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A hierarchical multi-objective heuristic algorithm and pricing mechanism are
developed to first determine the cell loading decisions, and then lot sizes for each
item and to obtain a sequence of items comprising the group technology families
to be processed at each manufacturing cell that minimise the setup, inventory
holding, overtime and tardiness costs simultaneously. The linkage between the
different levels is achieved using the proposed pricing mechanism through a set of
dual variables associated with the resource and inventory balance constraints, and
the feasibility status feedback information is passed between the levels to ensure
internally consistent decisions. The computational results indicate that the
proposed algorithm is very efficient in finding a compromise solution for a set of
randomly generated problems compared with a set of competing algorithms.

Keywords: cell scheduling; production planning; cellular manufacture; linear
programming

1. Introduction

Group technology (GT) is an innovative approach for batch-type production that seeks to
rationalise small-lot production by capitalising on the similarities that exist among
component parts and/or processes. GT tries to bring the benefits of mass production, such
as reduced material handling and manufacturing lead time, and simplified planning and
scheduling activities, to high variety, medium-to-low volume quantity production.
The application of GT to manufacturing is called cellular manufacturing (CM), which is
the physical division of the manufacturing facilities into production cells, representing the
basis for advanced manufacturing systems such as just-in-time and flexible manufacturing.
On the other hand, it has been reported in different studies (e.g., Wemmerlov and Johnson
(1997) and Suresh and Gaalman (2000)) that a direct conversion from a functional layout
to a cellular layout by itself may not bring about all the stated advantages suggested in the
literature. It would appear that a new cellularly divided shop must be controlled with
efficient production planning systems so as to fully benefit from the advantages of GT.
Therefore, the thrust of this paper is the development of a hierarchical multi-objective
approach to solve the cell loading, lot sizing and cell scheduling problems in CM systems.
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In most production systems, cell loading, lot-sizing and scheduling decisions are made at
different levels of the hierarchy, however there is a strong interaction among these
decisions. Furthermore, most of the existing models do not utilise the shop floor
conditions in lot-sizing and scheduling decisions, even though such a decision might
improve the system performance.

There is a vast amount of literature concerning lot-sizing on the one hand and
scheduling on the other, but there are a few studies that contain elements of both lot-sizing
and scheduling. Most of the research on lot-sizing has concentrated on a trade-off between
setup and inventory holding costs and has ignored analysis of the interface between
lot-sizing and scheduling decisions. Biggs (1979) shows that there is a strong relation
between these decisions, and under changing shop floor conditions, different lot-sizing and
scheduling rule combinations perform better than others. The key issue in many
scheduling situations is that sequencing methods are not only a means of controlling time
performance; in fact, cell loading and lot-sizing have a major impact on lead times. Using
fixed lot sizes and subsequent scheduling efforts make the system blind to these
interactions that might be exploited to increase the overall system effectiveness.
The following justification seems to be prevalent for not evaluating the cell loading,
lot-sizing and scheduling problems jointly. The cell loading subproblem is considered as a
planning decision and is assumed to be solved at a higher level in an organisation than
the scheduling subproblem, which is usually solved after lot-sizing decisions. As a result,
the scheduling subproblem searches for a solution in a limited feasible solution space.
In addition, the reduced shop flexibility of CM systems combined with a three-step
approach severely restricts the number of alternatives possible at the scheduling level.
Since cell loading, lot-sizing and scheduling decisions are interrelated, simultaneous
solutions can improve the system performance. The key idea is that cell schedules and lot
sizes should change as the cell loading decisions change over time, as opposed to having
fixed lot sizes as is widely used in the literature.

The complexity of a joint approach has already been shown by Potts and Wassenhove
(1992). Therefore, the spatial decomposition of a CM shop configuration is used to
simplify the problem where each GT cell is designed to produce a set of part families.
We assume that switching from one GT family to another requires a major change in setup
of the workstation, while items within a family can be accommodated with minor
adjustments that require only a relatively small amount of time that can be added to the
processing time. This assumption reflects the fact that each family includes a set of items
with different demand and due-date requirements but similar production and setup costs
since the similarities of the items are much closer with respect to size, shape and processing
routes within a family than across the families.

There has been increasing interest in scheduling problems with setup times and/or
costs. Potts and Kovalyov (2000) surveyed scheduling problems with batching, while
Allahverdi et al. (1999) reviewed the scheduling literature involving setup considerations.
For a more recent review, we refer to Allahverdi et al. (2008). Crauwels et al. (1998) and
Azizoglu and Webster (2003) developed branch-and-bound-based approaches for the
weighted flow time problem with family setup times on single and parallel machines,
respectively. Baker (1999) considered the case where the setup times are the same for
different job families. He proposed and compared several heuristic procedures for the
problem. With respect to the cell scheduling problem, Bokhorst et al. (2008) investigated
the impact of family-based dispatching rules on the mean flow time using a simulation
study in small manufacturing cells with and without labour constraints.
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Venkataramanaiah (2008) developed a simulated annealing (SA)-based algorithm for

scheduling in a flowline-based manufacturing cell with missing operations with the

objective of minimising the weighted sum of the makespan, flowtime and idle time, and

compared the proposed approach with dispatching rules. In a recent study, Ying et al.

(2010) presented a computational investigation concerning the performance evaluation of

non-permutation versus permutation schedules for the flowline manufacturing cell with

sequence-dependent setup times utilising an SA algorithm. For a more detailed discussion

on scheduling job families, we refer to Baker and Trietsch (2009). There is a limited

number of studies on the cell loading problem. Suer et al. (1999) proposed new rules for

the cell loading problem, and studied the impact of cell loading and scheduling considering

the entire system and reported that no single rule performed better in terms of multiple

performance measures. Suer et al. (2008) studied a fuzzy bi-objective cell loading problem

in labour-intensive cellular environments. Suer et al. (2009) proposed heuristic procedures

for the cell loading problem in a shoe manufacturing company.
In addition to a spatial decomposition, we also employ a structured product-based

aggregation/disaggregation (A/D) scheme based on GT-oriented classification and coding

(CC) systems. An A/D scheme is applied to reduce the size of the problem, where the

decomposition of the manufacturing system proceeds in three dimensions: by floor space

(or resource-based), by product, and by time horizon. In the floor space decomposition,

the manufacturing system is divided into a set of GT cells where each cell is designed to

produce a GT family or families. In the product-based decomposition, similar items are

grouped into GT families. Throughout this research a GT family is defined as a set of

items that require similar machinery, tooling, machine operations, jigs and fixtures. Both

