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Abstract

Lexical cohesion is a property of text, achieved through lexical-semantic relations between words in text. Most infor-
mation retrieval systems make use of lexical relations in text only to a limited extent. In this paper we empirically inves-
tigate whether the degree of lexical cohesion between the contexts of query terms’ occurrences in a document is related to
its relevance to the query. Lexical cohesion between distinct query terms in a document is estimated on the basis of the
lexical-semantic relations (repetition, synonymy, hyponymy and sibling) that exist between there collocates — words that
co-occur with them in the same windows of text. Experiments suggest significant differences between the lexical cohesion
in relevant and non-relevant document sets exist. A document ranking method based on lexical cohesion shows some per-
formance improvements.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Word instances in text depend to various degrees on each other for the realisation of their meaning. For
example, closed-class words (such as pronouns or prepositions) rely entirely on their surrounding words to
realise their meaning, while open-class words, having meaning of their own, depend on other open-class words
in the document to realise their contextual meaning. As we read, we process the meaning of each word we see
in the context of the meanings of the preceding words in text, thus relying on the lexical-semantic relations
between words to understand it. Lexical-semantic relations between open-class words form the lexical cohesion
of text, which helps us perceive text as a continuous entity, rather than as a set of unrelated sentences.
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Lexical cohesion is a major characteristic of natural language texts, which is achieved through semantic
connectedness between words in text, and expresses continuity between the parts of text (Halliday & Hasan,
1976). Lexical cohesion is not the same throughout the text. Segments of text, which are about the same or
similar subjects (topics), have higher lexical cohesion, i.c., share a larger number of semantically related or
repeating words, than unrelated segments.

In this paper, we investigate the lexical cohesion property of texts, specifically, whether there is a relation-
ship between relevance and lexical cohesion between query terms in documents. Lexical cohesion between dis-
tinct query terms in a document is estimated on the basis of the lexical-semantic relations (repetition,
synonymy, hyponymy and sibling) that exist between their collocates, i.e., words that co-occur with them
in certain spans. We also report experiments to investigate whether lexical cohesion property of texts can
be useful in helping IR systems to predict the likelihood of a document’s relevance. From a linguistic point
of view, the main problem in ad-hoc IR can be seen as matching two imperfect textual representations of
meaning: a query, representing user’s information need, and a document, representing author’s intention.
Obviously, the fact that a document and a query have matching words does not mean that they have similar
meanings. For example, query terms may occur in semantically unrelated parts of text, talking about different
subjects. Intuitively, it seems plausible that if we take into consideration lexical-semantic relatedness of the
contexts of different query terms in a document, we may have more evidence to predict the likelihood of
the document’s relevance to the query. This paper sets to empirically investigate this idea.

We hypothesise that relevant documents tend to have a higher level of lexical cohesion between different
query terms’ contexts than non-relevant documents. This hypothesis is based on the following premise: In
a relevant document, all query terms are likely to be used in related contexts, which tend to share many seman-
tically related words. In a non-relevant document, query terms are less likely to occur in related contexts, and
hence share fewer semantically related words.

The goal of this study is to explore whether the level of lexical cohesion between different query terms in a
document can be linked to the document’s relevance property, and if so, whether it can be used to predict the
document’s relevance to the query. Initially we formulated a hypothesis to investigate whether there is a sta-
tistically significant relation between two document properties — its relevance to a query and lexical cohesion
between the contexts of different query terms occurring in it.

Hypothesis 1. There exists statistically significant association between the level of lexical cohesion of the
query terms’ contexts in documents and relevance.

We conducted a series of experiments to test the above hypothesis. The results of the experiments show that
there is a statistically significant association between the lexical cohesion of query terms in documents and
their relevance to the query. This result suggested the next step of our investigation: evaluation of the useful-
ness of lexical cohesion in predicting documents’ relevance. We hypothesised that re-ranking document sets
retrieved in response to the user’s query by the documents’ lexical cohesion property can yield better perfor-
mance results than a term-based document ranking technique:

Hypothesis 2. Ranking of a document set by lexical cohesion scores results in significant performance
improvement over term-based document ranking techniques.

The rest of the paper is organised as follows: in the next section we discuss the concept of lexical cohesion
and review related work in detail; in Section 3 we present the experiments comparing the degrees of lexical
cohesion between sample sets of relevant and non-relevant documents; in Section 4 we describe experiments
studying the use of lexical cohesion in document ranking; finally, Section 5 concludes the paper and provides
suggestions for future work.

2. Lexical cohesion in text

Halliday and Hasan introduced the concept of “textual” or “text-forming” property of the linguistic sys-
tem, which they define as a “set of resources in a language whose semantic function is that of expressing rela-
tionship to the environment” (Halliday & Hasan, 1976, p. 299). They claim that it is the meaning realised
through text-forming resources of the language that creates text, and distinguishes it from the unconnected
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sequences of sentences. They refer to text forming resources in language by the broad term of cohesion. The
continuity created by cohesion consists in “expressing at each stage in the discourse the points of contact with
what has gone before” (Halliday & Hasan, 1976, p. 299). There are two major types of cohesion: (1) grammat-
ical, realised through grammatical structures, and consisting of the cohesion categories of reference, substitu-
tion, ellipsis and conjunction; and (2) lexical, realised through lexis. Halliday and Hasan distinguished two
broad categories of lexical cohesion: reiteration and collocation. Reiteration refers to a broad range of relations
between a lexical item and another word occurring before it in text, where the second lexical item can be an
exact repetition of the first, a general word, its synonym or near-synonym or its superordinate. As for the sec-
ond category, collocation, Halliday and Hasan understand it as a relationship between lexical items that occur
in the same environment, but they fail to formulate a more precise definition.

Later, the meaning of collocation was narrowed in some works to refer only to idiomatic expressions,
whose meaning cannot be completely derived from the meaning of their elements. For example Manning
and Schiitze (1999) defined collocation as grammatically bound elements occurring in a certain order which
are characterised by limited compositionality, i.e., the impossibility of deriving the meaning of the total from
the meanings of its parts.

We recognise two major types of collocation:

1. Collocation due to lexical-grammatical or habitual restrictions. These restrictions limit the choice of words
that can be used in the same grammatical structure. Collocations of this type occur within short spans, i.e.,
within the bounds of a syntactic structure, such as a noun phrase (e.g., “rancid butter”, “white coffee”,
“mad cow disease”).

2. Collocation due to a typical occurrence of a word in a certain thematic environment: two words hold a cer-
tain lexical-semantic relation, i.e., their meanings are closely related, therefore they tend to occur in the
same topics in texts. Beeferman, Berger, and Lafferty (1997) experimentally determined that long-span col-
location effects can extend in text up to 300 words. Vechtomova, Robertson, and Jones (2003) report exam-

EEENT

ples of long span collocates identified using the Z-score such as “‘environment—pollution”, “gene—protein”.

