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In this study, we implanted Nþ and Nþ2 ions into sputter deposited amorphous boron carbide

(a-BC) and diamond like carbon (DLC) thin films in an effort to understand the chemical bonding

involved and investigate possible phase separation routes in boron carbon nitride (BCN) films. In

addition, we investigated the effect of implanted Cþ ions in sputter deposited amorphous boron

nitride (a-BN) films. Implanted ion energies for all ion species were set at 40 KeV. Implanted films

were then analyzed using x-ray photoelectron spectroscopy (XPS). The changes in the chemical

composition and bonding chemistry due to ion-implantation were examined at different depths of

the films using sequential ion-beam etching and high resolution XPS analysis cycles. A compara-

tive analysis has been made with the results from sputter deposited BCN films suggesting that

implanted nitrogen and carbon atoms behaved very similar to nitrogen and carbon atoms in sputter

deposited BCN films. We found that implanted nitrogen atoms would prefer bonding to carbon

atoms in the films only if there is no boron atom in the vicinity or after all available boron atoms

have been saturated with nitrogen. Implanted carbon atoms also preferred to either bond with avail-

able boron atoms or, more likely bonded with other implanted carbon atoms. These results were also

supported by ab-initio density functional theory calculations which indicated that carbon-carbon bonds

were energetically preferable to carbon-boron and carbon-nitrogen bonds. VC 2011 American Institute
of Physics. [doi:10.1063/1.3638129]

I. INTRODUCTION

Recently, many researchers have been engaged on the

synthesis and characterization of solids in the B-C-N ternary

system due to their interesting properties, such as extreme

hardness and low coefficient of friction.1–4 B, C, and N are

close neighbors in the periodic table with the following elec-

tronegativity values; 2.04, 2.55, and 3.04, respectively.5

However, binary compounds between them exhibit a variety

of crystal structures. For example, C exists as graphite and

diamond whereas, carbon nitride (C3N4) can be synthesized

in hexagonal6 and cubic forms.7,8 Hexagonal phase of boron

nitride (h-BN) and graphite share similar layered crystal

structures, but the electrical properties for these two are

markedly different; h-BN is an insulator while graphite is a

semimetal.

Most research in the B-C-N ternary are concentrated on

single component systems such as diamond like carbon

(DLC) films, or two component phases such as BN and

C3N4, recent studies are motivated by tunable electronic and

optical properties of ternary compounds in this system.9–11

Studies on the boron carbon nitride (BCN) compounds

gained much interest after the computational study on the

electronic properties of a BCN compound by Liu et al.13 A

recent study on the atomic layers of hybridized BN and gra-

phene domains by Ci et al.12 reveals that structural features

and bandgap of h-BCN are distinct from those of graphene,

doped graphene, and h-BN. The promising physical proper-

ties of BCN materials may potentially allow them to be used

in the development of bandgap-engineered applications in

electronics and optics,12,13 as wear-resistant coatings,14 inter-

calation material in Li-ion batteries,15 and low-k dielectric

layers in electronics industry.16

Various techniques ranging from high temperature=high

pressure processing,17 explosive compaction,18 pulsed laser

deposition,19 ion-beam assisted deposition,3,5,20 to magne-

tron sputtering,2,21,22 have been used for the synthesis of

BCN materials in bulk or as thin films. The physical proper-

ties of BCN materials are directly related with the chemical

environment, bonding, and atomic structure of the B, C, and

N atoms within. Hence, detection and control of the afore-

mentioned during and after the synthesis processes carry

utmost importance for the potential technological applica-

tions of BCN compounds.

There are several studies which scrutinize the characteri-

zation methods used for understanding the atomic environ-

ment and bonding structure of BCN films.2–4,20,23–25 Often,

x-ray photoelectron spectroscopy (XPS) has been used for

probing the chemical bonding between boron, carbon and

nitrogen atoms2–4,24–28 as binding energy (BE) peak posi-

tions in a spectrum obtained during XPS for core shell elec-

trons are affected by the relative electronegativity of

coordinated atomic species. While, XPS is a relatively wide-

spread and well-established technique for understanding

local chemical interactions in solids, other techniques such

a)Authors to whom correspondence should be addressed. Electronic

addresses: bengu@fen.bilkent.edu.tr and nizam3472@yahoo.com.
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as electron-energy loss spectroscopy and x-ray absorption

near edge spectroscopy have also been used to study the

chemistry of BCN systems.5,20,23,25,27,28 On the other hand,

the majority of XPS data presented in the literature for iden-

tifying shifts in the BE due to change in local chemistry, are

collected from binary compounds or elemental solids.