GT cell formation and the prerequisite product family determinations are assumed to have

been done a priori to this planning activity, but their impact on the performance of the

results are tested in Section 5. In the time scale decomposition, the levels of the decision

hierarchy differ by complexity, scope and time horizon in that higher levels deal with

longer range and more aggregated issues, and lower levels deal with short-term and more

specific issues. The main contributions of this paper are to develop a hierarchical multi-

objective approach and to propose new solution techniques to solve cell loading, lot-sizing

and scheduling problems as discussed in Sections 2 and 4. The linkage between the

different levels is achieved using the proposed pricing mechanism (discussed in Section 3),

and the feasibility status feedback information is passed between the levels to ensure

internally consistent decisions.
In summary, there are four concepts that could impact the performance of a cellular

manufacturing system: (i) cell formation, (ii) cell loading, (iii) lot-sizing, and (iv) scheduling

decisions. As stated above, cell formation is not the topic of the paper and it is assumed

that cells and product families are already formed. Issues (ii), (iii) and (iv) are jointly

tackled in this paper in a two-level approach. The cell loading problem is solved at the first

level, whereas the joint lot-sizing (iii) and scheduling (iv) problem is addressed at the

second level. The overall decision-making hierarchy of the proposed hierarchical multi-

objective approach is outlined in Figure 1. Section 2 describes concept (ii) and its

mathematical formulation. In this stage, initial family lot size estimates per cell and per

period are required. Section 4 addresses joint lot-sizing (iii) and scheduling (iv). In order to

solve the joint problem for each cell in each period at the second level for a given cell

loading decision, we also propose a multi-objective joint algorithm (MJA) as discussed in

Section 4.
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2. Cell loading

Cell loading, or production planning, in a CM environment is a decision activity that

determines the kind of items and the quantities to be produced in each cell in the specified

time period, subject to the production capacity and demand forecast. Our aim is to

allocate production capacity among GT families and items by means of the proposed

aggregate planning model. This can be achieved by solving a multi-period optimisation

problem that minimises the summation of production, setup, inventory holding, and

regular and overtime capacity costs subject to production and inventory balance

Solve the cell loading problem

Cell loading decisions and dual values

Feasibility
check

(MJA Step 2)?

- GT cells and families
- Effective demand for each item
- Processing times and cost parameters

Level 1

Solve the joint lot sizing and scheduling
problem for each cell j in period t

Determine the relative weights
using the trade off functions

Level 2

Determine an initial schedule for all items 
assigned to cell j in period t (MJA Step 1)

Phase II. (MJA Step 4)
Set r = 1

Yes

Select the maximum Fr (Sr)
as the best schedule

Phase I. 
(MJA Steps 3.1–3.6)

Is there any
feasible

schedule?

Determine the best
feasible schedule

Reduce the upper limits on 
the violated resource

availability constraints

Generate all nondominated
schedules at iteration r

Calculate the unified
tradeoff value for each
nondominated schedule

Is Fr (Sr)
<Fr–1(Sr–1)? r = r+1

Report the best nondominated
schedule and STOP

No

No

Yes

Yes

No

Figure 1. Flow-chart representation of the algorithm’s framework.
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constraints for families and items, and capacity feasibility constraints for GT cells and

resources over the planning horizon. The objective function corresponds to the

minimisation of the variable cost of production. The set of parameters and decision

variables are given in Tables 1 and 2, respectively.
A mathematical formulation of the cell loading problem is as follows:

min
XT
t¼1

XJ
j¼1

" X
i2FSð j Þ

Cijt � Xijt þ
X
i2Sj

ðBSij=QijtÞ � Xijt

þ
X
i2Pj

ðBPij=QijtÞ � Xijt þ ojt �Ojt þ rjt � Rjt

#
þ
XT
t¼1

XN
i¼1

hit � IFit, ð1Þ

Table 2. Cell loading decision variables.

Xijt Number of units of family i produced by cell j in period t
IFit Inventory of family i at the end of period t
Ojt Overtime used by cell j in period t
Rjt Regular time used by cell j in period t
Zkjt Number of units of item k produced by cell j in period t
Ikt Inventory of item k at the end of period t
ORlt Overtime used by resource l in period t
RRlt Regular time used by resource l in period t

Table 1. Cell loading parameters.

Cijt Average unit cost for producing one unit of family i by cell j in period t
rjt Average cost of one regular time unit for cell j during period t
ojt Average cost of one overtime unit for cell j during period t
hit Average holding cost for family i in period t
dfit Demand for family i in period t
aij Average total time required to produce one unit of family i in cell j
BSij Setup cost for family i in secondary cell j
BPij Setup cost for family i in primary cell j
bsij Setup time for family i in secondary cell j
bpij Setup time for family i in primary cell j
Qijt Initial estimate for the lot size of family i in cell j in period t
Pj Set of families whose primary cell is j
Sj Set of families whose secondary cell is j
FS( j ) A feasible set of families assignable to cell j
dkt Demand for item k in period t
TI(i) Set of items belonging to family i
PRkl Average total time required to produce one unit of item k using resource l
LR( j ) Set of resources belonging to cell j
NO(kj) Number of operations for item k in cell j
NI(i) Number of items belonging to family i
NR( j ) Number of resources in cell j
J Number of cells
N Number of families
K Number of items
L Number of resources
T Planning horizon

International Journal of Production Research 6325
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subject to

XJ
j¼1

Xijt þ IFi,t�1 � IFit ¼ dfit, for i ¼ 1, . . . ,N, t ¼ 1, . . . ,T, ð2Þ

X
i2FSð j Þ

aij:Xijt þ
X
i2Sj

ðbsij=QijtÞ � Xijt þ
X
i2Pj

ðbpij=QijtÞ � Xijt �Ojt ¼ Rjt,

for j ¼ 1, . . . , J, t ¼ 1, . . . ,T, ð3Þ

0 � Ojt � (upper limit), 8j, t, ð4Þ

0 � Rjt � (upper limit), 8j, t, ð5Þ

XJ
j¼1

Zkjt þ Ik,t�1 � Ikt ¼ dkt, 8k 2 TIðiÞ, t, ð6Þ

X
k2TIðiÞ

Ikt � IFit ¼ 0, 8i, t, ð7Þ

X
i2FSð j Þ

X
k2TIðiÞ

ðPRkl � ZkjtÞ �ORlt ¼ RRlt, 8l 2 LRð j Þ, j, t, ð8Þ

0 � ORlt � (upper limit), 8l, t, ð9Þ

0 � RRlt � (upper limit), 8l, t, ð10Þ

X
l2LRð j Þ

ORlt �Ojt ¼ 0, 8j, t, ð11Þ

X
l2LRð j Þ

RRlt � Rjt ¼ 0, 8j, t, ð12Þ

Xijt, IFit,Ojt,Rjt,Zkjt, Ikt,ORlt,RRlt � 0, 8i, j, k, l, t: ð13Þ

The constraint sets (2) and (6) are the inventory balance constraints for families and items,

respectively, in which both the amount of inventory left in stock at the end of each period

and the demand in each period are supplied by the amount of production in each period

and the amount of inventory carried over from the previous period. No backordering is

allowed. Moreover, a deterministic, but time-varying, demand for every item in every time

period is assumed. Constraint (7), which represents the inventory consistency equations,

links the item inventories to the inventory of the associated family. This constraint requires

that the inventory for a family is equal to the sum of the inventories of the items contained

in the family. As a result, individual items are mapped into their corresponding families.

