ. %list all events in the history

?�holds atðactiveðAct;Ag;WÞ;nowÞ. %list all currently active tasks

?�holds atðidleðAgÞ;tÞ. %list idle agents at some time t

?�holds atðwaitingðAct;Ag;W; Þ;tÞ. %worklists of all agents at some time t

?�holds forðassignedðAct;Ag;WÞ;PÞ. %working periods for all agents

Thus, given a set of predicates for a workflow graph specification, external
events and qualified agents, the axioms that are presented in this paper can
be used to answer queries such as finding out the system state at a specific time,
or the period of time for which a certain property holds (e.g. how long an agent
remains idle). By querying the history of events the actual order and occurrence
times of all activities can be derived.
7. Architecture

The main concern of this paper is to present a new class of logic-based work-
flow systems based on the notion of a history that underlies the event calculus.
Nevertheless, we describe a conceptual architecture to indicate how the logic-
based workflow management system might be used at the implementation
level. The proposed architecture is similar to the history-centered active data-
base architecture of [11]. The main contribution of their architecture is to pro-
vide a logic-based integration of deductive databases and active databases. In
their architecture, history serves to determine database states and it underlies
the definition of event detection, condition verification and action execution.

We propose to extend the history–centered active database architecture of
[11] by incorporating the workflow manager, which is responsible for schedul-
ing the activities and assigning the agents. Fig. 9 depicts the components of our
conceptual architecture for a logic-based workflow system.

The workflow state is described as a deductive database. The records of
event occurrences are considered to be an extensional database, called the
history. The intentional database includes the event calculus rules, workflow

Activities

Event Calculus
Axioms

Section 1.01
History

Event Occurences
(System triggered

and external
events)

Workflow
Manager

(interpreter)

Database

Workflow Specification
(AxS 1-8)

Workflow
Execution Rules
(AxIT 1-11 and

AxH 1-7)

Environment

 events

consequence
Condition
verification by
holds_at

events
executes

Fig. 9. Conceptual architecture of a workflow management system in the Event Calculus
Framework.

2258 N.K. Cicekli, I. Cicekli / Information Sciences 176 (2006) 2227–2267
specification and activity execution dependency rules, and workflow execution
rules. The set of known events and the set of possible workflow states are
immediately characterized in terms of the set of all logical consequences of this
deductive database.

Conceptually speaking the database states need not be independently stored,
since they follow logically from the history. The history only needs appending
event occurrences to, in order to record that some event has happened in the
modeled reality.

A typical cycle in this architecture can be described as follows. The environ-
ment notifies the system the start of a new workflow instance by appending an
external event that initiates the workflow. Since the set of known events (i.e.
history) now includes at least one event, the interpreter reacts to this change
by scheduling the first activity in the workflow. The first activity is placed to
the worklists of qualified agent(s). The agent assignment rules will be used to
assign the best agent to the activity. When the end of the first activity is
recorded in the history, the interpreter uses the execution dependency rules
and agent assignment rules to start the next activity. Meanwhile, the environ-
ment may record the beginning of another workflow instance, or the executed
activities may insert new (external) events to the history. The interpreter pro-
ceeds to coordinate the activities by reacting these new happenings until a sat-
uration state is reached in which all known events have been derived.
8. Related work and discussion

A considerable amount of work has been done on formalizing workflow sys-
tems across the fields of computer supported cooperative work and advanced

N.K. Cicekli, I. Cicekli / Information Sciences 176 (2006) 2227–2267 2259
transaction models. This section gives a brief overview of formal specification
methods used in products and research prototypes of workflow systems and
compares our framework with other proposals. We also summarize a related
research area, namely web service composition, and discuss the application
of our proposed framework in the semantic web.

8.1. Net-based methods

Petri nets and state and activity charts are net-based methods, which have a
formal foundation. When a graphical visualization of workflow specifications
is the top priority, state and activity charts and Petri nets are good choices.
State and activity charts have originally been developed for software engineer-
ing applications, especially for specifying reactive systems, but they have been
also used as a formal tool for workflow specifications. In [23] it is shown that
state and activity charts can be used for the specification of workflows, verifi-
cation of workflow properties and the distributed execution of workflows.
Although most execution dependencies can be formally specified in this frame-
work, iterative execution of activities is not modeled. Although concur-
rent activities within a workflow can be executed through a partitioning
algorithm, it is not clear how concurrent instances of the same workflow are
executed.