Hoey (1991) gave a different classification of lexical cohesive relationships under a broad heading of repe-
tition: (1) simple lexical repetition, (2) Complex lexical repetition, (3) Simple partial paraphrase, (4) Simple
mutual paraphrase, (5) Complex paraphrase, (6) Superordinate, hyponymic and co-reference repetition.

In this work we investigate the relationship between relevance and the level of lexical cohesion among query
terms based on the lexical links between their long-span collocates formed by repetition, synonymy, hypon-
ymy and sibling relations.

2.1. Lexical links and chains

A single instance of a lexical cohesive relationship between two words is usually referred to as a lexical link
(Ellman & Tait, 2000; Hirst & St-Onge, 1997; Hoey, 1991; Morris & Hirst, 1991). Lexical cohesion in text is
normally realised through sequences of linked words — lexical chains. The term ““chain” was first introduced by
Halliday and Hasan (1976) to denote a relation where an element refers to an earlier element, which in turn
refers to an earlier element and so on.

Morris and Hirst (1991) define lexical chains as sequences of related words in text. One of the prerequi-
sites for the linked words to be considered units of a chain is their co-occurrence within a certain span.
Hoey (1991) suggested using only information derivable from text to locate links in text, Morris and Hirst
used Roget’s thesaurus in identifying lexical chains. Morris and Hirst’s algorithm was later implemented
for various tasks: IR (Stairmand, 1997), text segmentation (Hearst, 1994) and summarisation (Manabu &
Hajime, 2000).

2.2. Lexical bonds

Hoey (1991) pointed that text cohesion is formed not only by links between words, but also by semantic
relationships between sentences. He argued that if sentences are not related as whole units, even though there
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are some lexically linked words found in them, they are no more than a disintegrated sequence of sentences
sharing a lexical context. He emphasised that it is important to interpret cohesion by taking into account
the sentences where it is realised. For example, two sentences in text can enter the relation, where the second
one exemplifies the statement expressed in the previous sentence. Sentences do not have to be adjacent to be
related, and lexical cohesive relation can connect several sentences.

A cohesive relation between sentences was termed by Hoey as a lexical bond. A lexical bond exists between
two sentences when they are connected by a certain number of lexical links. The number of lexical links the
sentences must have to form a bond is a relative parameter, according to Hoey, depending indirectly on the
relative length and the lexical density of the sentences. Hoey argues that an empirical method for estimating a
minimum number of links the sentences need to have to form a bond must rely on the proportion of sentence
pairs that form bonds in text. In practice, two or three links are considered sufficient to constitute a bond
between a pair of sentences. It is notable that in Hoey’s experiments, only 20% of bonded sentences were adja-
cent pairs. Analysing non-adjacent sentences, Hoey made and proved two claims about the meaning of bonds.
The first claim is that bonds between sentences are indicators of semantic relatedness between sentences, which
is more than the sum of relations between linked words. The second claim is that a large number of bonded
sentences are intelligible without recourse to the rest of the text, as they are coherent and can be interpreted on
their own (Hoey, 1991).

3. Comparison of relevant and non-relevant sets by the level of lexical cohesion
3.1. Experimental design

Our method of estimating the level of lexical cohesion between query terms was inspired by Hoey’s method
of identifying lexical bonds between sentences. There is, however, a substantial difference between the aims of
these two methods. Sentence bonds analysis is aimed at finding semantically related sentences. Our method is
aimed at predicting whether query terms occurring in a document are semantically related, and measuring the
level of such relatedness.

In both methods the similarity of local context environments is compared: in our method — fixed-size win-
dows around query terms; in Hoey’s method — sentences. Hoey’s method identifies semantic relatedness
between sentences in a text, whereas the objective of our method is to determine the semantic similarity of
the contextual environments, i.e., collocates, of different query terms in a document.

To determine semantic similarity of the contextual environments of query terms we combine all windows
for one query term, building a merged window for it. Each query term’s merged window represents its con-
textual environment in the document. We then determine the level of lexical cohesion between the contextual
environments of query terms. We experimented with two methods for this purpose: (a) How many lexical links
connect them, and (b) How many types they have in common. Each document is then assigned a lexical cohe-
sion score (LCS), based on the level of lexical cohesion between different query terms’ contexts.

In more detail, the algorithm for building merged windows for a query term is as follows: Fixed-size win-
dows are identified around every instance of a query term in a document. A window is defined as n number of
stemmed’ non-stopwords to the left and right of the query term. We refer to all stemmed non-stopwords
extracted from each window surrounding a query term as its collocates. In our experiments different window
sizes were tested: 10, 20 and 40. These window sizes are large enough to capture collocates related topically,
rather than syntactically.

In this windowing technique we can encounter a situation where windows of two different query terms over-
lap. In such a case, we run into the following problem: let us assume that query terms x and y have overlap-
ping windows and, hence, both are considered to collocate with term « (see Fig. 1). We could simply add this
instance of the term «a into the merged windows of both x and y. However, when we compare these two merged
windows, we would count this instance of ¢ as a common term between them. This would be wrong, for we

! We used the Porter stemming function (Porter, 1980).
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Fig. 1. Overlapping windows around query terms x and y.

refer to the same instance of a, as opposed to a genuine lexical link by two different instances of a. Our solution
to this problem is to attribute each instance of a word in an overlapping window to only one query term (node)
— the nearest one.

3.1.1. Estimating similarity between the query terms’ contexts

After merged windows for all query terms in a document are built, the next step is to estimate their simi-
larity by the collocates they have in common. We do pairwise comparisons between query terms’ collocates,
using the following two methods:

Method 1: Comparison by the number of lexical links they have.
Method 2: Comparison by the number of related types they have.

3.1.1.1. Method 1. The first method takes into account how many instances of lexically linked collocates each
query term has. Fig. 2 demonstrates this method by showing links between collocates formed by simple lexical
repetition. The first column contains collocates in the merged window of the query term Xx, the second column
contains collocates in the merged window of the query term y. The lines between instances of the common
collocates in the figure represent lexical links.

In this example there are altogether 6 links. If there are more than 2 query terms in a document, a compar-
ison of each pair is done. The number of links are recorded for each pair, and summed up to find the total
number of links in the document.

We have conducted experiments with (1) using only lexical links formed by simple lexical repetition (Section
3.3.1) and (2) using lexical links formed by WordNet relations of synonymy, hyponymy and sibling in addition
to lexical cohesion (Section 3.3.2).

WordNet relations: To identify links formed by synonymy, hyponymy and sibling relations between collo-
cates we used WordNet (Miller, 1990). WordNet is a lexical resource, where senses of lexical units (words or
phrases) are grouped into synonym sets (synsets), which are linked to other synsets via different kinds of rela-
tions, such as hyponymy and sibling. Hyponymy is a hierarchical relation between a more specific lexical unit,
hyponym, and a more general unit, hypernym. An example of hyponym-hypernym relationship in WordNet is
“painting — graphic art”. Sibling relation occurs between lexical units which have the same hypernym, for
example, “painting — print”.

