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Abstract

Currently, event-related potential (ERP) signals are analysed in the time domain (ERP technique) or in the frequency domain (Fourier analysis
and variants). In techniques of time-domain and frequency-domain analysis (short-time Fourier transform, wavelet transform) assumptions
c TFCA), the
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oncerning linearity, stationarity, and templates are made about the brain signals. In the time–frequency component analyser (
ssumption is that the signal has one or more components with non-overlapping supports in the time–frequency plane. In this
FCA technique was applied to ERPs. TFCA determined and extracted the oscillatory components from the signal and, simu

ocalized them in the time–frequency plane with high resolution and negligible cross-term contamination. The results obtained by
FCA were compared with those obtained by means of other commonly used techniques of ERP analysis, such as bilinear time
istributions and wavelet analysis. It is suggested that TFCA may serve as an appropriate tool for capturing the localized ERP com

he time–frequency domain and for studying the intricate, frequency-based dynamics of the human brain.
2004 Elsevier B.V. All rights reserved.
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. Introduction

The present paper introduces a technique of signal analy-
is in the time–frequency plane. The technique characterizes
he oscillatory components of the complex neuroelectric
esponses of the brain by identifying and extracting the max-
mal energies of the oscillatory components and localizing
hem in the time–frequency plane. It simultaneously displays
ll significant components in the time–frequency plane and

hus presents them in their entirety. The time localization of

∗ Corresponding author. Present address: Hacettepe University, Specialty
rea of Experimental Psychology, Beytepe Campus 06532, Ankara, Turkey.
el.: +90 312 297 8335; fax: +90 312 299 2100.
E-mail addresses:kozdemir@ieee.org (A.K.̈Ozdemir),

karakas@hacettepe.edu.tr (S. Karakas¸).

the frequency components is of high resolution and has
ligible cross-term contamination. In addition, a compar
of this technique with existing techniques of time–freque
analysis used for electrical signals of the brain is presen

The brain emits temporally-ordered electrical sign
which can be recorded from the scalp of animals or
mans. These electrical fluctuations can be measured
event-related potentials (ERPs), which are the time-do
responses to external or internal stimuli (Picton et al., 1974
Picton, 1988). The basic technique for ERP waveform an
ysis is averaging. This technique is used for extracting
components of the evoked ERP from the superimposed
domly occurring noise and for increasing the signal-to-n
ratio (Dawson, 1954).

Pioneering work on the gamma and alpha oscillation
spired the study of oscillatory activity of the brain (Berger
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1929; Adrian, 1942). Recently, the analysis of the oscilla-
tory responses of the brain to external or internal stimuli,
the event-related oscillations (EROs), has gained much ac-
ceptance. Another approach to brain’s neuroelectricity has
thus become its analysis in the frequency domain. Intensive
research shows that the oscillations at various frequencies
are valid indices of the brain’s information processing opera-
tions (for review, seeBaşar, 1998, 1999; Porjesz et al., 2002;
Kamarajan et al., 2004).

The time evolution of the amplitudes, i.e. the ERP
waveform alone cannot provide the time localization
of the frequency components. Frequency-domain anal-
ysis involves the decomposition of ERP into its con-
stituent oscillations (for a review, seeBaşar, 1980,
1998). Growing amount of research shows that the compound
ERP and the ERP components are determined by the super-
position of oscillations, called event-related oscillations, in
various frequency ranges (Başar, 1980, 1998; Bas¸ar et al.,
2000; Bas¸ar and Ungan, 1973). Karakaşet al. (2000a, 2000b)
have demonstrated that, for a series of cognitive paradigms,
the amplitudes of the ERP components are determined by
a specific combination and phase relationship of oscillatory
components, specifically in the delta and theta ranges. The
importance of phase relationship of multiple oscillatory com-
ponents in the production of the average waveform has been
demonstrated in the influential study byMakeig et al. (2002).
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domains, time–frequency signal processing is the natural
tool for the analysis of non-stationary signals with local-
ized time–frequency supports. Time–frequency distributions
(TFDs) are two-dimensional functions that assign the en-
ergy content of signals to points in the time–frequency plane
(Cohen, 1989). The performance of a TFD is related to its
accuracy in describing the signal’s energy content in the
time–frequency plane, keeping spurious terms negligible.
Composite (multi-component) signals, such as biological,
acoustic, seismic, speech, radar and sonar signals, whose
components have compact time–frequency supports form an
important application area for time–frequency signal analysis
(Cohen, 1995).

A widely used approximation to time–frequency represen-
tation of brain signals is digital filtering (DF). In this method,
independent filters are consecutively applied to ERP. Filter
limits in DF may be obtained in a response-adaptive way
such that the low and high cut-off frequencies of the filters
are determined from the frequency range of the resonant se-
lectivities in the corresponding AFC (Cook III and Miller,
1992; Farwell et al., 1993; Bas¸ar, 1980). DF thus produces
oscillatory components of varying amplitudes within the
empirically or theoretically determined filter limits. DF is
not well suited to discern the time evolution of an oscil-
lation in a given frequency range in the time–frequency
domain.

aly-
s ch
i basis
f n be
r , then
t ERP.
W vide
a d by
W ratic
B ave
p ts in
E 01;
B s
s suits
a ypes
t ns by
R the
w ffer-
e e lo-
c f the
l cho-
s nary
E

ural
c ics of
t -
s in the
t ERP
c istri-
b n
his study showed that the average event-related potent
ombination of phase resetting of ongoing EEG activity w
oncurrent energy increases. It thus emphasized the im
ance of oscillatory components and stimulus-induced p
esetting.

One of the widely used methods for demonstra
scillatory responses of the brain is the transient (evoke
ponse frequency characteristics method (TRFC). In TR
he amplitude–frequency characteristics are computed b
pplication of one-sided Fourier transform to the trans
esponse (Solodovnikov, 1960; Parvin et al., 1980; Bas¸ar,
980, 1998; Jervis et al., 1983; Brandt and Jansen, 1
öschke et al., 1995; Kolev and Yordanova, 1997). Since the
mplitude–frequency characteristics are not computed b
uccessive application of different frequencies, rapid tra
ions that occur in the brain signal do not present a pro
or the TRFC method. The peaks in the amplitude–frequ
haracteristics (AFC) reveal the resonant frequencies o
ystem: its excitability and also its response susceptib
Başar, 1998; Yordanova and Kolev, 1998). The AFC graph
hus demonstrates amplitude variations of frequency s
ivities. However, it cannot provide the time localization
he components. The technique also assumes that the s
tudied is linear. Owing to these, the distinctly appea
eaks in TRFC are used in the literature to obtain on
lobal description of the tuning frequencies of the sys
for review, seeBaşar, 1998, 1999).