In addition, some of the XPS data for BCN systems show

significant scatter as well as overlaps in peak posi-

tions.2,3,22,24,26,28 Furthermore, utilization of peak deconvo-

lution during analysis of XPS spectra often depend on user

experience. Hence, these all induce a significant ambiguity

in the interpretation of XPS spectra from BCN films.

In order to overcome the issues mentioned above, in this

study we have followed a unique procedure to understand

the effects of local chemical environment on the B1s, C1s,

and N1s regions of the XPS spectra from BCN solids using

model systems created by ion implantation. We used r.f.

sputter deposition technique to prepare amorphous boron

carbide (a-BC), amorphous boron nitride (a-BN), DLC, and

BCN films, which were then ion implanted by Cþ, Nþ, and

Nþ2 ions to synthesize model systems. Then, the XPS data

gathered from these model systems were compared to spec-

tra gathered from unimplanted regions of the films and also

to spectra acquired from r.f. sputter deposited BCN films.

Following these, first-principles plane-wave calculations29

based on density functional theory (DFT)30,31 have been per-

formed in order to better understand the changes induced in

the bonding behavior by ion implantation. The results are

then used to provide more insight into the chemistry of sput-

ter deposited BCN films, also providing a unique opportunity

for understanding phase segregation and its effects on BCN

solids.

II. EXPERIMENTAL

Thin films of a-BC, a-BN, and DLC were prepared by

r.f. magnetron sputter deposition (RF=MS) on grounded Si

(100) substrates using 2 inch targets of B4C, BN, and carbon

(Kurt Lesker, 99.9% purity), respectively. BCN films were

also synthesized with the RF=MS technique using a B4C tar-

get on a Si (100) substrate. Prior to the deposition, Si (100)

substrates were cleaned for 15 min using r.f. generated Ar

plasma. In order to improve the adhesion of the films to the

substrate, a Ti buffer layer of approximately 200 nm thick

was sputter deposited on the substrates for each film men-

tioned above. Further detail on the magnetron sputter deposi-

tion system used and for the process itself can be found in

Ref. 2. The details of the experimental conditions are given

in Table I. Implantation experiments were done in a Varian

DF4 ion implanter. The details of the experimental condi-

tions are given in Table II.

Following the sputter deposition and implantation

experiments, chemistry of the films was investigated using

XPS with monochromated Al Ka source (Thermo K alpha).

The XPS analysis was done ex-situ. The time of elapse

between the deposition and the XPS characterization was at

most 24 hrs. Resolution of the XPS system was confirmed by

measuring the Au 4f core line (FWHM � 0.75 eV) by using

pass energy of 25 and 0.05 eV step size for data collection.

Quantification of the XPS spectra for atomic concentrations

was done by normalizing the calculated peak areas using cor-

responding Scofield factors (0.486 for B1s, 1.0 for C1s, and

1.8 for N1s). For comparison study, BCN films were also de-

posited on Si (100) substrate using the same procedure men-

tioned in Table I. The films were found to be amorphous

using x-ray diffraction (XRD, Rigaku MiniFlex). Depth pro-

file data were collected using sequential ion beam etching

and XPS analysis cycles. First, films were etched by using

Arþ ion with 3000 eV kinetic energy for 50 s (incident angle;

75� to the normal of the thin film). After etching, XPS data

were collected from the etched surface using 200 eV for pass

energy and 0.1 eV step size. This procedure was performed

several times in a cyclic manner and the data collected were

color coded and stacked to form a pseudo-colored image

where the X-axis is BE in eV, Y-axis represents the depth

from surface in nm. The depth profile images are given as

pseudo-color images for B1s, C1s, and N1s. As the signals

get stronger for different BE values, hotter pixel colors are

assigned to those corresponding BE. Each iso-depth line in

these images represents the corresponding XPS spectrum

collected at the given depth of the films.