Petri nets are general purpose process specification formalisms. Petri net
variants are widely used as a workflow modeling technique [31–33]. A work-
flow process specified in terms of a Petri net has a clear and precise definition,
because the formal semantics of the classical Petri net and its enhancements
(color, time, hierarchy). Petri nets have also the advantage of the availability
of many analysis techniques. Our work differs from the Petri net approach rad-
ically since Petri nets are graphical and sate-based whereas our approach is
declarative and event-based. Our aim is to show the use of the event calculus
as a workflow modeling specification and execution tool in a logic program-
ming framework.

8.2. Logic-based methods

These methods attempt to establish a formal specification model with a well-
defined semantics to be used in the analysis and reasoning about workflows. In
[9,24], Concurrent Transaction Logic (CTR) is used as the language for spec-
ifying, analyzing and scheduling of workflows. In this framework, both local
and global properties can be represented as CTR formulas and reasoning
can be done with the use of the proof theory and the semantics of this logic.
Like in all logic programming systems the proof theory of CTR is also a
run-time environment for executing workflows. Within their framework, it is
possible to represent control flow graphs with transition conditions, triggers,

2260 N.K. Cicekli, I. Cicekli / Information Sciences 176 (2006) 2227–2267
concurrent execution of activities and a set of temporal constraints. The pro-
posed system does not cover the specification of loops and iteration of activities
and they do not address the problem of agent assignment and concurrent
instances of workflows. They are mainly concerned with the development of
an algorithm for consistency checking of workflows and for their property ver-
ification. The algorithm compiles global constraints on workflow execution
into the control flow graph. This compile technique also helps optimize the
run-time scheduling of workflow events. In our framework, we do not study
specification and verification of global (and temporal) constraints on workflow
activities. Instead we concentrate on the representation of different routings of
activities (including loops and iteration), agent assignment and concurrent
workflow instances within a logic programming framework. Instead of propos-
ing a new logic and its proof theory, we use the well-known SLD-NF proce-
dure, which makes our framework simpler.

Another logic-based approach is presented in [2]. They propose treating
workflows as a collection of cooperative agents and use recent results on rea-
soning about actions to formalize correctness of a workflow. They also discuss
the automatic verification and construction of reactive condition–action rules
that specify the workflow control. The workflow specification is defined as a
conditional program where each transition is described as a sequential transi-
tion with condition. In other words, each possible path execution depends on
the explicit specification of conjunction of conditions. (In [17], a more direct
way of the mapping of different routings of activities to action description lan-
guage C is shown). The main purpose is to use this framework as a formal tool
for testing the correctness of a workflow. It can also be used to explore the
behavior of ‘‘what–if’’ scenarios during the construction of ad-hoc workflows.
Our framework can be used for the same purposes. In addition, we can repre-
sent more complex workflows, concurrent processes and several candidate
agents to perform a single task. Testing different versions of the workflow spec-
ification with different number of agents can be more easily done to explore
what-if scenarios in our framework.

8.3. Algebraic methods

Process algebras have been considered but not widely known in the field of
workflow management. In [10] the specification language, which is based on
process algebra, is extended towards workflow management. The main draw-
back of process algebras is that they are often not intuitive and hard to
understand.

In [26], an event algebra is presented for specifying and scheduling work-
flows. In this event algebra activity execution dependencies can be declaratively
expressed and these dependencies are symbolically processed to determine
which events occur and when. This algebra can model most features of control

N.K. Cicekli, I. Cicekli / Information Sciences 176 (2006) 2227–2267 2261
flow graphs, but it is not sufficient to express transition conditions attached to
edges.

8.4. Event–condition–action rules

Event–condition–action rules, shortly termed ECA rules, are used in active
database systems and have been used in defining workflows [5]. ECA rules, are
used to specify the control flow between activities. However, this specification
is not as general as control flow graphs. They are not sufficiently expressive to
represent all possible routings among activities. The graphical visualization of
ECA rules is not easy either. Large sets of ECA rules are hard to handle and
verify. Also, some workflow properties such as loops and sub-workflows can-
not be represented in this approach.