Given that
P

k2TI(i) dkt¼ dit, it can be shown that the constraint set, which includes

all the resource, production and inventory constraints, implies that
P

k2TI(i) Zkjt¼Xijt for
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all i, j and t; that is, for each time period, the total family production equals the sum of the
production quantities for its items. Constraints (3) and (8) are the capacity feasibility
constraints for GT cells and resources. Upper limits on regular and overtime usages are
also defined by constraints (4), (5), (9) and (10). Constraints (11) and (12) link the available
time for each GT cell to the resources comprising that cell.

Implicit in constraint (3) is the possibility that each GT family can have more than one
feasible cell for its production. A feasible cell is defined as a cell in which a family can be
processed entirely within that cell considering feasibility requirements. A more detailed
discussion on the formation of primary and secondary cells can be found in Akturk and
Yayla (2005). It is assumed that the primary cell of a family is capable of producing the
family at the lowest possible cost. Secondary cells are those in which the manufacture of
the family is possible at a higher cost, due to both increased setup and material handling
costs, assuming that all cells are initially tooled for their primary families. An additional
cost is incurred when families other than the primary families need to be produced at that
cell. Therefore, the setup costs and setup times for the families in their secondary cells are
assumed to be greater than the setup costs and setup times in the primary cells.
The parameter Qijt is an initial estimate for the lot size allowing the cell resource
constraints to approximately account for the total setup time, which is directly
proportional to the number of setups required to meet the desired production quantities
at each cell. The definition of primary and secondary cells for each family also allows the
production management system to react to the variations in the families’ total demand.
For example, during a very low demand period, one cell may be completely shut down
because of maintenance and that cell’s families are assigned to some other cell.

In this study we present a linear programming (LP) formulation of the cell loading
problem that can be solved by any commercial LP solver, such that an optimal solution is
found by using the IBM ILOG CPLEX optimisation package. Linear programming is a
convenient type of model to use at this level because of the wide availability of LP codes.
LP also permits sensitivity and parametric analysis to be performed quite easily and
information on dual values can be derived at little additional computational cost. Both the
cell loading decisions as well as the dual values will be passed to the second level in order to
solve the joint lot sizing and scheduling problem for each cell j in period t as depicted
in Figure 1.

3. Trade-off functions: pricing mechanism

Since we are trying to solve cell loading, lot-sizing and scheduling problems simulta-
neously, we have multiple and usually conflicting criteria representing the various
objectives of these particular problems at different levels. In practice, the weights of cost-
and due-date-related objectives for the decision maker may vary over time. For example,
if the workload is heavy, scheduling related objectives become more important. One of the
most important steps in multi-objective optimisation is to estimate the weights associated
with each criterion which reflect the relative importance of each objective. If indifference
curves could be developed to relate various objective functions and transform different
units of measure into a common unit, then they would serve as a true arbiter when
comparing several non-dominated solutions. One possible approach to unify multiple local
objective functions into a single global objective function would be to use a trade-off
function to define the relationship among several criteria. Due to the size of these
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problems, and since the loading and scheduling decisions are being made on a regular,

perhaps frequent, basis, interactive multiple criteria decision making (MCDM) approaches

may not be practical. This creates the need for a MCDM with an a priori objective

weighting scheme.
The following function is used to serve as a trade-off function for the setup cost

criterion:

y1ðS, t1Þ ¼ �c1ð1� ea1t1 Þ, ð14Þ

where t1 is the total setup time in the cell during the planning period, y1 (S, t1) is the

‘relative’ dollar value of the aggregated total setup time on a particular cell, c1 and a1 are

constants, c140 and a140.
An exponential trade-off function indicates that the setup time is considered as a

surrogate for the cost of violation of capacity constraints, and also incorporates the

concept of diminishing returns on the value of the setup time adjustments. If the capacity

utilisation on a resource is near or above its upper limit, then that resource is limiting the

throughput of the system, and the capacity takes on some economic value, e.g. a dual

value. This might be, for example, the opportunity cost of not producing additional units

of output per unit time, relative to using another more expensive alternative (e.g., overtime)

or relative to lost revenue due to not meeting due dates. Furthermore, the value of a dual

variable is a monotonically non-increasing function of the right-hand side value of a

capacity constraint. When the right-hand side becomes less restrictive, then the dual value

moves closer to zero. When the capacity constraint is not active, then the dual variable is

equal to zero. The relationship between a dual variable and the decreasing right-hand side

of a capacity constraint resembles an exponential trade-off function for the setup cost

criterion. Therefore, the parameters of the proposed trade-off function, c1 and a1, can be

derived using a set of dual variables from the cell loading problem formulation, which was

solved at the first level of the proposed hierarchy.
The instantaneous rate of change of y1(S, t1) with respect to t1 can be written as

@y1ðS, t1Þ=@t1 ¼ c1a1e
a1t1 , where @y1(S, t1)/@t1 measures the rate of cost increase at the

available capacity (consequently, the rate of cost increase of the overall objective function)

due to increasing the total setup time. Furthermore, (@y1) is an approximation of the cost

increase per unit total setup time increase. In the mathematical formulation of the cell

loading problem, the capacity restrictions for each cell and for each resource are explicitly

considered. If the dual variable associated with the cell constraint ( j, t) is equal to �1jt,
the objective function value in the cell loading level will be decreased by �1jt, where �

1
jt � 0,

if the available capacity of the resource is increased by one time unit (assuming no basis

change results). Therefore, the marginal value of the total setup time, when the right-hand

side value of the constraint ( j, t) is equal to bjt, may be written as

�1jt ¼ c1a1e
a1bjt : ð15Þ

In addition, a sensitivity analysis gives the amount by which the right-hand side can be

changed before the current basis becomes infeasible (all other LP parameters remain

constant). An allowable decrease for each right-hand side, say � jt, gives the maximum

amount by which the right-hand side of a constraint can be decreased with the current

basis remaining optimal (all other LP parameters remain constant). Therefore, if the dual

variable associated with the cell constraint ( j, t) is equal to �2jt when the current right-hand
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side value, bjt, is decreased by (� jtþ �), then the following relationship gives another point

on the trade-off function:

�2jt ¼ c1a1e
a1ðbjtþð�jtþ�ÞÞ: ð16Þ

Consequently, the parameters c1 and a1 of the trade-off function can be determined by

equating the partial derivatives of the trade-off functions to the dual variables at the cell

loading level. Since this is a minimisation problem, both �1jt and �
2
jt are non-negative and

�2jt 4�1jt � 0. In addition, (bjtþ (�jtþ �))4bjt40. Therefore,

�2jt
�1jt
¼

c1a1e
a1ðbjtþð�jtþ�ÞÞ

c1a1ea1bjt
) ln

�2jt
�1jt

 !
þ a1bjt ¼ a1ðbjt þ ð�jt þ �ÞÞ: ð17Þ

Consequently,

a1 ¼
lnð�2jt=�

1
jtÞ

ð�jt þ �Þ
, c1 ¼

�1jt
a1ea1bjt

, ð18Þ

indicating that a140 and c140.
By applying similar logic for the tardiness criterion, a set of trade-off functions for each

family allocated to a particular cell can be defined as follows:

y2ðS, t2Þ ¼ �c2ð1� ea2t2 Þ, ð19Þ

where t2 is the total tardiness for all items in each family during the planning period,

y2(S, t2) is the ‘relative’ dollar value of the total tardiness, t2, c2 and a2 are constants, c240

and a240.
This exponential trade-off function indicates that, if total tardiness is high, we are

willing to spend more money to reduce tardiness by one time unit than if it is low. The rate

of change of y2(S, t2) with respect to t2 can be written as @y2ðS, t2Þ=@t2 ¼ c2a2e
a2t2 , where

@y2(S, t2)/@t2 has an approximate economic interpretation as the cost increase in dollars

(@y2) incurred by increasing the total tardiness by (@t2). In the constraint set of the cell

loading problem, there are production–inventory balance equations for each family and

for each item. The dual variable associated with the balance equation (i, t) is defined by �1it.
The objective function value in the cell loading level will be decreased by �1it if the effective
demand, dfit, for family i in period t is reduced by one unit. If the total tardiness for family

i in a particular cell, given by the initial schedule, is equal to Ti, and Ti� 0, then we can

define the following relationship:

�1it ¼ c2a2e
a2Ti : ð20Þ

A sensitivity analysis on an allowable decrease, �it, of dfit provides a new dual value �2it,
if �it is made slightly larger. If the weighted average across all items within the family for

the total time required to produce one unit of family i is equal to r1i , then the following

approximation gives another point on the trade-off function:

�2it ¼ c2a2e
a2ðTi�ð�itþ�Þr

1
i Þ: ð21Þ

Consequently, the parameters c2 and a2 of the trade-off function can be determined by

equating the partial derivatives of the trade-off functions to the dual variables already

found at the cell loading level, �1it, and alternative ones, �2it, that are easily derived similar
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to the development of the trade-off function for the setup cost criterion, using the weighted
average of producing one unit of family i. Furthermore, �1it 4 �2it 4 0 and
Ti 4 ðTi � ð�it þ �Þr

1
i Þ. Therefore,

a2 ¼
lnð�1it=�

2
itÞ

ðð�it þ �Þr1i Þ
, c2 ¼

�1it
a2e

a2r1i
, ð22Þ

thus a240 and c240.
In summary, the parameters of the trade-off functions, a1, c1, a2, and c2, are derived

from the pricing mechanism which is based on the duality information from the cell
loading problem solution. This information is based on optimised economic decisions and
not ‘expert judgements’. This allows us to consider multiple criteria at the next level, and a
schedule evaluation will be based on a combination of both cost and performance criteria.
Furthermore, we could dynamically adjust the lot sizes and cell schedules as the cell
loading decisions change over time as opposed to having fixed lot sizes as is widely used in
other models in the literature.

4. Joint lot sizing and scheduling

The second level of the decision hierarchy addresses the economic lot scheduling problem
(ELSP) and the relationship between lot sizes, inventory levels and meeting due dates.
As already mentioned in the literature review, most of the research on ELSP has
concentrated on a trade-off between setup and inventory holding costs and has failed to
consider adequately the interface between ELSP and sequencing decisions in either the GT
context or when there are non-commensurable objectives. The key issue is that, in many
scheduling situations, sequencing methods are not the only means of controlling time
performance; in fact, cell loading and lot sizing have a major impact on performance
measures such as tardiness and flow time. This leads to an optimisation problem that
balances the need to minimise setup and inventory holding costs with the need to minimise
tardiness due to not meeting due dates. As a result of this observation, the proposed
approach to the joint ELSP and scheduling problem, assuming GT family groups,
minimised the lot size and due-date-related costs for each cell j in each time period t for a
given set of resources and due-date requirements. Although items within each family are
similar with respect to design and manufacturing attributes, they might have different
demand and due-date requirements. Furthermore, the total sum of item requirements in a
given period, Zkjt, was one of the decision variables in the cell loading level. It is important
to note that Zkjt is actually a collection of different customer orders, each with a distinct
due date. Consequently, scheduling all of the items within the same family consecutively
may not be the best scheduling rule when we consider the due-date-related scheduling
criteria. Therefore, we propose a new multi-objective scheduling algorithm at the second
level to determine the lot sizes for each item and to obtain a sequence of items comprising
the group technology families to be processed at each manufacturing cell as outlined in
algorithm 1 (denoted MJA).

Algorithm 1 : Multi-objective Joint Algorithm (MJA)

Step 1: Initial schedule generation: For all items (e.g., Likf, for customer order i of item k
in family f) that are assigned to cell j in period t, find an initial schedule, S0, to minimise
the average tardiness.
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Step 2: Feasibility check: For a given schedule S0, find the MShf values, where MShf is

defined as a 0–1 binary variable that takes a value of 1 if family h immediately precedes

family f, and zero otherwise. Let the initial total setup time, TS0¼
P

h

P
f Shf �MShf, where

Shf is the required setup time switching from family h to family f, i.e. Sff¼ 0. For each

resource l in cell j (8l2LR( j )) in period t, check for feasibility using the following resource

availability constraint:
P

i2FS( j )

P
k2TI(i)(PRkl �Zkjt)þ

P
h

P
f Shf �MShf�RRltþORlt.