Since the oscillatory and non-stationary signal com
ents whose superposition form the ERP waveform
oncurrently localized in both the time and freque
Another commonly used technique is the wavelet an
is (WA) (Samar et al., 1999). This time–frequency approa
s a technique that decomposes the signal into a set of
unctions, called wavelets. If the components of ERP ca
epresented by using distinct wavelet basis components
he wavelet decomposition is successful on the desired

hen different sizes of wavelets are used, WA may pro
better time-scale localization than DF. Results obtaine
A thus depend on the chosen wavelet prototype. Quad
-spline wavelet and orthogonal cubic spline wavelet h
roved useful in demonstrating the frequency componen
RP signals (Başar, 1998; Demiralp et al., 1998, 1999, 20
aşar et al., 1999; Yordonova et al., 2002). Other approache
uch as continuous wavelet transform with matching pur
nd wavelet packet models use multiple wavelet protot

hat are selected from a predefined set. The modificatio
osso et al. (2001)have made it possible to calculate
avelet entropy and the relative wavelet energy of the di
nt frequency components. Thus, WA provides the tim
alization of the frequency components. The efficiency o
ocalization, however, depends on the suitability of the
en wavelet basis to the complex and highly non-statio
RPs.
Short-time Fourier transform (STFT) may be a nat

hoice when analysing the time–frequency characterist
he ERP signal (Cohen, 1989). However, STFT fails to re
olve those ERP components that are closely localized
ime–frequency plane. To increase the resolution of the
omponents in the time–frequency plane, the Wigner d
ution can be used (Cohen, 1989). The Wigner distributio
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Wx(t, f) of a signalx(t) is defined by the following integral

Wx(t, f ) =
∫ ∞

−∞
x

(
t + t′

2

)
x∗

(
t − t′

2

)
e−j2πft′ dt′. (1)

Although the use of Wigner distribution significantly im-
proves the resolution of the individual ERP components, the
resultant time–frequency description is heavily cluttered by
the cross-terms of the distribution. The cross-terms are oscil-
latory artefacts in the time–frequency plane. These artefacts
may interfere with the auto-components and decrease the
interpretability of the Wigner distribution. The cross-terms
that occur due to the interaction of different signal compo-
nents (i.e. auto-components) in a multi-component signal are
calledouter interference (cross) terms, and the cross-terms
that occur due to the interaction of a single-signal component
with itself are calledinner interference (cross) terms (Fig. 1)
(Hlawatsch and Flandrin, 1997). Because of the existence of
cross-terms, the Wigner distribution of ERPs cannot provide
the desired result.

To overcome cross-term cluttering in the Wigner
distribution-based analysis of ERP, a short-time analysis tech-
nique has recently been proposed that applies adaptive filters
on the Wigner distribution (Jones and Baraniuk, 1995; Tağluk
et al., 2002, in press). To emphasize the high frequency fea-
tures that have low energy, ERP was decomposed into six
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of time–frequency distributions (Cohen, 1989). In this class,
the time–frequency distributions of a signalx(t) are given by

TFx(t, f ) =
∫ ∞

−∞

∫ ∞

−∞
κ(ν, τ)Ax(ν, τ)e−j2π(νt+τf ) dν dτ,

(2)

where κ(ν, τ) is called the kernel of the transformation
(Cohen, 1989, 1995) andAx(ν, τ) is the symmetric ambi-
guity function (AF) which is defined as the two-dimensional
inverse Fourier transform (FT) of the Wigner distribution

Ax(ν, τ) �
∫ ∞

−∞

∫ ∞

−∞
Wx(t, f )ej2π(νt+τf ) dt df

=
∫ ∞

−∞
x

(
t + τ

2

)
x∗

(
t − τ

2

)
ej2πνt dt. (3)

Traditionally, the low-pass smoothing kernelκ(ν, τ) is de-
signed to let pass the auto-terms that are centered at the ori-
gin of the AF plane, and to suppress the cross-terms that are
located away from the origin. The properties of the result-
ing time–frequency distribution are thus closely related to
those of the chosen kernel (for a review of some of this type
of time–frequency distributions withfixed kernels, seePage,
1952; Mergenau and Hill, 1961; Choi and Williams, 1989;
Cohen, 1989). Usually, these distributions perform well only
f AF
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ub-bands. Using short time, adaptively filtered Wigner
ributions, time–frequency analysis was made on each
and. Finally, using a frequency weighting to provide
verall time–frequency representation, the time–frequ
istributions corresponding to each of the six sub-band
als were merged. As in all STFT applications, there is a
ff between time and frequency localization. The narro

he chosen time interval, the better the temporal resol
ut the poorer the frequency resolution, and vice versa.

Since cross-terms in the Wigner distribution are la
mplitude oscillations, another approach to suppress

s to smooth the Wigner distribution. In a unified framewo
he distributions obtained by smoothing the Wigner distr
ion were studied under the name of Cohen’s bilinear c

ig. 1. Wigner distributions of some artificially generated signals. T
ime–frequency support of the signal is convex (a time–frequency s
he connecting line segmentAiAj is also contained inS), the Wigner di
erm interference. (b) On the other hand, a non-convex auto-term s
ulti-component signals lead to outer interference terms that are due
or a limited class of signals whose auto-terms in the
lane are located inside the pass-band region of the k
(ν, τ). For other signals, they offer a trade-off between g
ross-term suppression and high auto-term concentrati

To overcome the shortcomings of the TFDs with fi
ernels, TFDs with signal-dependent kernels were prop
Baraniuk and Jones, 1993; Czerwinski and Jones, 1995). For
nstance, the well-known optimal radially Gaussian ke
ORGK) design adaptively chooses the kernelκ(ν, τ) to
over the auto-terms and to keep cross-terms out of its
and (Baraniuk and Jones, 1993). Signal-dependent TFD

hat adapt the pass-band of the kernel to the location o
uto-terms in the AF domain usually offer better cross-t
uppression and higher resolution than the TFDs with

hed lines outline the support of the respective auto-components. (an the
alledconvexif for each pair of its pointsAi = (ti , fi ) andBj = (tj , fj ) in S,
n has a very high auto-term concentration, and there is negligible
produces cross-terms, inner interference terms, in the time–frequenne. (c)
interaction between different auto-terms in the time–frequency plane
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kernels. However, design of a single kernel for the entire
signal may lead to some compromises when analysing
multi-component signals (Jones and Baraniuk, 1995). The
adaptation of the kernel at each time to achieve optimal local
performance usually provides better TFDs at the expense of
significantly increased computational complexity (Jones and
Baraniuk, 1995). Nevertheless, the design of a single kernel
at each time instant may lead to similar compromises as
in ORGK when there are signal components that overlap
in time.

This paper presents a new technique, TFCA, that pro-
vides a high-resolution time–frequency characterization of
localized signal components (Arıkan et al., 2003;Özdemir
and Arıkan, 2000, 2001;̈Ozdemir et al., 2001;̈Ozdemir,
2003). The only assumption made about the components
of the signal is that they have non-overlapping supports in
the time–frequency plane. As explained in Section2.4.2,
this assumption on the signal components can be relaxed as
well. Under the assumption of non-overlapping signal com-
ponents, the TFCA technique makes use of a component
adaptive time warping operation to transform analysed signal
components with non-convex supports into ones with convex
supports. The warped signal components are extracted by
using a time–frequency domain incision algorithm and their
corresponding distributions are computed by using direction-
ally smoothed Wigner analysis. The idea is that, for signals
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interference terms) and within the component itself (inner
interference terms), while preserving the time–frequency
localization of the auto-components. As ERPs have localized
time–frequency supports, the TFCA technique may be an
appropriate tool for high-resolution ERP analysis. It may
provide both an accurate time domain identification and rep-
resentation of the frequency components that constitute the
ERP. TFCA can also extract individual signal components
from noisy recordings.

The aim of the present study has been to describe
the TFCA technique, and to test its applicability to
time–frequency analysis of ERP signals. The technique was
tested on a simulated signal and on ERPs that were obtained
under the active oddball (OB) paradigm (Sutton et al., 1965).
Since the ERP components and also the ERO components that
form the OB waveform have been well established (Başar-
Eroğlu et al., 1992; Polich and Kok, 1995; Karakas¸ et al.,
2000a, 2000b), ERP of OB is an appropriate signal for test-
ing the utility of a signal analysis technique, and for demon-
strating the advantages that the technique may possess over
others currently used, and cited in the literature. The present
study compared the findings that were obtained with TFCA
to those obtained with the commonly used time–frequency
technique, the Wigner analysis.
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ith convex supports Wigner distribution provides supe
ime–frequency resolution with negligible cross-term in
erence. Finally, by using an inverse warping transforma
he cross-term free distribution of the original, i.e. unwar
omponents are obtained. In TFCA, after a component i
racted and its distribution is computed, that compone
ubtracted from the analysed signal and the same an
s conducted on the residual signal until distributions fo
omponents are obtained.