On the other hand, ab-initio calculations are carried out

by using Vienna ab-initio simulation package program.32–34

The ions are described by the projector-augmented-wave

potentials,35,36 while the plane-wave energy cutoff is set to

500 eV in all calculations for the sake of a high degree of ac-

curacy. Meanwhile, the exchange-correlation potential is

expressed in terms of the generalized gradient approximation

(Perdew-Wang 91 type37). All the systems studied are mod-

eled by large finite sized BN monolayer structures where the

edges are saturated by H atoms. Because of the periodic

boundary conditions used with plane-wave calculations, a

large supercell accommodating the BN nanoribbons with

10 Å of vacuum around it is introduced in order to minimize

the ion-ion interaction in the non-periodic directions. There-

fore, only the C point is enough for the k-point sampling in

the Brillouin zone within the Monkhorst-Pack38 scheme. The

TABLE I. Experimental conditions for RF=MS deposition where target

power, process pressure, and duration were 200 watt, 9� 10�3 torr and 90

min, respectively.

Target Process Gas Substrate Bias Deposited Films

B4C Ar Grounded a-BC

BN Ar Grounded a-BN

Carbon Ar Grounded DLC

B4C Ar: N2 400 V dc bias BCN

TABLE II. Experimental conditions for implantation experiment where ion

energy and dose of the ions were 40 keV and 1.2� 1018 ion=cm2,

respectively.

Implanted Films Implanted ion

a-BN Cþ

a-BC Nþ

a-BC Nþ2
DLC Nþ

DLC Nþ2

074906-2 Genisel et al. J. Appl. Phys. 110, 074906 (2011)
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Gaussian smearing, with a smearing parameter of 0.08 eV, is

used in consideration of the partial occupancy around the

Fermi level. The total energy is converged to within 10�5 eV

energy threshold in all calculations. The structures are opti-

mized by relaxing the positions of all of the atoms to their

minimum energy configurations by using conjugate gradient

method where total energy and atomic forces are minimized.

Maximum force magnitude remained on each atom is set at

most to 0.06 eV=Å.

III. RESULTS AND DISCUSSION

The details of depth profile images with respective spec-

tra for different implanted films at B1s, C1s, and N1s XPS

regions are described below separately in Figs. 1–5. The

assignments to possible peak position from literatures for dif-

ferent bonding configurations3,12,19,20,27,39–46 are also shown

in those figures. The film thickness, atomic percentage (At%),

and ratio of the atoms in ion implanted layers are given in

Table III. The depth profiles (range and straggle) for the ions

used in the study were calculated for each case using the

software for the stopping and range of ions in matter (SRIM)

by Ziegler and Biersack47 and are also included in Table III.

A. C1 ion implantation into RF=MS deposited a-BN
boron nitride film

Figure 1(a) shows the XPS generated depth profile

images for Cþ ion implanted a-BN film for B1s, C1s, and

N1s XPS regions and in (b) individual XPS scans for the

same regions from ion implanted, unimplanted layers and

from a BCN film are provided for comparison. The peak

observed in the XPS spectrum for B1s region [dash-dot line

line in Fig. 1(b)] of the un-implanted layer suggests two

types of B atoms to be present in a-BN; first type is indica-

tive of B atoms in B-rich environment like in the elemental

B, indicated with B-B in the figure at 188 eV; second type is

B atoms in a h-BN like nitrogen-rich environment, indicated

with B-N at 191 eV.3,12,19,20 After implantation of the a-BN

with 40 keV Cþ ions, we found that while the shape of B1s

peak indicates a single dominant component [solid black line

in Fig. 1(b)] unlike the un-implanted region, it was found to

have shifted �0.5 eV toward lower BE than that for B-N;