If the given schedule is feasible, then it will always be feasible since the proposed algorithm

only reduces the total setup time at each iteration. Therefore, we do not have to check for

feasibility again; go to Step 4, Phase II. If schedule S is found to be infeasible, let the

maximum amount of infeasibility on cell j in period t be U¼maxl2LR( j )[
P

i2FS( j )P
k2TI(i)(PRkl �Zkjt)þTS0]� (RRltþORlt). Then, go to Step 3, Phase I.

Step 3: Phase I: Since our aim is to achieve feasibility in Phase I, at each iteration r we

will only consider the forward or backward shifts that could make the corresponding MShf

value equal to zero. Set r¼ 0 and �0¼ 0.

Step 3.1. TSr¼TSr�1� (decrease in total setup time, �r). We will only consider the

alternative schedules for which �r40, and denote this set as S. If S is an empty set,

then no feasible solution exists; thus, stop and go back to the cell loading level and

reduce the upper limits on the resource availability constraints (i.e. constraint sets (4)

and (9)) for the bottleneck resource (or resources).
Step 3.2. For each alternative schedule Sr2S, calculate (total tardiness)r¼ (total

tardiness)r�1þDr. The value of Dr will be found by considering both the forward and

backward shifts.
Step 3.3. Forward shift: If an order, Lnkf, is shifted forward, then let set A : {m | in

Sr�1,m5 n; in Sr, n5m}, and B : {m | n5m in both Sr�1 and Sr}, and m5 n means

that order m precedes order n (not necessarily directly) in the given sequence.

Df
r¼
P

m2A maxfðCmkfðr�1Þþ tnkf � ddmkfÞ, 0g�
P

m2B maxfðCmkfðr�1Þ��r�ddmkfÞ, 0g

�ðmaxfðCnkfðr� 1Þ � ddnkfÞ, 0g �maxfðCnkfðrÞ � ddnkfÞ, 0gÞ, where ddmkf and tmkf are

the due date and total processing time of order m of item k of family f, respectively,

whereas Cmkf(r� 1) and Cmkf(r) are the completion times of the same order in

iterations r� 1 and r, respectively.
Step 3.4. Backward shift: If an order, Lnkf, is shifted backward, then let set

C : {m | inSr�1, n5m; in Sr,m5 n}. Db
r¼ðmaxfðCnkfðrÞ�ddnkfÞ, 0g�maxfðCnkfðr� 1Þ

�ddnkfÞ, 0gÞ �
P

m2CmaxfðCmkf ðr�1Þ�tnkf��r�ddmkfÞ, 0g �
P

m2B maxfðCmkf ðr� 1Þ�

�r �ddmkfÞ, 0g.
Step 3.5. Let Dr ¼ minfDf

r, D
b
r g. Among all the alternative schedules in S, identify the

non-dominated schedules.
Step 3.6. For each non-dominated schedule, calculate the unified trade-off value as

Fr(Sr)¼ y1(Sr,�r)� y2(Sr,Dr), and select the one that gives the maximum Fr(Sr) value.

Set �r¼ �r�1þ �r. If �r� U, go to Step 4. Otherwise, set r¼ rþ 1 and go to Step 3.1.

Step 4: Phase II: Use the same search heuristic explained in Steps 3.1 to 3.6 to find the

best schedule, S*, and the non-dominated schedule found at the end of Step 3, Phase I,

becomes a starting solution. Phase II maintains the feasibility by searching within the

feasible region, and the only difference is the stopping condition. We generate a sequence

of schedules until FrðS
�
r Þ5Fr�1ðS

�
r�1Þ.
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In the proposed algorithm, we first find an initial schedule to minimise the average

tardiness and check its feasibility in Step 2. The two-phase approach in Steps 3 and 4 is

analogous to the two-phase simplex method. In Phase I of the proposed heuristic, the

objective is to achieve feasibility with as little deviation from the current schedule as

possible. If a feasible schedule exists, then Phase II retains feasibility, and searches for the

best solution while staying in the feasible region. The proposed multi-objective search

heuristic first identifies a list of candidate schedules in Step 3.1 for each bottleneck

resource leading to a set of non-dominated schedules at each iteration. Each candidate

schedule corresponds to a single change of the order of items which results in a decrease in

the amount of total setup time and the number of setup occurrences, although it might

increase total tardiness. By merging two items from the same family that are apart from

each other, one setup occurrence can be saved. Therefore, a list of candidate schedules is

identified that can decrease the total setup time. The following example describes the

forward and backward shifts.

Numerical Example 4.1: During the search procedure, we only consider the forward or

backward shifts that could make the corresponding MShf value equal to zero. For

example, let Sr�1 be {. . .,L111,L233,L132, L211,L142, . . .}, and customer order L211 is shifted

forward and appended to L111. The total setup time in the new schedule Sr, {. . .,L111,

L211,L233,L132,L142, . . .} would become TSr¼TSr�1� (S12þS21) (or �r¼S12þS21).

In this particular schedule, the lot size of item 1 is increased from L111 to L111þL211.

In the forward shift, an order is appended to the end of a group of the same family, and in

the backward shift an order is appended to the beginning of a group of the same family.

This shift combination possesses primal–dual characteristic, where the current schedule

is the best one for the tardiness criterion, and we are searching for a better schedule

for the setup cost criterion by reducing the number of setups, which also reduces

the average flow time and makespan, while staying as close as possible to the current

schedule.

The proposed search heuristic can be defined as a map � :R!X, where X is a list of

candidate schedules of R. The map � is referred to as a generating mechanism for the

heuristic. That is, �(s)�R for each s2R, and is called a neighbourhood of R.

Furthermore, y2�(s) is a member of R if it is a result of either a forward shift,

y ¼ 1, 2, . . . , i� 1, i, j, iþ 1, . . . , j� 1, jþ 1, . . . , n, for 1 � i5 j � n, ð23Þ

for which items i and j belong to the same family but not item iþ 1, or a backward shift,

y ¼ 1, 2, . . . , i� 1, iþ 1, . . . , j� 1, i, j, jþ 1, . . . , n, for 1 � i5 j � n, ð24Þ

for which items i and j belong to the same family but not item j� 1. The proposed search

heuristic begins with an initial schedule S0 and selects from the set �(S0) a list of schedules

for which �140. In Phase II we utilise the proposed pricing mechanism to handle multiple

criteria, and select the best schedule such that F1(S1)4F0(S0), if one exists. In this fashion,

the heuristic generates a sequence of schedules {Sr}, where Srþ12�(Sr) and

Frþ1(Srþ1)4Fr(Sr), terminating only when the best S* is found. That is, S* is a schedule

such that F(S*)�F(S) for all S2�(S*).
In summary, during the search procedure, a set of candidate schedules is first defined at

each iteration. Each candidate schedule corresponds to a change of the order of two lots

which results in a possible increase in the amount t2 of total tardiness, and a decrease in the
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amount t1 of the total setup time; as a result the total number of setups is also reduced.
A set of non-dominated schedules from the candidates schedules is defined in Step 3.5
based on the following conditions.