Collocates of query Collocates of query
term Xx: term y:
a e
b f
c a
a f

’ \b
d a

Fig. 2. Links between instances of common collocates in merged windows of query terms x and y.
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The first step in the process of identifying synonymy, hyponymy and sibling relations between collocates is
to map a collocate to a WordNet synset. There are several difficulties in this process: first, each lexeme may
belong to several parts of speech, therefore a Part-of-Speech (POS) tagger is needed to map collocates to the
correct POS forms in WordNet. Secondly, a word may have several senses in WordNet, each forming its own
synset, therefore we need a method to disambiguate each collocate, and map it to the correct synset. There is a
number of POS taggers (e.g., Brill, 1995), and word sense disambiguation (WSD) techniques (e.g., Gale,
Church, & Yarowsky, 1992; Galley & McKeown, 2003; Yarowsky, 1995) that could be adapted for this pur-
pose, however they are computationally expensive. An alternative approach, which we adopted in this study, is
to map a collocate to the most frequent sense, which is possible as WordNet contains corpus frequencies of
each word sense. A study by Mihalcea and Moldovan (2001) shows that the most frequent WordNet sense
occurs with a probability of 78.52% for nouns, 61.01% for verbs, 80.98% for adjectives and 83.84% for adverbs
in SemCor corpus, therefore suggesting that moderate to high levels of WSD accuracy can be achieved by
mapping collocates to their most frequent WordNet sense. One other problem with using WordNet senses
is that they are very fine-grained, and many of the senses are semantically close. Consider, for example, the
verb walk, which has 10 senses in WordNet, out of which senses 1 (use one’s feet to advance; advance by
steps), 2 (traverse or cover by walking) and 6 (take a walk; go for a walk; walk for pleasure) are very close
semantically. Arguably, applications such as Information Retrieval, do not require such fine-grained distinc-
tions between senses, and therefore it may be advantageous to merge them, as suggested in Mihalcea and Mol-
dovan (2001). We did not perform WordNet sense merging in this work, and its benefit for our purpose has yet
to be investigated. The final difficulty in mapping collocates to WordNet synsets is that collocates in our
method are always single terms, whereas WordNet synsets may contain both single terms and phrases. In
the current method, if there is a phrase in a synset, we do not use it in LCS calculations. It is possible to extend
our method to handle phrases in addition to words, however this remains for future work.

After collocates are mapped to WordNet synsets, we do a pairwise comparison of each collocate of query
term x with each collocate of query term y as follows: first we check whether they are identical (i.e., form a link
by repetition), if not we check their relationship via WordNet according to the following rules:

e if two collocates have the same synonym, they form a link by synonymy;

e if collocate a is a hyponym or hypernym of collocate b (or any of its synset members), they form a link by
hyponymy;

e if two collocates have the same hypernym, they form a link as siblings.

Lexical cohesion score (links): A document’s lexical cohesion score, calculated using method 1, will be
referred to as LCS;j,s. To compare the scores across documents we need to normalise the total number of
links in a document by the total size of all merged windows in a document. The normalised LCSy;,, score is

L
LCSlinks = V ) (1)
where L is the total number of lexical links in a document and V'is the size (in words) of all merged windows in
a document, excluding stopwords.

3.1.1.2. Method 2. In method 2 no account is taken of the number of lexically related collocate instances each
query term co-occurs with. Instead, only the number of lexically related distinct words (referred to as types
throughout the rest of the paper) between each pair of merged windows is counted.

Comparison of merged windows in Fig. 2 will return 2 types that they have in common: a and b. Again, if
there are more than 2 query terms, a pairwise comparison is done. For each document we record the number
of types common between each pair of merged windows, and sum them up.

Synonymy, hyponymy and sibling relationships are identified in exactly the same way as in method 1,
except that we count the number of related types, as opposed to tokens.

Lexical cohesion score (types): A document’s lexical cohesion score estimated using this method is LCSyps,
and is calculated by normalising the total number of common types by the total number of types in the merged
windows in a document:
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r )

where T is the total number of lexically related types in a document and U is the total number of types in all
merged windows in a document.

LCSyypes =

3.2. Construction of sets of relevant and non-relevant documents

To test the hypothesis that lexical cohesion between query terms in a document is related to a document’s
property of relevance to the query, we calculated average lexical cohesion scores for sets of relevant and non-
relevant documents.

We conducted our experiments on two datasets:

(1) A subset of the TREC ad-hoc track dataset: FT 967 database, containing 210,158 Financial Times news
articles from 1991 to 1994, and 50 ad-hoc topics (251-300) from TREC-5. Out of 50 topics, only 44 had
relevant documents in the Financial Times collection, therefore only these topics were used in the experi-
ments. We will refer to this dataset in this paper as “FT”.

(2) The HARD track dataset of TREC-12: 652,710 documents from 8 newswire corpora (New York Times,
Associated Press Worldstream and Xinghua English, among others), and 50 topics (401-450). Five of the
50 topics had no relevant documents and were excluded from the official HARD 2004 evaluation (Allan,
2004). This dataset will be referred to as “HARD”.

Short queries were created from all non-stopword terms in the “Title” fields of TREC topics. Such requests
are similar to the queries that are frequently submitted by average users in practice. The queries were run in
the Okapi IR system using BM25 document ranking function to retrieve top N documents for analysis. BM25
is based on the Robertson & Sparck-Jones probabilistic model of retrieval (Sparck Jones, Walker, & Robert-
son, 2000). The sets of relevant and non-relevant documents are then built using TREC relevance judgements
for the top N documents retrieved.

We need to ascertain that the difference between the average lexical cohesion scores in the relevant and non-
relevant document sets is not affected by the difference between the average BM25 document matching scores.
To achieve this we need to build the relevant and non-relevant sets, which have similar mean and standard
deviation of BM25 scores for each topic. This is achieved as follows: first all documents among the top N
BM25-ranked documents are marked as relevant and non-relevant using TREC relevance judgements. Then
each time a relevant document is found it is added to the relevant set and the nearest scoring non-relevant
document is added to the non-relevant set. After the sets are composed, the mean and standard deviation
of BM25 document matching scores are calculated for each topic in the relevant and non-relevant sets. If there
is a significant difference between the mean and standard deviation in the two sets for a particular topic, then
the sets are edited by changing some documents until the difference is minimal. We will refer to the relevant
and non-relevant document sets constructed using this technique as aligned sets.

We created two pairs of aligned sets for FT and HARD corpora: using the top 100 BM25-ranked docu-
ments and using the top 1000 BM25-ranked documents. The sets and their sizes are presented in Table 1.

Comparison between the corresponding relevant and non-relevant sets was done by average lexical cohe-
sion score, which was calculated as

N
> LCS;
ZFIS , (3)

where LCS; is the lexical cohesion score of ith document in the set, calculated using either formula (1), or (2)
above; and S is the number of documents in the set.