One of the contributions of this paper is introduction
arping transformation into time–frequency analysis of E
ignals. As detailed, the warping function is computed
sing short-time Fourier transformation, which provide
oarse but cross-term free distribution. Then, the suppo
he analysed signal component is isolated by using an i
egmentation algorithm. After the orientation of the isola
upport is identified, time–frequency domain rotations
ranslations (enabled by fractional Fourier transforma
ime shifts and frequency modulations, respectively) are
ized to obtain a support which has a positive and sin
aluedspine. Finally, the warping function correspondi
o estimated spine is computed by quadrature techni
ence, in TFCA, it is assumed that the signal compon
f the brain have localized time–frequency supports w
orresponding spines can be transformed into positive
ingle-valued spines by using time–frequency domain
ions and translations.

In contrast to Wigner distribution and its smoothed
ions, TFCA yields negligible cross-term cluttering betw
he different components in the composite signal (o
. Methods and materials

.1. Subjects

The data were acquired from 20 young voluntee
dults (18–29 years; 5 males and 15 females) who
ecruited from the university student population. Subj
ere naive to electrophysiological studies. Only th

ndividuals who reported being free of neurological
sychiatric problems were accepted. Individuals who w
t the time of testing, under medication that would h
ffected cognitive processes or who stopped taking
edication, were excluded. The hearing level of the pote

ubjects was assessed through computerized audio
esting prior to the experimental procedures. Individ
ith hearing deficits were not included in the stu
ither.

.2. Stimuli and paradigms

The auditory stimuli had 10 ms r/f time, 50 ms durat
nd were presented over the headphones at 65 dB SPL
eviant stimuli (n= 30–33, 2000 Hz) occurred randomly w
probability of about 0.20 within a series of standard stim
n= 120–130, 1000 Hz) that were presented with a prob
ty of about 0.80. According to the procedures of the odd
aradigm, participants had to mentally count the occurr
f deviant stimuli and to report them after the session
een terminated (for details of the methodology, seeKarakaş
t al., 2000a).
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2.3. Electrophysiological procedures

Electrical activity of the brain, the prestimulus elec-
troencephalogram (EEG) and the poststimulus ERP, were
recorded in an electrically shielded, sound-proof chamber.
Recordings were taken from 15 recording sites (ref: linked
earlobes; ground: forehead) of the 10–20 system under
eyes-open condition. The present study reports findings
from the Fz recording site.

Bipolar recordings were made of electro-ocular and elec-
tromyographic activity for online rejection (of responses
whose amplitudes exceeded±50�V) and offline rejec-
tion (through visual inspection) of artefacts. Rejection oc-
curred for epochs that contained gross muscular activity,
eye-movements or blinks. Electrical activity was amplified
and filtered with a bandpass between 0.16 and 70 Hz (3 dB
down, 12 dB/octave). It was recorded with a sampling rate
of 500 Hz and a total recording time of 2048 ms, 1024 ms
of which served as the prestimulus baseline. EEG-ERP data
acquisition, analysis, and storage were achieved by a com-
mercial system (Brain Data 2.92). A notch filter (50 Hz) was
not activated.

2.4. Description of TFCA: procedures and applications

tion
2 rp-
i
a on-
s FCA
i ency
a

2
s

ss-
i d
R rald,
2 the
f d
ϕ

f hase,
ζ nt.
W ing
f at
f o-
r e uti-
l

ne-
p orm.
T -
f

x

where the kernel of the transformationBa(t, t′) is

Ba(t, t
′) = Aφ exp(jπ(t2 cotφ − 2tt′ cscφ + t′2 cotφ)),

Aφ = exp(−jπ sgn(sinφ)/4 + jφ/2)

| sinφ|1/2
, φ = a

π

2
. (5)

From this definition, it follows that first-order FrFT is the or-
dinary Fourier transform and zeroth-order FrFT is the func-
tion itself. The definition of the FrFT is easily extended to
outside the interval [−2, 2] by noting thatF4k is the identity
operator for any integerk and FrFT is additive in index, i.e.
{Fa1{Fa2x}}(t) = {Fa1+a2x}(t).

Fractional domain warping is the generalization of the
time domain warping to fractional Fourier transform do-
mains (̈Ozdemir et al., 2001). The warped fractional Fourier
transform of a signalx(t) is obtained by replacing the time-
dependence of its FrFT by a warping functionζ(t). Thus, if
x(t) is the time domain signal with theath-order FrFTxa(t),
then the warped FrFT of the signal is given by

xa,ζ(t) = xa(ζ(t)), (6)

whereζ(t) is the warping function associated withxa(t).
In TFCA, high resolution distribution of signal compo-

nents with non-convex time–frequency support (Fig. 2b) is
obtained using adaptively chosen fractional domain warp-
ing transformations. For each analysed signal component,
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In this section, TFCA is presented in detail. In Sec
.4.1, some preliminaries on the fractional domain wa

ng transformation are provided. Then, in Section2.4.2., the
nalysis of multi-component signals by TFCA is dem
trated. Using simulated data, the performance of T
s compared to several other techniques of time–frequ
nalysis.

.4.1. Time–frequency analysis of mono-component
ignals by fractional domain warping

Time domain warping is especially useful in proce
ng frequency-modulated signals (Meda, 1980; Brown an
abiner, 1982; Wulich et al., 1990; Coates and Fitzge
000). A typical member of this class of signals is of

orm of x(t) =A(t)ej2πϕ(t), whereA(t) is the amplitude an
(t) is the phase in Hz. Ideally, the warping function,ζ(t),

or this signal should be chosen as the inverse of its p
(t) =ϕ−1(fst), wherefs > 0 is an arbitrary scaling consta
ith this choice, the warped function takes the follow

orm:xζ(t) = A(ζ(t))ej2πfst , which is a sinusoidal function
requencyfs with envelopeA(ζ(t)). Consequently, the alg
ithms designed to operate on sinusoidal signals can b
ized on the warped signal, which has a narrow bandA(ζ(t)).

Fractional Fourier transformation (FrFT) is a o
arameter generalization of the ordinary Fourier transf
heath-order,xa(t), a∈ R, |a| ≤ 2 fractional Fourier trans

orm of a function is defined as (Almeida, 1994)

a(t) = {Fax}(t)�
∫ ∞

−∞
Ba(t, t

′)x(t′) dt′, (4)
he warping function is determined on the basis of the c
onent’s spine, defined as the centre of mass alon

ime–frequency domain support of the signal componen
ompute the warping functionζ(t), a single-valued spine
eeded. If the support of the signal componentx(t) is as shown

n Fig. 2e, its spine is a multiple valued function of time. Ho
ver, if the support is rotated as shown inFig. 2f, the spine
orresponding to the rotated support becomes a single
ed function of time and is identical with the instantane

requency. The required time–frequency rotation can be
ormed by the fractional Fourier transformation (Almeida,
994).