Condition 1: Given a current schedule Q, if there is a candidate schedule Sr such that
t2(Sr)� 0 and t1(Sr)40, then the current schedule Q is a dominated schedule.

Condition 2: Given a set of candidate schedules Sr2S, if there is a candidate schedule Sv

such that t1(Sv)5 t1(Sz) and t2(Sv)� t2(Sz) for any Sz2S, then the candidate schedule Sv is
a dominated schedule.

Condition 3: Given a set of candidate schedules X, the set of non-dominated schedules N
is defined as N ¼ {x : x2X, there exists no other x0 2X such that either t1(x

0)4t1(x) and
t2(x

0)¼ t2(x), or t2(x
0)5 t2(x) and t1(x

0)¼ t1(x)}.

Briefly, Condition 1 considers the current schedule and shows that it may be
dominated by one of the candidate schedules. Similarly, Condition 2 considers the set of
candidate schedules and recognises the schedules that will yield new solutions that are ‘not
as good’ as can be found by choosing another candidate schedule. Condition 3, on the
other hand, allows us to consider all the candidate schedules and defines the non-
dominated ones. The best schedule from the set of non-dominated schedules is found by
simultaneously considering the multiple performance criteria with an a priori objective
weighting scheme based on a trade-off function technique as discussed in the previous
section. The following example outlines how the proposed pricing mechanism and multi-
objective search algorithm work.

Numerical Example 4.2: Let the total setup time at iteration r� 1 for the incumbent
schedule be equal to 60, and the total tardiness be equal to 200. At iteration r, the
following four candidate schedules are found as a result of either a forward or a backward
shift. Let {Candidate schedule k Total setup time, Total tardiness}: {S1k 55, 215}, {S2k 56,
210}, {S3k 54, 214}, and {S4k 58, 212}. The non-dominated schedules are S2 and S3,
because schedule S1 is dominated by schedule S3 (i.e. 55454 and 2154214), and schedule
S4 is dominated by schedule S2 (i.e. 58456 and 2124210). For this particular iteration,
S2 is better than S3 with respect to the total setup time criterion, whereas S3 is better
in terms of the total tardiness criterion. In order to compare and correspondingly select
the best schedule Sr at iteration r, we utilise the trade-off functions to unify the multi-
ple objectives into a single value as discussed in Section 2. In these functions, the
associated parameters c1, a1, c2 and a2 are found by using the dual values associated with
the resource and inventory balance constraints in the optimal solution of the cell loading
problem solved at the first level. For the non-dominated schedule S2,FrðS2Þ ¼

ð�c1ð1� ea1ð56ÞÞÞ � ð�c2ð1� ea2ð210ÞÞÞ. For the non-dominated schedule S3, FrðS3Þ ¼

ð�c1ð1� ea1ð54ÞÞÞ � ð�c2ð1� ea2ð214ÞÞÞ. Consequently, we select the one with the maximum
unified trade-off value.

As a main contribution, the proposed approach allows more accurate portrayal of the
operation of CM systems by using the capacity constraints to assess the impact of the cell
loading decisions on the lot sizing and cell scheduling problems through a set of dual
variables associated with the resource and inventory balance constraints. Coordination
between the decision levels was achieved using the proposed pricing mechanism instead of
using a top-down constrained approach as is typically done. Pricing information from dual
variables gives global information to more localised lot sizing and cell scheduling level
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decision making. The pricing mechanism calculates the economics of the CM system which
becomes a portion of the scheduling cost at the lower level by varying parameters in the
corresponding objective function. As a result, lower level searches focus in areas most
likely to contain good solutions. In addition, the number of non-dominated schedules in
the objective space is reduced, which shortens the search process significantly, since the
best schedule is chosen from the set of non-dominated schedules.

5. Computational results

A hierarchical, multi-objective modelling approach and solution technique developed in
this paper to solve cell loading and scheduling problems in cellular manufacturing systems
is evaluated empirically in this section to determine its quality. We wish to investigate to
what degree the proposed approach is robust in the face of uncertainty and how sensitive it
is to the assumptions we have made throughout this research with regard to machine-
component groupings, GT cells and families, the inclusion of new products in the existing
families, and resource availability. There are a large number of variables that could have
an effect on our results. Within the conceptual framework of the hierarchical procedure,
an experimental design is developed with two objectives in mind. The first objective is to
generate a set of test problems to compare the results of the proposed approach with other
scheduling rules. The second objective is to explain the relationships between the
dependent variables (such as tardiness, flow time, number of tardy orders, earliness, and
makespan) and the system parameters.

There are six experimental factors that can affect the efficiency of the proposed
approach, which are listed in Table 3. The initial estimation of lot sizes depends on the
direct setup cost for each item, and plays an important role within the context of the trade-
offs between inventory holding and overtime costs since it determines the number of setups
required. The direct setup cost, to make the results of the research meaningful, must be
compared with the inventory holding cost as a ratio, S/I, as suggested by Maes and Van
Wassenhowe (1986). The S/I ratios, factor A, are used to find the initial lot size of family i
in cell j in period t as Qijt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � S/I ratio � dfit

p
for every i2FS( j ). In order to assign a due

date to each customer order, we utilise the total work content rule, which assigns due dates
proportional to the product of the total processing time of an item, tikf, and parameter F,
the flow allowance factor. The flow allowance factor (factor B) essentially controls the
tightness of the due dates, such as the due date of order i of item k of family f, ddikf¼F �
tikf. Factor B is set at two levels to generate tight and loose due-date requirements.

Table 3. Experimental factors.

Factor Definition Low High

A S/I ratio 0.75 1.25
B Flow allowance factor 20 24
C Number of families 15 35
D Upper limits on resource

availability
No idle time 10% idle time

E Number of GT cells 5 10
F Set of items within each

family
Low variability High variability
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The representative ranges for factor C, the number of families, and factor E, the
number of cells, are based on the study of Hyer and Wemmerlöv (1989) on current GT
practices seen in industry. In addition, an assignment of the items to the GT families is one
of the objectives of the part-family and machine-cell formation problem. These
assignments are done depending upon the similarities that exist between the items, and
similarity coefficients are calculated using several criteria, as discussed by Offodile et al.
(1994). Factor F, the number of items in each family, reflects the fact that the variability
within each family could be different depending upon the threshold values used to form
the GT families. A high threshold value means a low feature variability and a high
similarity among the items in each family. Since the total number of items is a fixed
parameter for all runs, factor F is used to measure the impact of variability in each family
by varying the size of each family, and the processing time for each item k on resource l,
PRkl, is based upon the degree of similarity in each family, as can be seen in Table 4. The
levels of factor D specify the upper limits on resource availability, where the low level
corresponds to a congested shop floor, while the high level represents 10% idle time. Since
there are six factors and two levels, our experiment is a 26 full-factorial design, which
corresponds to 64 treatment combinations.