Average LCS =

2 TREC research collection, volume 4.
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Table 1
Statistics of the aligned relevant and non-relevant sets
Data set FT HARD

Relevant Non-relevant Relevant Non-relevant
Top 100
Number of documents 176 176 600 600
Mean BM25 document score 13.350 13.230 13.939 13.674
Stdev BM25 document score 2.200 1.905 4.254 3.864
Top 1000
Number of documents 268 268 1897 1897
Mean BM25 document score 11.515 11.472 11.306 11.219
Stdev BM25 document score 2.502 2.375 3.519 3.311

In the next subsection we analyse the results of comparison between relevant and non-relevant documents.
We compare average lexical cohesion scores calculated by using simple lexical repetition in Section 3.3.1, and
by using repetition, synonymy, hyponymy and sibling relations in Section 3.3.2.

3.3. Analysis of results

3.3.1. Links formed by simple lexical repetition

Comparisons of pairs of relevant and non-relevant aligned sets derived from 100 and 1000 BM25-ranked
documents showed large differences between the sets on some measures (Table 2). In particular, average

Table 2

Difference between the aligned relevant and non-relevant sets

Method Window Relevant Non-relevant Difference (%) Wilcoxon P (2-tail) Significant
FT, top 1000

Links 10 0.097 0.076 28.795 0.025 Y
Links 20 0.151 0.119 26.727 0.002 Y
Links 40 0.197 0.165 19.868 0.008 Y
Types 10 0.056 0.043 30.454 0.009 Y
Types 20 0.071 0.057 24.733 0.001 Y
Types 40 0.082 0.071 14.333 0.031 Y
FT, top 100

Links 10 0.091 0.069 31.562 0.061 N
Links 20 0.144 0.109 32.703 0.001 Y
Links 40 0.187 0.146 28.016 0.001 Y
Types 10 0.048 0.036 33.920 0.024 Y
Types 20 0.063 0.047 32.928 0.001 Y
Types 40 0.074 0.061 21.010 0.005 Y
HARD, top 1000

Links 10 0.090 0.074 21.39 0.000 Y
Links 20 0.145 0.122 15.76 0.000 Y
Links 40 0.195 0.166 17.49 0.000 Y
Types 10 0.053 0.050 7.17 0.003 Y
Types 20 0.071 0.069 2.65 0.167 N
Types 40 0.086 0.084 1.36 0.387 N
HARD, top 100

Links 10 0.102 0.089 15.66 0.032 Y
Links 20 0.167 0.143 16.68 0.003 Y
Links 40 0.218 0.188 16.24 0.000 Y
Types 10 0.059 0.054 9.01 0.087 N
Types 20 0.080 0.075 591 0.175 N
Types 40 0.095 0.091 4.32 0.105 N
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Table 3
Averaged document characteristics (FT and HARD document sets created from top 1000 documents)

Relevant Non-relevant Difference (%) t-Test P
FT, top 1000
Average number of collocate tokens per query term 95.900 71.331 34.444 0.000
Average query term instances 11.704 8.719 34.230 0.000
Average document length 332.012 224.658 47.786 0.000
Average distance between query terms 19.444 14.976 29.832 0.027
Ave shortest distance between query terms 6.533 4.617 41.498 0.085
HARD, top 1000
Average number of collocate tokens per query term 86.848 66.561 30.479 0.000
Average query term instances 11.297 8.693 29.962 0.000
Average document length 282.740 220.419 28.274 0.000
Average distance between query terms 18.077 17.705 2.099 0.633
Ave shortest distance between query terms 6.164 7.113 15.389 0.091

Lexical Cohesion Scores of the relevant and non-relevant documents selected from the top 1000 BM25-ranked
document sets, calculated using the Links method (LCS;ins) have statistically significant differences.’ Average
LCSyypes are also significantly different in most of the experiments.

The first method of comparison by counting the number of links between merged windows appears to be
better than the second method of comparison by types. This suggests that the density of repetition of common
collocates in the contextual environments of query terms offers some extra relevance discriminating
information.

To investigate other possible differences between the documents in the relevant and non-relevant sets we
have calculated various document statistics (Table 3). In both FT and HARD document collections the
relevant documents, on average are longer, have more query term occurrences, and consequently have
more collocates per query term. The latter finding is interesting, given that we selected relevant and non-
relevant document pairs with the similar BM25 scores. However, BM25 scores do not depend on query term
occurrences only. A number of other factors affect BM25 score: (a) document length; (b) idf weights of the
query terms; (¢) non-linear within-document term frequency function which progressively reduces the contri-
bution made by the repeating occurrences of a query term to the document score, on the assumption of
verbosity.*

An interesting, though somewhat counter-intuitive, finding is the average distance between query term
instances, which is longer in relevant documents. To calculate the average distance between query terms,
we take all possible pairs of different query term instances, and for each pair find the shortest matching strings,
using the cgrep program (Clarke & Cormack, 1995). The shortest matching string is a stretch of text between
two different query terms (say, x and y) that do not contain any other query term instance of the same type as
either of the query terms (i.e., x or ). Once the shortest matching strings are extracted for each pair of query
terms, the distances between them are calculated (as the number of non-stopwords) and averaged over the
total number of pairs. The closer the query terms occur to each other, the more their windows overlap,
and hence the fewer collocates they have. In the non-relevant documents query terms occur on average closer
to each other (Table 3), which may contribute to the fact that they have fewer collocates. Longer distances
between query terms in the relevant documents may be explained by the higher document length values in
the relevant set, compared to the non-relevant set.

Another statistic, average shortest distance between query terms, is calculated by finding the shortest match-
ing string for each distinct query term combination. In this case, only one value, the shortest distance between

3 We used Wilcoxon test as the distribution of the data is non-Gaussian.

4 The term frequency effect can be adjusted in BM25 by means of the tuning constant k. In our experiments we used k; = 1.2, which
showed optimal performance on TREC data (Spérck Jones et al., 2000). This chosen value means that repeating occurrences of query
terms contribute progressively less to the document score.
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each distinct pair, is returned. The shortest distances of all distinct pairs are then summed and averaged. As
Table 3 shows, this value is larger in the relevant documents than in the non-relevant in the FT corpus, and
smaller in the HARD corpus. The differences are not statistically significant, though.

The above analysis clearly shows that relevant documents are longer and have more query term occur-
rences. So, could any of these factors possibly be the reason for the higher average Lexical Cohesion Scores
in relevant documents? As instances of the original query terms can be collocates of each other when their
windows overlap, and form links between the collocational contexts of each other or other query terms, we
need to find out what is the number of link-forming collocates which are not query terms themselves. The fol-
lowing hypothesis was formulated to investigate this possibility:

Hypothesis 1.1. Collocational environments of different query terms are more cohesive in the relevant
documents than in the non-relevant, and this difference is not due to the larger number of query term
instances.

To investigate the above hypothesis, we counted in each document the total number of link-forming col-
locate instances excluding the query terms, and normalised this count by the total number of collocates in
the windows of all query term instances. We refer to the normalised link-forming collocate count (excluding
query terms) per document as /ink_cols. The data (Table 4) shows that there exist large differences in link_cols
between the relevant and non-relevant sets. Seven out of twelve experiments demonstrate statistically signi-
ficant differences. This indicates that the contexts of different query terms in the relevant documents on aver-
age are more cohesive than in the non-relevant documents, and that this difference is not due to the higher
number of query term instances. The fact that we normalise the count by the total number of collocates of
query terms in the document eliminates the possibility of larger collocate numbers affecting this difference.