In [11], a logic-based approach is presented for the integration of deductive
and active databases. Although this work does not consider workflows at all, it
is still very closely related to our framework, because event calculus is used to
define event occurrences, database states and actions on these. The formaliza-
tion of an active and deductive database is built on the idea of a history-cen-
tered architecture. In this architecture, the component data store is a
deductive database, where the extensional database keeps the history (i.e. set
of event occurrences) and the semantics of event detection, condition verifica-
tion and action execution are defined in terms of querying and updating deduc-
tive database. Although this work and our framework seem to have a lot in
common, the objectives are different. In [11], the main objective is to present
a logic-based approach to the formalization of a large set of syntactic and
semantic aspects of active databases. There is no notion of defining a workflow
or coordination of activities to accomplish a certain task. Therefore, issues like
activity scheduling, agent assignment, concurrent execution of activities or
workflow instances are not addressed. The only similarity is our architecture
which is actually an extension of the architecture proposed in [11].

8.5. Web services

A currently much related research area is web services and their composi-
tion. The literature on web services and the semantic web is abundant [29].
Therefore the need for a more rigorous formal foundation is widely discussed.

Web services are platform and language independent software components
that can be invoked on the web to fulfill some goals. The composition problem
for web services is to figure out how a set of given services could be invoked to
complete a given task. A number of flow languages have emerged for web
services, such as WSFL [7,20], XLANG [30], BPEL4WS [8]. The composition
of the flow is still manually obtained [27]. It is argued that automatic web
service composition can be seen as a planning problem where given a domain

2262 N.K. Cicekli, I. Cicekli / Information Sciences 176 (2006) 2227–2267
description of the available services and user goals, the planner generates a flow
(plan) [21,28]. In [21] the Golog logic programming framework is used to
generate service compositions (plans) for goals based on plan templates. Golog
builds on top of the situation calculus by providing a set of extralogical
constructs for assembling primitive actions into complex actions. In [28], a
heuristic search planner is used to solve the planning problem created from
the description of the available web services and the requirement of the com-
posite service. The resulting plan can be generated in any web service compo-
sition language and executed by the corresponding flow execution engine.

Event calculus has been used in planning [25]. Planning in the event calculus,
is an abductive reasoning process through resolution theorem prover. Given
the domain knowledge (i.e. a set of initiates and terminates axioms), event cal-
culus axioms and the conjunction of holds_at(X, t) formulae, where t is the time
point, we are interested in, the event calculus planner generates the set of events
that lead to the specified state at time t. We argue that our current framework
can be adapted to web service composition problem by viewing the flow of
activities as a plan generation problem. The activities will represent web ser-
vices and events which start activities will correspond to messages received
to invoke web services. Flow constructs that we presented in this paper will
be used to specify the flow of service composition. In order to model the fact
that there might be several web services to perform the same task, we can
extend the concept of agents to represent the candidate web services. The cur-
rent framework must be extended with a service discovery mechanism to select
the best agent depending on the pre-conditions of the desired goal. This needs
to be further studied.
9. Conclusions and future directions

This paper demonstrates the use of the event calculus to describe the spec-
ification and execution of activities in a workflow. The main axioms of the
event calculus are integrated with a set of activity execution dependency rules
and a set of agent assignment rules for the formalization of workflow systems.
It is shown that major types of activity routings in a workflow (namely sequen-
tial, concurrent, conditional and iterative) can be expressed in a declarative
way. It is also illustrated that agent assignments and concurrent workflow
instances can be modeled within the framework of the event calculus. In addi-
tion, a conceptual architecture of a workflow management system is presented
as a basis for a more realistic implementation of this logic-based approach. For
a quick simulation of a workflow, the user needs merely to specify the atomic
formulas to describe the control flow graph and if there are any, the external
events and their possible effects on the underlying database. The rest of the
workflow management is done by the rules presented in this paper.

N.K. Cicekli, I. Cicekli / Information Sciences 176 (2006) 2227–2267 2263
The proposed logic-based approach can be used as a quick tool in prototyp-
ing applications and/or simulations of workflows. Due to its additional tempo-
ral dimension, it provides facilities for querying the history of all activities, thus
providing opportunities to analyze the execution of the workflows. It can be
used as an easy tool to simulate and verify the execution of a prototype work-
flow system. The workflow might be executed with different number of agents
and assignments. The behavior of the workflow can be analyzed by query-
ing the history of events and the snapshots of the workflow state at different
times.

In this paper we did not consider the workflows where some activities do not
terminate successfully. Some of the activities can abort and therefore they need
to be compensated or some kind of exception handling mechanism must be
applied. As a future work, the set of execution dependency rules can be
extended to cover such control flows. These extensions do not require substan-
tial changes to the proposed architecture. Broadly speaking, what needs to be
done is to define additional scheduling rules to the set of axioms AxS, so that
when an activity does not end, the execution is diverted to another route of
activities, which will be used either to abort the workflow or compensate the
failed activity.