190.5 eV. This finding can be interpreted as energetic Cþ

ions causing a somewhat homogenization in the bonding

behavior of B atoms by forcing an interaction between C and

B such as one B surrounded by two N and one C or by two C

and one N environment.3,46 Furthermore, no evidence for the

presence of C was observed in the unimplanted layer of the

a-BN film as expected. The C1s peak in Cþ implanted layer

was at a lower binding energy than the C in C environment

reported in the literature, 284.2–284.4 eV.12,19,27,46 This ob-

servation also supports the postulate put forth above and

indicates that implanted C atoms to be in a B-rich environ-

ment. However, we have to emphasize that C environment

observed does not exactly match that of C in B4C, as the

peak position is not same as that for B4C (283.0 eV).19,40

Two other observations worth mentioning as well; B to C ra-

tio in the implanted region is 2.31 higher than that for B4C

and one can observe a tail at higher binding energy side of

the C1s region; solid black line in Fig. 1(b). Thus, some of

the implanted C is bonded to B while, the rest is in coordina-

tion with other C atoms in the vicinity explaining the C1s

FIG. 1. (Color online) (a) Depth profile images for Cþ ion implanted a-BN film at B1s, C1s, and N1s XPS regions, and (b) XPS scans of ion implanted and

un-implanted layers from the same sample and BCN films.
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peak positioned between C-C and C-B peak positions. Also,

from the C1s spectrum, we observed some evidence for C-N

coordination at the higher BE tail region. On the other hand,

the peak in the C1s spectrum observed for the BCN film

(gray line), 285.6 eV, might be a combination of C-N and

carbon defect structure (C-C*).48 Unlike the C1s and B1s

spectra, almost no change was observed in the N1s peak

position (398.4 eV) after Cþ ion implantation in a-BN film.

In other words, majority of N atoms were in the BN network

before and after Cþ ion implantation.3,19

FIG. 2. (Color online) (a) Depth profile images for Nþ ion implanted a-BC film at B1s, C1s, and N1s XPS regions, and (b) XPS scans of ion implanted and

un-implanted layers from the same sample and BCN films.

FIG. 3. (Color online) (a) Depth profile images for Nþ2 ion implanted a-BC film at B1s, C1s, and N1s XPS regions, and (b) XPS scans of ion implanted and

un-implanted layers from the same sample and BCN film.
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FIG. 4. (Color online) (a) Depth profile images

for Nþ ion implanted DLC film at C1s and N1s

XPS regions, and (b) XPS scans of ion

implanted and un-implanted layers from the

same sample and BCN films.

FIG. 5. (Color online) (a) Depth profile images

for Nþ2 ion implanted DLC film at C1s and N1s

XPS regions, and (b) XPS scans of ion

implanted and un-implanted layers from the

same sample and BCN films.
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B1s from BCN film [gray line in Fig. 1(b)] shows that B

is mostly in BN network with the peak positioned at a

slightly higher BE than that of Cþ implanted a-BN. B1s

spectrum from the BCN films does not indicate a strong pres-

ence for B-B bonding in the films. The N1s spectrum from

the Cþ implanted film did not reveal an evidence for the

presence C-N binding as can be seen in Fig. 1(b). On the

other hand, N1s spectrum from the BCN film contains signif-

icant evidence for the presence of C-N bonds in addition to

B-N bonds. The wide shoulder on the C1s peak for BCN film

is also an evidence for the notable C-N contribution in addi-

tion to C-C and C-B bonds in the peak shape.

B. N1 ion implantation into RF=MS deposited a-BC
film

Figure 2(a) shows the XPS generated depth profile

images for Nþ ion implanted a-BC film for B1s, C1s, and

N1s XPS regions and (b) shows XPS scans of ion implanted

and un-implanted layers from the same sample and BCN

film. At% and relative ratio of the atoms (Table III) shows

that B was dominant the component in the implanted layer.

In other words, the matrix was mainly made up of B atoms.