Other variables in the system are treated as fixed parameters and are summarised in
Table 4, where UN� [a, b] represents a uniformly distributed random variable in interval
[a, b]. All of the parameter values are constant throughout the planning horizon, except for
the inventory holding cost for family i in period t, hit, which increases over time to
approximately account for factors such as inflation and the time value of money.
Furthermore, there are other parameters, such as dfit and aij, that assume fixed parameter
values. The effective demand for each item in each period, dkt, is fixed. Therefore, the
demand for each family in a particular period should be calculated by summing the
demands of all of the items belonging to that family corresponding to that period, i.e.
dfit¼

P
k2TI(i) dkt, 8i, t. The processing time of each item at each feasible resource, PRkl,

and the number of operations for each item are fixed. Therefore, the average total time

Table 4. Fixed parameters.

Parameter Set of values

Total number of items, K 250
Total number of resources, L 50
Number of periods, T 24
Cost of production, Cijt UN� [0.75, 1.25] if i2Pj

UN� [1.5, 2.0] if i2Sj

Cost of regular time, rjt UN� [1.25, 2.0]
Cost of overtime, ojt 2 * rjt
Inventory holding cost, hit (1þ 0.003(t� 1)) * UN� [1.5, 2.5]
Setup cost for the families, BSij and BPij 0.03 * Cijt * dit
Processing times, PRkl

(i) Low variability UN� [0.25, 0.35] if i2Pj

UN� [0.45, 0.55] if i2Sj

(ii) High variability UN� [0.2, 0.4] if i2Pj

UN� [0.4, 0.6] if i2Sj

Setup times between families UN� [2, 3]
Setup times on each resource (0.1 * aij) if i2FS( j )
Number of operations per item UN� [3, 5]
Effective demand, dkt UN� [6, 15]
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required to produce one unit of family i at cell j, aij, should be the product of the average

processing time of an item belonging to family i at cell j and the average number of
operations required for item k in family i. The mathematical expression is

aij ¼
ð
P

k2TIðiÞ

P
l2LRð j Þ PRklÞð

P
k2TIðiÞNOðkj ÞÞ

NIðiÞ2 �NRð j Þ
, 8i 2 FSð j Þ: ð25Þ

The proposed algorithm (denoted HMA) was compared with the shortest weighted

processing time (SWPT) method, which sequences the customer orders in the non-
decreasing order of their weighted lot processing time of (Setup time/(lot size)þ (Total

processing time)), the earliest due-date (EDD) rule, which sequences the customer orders
in non-decreasing order of the due dates, ddikf, the apparent tardiness cost (ATC) rule, and

the initial schedule found in Step 1 of Algorithm 1 of the Wilkerson and Irwin heuristic
(INIT). Under the apparent tardiness cost (ATC) rule, jobs are scheduled one at a time, i.e.

every time the machine becomes free a ranking index is computed for each remaining job.
The job with the highest ranking index is then selected to be processed next. The ranking

index is a function of the time tnow at which the machine became free, as well as tikf and
ddikf of the remaining jobs as well as the required setup time, Shf, switching from family h

to family f, i.e. Sff¼ 0, and the average processing time of the remaining jobs, pavg, at the
current time, tnow. For each unscheduled job at time tnow, we calculate the ATC priorities
as follows:

	ikfðtnowÞ ¼
1

Shf þ tikf
expð�maxð0, ddikf � tnow� ðShf þ tikfÞÞ=pavgÞ: ð26Þ

The reason for choosing the above heuristics for the computational analysis is that it has

been shown that each heuristic works well for one or more performance measures. The
SWPT rule is known to be effective with respect to minimising the average flow time and

minimisation of the number of tardy items in highly congested shops. The EDD rule is
commonly used in practice and performs well for the due-date related-criteria. The

Wilkerson and Irwin (W&I) heuristic is based on the pairwise interchange search idea and
provides good solutions, on average, for the single machine tardiness problem. The ATC

sequencing rule has been shown to be superior to other sequencing rules for the 1k
P

wiTi

problem.
In most production environments, schedule evaluation is based on a mixture of several

performance criteria, since an optimal schedule for one performance measure is not
necessarily optimal for other performance measures. Therefore, the comparison of

different rules was based on multiple performance criteria such as minimising the average
tardiness, �T, the average flow time, �F, the number of tardy items, NT, the average

earliness, �E, and the makespan, Cmax. For each run, the heuristic from the five mentioned
above that yielded the best schedule for a certain performance measure is called the best
heuristic for that measure. Thus, for each performance measure in each individual run, the

best heuristic could be different.
Since the performance measures are not expressed in commensurable terms, a scaling

function, 
ip, for each heuristic p is defined to ensure the same range for each performance

measure i. This range corresponds to the interval (0, 1), where 0 indicates the best value and
1 indicates the worst value. This scaling is accomplished by defining the scaling function as


ip ¼
Zip � Z�i
Z��i � Z�i

, for each p, ð27Þ
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where Zip is the objective function value of heuristic p for performance measure i, Z�i is the
best value for the performance measure i¼minp{Zip}, and Z��i is the worst value for the
performance measure i¼maxp{Zip}.

As an example, we summarise the best factor combination (among all the randomly
generated runs in our computational experiments) for the proposed HMA in Table 5.
For this particular factor combination, factors A, B and C are set at their high levels, and
factors D, E and F are set at their low levels. The best case corresponds to the case where
the number of families is equal to the maximum level, and the number of cells to the
minimum; as a result, several families were allocated to each cell, which means that the size
of the scheduling problem at each cell is greater. Consequently, the setup time between
families becomes a critical issue. In addition, due to the factor combinations in this run,
there is a significant setup cost, and the upper limit on resource availability is set at the low
level (no idle time), which increases the problem complexity. Since the primary advantage
of the HMA is increased solution flexibility, it can compare several trade-offs and vary lot
sizes and sequences to find the ‘best’ schedule for various performance criteria. Therefore,
it can handle the scheduling complexity more effectively than other heuristics by creating
more alternatives to be considered.