If the spine of the fractional Fourier transformed sig
a(t) shown inFig. 2f is given byψa(t), ti ≤ t≤ tf , the inverse
f the warping function is computed as (Özdemir and Arıkan
000)

Γ (t) =
∫ t

ti

ψa(t′) dt′, ti ≤ t ≤ tf,

ζ−1(t) = Γ (t)
fψa

+ ti, ti ≤ t ≤ tf,

(7)

herefψa is the mean of the spine

ψa =
∫ tf

ti

ψa(t
′) dt′/(tf − ti ). (8)

ith these equations, the warping functionζ(t) becomes

(t) = Γ−1(fψa (t − ti )), ti ≤ t ≤ tf . (9)

f the spineψa(t) is a strictly positive function of time,Γ (t)
efined in(7) is a monotonically increasing function of tim
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Fig. 2. (a) A signalx(t) and (b) its (−0.75)th-order FrFTx(−0.75)(t); (c) the Wigner distributions ofx(t) and (d)x(−0.75)(t); (e) the spines ofx(t) and (f)x(−0.75)(t)
plotted on the support of their auto-term Wigner distributions. Although the spine in (e) is a multi-valued function of time, the spine correspondingto the rotated
support becomes a single-valued function of time as shown in (f).

Therefore, its inverse given in(9) exists and it is unique. Oth-
erwise, the frequency-modulated signalx

δf
a (t)� xa(t)ej2πtδf is

used, whereδf is chosen such that the spineψδf
a (t)�ψa(t) +

δf of xδf
a (t) is a strictly positive function of time. Hence, for

the clarity of the presentation, it will be assumed thatψa(t) is
a strictly positive function of time. To illustrate this, the effect
of the warping operation on the simulated signal inFig. 2a is
shown inFig. 3a. In this example, the warped signalxa,ζ(t) is
computed by using(4) and (6)with a=−0.75 andδf = 0.

After the warping operation, time–frequency support of
the signalxa,ζ(t) is localized around the line segment (t̄, fψa ),
ti ≤ t̄ ≤ tf , in the time–frequency plane. Thus, by using the
warping operation, the signal component with non-convex
time–frequency support is transformed to a component with
convex support in the time–frequency plane (Özdemir and
Arıkan, 2000).

In order to determine the time–frequency representation
of the mono-component signal, first, the Wigner distribution
of the warped signal is used to calculate a high-resolution

time–frequency representation of the signal in theath
fractional domain. Then, this fractional domain represen-
tation has to be rotated back in order to obtain the desired
time–frequency representation. The mathematical details of
these operations are given in (Özdemir and Arıkan, 2000).
The resultant TFD ofx(t) obtained by fractional domain
warping analysis is given inFig. 3b.

2.4.2. Application of TFCA to the analysis of
multi-component signals

In this section, the TFCA and its steps are demonstrated
on a three-component signals(t) = ∑3

i=1s
i(t), produced by

combining the three components inFig. 4a–c with the simu-
lated additive noisew(t) in Fig. 4d. The mean ratio of the
signal-to-noise power spectral densities was chosen to be
5 dB. The noisy signalx(t) = s(t) + w(t) and its Wigner dis-
tributionWx(t, f) are shown inFig. 4e and f, respectively. The
plot of the Wigner distribution clearly exhibits significant
cross-terms.

F a and ( al
d

ig. 3. (a) The warped fractional Fourier transform of the signal inFig. 2
omain warping analysis.
b) the time–frequency distribution ofx(t) obtained by using the fraction
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Fig. 4. The three-component signalx(t) shown in (e) is formed by combining the three synthetically generated components given in (a)–(c) with additive noise
shown in (d). The Wigner distributionWx(t, f) of the composite signal is given in (f). The signal component in (a) that lies in the upper right part of (f) has a
non-convext–f support, and it suffers from inner interference terms. On the other hand, the component in (c) that lies close to center of (f) is completely masked
by the outer interference terms.

The analysis of multi-component signals by TFCA starts
with estimating support of the signal in the time–frequency
plane. To this end the short-time Fourier transform can
be utilized. The advantage in using STFT is that it does
not produce cross-term interference, since it is linear, con-
trary to bilinear time–frequency distributions. On the other
hand, STFT has a lower resolution compared to bilinear
time–frequency distributions. However, since TFCA uses
STFT only to obtain acrudeestimate of the signal’s support
in the time–frequency plane, it may be an acceptable first
approach (Durak and Arıkan, 2003). In Fig. 5a, the short-
time Fourier transform, STFTx(t, f) of the multi-component
signalx(t) is shown whereh(t) = e−πt2 was used as the win-
dow function in computing STFT. Although STFT has lower
resolution then the Wigner distribution, the supports of all
components can be detected when the watershed segmenta-
tion algorithm is used (Vincent and Soille, 1991) as shown in
Fig. 5b.

In the second stage of TFCA, a component to be analysed
by TFCA is chosen as the component where the outer interfer-
ence term contamination is lower. In the presented example,
this component could be either of the two components lying
in the lower left part and upper right part of thet–f plane,
respectively, as shown inFig. 5b. In order to present all steps
of TFCA in detail, we chose, in this example, the first com-
ponents1(t) to be analysed by TFCA as the one that lay in
the upper right part of thet–f plane. It had a non-convext–f
support.

Having thus chosen the first component, the appropri-
ate FrFT of ordera1 was chosen. As discussed in Section
2.4.1, a single valued spine is needed to transform the non-
convex support into a convex one. Thus, the ordera1 of the
FrFT is chosen such that aftera1π/2 radians rotation of the
time–frequency support ofx(t) in the clock-wise direction,
the spine of the analysed component becomes a single val-
ued function of time. In the example,a1 =−0.75 was chosen.
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Fig. 5. (a) The short-time Fourier transform ofx(t) in Fig. 4e computed by using the window functionh(t) = e−πt2; (b) supports of the components in STFT
computed by using the watershed segmentation algorithm (Vincent and Soille, 1991); (c) the indicator functionMa1(t, f ), a1 =−0.75, of the support of the
components1(t) in the (a1)th fractional domain; (d) the computed spine and the actual instantaneous frequency of the components1(t) in the (a1)th fractional
domain; (e) the warped FrFTx(a1,ς1)(t) of the signal inFig. 4e; and (f) its short-time Fourier transform STFTx(a1,ς1) (t, f ). The horizontal and vertical lines in (f)
outline the supports of the frequency and time domain incision masks, respectively, which are utilized by TFCA to extract the signal component that islocated
inside the dashed rectangular box.

Actually, anya1 in the interval of [−0.50,−1.00] could have
reliably been used for this purpose. Note that in the case of sig-
nal components with overlapping time–frequency supports,
such as two crossing chirp components with one increasing
in frequency and the other decreasing in frequency, it may not
be possible to obtain a single-valued spine. In such a case,
first the overlapping signal components should be extracted
from the composite signal. To this purpose, the techniques
such as those inMcHale and Boudreaux-Bartels (1993)and
Hlawatsch et al. (1994), which can synthesize signals from
partially known, i.e. non-overlapping part of Wigner domain
information, can be used. In these techniques, the optimal sig-
nal that best fits to a given Wigner distribution with don’t care
regions is obtained. Once, such a signal extraction technique
is used, the identified signal component can be synthesized
even if its Wigner distribution cannot be specified over the
region of overlap. Then, the synthesized signal component

is subtracted from the signal and TFCA technique proceeds
as detailed before for non-overlapping signal components. A
detailed study and automatization of such an approach shall
be the subject for future work.