Upon Nþ implantation, the B1s peak position has been

observed to shift toward higher BE (�189.5 eV) toward B-N

position and also the peak was broadened. These suggest

energetic Nþ ions causing a change from a B-C dominated

bonding configuration toward a new structure where B atoms

are likely to be surrounded by more N atoms.3 The new B1s

peak is wide enough to encompass the environments of B-N

(191 eV), B-B (188 eV), and B-C (188.5 eV).3,12,19,20 On the

other hand, almost no change has been observed in the C1s

peak position and shape after implantation. This observation

may suggest that the C atoms were still in a B-C dominated

environment with perhaps a small contribution from C-C

bonds, but no C-N contribution was observed. Whereas, C1s

from BCN film [Fig. 2(b)] shows that C is mostly in C-C net-

work with significant contribution of C-B and C-N struc-

tures. N1s peak position with the center of 398 eV implies

that N in the implanted layer was mostly in BN network.12,41

C. Nþ2 ion implantation into RF=MS deposited a-BC
film

Figure 3(a) shows the XPS generated depth profile

images for Nþ2 ion implanted a-BC film for B1s, C1s, and

N1s XPS regions and (b) shows XPS scans of ion implanted

and un-implanted layers from the same sample and BCN

film. At% and relative ratio of the atoms (Table III) shows

that B and N were high in the implanted layer compared to

C. In this case, the number of implanted ion was same as in

the Nþ ion implanted film but the number of N atom was

twice than that in Nþ ion implanted film. A strong shift in

B1s peak position to higher BE at around 191 eV for Nþ2
implanted region was observed. This indicates that the B

atoms are in a h-BN like environment. Implantation of Nþ2
ions also affected the C1s peak shape and position. A

shoulder becomes apparent in the higher BE part of the C1s

peak and the peak is shifted to higher BE. It is rather clear

that Nþ2 implantation caused a notable change in the bonding

of boron which preferred bonding to highly electronegative

and energetic N atoms. In the C1s region after implantation,

several different possible C-N bonding combinations are

observed at peak positions around 285.6, 284.4, and 283

eV.12,27,29,40 The C-B bond is also seen in the C1s region but

that contribution is not so obvious in the B1s region. This

might be due to the amount of B which is four times higher

than that of C in the implanted regions. N1s peak position

with the peak center at 398.4 eV implies that N in the

implanted layer was mainly in BN network.1,3 While we

observed a strong indication of C-N bond in the C1s region,

the evidence of C-N bonding in the N1s spectrum from the

implanted region is not very clear. This could be explained

by the presence of an extremely N rich environment in the

implanted region, as shown in Table III. Hence, even if some

C is bonded to N atoms, the effect would be more prominent

in the C1s region as majority of the N is coordinated to B

and so the fraction of N atoms bonded to C would be very lit-

tle. Furthermore, in some studies the peak at around 398.4

eV is also reported for sp2C-N.42,43

D. N1 and Nþ2 ion implantation into RF=MS deposited
DLC films

Figures 4(a) and 5(a) show the XPS generated depth

profile images for Nþ and Nþ2 ions implanted DLC films at

C1s and N1s XPS regions, respectively, and (b) of those

show XPS scans of ion implanted and un-implanted layers

from the same sample and BCN film. In these cases, the total

number of implanted ions was the same but the number of N

atoms were twice as high for Nþ2 implanted film. The shape

and peak position of C1s peak are same for both implantation

TABLE III. Film thickness, atomic percentage, and ratio of the atoms in the implanted layer.

Films

Total

thickness (nm)

Depth from the

surfacea (nm) B C N O B=N B=C

SRIM

(Å)

Range Straggle

Cþ implanted a-BN 150 105 47.5 20.5 23.3 8.7 2.04 2.31 959 255

Nþ implanted a-BC 210 110 61.5 16.6 19.6 2.3 3.14 3.70 957 241

Nþ2 implanted a-BC 210 60 48.5 11.2 38.1 2.2 1.27 4.33 522 159

Nþ implanted DLC 190 75 89.2 9.2 1.6 727 187

Nþ2 implanted DLC 190 40 88.3 9.9 1.8 384 117

aThe depth from the surface of the film at which the XPS data was obtained and used for chemical composition calculations.
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cases as shown in (b) of Figs. 4 and 5. But the shape of C1s

peak for implanted layer was different than that for unim-

planted layer of C film. There is a slight shoulder at higher

BE of C1s which may imply some bonding of C with N. The

possible peaks in C1s could be assigned to C in C environ-

ment at 284.4 eV, C bonded with one N at 285.6 eV, and C

bonded with two N at 286.5 eV.12,19,27,40 N1s peaks for both

cases seem to be combination of three bonding structures.

The possible peaks could be assigned to N atoms having two

C neighbors at 398.4 eV [N-C(1)], N atoms having three C

neighbors at 400.0 eV [N-C(2)]42–45 and N bonded with

other N atoms or suggest some trapped N2 at 402.5 eV.43 It

is very clear from Figs. 5 and 6 that N prefer to make bond

with C in absence of B.