Other extensions are possible to the implementation of the system to ease its
use. For instance a graphical tool might be integrated to the architecture to
provide the user with the facility of drawing the control-flow graph of the
workflow. Then another application might map this graph into a set of atomic
formulas presented in this paper automatically.

The paper presents a simple agent assignment algorithm where each activity
is assigned to the best (i.e. the least costly) available agent by the scheduler.
This simplistic view of agent assignment might be changed to implement more
sophisticated algorithms in order to test the behavior of a certain workflow so
that the execution can be optimized. This and other optimization problems for
the execution of workflows are open problems. Likewise, addition of global
constraints and reasoning with them using the axioms of event calculus is
another interesting research topic.

Workflow has moved inexorably towards web services in the last two years.
Web services provided by various organizations can be inter-connected in
order to implement business collaborations, leading to composite web services.
The composition of the web services is still manually obtained. The semantic
web community draws on AI planning for automatically composing services
[21]. The notion of event calculus can also be viewed as an opportunity to take
advantage of the latest developments in web services. Modern workflow
engines will be asynchronous, with the process enactment driven by the arbi-
trary arrival of messages from different sources. Event calculus could be a
way to specify and reason about web composition where the actual process
model is not known.

2264 N.K. Cicekli, I. Cicekli / Information Sciences 176 (2006) 2227–2267
Appendix A

The appendix presents the definitions of the auxiliary predicates that have
been used in this paper. The definitions are presented as Prolog-style rules.

The 3-argument predicate findActEndTimePairs (used in (AxS3)) finds the
ending times of all predecessor activities in an AND-join. The third argument
is a list of (activity, ending time) pairs if all the incoming activities have com-
pleted their executions.

findActEndTimePairsðActList;W ;ActTimePairsÞ
findallððAct;EndTimeÞ;

ðmemberðAct;ActListÞ; happensðendðAct; ;W Þ;EndTimeÞÞ;
ActTimePairsÞ;

lengthðActList;ActListLenÞ; lengthðActTimePairs;ActTimePairsLenÞ;
ActListLen ¼ ActTimePairsLen.

The 3-argument predicate actWithMaxEndTime (used in (AxS3)) simply
calls its 4-argument definition in order to find the maximum ending time in
the list of (activity, ending time) pairs. The subsequent activity in an AND-join
can start execution only if all incoming activities are completed. Therefore the
maximum ending time is found to determine the starting time of the subsequent
activity.

actWithMaxEndTimeð½FirstPairjActEndTimePairs�;Act;EndTimeÞ
actWithMaxEndTimeðActEndTimePairs; FirstPair;Act;EndTimeÞ.

actWithMaxEndTimeð½�; ðAct;EndTimeÞ;Act;EndTimeÞ.
actWithMaxEndTimeð½CurrPairjRest�;CurrMax;Act;EndTimeÞ

CurrPair ¼ ðAct1; T 1Þ;CurrMax ¼ ðAct2; T 2Þ; T 1 > T 2;

actWithMaxEndTimeðRest;CurrPair;Act;EndTimeÞ.
actWithMaxEndTimeð½CurrPairjRest�;CurrMax;Act;EndTimeÞ

CurrPair ¼ ðAct1; T 1Þ;CurrMax ¼ ðAct2; T 2Þ; T 1 6 T 2;

actWithMaxEndTimeðRest;CurrMax;Act;EndTimeÞ.

The 3-argument predicate findOneActEndTimePair (used in (AxS5)) finds
the predecessor activity that has been completed in an XOR-join, with its end-
ing time. It simply checks each activity in the XOR-join with the predicate
member to see whether it has been finished.

findOneActEndTimePairðActList;W ;Act;EndTimeÞ
memberðAct;ActListÞ; happensðendðAct; ;W Þ;EndTimeÞ.

N.K. Cicekli, I. Cicekli / Information Sciences 176 (2006) 2227–2267 2265
The predicate setIterationNo (see (AxS6)) is used to generate the execution
id of an activity in a block in the next iteration. The functional term represent-
ing the execution id of an activity includes the workflow instance number,
block name and the iteration number. Therefore this predicate simply changes
the third argument of the functional term representing the execution id. The
user should note that IterationNo is an unbound variable when this predicate
is invoked.

setIterationNoðAct;NÞ
Act ¼ actð ; bð ; ; IterationNoÞÞ; IterationNo ¼ N .