To find out whether the normalised link-forming collocate count can be statistically predicted by the num-
ber of query term instances we conducted linear regression analysis on the data of one of the experiments
(HARD, top 1000 document dataset, window size 10), with the normalised link-forming collocate count
per document (/ink_cols) as the dependent variable, and the number of query term instances in the document
(gterms) as the independent variable. The R-square for the relevant document set was found to be 0.182, and
for the non-relevant document set, R-square was 0.122. Rather low R-square values support the Hypothesis 3
stated above. The result of the analysis indicates that the linear model using gterms can predict only about 18%
of the link_cols values.

Table 4
Average number of link-forming collocates (excluding original query terms), normalised by the total number of collocates of query terms
in the document

Window Relevant Non-relevant Difference (%) Wilcoxon P (2-tail) Significant
FT, top 1000

10 0.071 0.065 9.607 0.000 Y
20 0.100 0.095 5.849 0.002 Y
40 0.123 0.118 4.636 0.010 Y
FT, top 100

10 0.070 0.065 7.630 0.067 N
20 0.101 0.096 5.019 0.300 N
40 0.123 0.115 6.963 0.045 Y
HARD, top 1000

10 0.063 0.055 14.408 0.066 N
20 0.085 0.071 19.567 0.009 Y
40 0.103 0.090 14.465 0.013 Y
HARD, top 100

10 0.063 0.053 18.441 0.083 N
20 0.086 0.067 27.904 0.004 Y
40 0.105 0.086 21.992 0.002 Y
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Table 5
Difference between the aligned relevant and non-relevant sets in average LCS calculated using WordNet relations (HARD 2004 corpus,
top 1000)

Method Window Relevant Non-relevant Difference (%) Wilcoxon P (2-tail) Significant
HARD, top 1000

Links 10 0.107 0.089 19.280 0.000 Y

Links 20 0.172 0.146 18.019 0.000 Y

Links 40 0.234 0.199 17.695 0.000 Y

Types 10 0.057 0.053 5.994 0.002 Y

Types 20 0.077 0.074 4.049 0.037 Y

Types 40 0.093 0.089 4.390 0.039 Y

3.3.2. Links formed by repetition, synonymy, hyponymy and sibling relations

We compared the average lexical cohesion scores between the aligned relevant and non-relevant sets,
derived from top 1000 documents of the HARD corpus, where LCS were calculated using WordNet relations
of synonymy, hyponymy and sibling in addition to simple lexical repetition. The results of the comparison are
presented in Table 5.

As seen from the table, WordNet relations overall do not contribute much to differentiating between
relevant and non-relevant sets, compared to the use of only simple lexical repetition (cf. data under the
heading “HARD, top 1000 in Table 2). Experiments with various parameters, such as excluding the sibling
relations, and assigning different weights to relations as proposed in Galley and McKeown (2003), led to
similar results.

4. Re-ranking of document sets by lexical cohesion scores
4.1. Experimental design

Statistically significant differences in the average lexical cohesion scores between relevant and non-
relevant sets, discovered in the previous experiments, prompted us to evaluate LCS as a document ranking
function. For this purpose, we conducted experiments on re-ranking the set of top 1000 BM25-ranked
documents by their LCS scores. Document sets were formed by using weighted search with the queries
for 45 topics of the HARD corpus. The queries were created from all non-stopword terms in the “Title”
fields of the TREC topics. Okapi IR system with the search function set to BM25 (without relevance
information) was used for searching. Tuning constant k; (controlling the effect of within-document term
frequency) was set to 1.2 and b (controlling document length normalisation) was set to 0.75 (Spiarck Jones
et al., 2000).

BM25 function outputs each document in the ranked set with its document matching score (MS). We
decided to test re-ranking with a simple linear combination function (COMB-LCS) of MS and LCS. Tuning
constant x was introduced into the function to regulate the effect of LCS:

COMB-LCS = MS + x * LCS. (4)

The following values of x were tried: 0.25, 0.5, 0.75, 1, 1.5, 3, 4, 5, 6, 7, 8, 10 and 30.
We conducted experiments with both types of lexical cohesion scores:

LCSj;nks — calculated using method 1 of comparing query terms’ collocation environments by the number of
links they have;

LCSiypes — calculated using method 2 of comparing query terms’ collocation environments by the number of
related types they have.

The window sizes tested were 10, 20 and 40.
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4.2. Analysis of results

4.2.1. Links formed by simple lexical repetition
Precision results of re-ranking with the combined linear function of MS and LCS with different values for
the tuning constant x are presented in Table 6 (HARD corpus) and Table 7 (FT corpus).

4.2.1.1. HARD corpus. The results show that there is a significant increase in precision at the cut-off point of 10
documents (P@10) when LCSy;,i scores are combined with the MS as given in Eq. (4) above, with x = 8 and
window size of 40. The precision at 10 for BM25 and LCSy;,x, scores are 0.3089 and 0.3556, respectively. The
15% increase is statistically significant (Wilcoxon test at P = 0.001). Thirteen topics have higher precision and
none — lower. Average precision (AveP) also increases, although by a smaller amount when documents are re-
ranked with Eq. (4). The highest gain in average precision (5.7%) is achieved when x is 5 and window size is 20,
and the highest gain in R-Precision (5.8%) is achieved when x is 5 or 6 and window size is 20. The last two
gains are not, however, statistically significant.

The analysis of results shows that 65.39% of documents have LCS score of zero. This is mainly because a
large proportion of documents (52.64%) only have one distinct query term, making the scope for improve-
ment rather limited. Five of the 45 topics contain only one query term in the title. In the remaining 40 topics,
49.7% of all retrieved documents have only one distinct query term. It is also important to note that the
retrieved documents with one distinct query term constitute 19% of all relevant documents for these topics,

}];lejllﬁtf of re-ranking BM25 document sets by COMB-LCS (HARD corpus; LCS is calculated using simple lexical repetition only)
Runs with Window size 40 Window size 20 Window size 10

different x values 5 cp P@10 R-Prec  AveP P@10 R-Prec  AveP P@10 R-Prec
BM25 0.2196 0.3089 0.2499

Method 1 (links)