Figure 6 compares the B1s, C1s, and N1s data from dif-

ferent implanted films directly. It shows that addition of

small amount of nitrogen (Nþ) first affected the B atom only.

With further increase of the amount of implanted nitrogen

(Nþ ! Nþ2 ), a shift to higher BE has been observed for C1s

peak in addition to that of B1s peak. A shoulder became

apparent at higher binding energy of C1s peak which indi-

cates the formation of C-N bonds. Thus implanted nitrogen

into sputter deposited boron carbide prefers firstly B atom.

The excess N atoms then started to bind with C after B was

saturated with implanted N. Figure 6 also indicates that the

implanted Cþ ion did not affect N peak position and shape.

These indicate that neither C nor N atoms prefer each other

to make bond if there are B atoms around.

In order to get clearer pictures of bonding behavior

between B, C, and N, we deposited BCN thin films at differ-

ent N2 fluences. Figure 7 shows the XPS spectra of BCN for

(a) B1s, (b) N1s, and (c) C1s regions from the films depos-

ited at increasing N2 fluences. B1s and C1s spectra from B4C

target are also shown here for the comparison. Figure 7(a)

shows that peak position for B-C bonding in the B1s spectra

shifts toward that of B-N with the increase of N2 fluence.

The B-C bonding contribution is almost negligible for the

films deposited using 5 to 10% N2 in the process gas. No sig-

nificant peak of N-C bonding could be seen for the films de-

posited using N2 fluence up to 3% [Fig. 7(b)]. A shoulder,

possibly due to N-C bonding, become apparent at higher BE

of N1s (400–402 eV) for the films deposited with 5 to 10%

N2 fluence. This shoulder becomes more prominent with the

increase of N2 fluence. This may imply that N started to

bond with C when B reached saturation at around 3% N2 flu-

ence in our case. On the other hand, Fig. 7(c) shows that in-

tensity of the peaks assigned for C-B bonding decreases with

the increase of N2 fluence. Some shoulders could be seen at

higher BE region (287–290 eV), especially for the film de-

posited using 5% to 10% N2 fluence. Those peaks are

assigned to C bonded to N with different ratios. The most

intense peak (285.4 eV) that observed at highest fluence of

N2 is assigned to sp2C¼N.2,19,27,49

We have also investigated the carbon incorporation to

the boron nitride monolayer by total energy calculations

which have been performed for various structures, especially

the carbon substitution, by using DFT. Those structures are

compared in terms of defect energy which is defined with

respect to the perfect BN nanoribbons as follows:

Edef ½BNþ C� ¼Etot½BN� C� � Etot½BN� � nClC þ nBlB

þ nNlN; (1)

where Etot[BN-C] is the total energy of C implanted BN

(BN-C) structure, Etot[BN] is the total energy of planar BN

structure without carbon impurity and n’s are the difference

in the number of atoms with respect to the perfect BN films

for each species and lC, lB, and lN are the chemical poten-

tials of carbon, boron, and nitrogen, respectively. Hence, the

total chemical potential of incorporated carbon atoms is sub-

tracted and total chemical potentials of missing boron and

nitrogen atoms with respect to the reference (perfect BN

structures) are added with this definition of Edef. Alpha-

boron, graphite, and gas phase structures for boron, carbon,

and nitrogen, respectively, have been used in order to calcu-

late the corresponding chemical potentials. The results are

summarized in Table IV. For single carbon substitution the

foreign carbon atom is replaced at boron site and nitrogen

FIG. 6. Comparison of normalized XPS data obtained from ion implanted layer; dash-dot line for Cþ implanted a-BN film, black line for Nþ implanted a-BC

film, gray for Nþ2 implanted a-BC film.
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site, respectively, as shown in Fig. 8. The defect energies are

4.27 eV for N site and 4.38 eV for B site, which suggest that

carbon atom initially prefers to form C-B bonds by replacing

nitrogen. Figure 9 shows the structures for the cases of two

carbon substitution where (a) shows the formation of C-C

pair and (b) shows the distance between two carbons;