In the next stage of the TFCA, the spineψa1(t) of the
first components1

a1
(t) in the domain of the fractional Fourier

transforms is estimated. Since after the rotation, the spine
of s1

a1
(t) becomes a single valued function of time, an in-

stantaneous frequency estimation algorithm (Boashash and
O’Shea, 1993; Cohen, 1995; Katkovnik and Stankovic, 1998;
Baraniuk et al., 2001; Kwok and Jones, 2000) can be used to
determine the spine. In this paper, the spine is obtained as

ψa1(t) =
∫ ∞

−∞f |STFTxa1
(t, f )Ma1(t, f )|2 df∫ ∞

−∞|STFTxa1
(t, f )Ma1(t, f )|2 df

, (10)



A.K. Özdemir et al. / Journal of Neuroscience Methods 145 (2005) 107–125 115

where the magnitude squared STFT is called spectrogram,
which is a smoothed bilineart–f distribution (Cohen, 1995)
and the maskMa1(t, f ) is the indicator function of the support
of s1

a1
(t), which was obtained automatically using watershed

segmentation algorithm (Vincent and Soille, 1991). In the
presented example, the estimate of the spineψa1(t), computed
by using the indicator functionMa1(t, f ) in Fig. 5c, was ob-
tained as shown inFig. 5d. In this example, the corresponding
root mean square estimation error for the spine was 0.102 Hz.
Then, the warped FrFT inx(a1,ζ1)(t) Fig. 5e was computed.
In order to determine the support of the first warped compo-
nent, the short-time Fourier transform STTFx(a1,ζ1)(t, f ) of
the warped signal, was calculated (Fig. 5f). The STFT com-
ponent with convex support corresponds to the first warped
component. Note that in the computation of the STFT, a Gaus-
sian window,h(t) = e−πt2/4, was used.

The next stage of processing involved the extraction of
the warped signal component. For this purpose, various
time–frequency processing techniques (e.g.Hlawatsch et al.,
1994, 2000; Erden et al., 1999; Hlawatsch and Kozek, 1994;
McHale and Boudreaux-Bartels, 1993; Boudreaux-Bartels
and Parks, 1986) can be used. In the following, results based
on the time–frequency domain incision technique (Erden
et al., 1999) will be presented. The warped signal compo-
nent could be extracted by using a simple incision tech-
n
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After extraction of the first component, the same analysis
is repeated on the residual signalr1(t) = x(t) − ŝ1(t) in or-
der to estimate the second component and its corresponding
TFD. Continuing in this manner, all components of the com-
posite signal will eventually be estimated. InFig. 6d and g,
the estimates of the remaining signal components are plot-
ted superimposed by the actual components constitutingx(t)
from Fig. 4b and c, respectively. As the plots show, TFCA
provided quite accurate estimates of the actual signal com-
ponents in this simulation example.

Before comparing the performance of TFCA with some
well-known time–frequency analysis techniques, it should be
noted that, if the identified support of the warped signal com-
ponent is free of outer interference terms, the TFCA can de-
termine the time–frequency distribution of that component
without the use of signal extraction. Otherwise, the signal
components that have outer interference terms can only be
analysed reliably after the extraction of those signal com-
ponents that cause the interference. The extraction of signal
components is a must in this case. Since TFCA aims not
only to determine the time–frequency distribution, but also
to extract the identified signal components, signal extraction
is always an integral part of TFCA.

Once the TFCA isolates the individual signal compo-
nents, their corresponding high-resolution time–frequency
representations could be obtained as described in Section
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ique by first applying a frequency domain maskH1(f) to
(f) and then a time domain maskh2(t) to the result of th
rst step. To determine the supports of the frequency
ime domain masks, first, the support of the warped si
omponent was automatically computed by using the
ershed segmentation algorithm. Then, the supports o
asks were chosen such as to enclose the support of th

omponent in STFTx(a1,ζ1) (t, f ) into the rectangular regio
etween the horizontal and vertical dashed lines (Fig. 5f). In

his way, the time–frequency support of the estimated
al component was bounded by the dashed-box aroun
omponent. Formally, the warped component estimate
btained as

1
a1,ζ1

(t) = h2(t)[h1(t) ∗ xa1,ζ1(t)], (11)

hereh2(t) is the time domain mask,h1(t) is the inverse
ourier transform of the frequency domain maskH1(f), and
denotes the convolution operation. Having obtained

stimate fors1
a1,ζ1

(t), an estimate ofs1(t) could easily be
omputed by inverse warping, and inverse fractional Fo
ransformation operations, respectively

1
a1

(t) = ŝ1
a1,ζ1

(ζ−1
1 (t)), ŝ1 = F (−a1)ŝ1

a1
(t). (12)

n the presented example, the FrFT order isa1 =−0.75. The
esultant signal obtained after these operations is show
ig. 6a superimposed by the actual components1(t) in Fig. 4a.
he good fit between the estimated and actual signals
ates the accuracy of the time–frequency domain inc
lgorithm despite a high noise level.
t

.4.1 for mono-component signals. The TFDs of
ndividual components are displayed inFig. 6b, e and h
espectively. TFCA then computed the time–freque
istribution of the composite signal by summation of
omputed time–frequency distributions of the individ
omponents as shown inFig. 7b. As the figure clearly show
he computed distribution has a very sharp resolution
egligible outer or inner interference terms.

Fig. 6c, f and i demonstrate the application of WA to
omposite signal inFig. 4e to the estimation of the sign
omponents inFig. 6a, d, and g. Using quadratic B-splin
s basis for WA, the composite signal was sampled at 1
nd decomposed into wavelet coefficients up to the third l
rom the coefficients of the wavelet decomposition, the
esponding responses were recovered for the frequency
als [2,4], [1,2], [0,1] Hz (Fig. 6c, f and i). In this simulatio
cenario, the wavelet transform failed to yield the compon
f the simulated signal inFig. 6a, d, and g (cf. alsoFig. 4a–c).
his happened because the components of the simulate
al were not localized in the frequency intervals determ
y wavelet transform, which uses fixed basis functions.

In order to asses the performance of TFCA qualitativ
he auto-term Wigner distribution inFig. 7a may be utilized
s shown in this figure, the auto-term Wigner distribution
o cross-term interference and it has a very high auto-
oncentration. It is therefore reasonable to expect that a
ime–frequency analysis algorithm yield a time–freque
istribution close to the auto-term Wigner distribution.
eed, a comparison ofFig. 7a and b shows that there is
ood fit between the auto-term Wigner distribution and T
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Fig. 6. Parts (a), (d) and (g) are the same components as inFig. 4a–c, together with their estimates. In these plots, the estimated components are superimposed
by the actual components to show the performance of TFCA at a high noise level. Parts (b), (e) and (h) show the TFDs of the respective components obtained
with TFCA. The components of the composite signal inFig. 4e are also estimated by using a wavelet decomposition of order 3. The signal details D2 and D3
in (c) and (f), and the approximation signal in (i) do not resemble the actual signal components inFig. 4a–c, respectively. Hence, as this example shows, the
wavelet analysis may fail to recover the actual signal components, since the wavelet transform uses fixed basis functions.

obtained with TFCA. It should however be noted that this type
of comparison is only possible forsimulatedsignals since
the auto-term Wigner distribution can only be computed for
a limited set of simulated signals but not for real ERP signals.

The auto-term Wigner distribution plotted inFig. 7a also
provides a clue of the low performance of the wavelet anal-
ysis when applied to simulated signals. As it can be seen in
the auto-term Wigner distribution inFig. 7a, all three signal
components have considerable energy in the frequency in-
tervals [2, 4], [1, 2] and [0, 1] Hz2 recovered by the wavelet
analysis. It should therefore not be surprising that the wavelet
analysis could not identify any of the three signal components
in Fig. 6as single entities, and that the recovered frequency
bands did not provide accurate estimates of the actual sig-
nal components. These findings clearly demonstrate that, if
a fixed wavelet basis and frequency intervals are used in the
analysis of signals whose components overlap in frequency,
the wavelet analysis fails to identify the signal components
and to extract them.

2 Note that, if the frequency interval [fa, fb] is chosen, the wavelet analysis
recovers the frequency interval [fa, fb] ∪ [−fb, −fa].