0.25 0.2201 0.3156 0.2506 0.2199 0.3178 0.2502 0.2198 0.3156 0.2504
0.5 0.2208 0.3200 0.2507 0.2207 0.3200 0.2507 0.2200 0.3178 0.2506
0.75 0.2213 0.3222 0.2514 0.2217 0.3156 0.2512 0.2202 0.3178 0.2507
1 0.2213 0.3200 0.2531 0.2217 0.3133 0.2523 0.2209 0.3156 0.2509
1.5 0.2217 0.3244 0.2530 0.2223 0.3156 0.2519 0.2214 0.3200 0.2512
3 0.2242 0.3267 0.2505 0.2241 0.3200 0.2511 0.2230 0.3222 0.2551
4 0.2240 0.3311 0.2536 0.2268 0.3222 0.2623 0.2230 0.3133 0.2535
5 0.2205 0.3400 0.2464 0.2322 0.3333 0.2644 0.2231 0.3244 0.2519
6 0.2227 0.3444 0.2586 0.2316 0.3378 0.2644 0.2230 0.3267 0.2526
7 0.2227 0.3489 0.2574 0.2314 0.3356 0.2637 0.2258 0.3289 0.2636
8 0.2265 0.3556 0.2602 0.2311 0.3422 0.2635 0.2258 0.3356 0.2628
10 0.2217 0.3556 0.2584 0.2303 0.3356 0.2634 0.2254 0.3333 0.2597
30 0.1964 0.3200 0.2349 0.2097 0.3244 0.2430 0.2179 0.3156 0.2464
Method 2 (types)
0.25 0.2196 0.3089 0.2496 0.2196 0.3067 0.2497 0.2196 0.3111 0.2495
0.5 0.2197 0.3133 0.2497 0.2197 0.3111 0.2499 0.2196 0.3133 0.2496
0.75 0.2199 0.3133 0.2498 0.2197 0.3111 0.2499 0.2197 0.3111 0.2495
1 0.2200 0.3133 0.2503 0.2198 0.3156 0.2500 0.2197 0.3133 0.2497
1.5 0.2201 0.3133 0.2513 0.2200 0.3178 0.2508 0.2199 0.3178 0.2518
3 0.2200 0.3044 0.2503 0.2203 0.3156 0.2514 0.2209 0.3200 0.2540
4 0.2199 0.3044 0.2476 0.2203 0.3156 0.2504 0.2210 0.3200 0.2545
5 0.2200 0.2978 0.2468 0.2205 0.3133 0.2503 0.2216 0.3244 0.2540
6 0.2199 0.3022 0.2464 0.2203 0.3133 0.2498 0.2216 0.3200 0.2524
7 0.2172 0.3022 0.2388 0.2207 0.3133 0.2481 0.2216 0.3222 0.2500
8 0.2168 0.3022 0.2402 0.2217 0.3111 0.2480 0.2213 0.3244 0.2495
10 0.2161 0.3044 0.2397 0.2215 0.3111 0.2469 0.2211 0.3244 0.2481
30 0.2030 0.3178 0.2343 0.2133 0.3200 0.2457 0.2142 0.3089 0.2426
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;igljtz of re-ranking BM25 document sets by COMB-LCS (FT corpus; LCS is calculated using simple lexical repetition only)
Runs with Window size 40 Window size 20 Window size 10

different x values 5 cp P@10 R-Prec  AveP P@10 R-Prec  AveP P@10 R-Prec
BM25 0.1274 0.1523 0.1383

Method 1 (links)

0.25 0.1278 0.1568 0.1382 0.1278 0.1568 0.1391 0.1276 0.1568 0.1391
0.5 0.1286 0.1568 0.1435 0.1279 0.1568 0.1386 0.1275 0.1545 0.1389
0.75 0.1283 0.1636 0.1436 0.1275 0.1659 0.1384 0.1271 0.1545 0.1460
1 0.1286 0.1614 0.1438 0.1276 0.1659 0.1441 0.1264 0.1568 0.1457
1.5 0.1282 0.1659 0.1439 0.1269 0.1659 0.1444 0.1262 0.1591 0.1449
3 0.1270 0.1636 0.1411 0.1255 0.1636 0.1422 0.1258 0.1591 0.1363
4 0.1256 0.1636 0.1370 0.1254 0.1636 0.1411 0.1244 0.1659 0.1358
5 0.1252 0.1659 0.1364 0.1251 0.1636 0.1408 0.1235 0.1636 0.1378
6 0.1297 0.1636 0.1370 0.1247 0.1636 0.1401 0.1236 0.1614 0.1435
7 0.1284 0.1682 0.1371 0.1241 0.1682 0.1394 0.1235 0.1614 0.1412
8 0.1237 0.1682 0.1362 0.1235 0.1682 0.1342 0.1230 0.1568 0.1399
10 0.1138 0.1659 0.1273 0.1220 0.1727 0.1335 0.1218 0.1545 0.1404
30 0.0891 0.1318 0.0945 0.0981 0.1591 0.1007 0.1051 0.1477 0.1112

Method 2 (types)

0.25 0.1279 0.1568 0.1383 0.1278 0.1568 0.1384 0.1276 0.1568 0.1384
0.5 0.1276 0.1545 0.1397 0.1277 0.1568 0.1384 0.1277 0.1545 0.1384
0.75 0.1279 0.1568 0.1384 0.1276 0.1568 0.1395 0.1278 0.1568 0.1395
1 0.1283 0.1568 0.1429 0.1280 0.1591 0.1395 0.1279 0.1568 0.1393
1.5 0.1286 0.1614 0.1429 0.1287 0.1614 0.1453 0.1277 0.1591 0.1456
3 0.1292 0.1636 0.1442 0.1274 0.1636 0.1446 0.1271 0.1614 0.1458
4 0.1290 0.1682 0.1407 0.1275 0.1636 0.1451 0.1273 0.1636 0.1444
5 0.1276 0.1705 0.1407 0.1273 0.1636 0.141 0.1269 0.1591 0.1436
6 0.1274 0.1705 0.1408 0.1277 0.1682 0.1408 0.1269 0.1614 0.1480
7 0.1267 0.1705 0.1406 0.1265 0.1682 0.1400 0.1268 0.1591 0.1478
8 0.1296 0.1705 0.1397 0.1262 0.1682 0.1394 0.1266 0.1591 0.1478
10 0.1292 0.1636 0.1365 0.1261 0.1682 0.1447 0.1273 0.1591 0.1477
30 0.1136 0.1455 0.1017 0.1111 0.1455 0.1076 0.1179 0.1409 0.1373

all of which were either demoted in the ranked list or retained their original rank following the LCS-based
re-ranking. Relevant documents containing only one distinct query term may contain some other semanti-
cally related word(s) instead of the user’s original query term. For example, there is a document judged
relevant for the topic “Identity Theft”, which contains only one query term “identity”. The document,
however, contains the term “fraud”, which is close in meaning to ‘“‘theft” and could be used as its replace-
ment in calculating the document’s lexical cohesion score. A method that attempts to find a replacement for
a missing query term may be useful for identifying lexical cohesion between query concepts in a document.
One such approach, proposed by Terra and Clarke (2005), relies on corpus statistics to identify a replace-
ment word for a missing query term in each document. The method was evaluated in the passage retrieval
task, and showed statistically significant improvements in P@20 over the baseline Multitext passage retrieval
function.