Similarly, the predicate getIterationNo (see (AxS6)) is used to extract the
iteration number in the execution id of a given activity.

getIterationNoðAct; IterationNoÞ
Act ¼ actð ; bð ; ; IterationNoÞÞ.
References

[1] G. Alonso, C. Mohan, WFMS: the next generation of distributed processing tools, in: S.
Jajodia, L. Kerschberg (Eds.), Advanced Transaction Models and Architectures, Kluwer
Academic Publishers, 1997, pp. 35–62.

[2] C. Baral, J. Lobo, G. Trajcevski, Formalizing and reasoning about the requirements
specifications of workflow systems, International Journal of Intelligent Information Systems
10 (4) (2001) 483–507.

[3] D. Barbara, S. Mehrotra, M. Rusinkiewicz, INCAs: managing dynamic workflows in
distributed environments, Journal of Database Management 7 (1) (1996) 5–15.

[4] C. Bettini, X. Wang, S. Jajodia, Temporal reasoning in workflow systems, Distributed and
Parallel Databases 11 (3) (2002) 269–306.

[5] C. Bussler, S. Jablonski, Implementing agent coordination for workflow management systems
using active database systems, in: Proceedings of Fourth International Workshop on Research
Issues in Data Engineering, Houston, 1994, pp. 53–59.

[6] I. Cervesato, M. Franceschet, A. Montanari, A guided tour through some extensions of the
event calculus, Computational Intelligence 16 (2) (2000) 307–347.

[7] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana, Web services description language
(WSDL) 1.1. Available from: <http://www.w3.org/TR/wsdl>.

[8] Business process execution language for web services version 1.1. Available from: <http://
www-128.ibm.com/developerworks/library/specification/ws-bpel>.

[9] H. Davulcu, M. Kifer, C.R. Ramakrishnan, I.V. Ramakrishnan, Logic based modeling and
analysis of workflows, in: Proceedings of ACM Symposium on Principles of Database
Systems, ACM Press, Seattle, Washington, 1998, pp. 25–33.

[10] S.J. Even, F.J. Faase, R.A. de By, Language features for cooperation in an object-oriented
database environment, International Journal of Cooperative Information Systems 5 (4) (1996)
469–500.

[11] A.A. Fernandez, M.H. Williams, N.W. Paton, A logic-based integration of active and
deductive databases, New Generation Computing 15 (1997) 205–244.

http://www.w3.org/TR/wsdl
http://www-128.ibm.com/developerworks/library/specification/ws-bpel
http://www-128.ibm.com/developerworks/library/specification/ws-bpel

2266 N.K. Cicekli, I. Cicekli / Information Sciences 176 (2006) 2227–2267
[12] A. Geppert, M. Kradolfer, D. Tombros, Realization of cooperative agents using an active
object-oriented database system, in: Proceedings of the Second International Workshop on
Rules in Database Systems (RIDS), Athens, Greece, 1995, pp. 327–341.

[13] F.N. Kesim, M. Sergot, A logic programming framework for modelling temporal objects,
IEEE Transactions on Knowledge and Data Engineering 8 (5) (1996) 724–741.

[14] F.N. Kesim, M. Sergot, Implementing an object-oriented deductive database using temporal
reasoning, Journal of Database Management 7 (4) (1996) 21–34.

[15] N. Kesim-Cicekli, A temporal reasoning approach to model workflow activities, in: R.Y.
Pinter, S. Tsur (Eds.), Proceedings of NGITS�99, LNCS, vol. 1649, Springer-Verlag, Berlin,
1999, pp. 256–266.

[16] N. Kesim-Cicekli, Y. Yildirim, Formalizing workflows using the event calculus, in: M.
Ibrahim, J. Kung, N. Revell (Eds.), The 11th International Workshop on Database and
Expert Systems Applications (DEXA�00), LNCS, vol. 1873, Springer-Verlag, Berlin, 2000, pp.
222–231.

[17] P. Koksal, N.K. Cicekli, H. Toroslu, Specification of workflow processes using the action
description language C, in: AAAI Spring 2001 Symposium Series: Answer Set Programming,
Palo Alto, California, 2001, pp. 103–109.

[18] R.A. Kowalski, M.J. Sergot, A logic-based calculus of events, New Generation Computing 4
(1986) 67–95.