The performance of TFCA was compared with that of
the smoothed pseudo-Wigner distribution (Fig. 7c) and the
well known data-adaptive technique, the optimal radially
Gaussian kernel TFD technique (Baraniuk and Jones, 1993)
(Fig. 7d). If the smoothing of the Wigner distribution can-
not sufficiently suppress the cross-terms, cross-terms remain
in the resulting TFD. Otherwise, the auto-term concentra-
tion degrades considerably. InFig. 7d, the result for ORGK
time–frequency distribution is given at a volume parameter
α= 3. Although ORGK is able to resolve all three compo-
nents, there is significant cross-term interference in the aris-
ing TFD. Furthermore, there is a distortion in the auto-term
of the component with non-convext–f support. A quantita-
tive comparison of TFCA, and other TFDs can be found in
Özdemir (2003). The steps of the implementation of TFCA
can be summarized as Algorithm 1.

Algorithm 1. Steps of the time–frequency component
analyser.

Purpose of the algorithm: Given a multi-component
sampled signalx(n/∆x), −N/2≤n≤N/2− 1, extract its
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Fig. 7. (a) Auto-term Wigner distribution of the simulated signal inFig. 4e which was obtained by removing the interference terms from the Wigner
distribution in Fig. 4f. Note that, although the auto-term Wigner distribution is a desired distribution, it is, in practice, not computable. It could
have been computed in this simulation example, because the simulated components, which constitute the multi-component signal, were available. Parts
(b)–(d) show the time–frequency distributions obtained with TFCA, the smoothed pseudo-Wigner distribution and the optimal radially Gaussian kernel
time–frequency distribution, respectively. In this example, the volume parameter of ORGK was chosenα= 3, and respective lengths of the time and fre-
quency smoothing windows for the smoothed pseudo-Wigner distribution were chosenN/10 andN/4, whereN was the duration of the sampled analysed
signal.

components and compute its time–frequency distribution. It
is assumed thatx(t) is scaled before its sampling so that its
Wigner distribution is inside a circle of a diameter∆x ≤ √

N

(seeOzaktas et al., 1996).

Steps of the algorithm:

1. Initialize the residual signal and the iteration number as
r0(t) := x(t), i := 1, respectively.

2. Identify the time–frequency support of the compo-
nent si(t) using the watershed segmentation algorithm
(Vincent and Soille, 1991). After manually determining
the appropriate rotation angleφi and the fractional do-
mainai = 2φi /π, estimate the spineψi,ai (t) of the frac-
tional Fourier transformxai (t) using an instantaneous
frequency estimation algorithm. Then, determine the
amount of the required frequency shiftδfi on the spine
ψi,ai (t).

3. Compute the sampled FrFTri−1
ai

(kT ), ai = 2φi /π, from
ri−1(kT) using the fast fractional Fourier transform algo-
rithm (seeOzaktas et al., 1996).

4. Define the warping functionζi(t) = Γ−1
i (fψi (t −

t1)), where Γi(t) = ∫ t

t1
[ψai (t

′) + δfi ] dt′ and fψi =
Γi(tN )/(tN − t1). Compute the sampled warping func-
tion ζi (kT).

5. Compute the sampled warped signalri−1
ai,ζi

(kT ) as

r
i−1,δfi
ai (kT ) = ej2πδfi kT ri−1

ai
(kT ),

r
i−1,δfi
ai,ζi

(kT ) = e−j2πδfi kT r
i−1,δfi
ai (ζi(kT )).

6. Estimate the ith component by incision of the
time–frequency domain as

ŝ
i,δfi
ai,ζi

(t) = h2(t)[h1(t) ∗ r
i−1,δfi
ai,ζi

(t)],

whereh2(t) is a time–domain mask andh1(t) is the in-
verse Fourier transform of a frequency domain mask
H1(f).

7. For each TFD slice ofsi(t), compute yai,ςi (kT ) =
ŝ
i,δfi
ai,ζi

(kT )ej2π∆ψζi(kT ), after choosing the slice offset∆ψ.
8. Compute the sampled TFDTFyai,ςi

(mT̄ , fψi ), t1/T̄ ≤
m ≤ tN/T̄ of yai,ζi (t) using the directional smoothing
algorithm (cf.Özdemir and Arıkan, 2000), whereT̄ is
the sampling interval of the TFD slice.

9. The TFD slice ofsi(t) is given by

TFsi (tr(mT̄ ), fr(mT̄ )) = TFya,ζ(mT̄ , fψ),

where (tr(mT̄ ), fr(mT̄ )) define a curve in the
time–frequency plane parameterized by the variable
mT̄
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tr(mT̄ ) = ζ(mT̄ ) cos
(aiπ

2

)
− (ψ(ζ(mT̄ ))

+∆ψ) sin
(aiπ

2

)
,

fr(mT̄ ) = ζ(mT̄ ) sin
(aiπ

2

)
+ (ψ(ζ(mT̄ ))

+∆ψ) cos
(aiπ

2

)
,

t1

T̄
≤ m ≤ tN

T̄
.

10. Estimate the sampledsi(t) by taking the inverse of
the warping, frequency modulation and the fractional

Fourier transformation on the sampledŝ
δf
ai,ζi

(t)

ŝ
i,δfi
a (kT ) = ej2πδfi ζ

−1
i (kT )ŝ

i,δfi
ai,ζi

(ζ−1
i (kT )),

ŝiai (kT ) = e−j2πδfi kT ŝ
i,δfi
ai (kT ),

ŝi(kT ) = {F (−ai)ŝiai}(kT ).

11. Compute the residual signalri(kT ) = ri−1(kT ) −
ŝi(kT ).

if any signal component is left in residual signal
ri(kT) then

Seti = i + 1, andGOTO step 2,
else

Compute thet–f distribution of the composite
signal as the sum of thet–f distributions of in-
dividual signal components.

endif

3. Results

Fig. 8 shows the results of the TFCA analysis of the av-
eraged ERP (Fig. 8a) of a trial subject (“GUOZ”). The ERP
was obtained in response to deviant stimuli under the oddball
paradigm. The ORGK provided a highly blurred distribution
of the ERP components in the time–frequency plane (Fig. 8b).
TFCA showed that the ERP was composed of one prestimulus
(component 1) and four poststimulus (components 2–5) sig-
nal components (Fig. 8c, e, g, i and k) and these were clearly
and sharply localized in the time–frequency plane (Fig. 8d, f,
h, j and l). The high amplitude components 2 and 3 along with
component 4 contributed to the P300 component of the time

F
f
E
(
s

ig. 8. TFCA analysis of the average ERP evoked by deviant stimuli unde
requency in Hz. Note that the individual time–frequency representations hav
RP; (b) its ORGK TFD; (c, e, g, i and k) time domain representations of ER

1–5) in the time–frequency distributions; (m) absolute value of the differenc
uperposition of the extracted time–frequency representations.
r the OB paradigm in a trial subject (“GUOZ”). Right axes (b, d, f, h, j and l):
e scales proportional to the strength of the corresponding component.(a) Original
P components obtained with TFCA; (d, f, h, j and l) corresponding components
e between the reconstructed superposition and the original ERP givenin (a); (n)
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domain. Component 3 also formed the general waveform of
the early negative complex in the ERP waveform. Taking the
central value into account, components 2 and 3 were basically
due to the delta frequency. However, there were transitions
to neighboring frequencies such that components 2 and 3
also included the theta frequency. Component 4 contributed
to N100 and N200 in the ERP waveform. Concerning the
frequency, component 4 covered basically the theta but also
the alpha frequencies. Component 5 was the smallest both
in amplitude and energy and it was due to the beta oscilla-
tion. It contributed to the early N100 and N200 peaks on the
ERP waveform. The mean amplitude of the residual which
was obtained by subtracting the reconstructed ERP from the
recorded ERP was of the order of 0.6�V (Fig. 8m). This in-
dicated that composite TFCA (Fig. 8n) yielded an accurate
decomposition of the ERP.