4.2.1.2. FT corpus. There is a maximum increase of 13.4% in P@10 with x = 10 and window size 20 when
LCSjinks 18 combined with the BM25 document matching score (P@10 for BM25 and LCS scores are
0.1523 and 0.1727, respectively). Nine out of 44 topics have higher P@10 and three — lower. Increase in the
average precision is low: 1.8% (LCSynks, X = 6; window size = 40), while the highest increase in R-Precision
(7%) is achieved with LCSy,es, X = 6 and window size of 10. The LCS;,xs run with x = 8 and window size
of 40, which showed the best performance in P@10 in the HARD corpus, has P@10 of 0.1682, and an increase
of 10% over the baseline. None of the above improvements are statistically significant, but there is a statisti-
cally significant improvement of 11% in P@10 for the run LCSypes (x = 8; window size = 40).
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4.2.2. Links formed by repetition, synonymy, hyponymy and sibling relations

We conducted document re-ranking experiments with the HARD corpus using WordNet relations in cal-
culating lexical cohesion scores. The use of WordNet relations in addition to simple lexical repetition in cal-
culating LCS, does not change notably the performance of the methods using simple lexical repetition alone
(Table 8).

We analysed the distribution of different types of WordNet relations that form lexical links to see whether
lack of improvement is due to small numbers of the WordNet relations. The number of links formed between
collocates (window size 20) by means of different relations is shown in Table 9.

The most frequent relationship is simple lexical repetition (83.4%), followed by sibling and hyponymy rela-
tionships. Only a very small percentage of links (1.8%) is formed by means of synonymy. An earlier analysis of
lexical link distribution by Ellman and Tait (2000) also showed that the most common link type is repetition of
the same word. However, according to their results, repetition was closely followed by the relationship between
words of the same category in Roget thesaurus, which was in turn followed by links between words belonging to
the same group of categories in Roget and, finally, links between words connected by one level of internal the-
saurus pointers. In their study, Ellman and Tait used the lexical chaining algorithm by Morris and Hirst (1991)
to identify lexical links between words, and a small corpus of long texts of different genres. In our experiments,
small numbers of synonymy relations between collocates could be due to, firstly, rather fine-grained partition-
ing of words into senses in WordNet, as a result of which many synsets consist of very few or only one word.
Secondly, compound synset members are not used in our method of lexical link construction (see Section 3.1.1).

Table 8
Results of re-ranking BM25 document sets by COMB-LCS (HARD corpus; LCS is calculated using simple lexical repetition and WordNet
relations)

Runs with Window size 40 Window size 20 Window size 10
different x values 4 .p P@10  R-Prec  AveP P@10  R-Prec  AveP P@10 R-Prec
BM25 02196 03089  0.2499

Method 1 (links)

0.25 0.2202 0.3133 0.2507 0.2200 0.3178 0.2501 0.2198 0.3156 0.2501
0.5 0.2210 0.3200 0.2511 0.2207 0.3200 0.2505 0.2202 0.3178 0.2503
0.75 0.2215 0.3244 0.2513 0.2212 0.3178 0.2517 0.2205 0.3178 0.2504
1 0.2216 0.3222 0.2512 0.2222 0.3133 0.2524 0.2210 0.3156 0.2503
1.5 0.2220 0.3289 0.2508 0.2227 0.3111 0.2515 0.2218 0.3178 0.2544
3 0.2229 0.3311 0.2517 0.2245 0.3267 0.2499 0.2236 0.3200 0.2547
4 0.2205 0.3356 0.2458 0.2272 0.3333 0.2638 0.2235 0.3289 0.2522
5 0.2185 0.3444 0.2498 0.2321 0.3356 0.2641 0.2263 0.3311 0.2639
6 0.2187 0.3511 0.2506 0.2319 0.3378 0.2637 0.2262 0.3333 0.2627
7 0.2145 0.3533 0.2511 0.2292 0.3400 0.2560 0.2315 0.3311 0.2628
8 0.2137 0.3533 0.2489 0.2271 0.3400 0.2556 0.2312 0.3311 0.2621
10 0.2100 0.3533 0.2406 0.2258 0.3422 0.2568 0.2283 0.3244 0.2522
30 0.1943 0.3178 0.2309 0.2062 0.3289 0.2420 0.2127 0.3178 0.2441

Method 2 (types)

0.25 0.2197 0.3089 0.2499 0.2196 0.3067 0.2499 0.2196 0.3089 0.2496
0.5 0.2199 0.3111 0.2497 0.2198 0.3089 0.2498 0.2198 0.3133 0.2493
0.75 0.2202 0.3156 0.2505 0.2198 0.3111 0.2506 0.2201 0.3178 0.2511
1 0.2202 0.3133 0.2503 0.2199 0.3111 0.2506 0.2201 0.3156 0.2513
1.5 0.2204 0.3156 0.2511 0.2203 0.3133 0.2504 0.2211 0.3200 0.2526
3 0.2206 0.3111 0.2496 0.2204 0.3178 0.2529 0.2176 0.3156 0.2517

4 0.2205 0.3067 0.2483 0.2166 0.3111 0.2512 0.2179 0.3178 0.2517
5 0.2205 0.3067 0.2479 0.2169 0.3133 0.2505 0.2178 0.3178 0.2528
6 0.2206 0.3067 0.2478 0.2170 0.3089 0.2500 0.2181 0.3200 0.2534
7 0.2204 0.3111 0.2498 0.2171 0.3067 0.2499 0.2178 0.3178 0.2533
8 0.2179 0.3089 0.2443 0.2171 0.3044 0.2489 0.2153 0.3222 0.2454
0 0.2162 0.3133 0.2423 0.2150 0.3133 0.2435 0.2150 0.3178 0.2415
0 0.2093 0.3267 0.2413 0.2108 0.3267 0.2446 0.2165 0.2933 0.2428
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Table 9
The number of lexical links formed by different relations

Relationship Number of collocates Percent of collocates (%)
Simple lexical repetition 708,050 83.4
Synonymy 14,864 1.8
Hyponymy 28,117 33
Sibling 97,856 11.5

4.3. Qualitative analysis

In order to gain some qualitative understanding of the relation between lexical cohesion and the relevance
property of texts, we have examined a few documents from the collection used in the experiments described
above. Although, it is not possible to generalise, the small sample of documents examined suggests that certain
patterns of lexical links could be identified in the documents promoted and demoted after LCS re-ranking. In
the set examined, we noticed that documents that are promoted contain most of the query terms, and there are
several instances of each of them. It also appears that the instances of query terms are spread throughout the
text, i.e., they are not concentrated in isolated sections of the text. As expected, the instances of query terms
are well connected by lexical links in the LCS promoted documents. An example of this type of document is
NYT20030711.0053, retrieved in response to query “AIDS in Africa” (topic no: HARD-409). There are many
instances of the both query terms (10 instances of “AIDS” and 9 instances of “Africa’) in the text and they are
extensively connected with each other by lexical links.