[19] R.A. Kowalski, Database updates in the event calculus, Journal of Logic Programming 12 (1-
2) (1992) 121–146.

[20] F. Leymann, Web services flow language (WSFL 1.0). Available from: <http://www4.ibm.com/
software/solutions/webservices/pdf/WSFL.pdf>.

[21] S. McIlraith, T.C. Son, Adapting Golog for composition of semantic web services, in: D.
Fensel, F. Giunchiglia, D. McGuinness, M.-A. Williams (Eds.), Proceedings of the 8th
International Conference on Principles and Knowledge Representation and Reasoning (KR-
02), 2002, pp. 482–496.

[22] J.A. Miller, D. Palaniswami, A.P. Sheth, K. Kochut, H. Singh, WebWork: METEOR 2�s web-
based workflow management system, Journal of Intelligent Information Systems 10 (2) (1998)
185–215.

[23] P. Muth, D. Wodtke, J. Weissenfels, G. Weikum, A.K. Dittrich, Enterprise-wide workflow
management based on state and activity charts, in: A. Dogac, L. Kalinichenko, T. Özsu, A.
Sheth (Eds.), NATO ASI Series: Workflow Management Systems and Interoperability,
Springer Verlag, 1998, pp. 281–303.

[24] P. Senkul, M. Kifer, I.H. Toroslu, A logical framework for scheduling workflows under
resource allocation constraints, in: Proceedings of the 28th International Conference on Very
Large Data Bases (VLDB 2002), Hong Kong, China, 2002, pp. 694–705.

[25] M.P. Shanahan, An abductive event calculus planner, Journal of Logic Programming 44
(2000) 207–239.

[26] M.P. Singh, G. Meredith, C. Tomlinson, P.C. Attie, An event algebra for specifying and
scheduling workflows, in: Proceedings of the Fourth International Conference on Database
Systems on Advanced Applications (DASFAA�95), Singapore, 1995, pp. 53–60.

[27] B. Srivastava, J. Koehler, Web service composition-current solutions and open problems, in:
Proceedings of ICAPS 2003 Workshop on Planning for Web Services, 2003, pp. 28–35.

[28] B. Srivastava, Automatic web services composition using planning, in: Proceedings of
International Conference on Knowledge Based Computer Systems (KBCS-2002), Navi
Mumbai, India, 2002, pp. 467–477.

[29] S. Staab, Web services: been there, done that? IEEE Intelligent Systems 18 (1) (2003) 72–85.
[30] S. Thatte, XLANG: Web services for business process design, Available from: <http://

www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm>.

http://www4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf
http://www4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm

N.K. Cicekli, I. Cicekli / Information Sciences 176 (2006) 2227–2267 2267
[31] W.M.P. van der Aalst, The application of Petri nets to workflow management, The Journal of
Circuits, Systems and Computers 8 (1) (1998) 21–66.

[32] W.M.P. van der Aalst, K.M. van Hee, Workflow Management: Models, Methods, and
Systems, MIT press, Cambridge, MA, 2002.

[33] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, A.P. Barros, Workflow
patterns, Distributed and Parallel Databases 14 (1) (2003) 5–51.

[34] H. Wachter, A. Reuter, The ConTract model, in: A.K. Elmagarmid (Ed.), Database
Transaction Models for Advanced Applications, Morgan Kaufmann, 1992, pp. 220–263.

[35] D. Hollingsworth, Workflow management coalition the workflow reference model. Available
from: <http://www.wfmc.org/standards/docs/tc003v11.pdf>.

http://www.wfmc.org/standards/docs/tc003v11.pdf

	Formalizing the specification and execution of workflows using the event calculus
	Introduction
	Event calculus
	Workflow concepts
	Basic definitions
	Specification of workflows
	Control flow graph described as a set of logical formulas
	Events and activities
	Concurrent workflow instances and naming conventions

	Execution dependencies of activities
	Sequential activities
	AND-split and AND-join
	XOR-split and XOR-join
	Iteration
	Specification of the loop structure
	Rules for the execution dependency of a block

	Workflow management
	Workflow state
	Workflow execution
	Rules for triggering events
	Rules for assigning agents to activities

	Starting a workflow instance

	Implementation issues
	Implementation of the theory
	Case study

	Architecture
	Related work and discussion
	Net-based methods
	Logic-based methods
	Algebraic methods
	Event-condition-action rules
	Web services

	Conclusions and future directions
	Appendix A
	References