Fig. 9 demonstrates the inter-subject stability of compo-
nents produced by TFCA.Fig. 9a presents the time domain
grand (ensemble) average ERP waveform computed from the
individual responses (508 sweeps from 20 subjects) in re-
sponse to deviant stimuli under the OB paradigm andFig. 9b
presents the composite distribution of components produced
by TFCA. According to TFCA, the grand average ERP was
composed of three poststimulus signal components and these
were clearly and sharply localized in the time–frequency
plane. The high amplitude components 1 and 2 (due basi-
c with
c fre-

quency range) contributed to the P300. Component 2 helped
shape the waveform of the early negative complex and com-
ponent 3 produced N100 and N200 components. When the
reconstructed waveform, the sum of the components that were
obtained with TFCA, was subtracted from the grand average
ERP, the residual signal again had a very small mean ampli-
tude of the order of 0.2�V. Fig. 9c, e and g each present the
ERP waveform of a different subject;Fig. 9d, f and h present
the distribution of the respective TFCA components for these
subjects.Fig. 9shows that the time–frequency distribution of
the TFCA components are similar across single-trial subjects
and also are well represented by the distribution for the grand
average ERP.

Fig. 10allows an intra-subject (“FEBE”) comparison of
the distribution of TFCA components for three successive
portions (1–30, 31–60 and 61–100%) of the total number
of epochs.Fig. 10a–c shows the average ERP waveforms
for the trial subject for the three successive portions of the
recording period. Each portion of epochs yielded similar post-
stimulus components (Fig. 10g–l). There was a high ampli-
tude component in the delta frequency range: this was com-
ponent 2 in all recordings. Another component was in the
theta frequency range: In all epochs, this was component 3.
The time–frequency distribution of the components in the
composite TFCA are given inFig. 10m–o. The residuals in
Fig. 10p, r and s are of the order of 3�V, indicating that TFCA
y ue is
h eps

F gle-tria under the
O individ rgy
c
a
b

ally to delta but also to the theta frequency range) along
omponent 3 (due basically to theta but also to the alpha

ig. 9. TFCA analysis of the grand average ERP and averages for sin
B paradigm. Right axes (b, d, f and h): frequency in Hz. Note that the
omponent corresponding to each subject. (a and b) Grand average ERP and
verages for single-trial subjects (“GUOZ”, “FEBE” and “GOOZ”); (d, f and h)
y TFCA.
ielded an accurate decomposition of the ERP. The val
igher than that calculated for the total number of swe

l subjects (“GUOZ”, “FEBE” and “GOOZ”) evoked by deviant stimuli
ual time–frequency representations have scales proportional to the laest energ

the composite time–frequency representation produced by TFCA; (c, e and g) ERP
the composite time–frequency representations for each ERP average produced
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Fig. 10. TFCA analysis of ERPs of a single-trial subject (“FEBE”) averaged for the three successive portions of the recording period. Right axes (m–o):
frequency in Hz. (a–c) Original ERPs; (d–l) time domain representations of ERP components obtained with TFCA; (m–o) the corresponding composite
time–frequency representations produced by TFCA; (p, r and s) absolute value of the difference between the reconstructed and the original ERPs givenin (a),
(b) and (c), respectively.

(for single trial averages: 0.59–0.64�V; for grand average:
0.14–0.20�V). This would be expected since the total num-
ber of sweeps were divided into three, lending a fewer number
of sweeps per block for analyses. Overall,Fig. 10shows that
the time–frequency distribution of the TFCA components are
similar across the recording period.

4. Discussion

The present study applied the TFCA technique with the
aim at describing the electrical responses of the brain in the
time–frequency plane. This was achieved by the application
of fractional Fourier transform, warping and the fractional
domain incision, all utilized by the TFCA technique. TFCA
suppressed cross-term interference (both inner and outer)
and had a high accuracy in auto-term time–frequency
representation. Having properties, the TFCA technique
can therefore be used for a high-resolution analysis of
mono- and multi-component signals with linear or curved
time–frequency supports.

4.1. Comparison of our results with TFCA with those of
previous studies on the frequency-domain responses of
the brain

There is an extensive literature of studies on the cognitive
psychophysiology of the stimulus-related time signals: the
peaks on the ERP waveform (Sutton et al., 1965; Donchin
et al., 1986; Donchin and Coles, 1988; Johnson, 1988; Bas¸ar-
Eroğlu et al., 1992; Karakas¸, 1997; Karakas¸ and Bas¸ar, 1998;
Karakaşet al., 2000a, 2000b). The ERP peaks at a latency
around 200 ms are related to attention: the early N200 to
preattention and the late N200 to focused attention (Naatanen,
1982, 1990, 1992; Ritter et al., 1992; Naatanen et al., 1993;
Winkler et al., 1992; Tervaniemi et al., 1994). Accordingly,
the overall N200 peak was obtained, in the present study, in a
distinct form under the OB paradigm in response to deviant
stimuli where trial subjects concentrated on, and counted the
stimuli.

The amplitude of the P300 peak represents the allocation
of attentional resources (Wickens et al., 1983; Kramer
and Strayer, 1988; Humphreys and Kramer, 1994). It is
thus closely related to updating of the memory for stimulus
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recognition and working memory (Sutton et al., 1965;
Donchin and Coles, 1988; Johnson, 1988; Polich and
Margala, 1997). Again, in line with the above findings, the
P300 peak was, in the present study, obtained in a distinct
form in response to deviant stimuli under the OB paradigm
where the trial subjects had to recognize the stimulus, update
memory for a correct count of successively appearing stimuli
and decide on the response to be made.

The frequency-domain analysis of the waveforms that
was demonstrated in AFC showed prominent selectivities
for the delta, theta, beta and gamma bands under various
cognitive paradigms such as the single stimulus, oddball and
mismatch (Karakaşet al., 2000a, 2000b). When ERPs were
appropriately filtered with cut-off frequencies determined
from the AFC curves, oscillatory activity occurred in each of
the specified frequency ranges.Karakaşet al. (2000a, 2000b)
investigated the effect of oscillatory responses on the ERP
peaks, basically on N200 and P300, under various cognitive
paradigms. The findings showed that the amplitudes of the
peaks were determined by the type of cognitive paradigm
through a combination of a major contribution of delta and
a minor contribution of theta oscillations. These findings
were statistically confirmed by stepwise multiple regression
analysis, the results of which mathematically demonstrated
that the ERP components were mainly due to the additive
effects of the delta and theta oscillations. The proportion
o the
r
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the OB paradigm. Beta oscillation in these components
contributed to the ERP peaks N100 and N200. These ERP
peaks are related to the physical analysis of stimuli and
to attentive processes, respectively (Naatanen, 1982, 1990,
1992; Ritter et al., 1992; Naatanen et al., 1993; Winkler
et al., 1992; Tervaniemi et al., 1994).

4.2. Conclusions: comparison of methods of frequency
analysis

The oscillatory responses of the brain have been pre-
sented as the ’paradigm change’ in brain research. A grow-
ing amount of literature shows the explanatory value of these
slow-wave events (Sayers et al., 1974; Bas¸ar, 1980, 1998,
1999; Mountcastle, 1992; Karakas¸ and Bas¸ar, 1998; Sannita,
2000; Rangaswamy et al., 2002, 2004; Porjesz et al., 2002;
Kamarajan et al., 2004):

• Fourier transform, as a technique of frequency analysis,
yields the global frequency composition of the analysed
signal in the form of amplitude–frequency characteristics.
Digital filtering discerns the oscillatory activity over the
time axis that is in the conventional range of brain oscil-
lations, or between the adaptively chosen cut-off frequen-
cies, which are determined from the maxima of the AFC.
Wavelet analysis determines the time localization of the
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f variance that the regression model explained was in
ange of 94–99% for different stimuli and paradigms.