In the demoted documents, we noticed three different patterns. Some of the demoted documents are made
up of disjoint pieces of text that cover separate and unrelated news stories. The query terms appear in different
parts (different stories) in these documents and therefore have no or few lexical links between them. An exam-
ple of this type of document is NYT20030616.0015 which is retrieved in response to query “Chimpanzee
Language Ability”’ (topic no: HARD-407). The document consists of several short (a paragraph-long) sci-
ence-stories. The term “chimpanzee” appears in a story about a conservation project, “language” appears
in a story about a study of neurological activities in humans and refers to “differential equations and other
mathematical language beloved by economists”, and “ability” appears in a short story on “Child-rearing
problems” and “‘anxiety among parents already uncertain about their ability to be parents”. Another type
of demoted document exhibits a different structure. In the document AFE20031110.0344 (topic no:
HARD-411) three of the four query terms (“Natural Disasters and Global Warming’) occur but not all in
the same context. The term “‘disaster’” appears several times in this document and refers to an ecological disas-
ter caused by oil leakage from a tanker. However, this is not a natural disaster as required in the topic descrip-
tion and narrative. The term “natural” appears only once and in the context of “The sinking dealt a huge blow
to a region of outstanding natural beauty”. Similarly, the term “‘global” appears once and out of context:
“disaster was the worst of its kind in Europe and second only on a global scale to the 1989 slick from the
Exxon Valdez catastrophe”. Clearly the term does not here refer to “global warming’ which was the context
specified in the topic description and narrative. In the third type of demoted documents, the query topic is

Table 10

Summary of the document qualitative analysis

Topic Promoted Demoted Reason LCS
409 NYT20030711.0053 Extensive lexical links 0.348
426 X1E20031021.0398 Extensive lexical links 0.244
407 NYT20030616.0015 Disjoint stories 0.017
405 AFE20031210.0021 Disjoint stories 0

411 AFE20031110.0344 Unrelated contexts 0.037
407 AFE20030523.0366 Unrelated contexts 0
407 NYT20030804.0022 Unrelated contexts 0
419 NYT20030909.0070 Unrelated contexts 0.018
415 AFE20031015.0922 Marginal 0.040
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treated marginally. In the document AFE20031015.0922, which is retrieved in response to “Life on Mars”
(topic no: HARD-415), there are several instances of the term “Mars” but only one instance of the term “life”.
The document is mainly about space missions to Mars, and although the query terms occur in related contexts,
the subject of “life on Mars™ was mentioned in passing in the document, and therefore, there are only few links
between these two query terms. Table 10 summarises the findings of this small-scale qualitative analysis.

5. Conclusions and future work

In this study we explored the property of lexical cohesion between query terms in documents: whether it is
related to relevance, and whether it can be used to predict relevance in document ranking. The first hypothesis
and the related sub-hypothesis were:

Hypothesis 1. There exists statistically significant association between the level of lexical cohesion of the
query terms in documents and relevance.

Hypothesis 1.1. Collocational environments of different query terms are more cohesive in the relevant docu-
ments than in the non-relevant, and this difference is not due to the larger number of query term instances.

We conducted experiments by building sets of relevant and non-relevant documents, calculating their lex-
ical cohesion scores and comparing the averages of these scores. The experiments showed that there exists a
statistically significant difference between the average lexical cohesion scores of relevant and non-relevant doc-
uments extracted from the top 100 and top 1000 BM25-ranked sets. We also proved that this difference is gen-
uine, and is not affected by differences in BM25 scores, number of instances of query terms or other document
characteristics. Following these experiments, we explored another hypothesis:

Hypothesis 2. Ranking of a document set by lexical cohesion scores results in significant performance
improvement over term-based document ranking techniques.

We conducted experiments on re-ranking BM25-ranked document sets with a simple linear combination
function of BM25 document matching score and the lexical cohesion score. Different values of a tuning con-
stant x, regulating the effect of LCS were tried. The results demonstrate that with certain x values significant
improvements over BM25 document ranking function can be achieved, thus providing support for Hypothesis
2. The experiments reported suggest that there is strong association between lexical cohesion and document
relevance. To achieve further benefit from lexical cohesion in document ranking, more experimentation is
needed. In particular, the issues discussed below need further investigation.

The use of lexical relationships between words obtained by using WordNet did not lead to any noticeable
differences in performance. The reason is that links formed by means of WordNet relations only constitute
16.6% of all links, the rest being due to simple lexical repetition. One possible cause is rather fine-grained par-
titioning of senses in WordNet. It may be useful to use more coarse-grained partitioning of senses, as sug-
gested in Mihalcea and Moldovan (2001). The second possible cause is that we did not use compound
synset members in LCS calculation. It may be useful to develop methods to include compound terms in lexical
link calculation.

In the method reported in this paper, documents which contain query terms close or adjacent to each other
do not receive any special treatment compared to documents where query terms are separated by longer dis-
tances. Intuitively, query terms located in close proximity are more likely to be related topically. We experi-
mented with attributing collocates in the overlapping windows of two distinct query terms to both of them,
which led to the formation of more links between the collocates of closely located query terms, and conse-
quently higher LCS. But, the results were inferior to those of the reported method. Interestingly, our study
also shows that there is no significant difference between the average shortest distances between distinct query
terms in the relevant and non-relevant sets in two TREC collections. However, it has been demonstrated in
some studies that term proximity can be useful for document retrieval tasks (e.g., Clarke & Cormack,
2000), therefore possible combination of the two approaches to document ranking needs to be investigated
further. In particular, queries which consist of a stable multi-word unit (e.g., “United Nations’’) may benefit
more from proximity search, whereas queries consisting of a set of separate words (e.g., “China trade) or
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“loose” phrases, whose components can occur separately in text (e.g., “AIDS in Africa’), may benefit more
from lexical cohesion-based methods.

One of the characteristics of the reported method for estimating lexical cohesion between query terms is
that it requires presence of at least two query terms in a document. Documents containing one query term
constitute 19.5% of all relevant documents in the experiments reported. A method proposed by Terra and
Clarke (2005), which attempts to find replacement terms for missing query terms, may prove useful in captur-
ing more of the lexical cohesive relations between the concepts underlying query terms.

In our approach, all links formed by repetition are treated equally. Arguably, links formed by collocates
with high inverse document frequency (idf) are more indicative of a strong lexical cohesion between the con-
texts of query terms, than links formed by words with low idf. For example, some collocates could be dis-
course-forming or topic-neutral words (e.g., “say”, “report”, “argue’’), which tend to have low idf. One
possible future extension of this work is to weight links using idf weights of the terms forming them.

The corpora used in this study consist of news articles which are usually relatively short documents (see
Table 2 earlier in the paper). Arguably, lexical cohesion could be more useful for ranking longer documents,
as there is more scope for topic diversity in longer documents compared to short ones. In the future we plan to
conduct more experimentation on corpora containing longer documents.

Apart from being a potential aid as a ranking function, the proposed method of estimating the degree of
lexical cohesion between query terms could be useful in other tasks such as query expansion and summari-
sation. It is likely that query terms with a strong lexical cohesion belong to the same topic, therefore
they are more likely to collocate with relevant query expansion terms than query terms with weak lexical
cohesion.
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