2.904 Å. Figures 9(a) and 9(b) represent the substitutions for

both N and B sites. Defect energy for pair case is the lowest

(4.68 eV) among other 2C substitutions. It implies that the

structure with C-C pair substitution is energetically favorable

than those of others. Thus, carbon atoms prefer to make C-C

bonds and tend to congregate in BN monolayer. Figures 9(c)

and 9(d) refer to structures for 2C substitution in only boron

sites and only nitrogen sites, respectively. We repeated same

calculations for various C-C distances and the defect ener-

gies are found to be around 8.4–8.5 eV. This result is in good

agreement with the case of one C substitution where the

defect energies will be approximately half. Thus the struc-

tures behave like two separate defects. It is also implied that

the defect energy reduces with the increasing number of C-C

bonds.

The electronic structure and the charge density are im-

portant to understand the details of experiments like XPS.

Therefore, we have presented the charge density differences

with respect to BN layer of single carbon substitution on BN

FIG. 7. XPS spectra for (a) B1s, (b) N1s, and (c) C1s regions from the films deposited at increasing N2 fluences. B1s and C1s spectra from B4C target are also

shown here for the comparison.

TABLE IV. Defect energies for single and double carbon substitution into

BN layer. Number of bonds and magnetic moments are shown. The struc-

tures are shown in Figs. 8 and 9. The defect energies have been calculated

using Eq. (1).

Structure

Number

of C-C

bonds

Number

of C-B

bonds

Number

of C-N

bonds

Magnetic

moment (lB) Edef (eV)

C in B site 0 0 3 1.0 4.38

C in N site 0 3 0 1.0 4.27

C-C pair 1 2 2 �0 4.68

2C in both

B & N sites apart

0 3 3 �0 6.49

2C in 2B sites 0 0 6 �0 8.49

2C in 2N sites 0 6 0 �0 8.39

FIG. 8. (Color online) Single carbon atom substitution on (a) B site and (b)

N site. The bond lengths are indicated in the figure. Calculations are per-

formed by starting planar and nonplanar geometries. The planar final geome-

try is energetically most favorable.

FIG. 9. (Color online) Double carbon substitution into BN layer; (a) carbon

atoms make C-C pair, (b) B and N are replaced by carbons with distance

2.904 Å, (c) two boron atoms are replaced by carbons, (d) two nitrogen

atoms are replaced by carbons. The defect energies are given in Table IV.

The C-C pair has the lowest defect energy (4.68 eV).
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structures in Fig. 10. The reference structure is the BN layer.

The charges are congregate on nitrogen sites in the reference

structure. Boron, carbon, and nitrogen have 3, 4, and 5 val-

ance electrons, respectively. Hence, for carbon substitution

into boron site the excess charge remains on carbon. In the

case of C atom in a Boron site, the charge due to the extra

electron from substitutional carbon atom is distributed locally.

Whereas, the extra charge due to a carbon atom exchanging a

nitrogen atom in the system were found to be distributed in an

extensive manner; effects reaching as far as the boundaries of

the BN layer used for the computational studies. Surely, this

point requires further study, and could be used to provide val-

uable insights to understanding the chemistry of B-C-N solids

and alike through XPS and related techniques.

IV. CONCLUSIONS

A comparative study in terms of experimental and DFT

investigation was performed to understand the individual

effect of atoms in the bonding structures and the possible

phase separation routes in BCN materials. In that concern,

Nþ and Nþ2 ions were implanted into RF=MS deposited DLC

and a-BC films, and Cþ ions were implanted into RF=MS

deposited a-BN films. In addition, BCN films were sputter

deposited using different N2 fluences. The results were

explained using depth profile images with respective spectra

for different films at B1s, C1s, and N1s XPS regions. The

results revealed that N and C do not prefer to bond with each

other if there are B atoms in the vicinity. At high N2 fluence

(5%–10%) in BCN film deposition or Nþ2 ion implantation,

N bonded to C after the bonding saturation of B-N structure.

In addition, implanted C atoms also preferred to either bond

with boron atoms which were not coordinated with nitrogen

atoms, or bonded with other carbon atoms. DFT investiga-

tion also supported these experimental findings. These

results could be used as important references for future

works in the related fields.
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