TFCA, a technique developed specifically for a pre
ime-and-frequency localization of components, also dem
trated that an enhanced amplitude and energy were ob
or components that were related to the delta and
requencies (components 2 and 3 in particular). As repo
n Karakaşet al. (2000a, 2000b), the major contribution t
300 was from components in the delta frequency ra
owever, there was a minor contribution of componen

he theta frequency range as well. The situation was rev
or N200; the components with the slower frequen
ormed the general waveform of the early negativity.
iscrimination of N100 and N200 peaks was produce

he components dominantly in the theta frequency rang
Recent studies have shown that beta activity shoul

aken into account, along with the other oscillations, f
etter understanding of brain functions.Başar et al. (2003
howed that beta oscillation is an integral part of the
ess of face recognition, especially the recognition of o
wn grandmother in a photograph. Begleiter and collea
Porjesz et al., 2002; Rangaswamy et al., 2002, 2004) found
he biochemical, and genetic basis, specifically the GABA
eceptor genes, for beta activity in the EEG at rest. The
hors further showed that the power density of beta osc
ion was elevated in alcoholics suggesting that this ma
he electrophysiological index of imbalance in the excitat
nhibition homeostasis in the cortex.

The present study also identified and extracted the
scillation in the ERPs evoked by deviant stimuli un
distinct wavelet basis components.
Accordingly, most of the existing methods of f

quency analysis impose windows on the data. Wind
in DF are the adaptively chosen cut-off frequencies. W
dows in WA are the appropriately chosen mother wave
There were no predefined windows or criteria when sig
were analysed with TFCA.
Of the existing signal analysis techniques, only AFC
termines directly the frequency components of the sig
However, this technique does not provide any informa
on the temporal localization of the frequency compone
TFCA yields the relevant oscillatory components that
inherent in ERP. Unlike AFC, TFCA could also determ
the time domain representation of the components
shape the ERP. Using techniques that could overcom
cross-term interference either between components (o
or of the component itself (inner), TFCA could sharply
calize components both in the time and in the freque
domain with high temporal, and also high freque
resolution.

The amplitude of the residuals is a measure of the g
ness of the time–frequency resolution achieved by TF
Residuals are left-over signals after the component ex
tions. In the present study, the residual values were fou
be in the range of 0.59–0.64�V for averages from single
trial subjects and in the range of 0.14–0.20�V for the grand
average. These negligible values show that the com
waveform was almost completely decomposed by TF
Summation of the extracted components could thus re
to the original waveform.
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• The residuals further demonstrate that TFCA identified
and extracted all non-negligible components. Amplitudes
of oscillatory activity existing outside the time range for a
given component was of the same order of the magnitude as
that of the residual. Consequently, after the TCFA analysis,
no further significant components are to be expected.

• Signal analysis techniques are based on certain assump-
tions. The assumption of linearity is peculiar to AFC
and that of stationarity is peculiar to AFC and nonlin-
ear dynamic metrics. In wavelet analysis, the templates,
themselves, constitute a ‘hypothetic model’. The assump-
tion of TFCA is that the analysed signals have one or
more components with non-overlapping supports in the
time–frequency plane and each component can be rotated
in time–frequency plane to have single valued spines.

• The components of ERP are the points of maximal am-
plitudes: the peaks, on the time-varying ERP. In AFC,
the components are distinct maxima of specific frequency
ranges; in DF, they are time-varying oscillations in specific
frequency ranges; and, in WA, time-varying, adaptive fre-
quency templates. Conventional filtering techniques pro-
duce oscillatory components that fall within the cut-off
frequencies of the filter. These techniques can thus accu-
rately capture a component whose frequency support does
not change with time. However, they cannot differentiate
between components if more than one component occur

com-
f the
hose
beta

oscillations.Fig. 11 presents an ERP averaged from re-
sponses to deviant stimuli under the OB paradigm in a trial
subject. In this figure, component 1 occupies different fre-
quency bands in different time intervals. Part of component
1, extracted by TFCA, falls into the delta, and part of it into
the theta range. Similarly, while the dominant frequency in
component 3 is in the alpha, it also contributes to the beta
range. Clearly, for non-stationary signals whose compo-
nents occupy different frequency bands at different times,
digital filtering will only filter-in those parts that fall into
the frequency band of the filter. In TFCA, on the other hand,
the components are obtained in the form of time–frequency
localized ‘islets’. These islets show, without any prede-
fined windows, the natural time and frequency spread of
the components. Hence, TFCA appears to be an appropri-
ate tool for decomposing ERP into a set of superimposed
oscillatory components under variable experimental con-
ditions (Başar and Ungan, 1973; Bas¸ar, 1980; Karakas¸ et
al., 2000a, 2000b).

Brain neuroelectricity is the result of the temporal and
spatial integration of time-varying oscillatory activity of var-
ious frequencies. The brain is essentially a nonlinear and
non-stationary system. The time–frequency-domain analy-
sis technique, TFCA, does not assume that the brain is either
linear or stationary. Yet, TFCA suppresses the cross-terms
( soci-
a the
a is for
m ved
t igh-
r lobal
d of

F y comp by deviant
s . A line in the
s nents nts denote the
o s are s
in the same frequency range over the time axis (Cook III
and Miller, 1992; Farwell et al., 1993; Karakas¸ and Bas¸ar,
1998).

The findings of the present study demonstrated that
ponents do not always obey the conventional limits o
frequency ranges. There are frequency transitions w
components consist of delta and theta, or alpha and

ig. 11. Comparison of the conventional frequency limits of oscillator
timuli in a trial subject.X-axis: time in seconds;Y-axis: frequency in Hz
uperposition of the components in order to keep the weaker compo
rder of the extraction. The locations of conventional frequency range
both inner and outer interference terms), which are as
ted with the Wigner distribution. It accurately identifies
uto-terms in the time–frequency plane, and can do th
ono- and multi-component signals with linear or cur

ime–frequency supports. TFCA is thus an effective, h
esolution signal analysis technique that can yield the g
istribution of uncontaminated components in the form

onents and the components obtained with TFCA for an ERP evoked
arly increasing frequency weighting function was used beyond 20 Hz
visible beside the stronger ones. The numbers near to the compone
pecified on theY-axis.
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spatially and temporally integrated, time-varying oscillatory
activity of various frequencies. TFCA seems therefore an
appropriate tool for studying the intricate machinery of the
human brain.

Recent work on brain neuroelectricity stresses the impor-
tance of single sweep analysis.Jansen et al. (2003)pointed
out that ensemble averages will not resemble single trial
responses. Likewise, single trial responses are not amplitude
scaled versions of ensemble averages.Makeig (2002)showed
that by means of an adequate analysis of single trials, dynamic
consistencies between features of EEG averages (ERPs)
and event-related changes in EEG signals can be found. The
recently developed piecewise Prony method (Garossi and
Jansen, 2000) has proven to be useful in decomposing non-
stationary signals into a sum of oscillatory components with
time-varying frequency, amplitude, and phase characteristics.
The method could show the temporal profile of poststimulus
signal changes in single-trial evoked potentials. A goal for
the future studies should thus be to test the utility of TFCA on
single sweep ERPs that have been obtained under different
paradigms, and in different states of consciousness. Such
studies might help to gain new insights into the oscillatory
dynamics of the brain during different cognitive operations.
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