Table 6 summarises the ranges for the average scaled deviations for each heuristic for
each individual measure along with the overall averages and ranges for each heuristic.
The proposed HMA performed significantly better than the others in all runs and
increased its superiority when the scheduling complexity was increased as discussed above.
On the average scaled deviation function, 
ip, the HMA is 3.3 times better than the SPT
rule, 2.8 times better than the ATC, and 3.2 times better than the EDD rule. In addition,
the initial schedule given by the W&I heuristic is improved by three times on the average
scaled deviation. The ranges of the average scaled deviations for each heuristic indicate
that even the worst case result for the HMA is better than the others, which indicates its
robustness to widely varying conditions.

Obviously, the scaling function, 
ip, and, especially, its denominator, ðZ��i � Z�i Þ, have a
significant impact, which may be attributed to the average scaled deviations for each
heuristic. If the ranges for the actual values, ðZ��i � Z�i Þ, for the individual performance
measures are wide enough, then the average scaled deviations can be considered

Table 5. Performance measures and scaled values: best scenario for HMA.

Heuristic

Performance
measure SWPT ATC EDD INIT HMA

�T 340.3 120.3 109.0 101.0 61.7
(1) (0.21) (0.17) (0.14) (0)

�F 1092.4 1240.6 1229.5 1221.4 1129.7
(0) (1) (0.93) (0.87) (0.25)

NT 72 101 100 99 56
(0.36) (1) (0.98) (0.96) (0)

�E 392.2 24.0 23.8 23.8 76.3
(1) (0) (0) (0) (0.17)

Cmax 2411.8 2774.7 2614.2 2608.8 2404.1
(0.04) (0.81) (1) (0.97) (0)
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representative of significant relative differences between each heuristic. Table 7 summa-

rises the best and worst case results for each heuristic for each performance measure, and

the objective function differences, ðZ��i � Z�i Þ. As can be seen, the differences are large

enough to allow the average scaled deviations to indicate significant differences among the

heuristics. Furthermore, each heuristic is a non-dominated one for a certain local

performance measure; e.g., SPT is the best for the average flow time criterion, ATC and

EDD for the average earliness criterion, and HMA for both the average tardiness and the

number of tardy items criteria. But, for the overall multiple criteria objective function,

HMA performs significantly better than the others.
The final question is why does the HMA perform significantly better than the other

heuristics. There could be several reasons. (i) In this paper, instead of solving cell loading,

lot sizing and cell scheduling problems independently, they all become levels in the

proposed decision hierarchy. The interactions between these problems are utilised to

increase flexibility by adding more attractive alternatives to be considered. The proposed

pricing mechanism coordinates the different levels by varying their parameters in their

objective functions, and provides ‘soft’ constraints to the higher level problems through

feedback-based adjustments in resource availability, which focuses lower level searches in

areas most likely to contain good solutions. For example, in a highly congested system, the

dual values for the bottleneck resources will be relatively high, and, as a result, the search

heuristic seeks to minimise the total setup time on the bottleneck resources, consequently

reducing the average flow time and makespan. When the dual values for resource

Table 6. Averages and ranges of scaled deviations.

Heuristic

Performance
measure SWPT ATC EDD INIT HMA

�T 1 [0, 0.38] [0, 0.61] [0, 0.38] [0, 0.04]
�F 0 [0.64, 1] [0.91, 1] [0.78, 1] [0.17, 0.8]
NT [0, 1] [0, 1] [0, 1] [0, 1] [0, 0.33]
�E 1 [0, 0.02] [0, 0.04] [0, 0.04] [0.03, 0.33]
Cmax [0, 0.16] [0.27, 1] [0.91, 1] [0.87, 1] [0, 0.31]
Overall average 0.5366 0.4580 0.5203 0.4993 0.1643
Overall range [0.4, 0.632] [0.4, 0.6] [0.372, 0.71] [0.372, 0.638] [0.078, 0.258]

Table 7. Averages and ranges of scaled deviations.

Heuristic

Performance
measure SWPT ATC EDD INIT HMA Z��i � Z�i

�T [278.5, 374.1] [23.2, 195.1] [23.1, 264.3] [23.1, 205.9] [5.4, 124] 368.7
�F [1036, 1092.4] [1173.6, 1335.8] [1174.9, 1365.1] [1175.1, 1344.5] [1113.4, 1174.8] 329.1
NT [60, 125] [43, 226] [41, 225] [41, 223] [29, 99] 197
�E [363.3, 491.2] [3.7, 67.1] [3.7, 67.1] [4, 67.1] [28.8, 149.4] 487.5
Cmax [2339.5, 2420] [2440.6, 2687.6] [2501, 2825.6] [2501, 2803.9] [2365, 2466.5] 486.1
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constraints are small, due-date-related criteria, i.e. the average tardiness and number of
tardy items, become relatively more important than the setup cost criterion, so due dates
can be easily met. As a result, the number of non-dominated schedules in the objective
space is reduced, which shortens the search process significantly, given that the best
schedule is chosen from the set of non-dominated schedules. (ii) Another key issue is that
lot sizes and job sequences should change as the cell loading decisions change over time to
compensate for the scheduling restrictions, so that due dates can be more easily met,
as opposed to having fixed lot sizes as is widely used in other models in the literature.
(iii) Another advantage is that the HMA makes an effort to consider all of the
performance criteria instead of a single criterion. As a result, the ‘best’ solution is sought
for the set of criteria instead of seeking a best solution for a local goal.

The second objective of the computational study was to explain the relationship
between the multiple performance criteria and the six factors considered for the
experimental design. We performed an analysis of variance (ANOVA) test to understand
the sensitivity of the proposed approach as summarised in Table 8. Factor A, S/I ratio,
represents the relationship between the setup cost and the inventory holding cost.
Therefore, it affects the lot sizes for each item, and consequently has a significant effect on
the average flow time and the makespan criteria. Factor A also has a significant effect
on the average tardiness and the number of tardy items criteria, which shows again that
there is a significant interaction between lot sizes and completion times for each item,
validating the importance of the inclusion of the second level, joint lot sizing and
scheduling, in the proposed production planning hierarchy. Factor B, the flow allowance
factor, is set at high and low levels to generate loose and tight due-date requirements,
respectively, for each order. Therefore, factor B has a significant effect on the due-date-
related criteria such as the average tardiness, the number of tardy items, and the average
earliness. The number of GT families, factor C, and the number of GT cells, factor E, are
the most important outputs of the GT machine-cell formation algorithms. Our results
indicate that both factors have a significant effect on all of the performance measures
considered. Therefore, the interface between the design and planning and scheduling
decisions becomes a critical issue. Unfortunately, most of the GT machine-cell formation
algorithms in the current literature do not consider parameters associated with the
production planning and scheduling activities. A similar conclusion is also presented in a
recent paper of Wang et al. (2010), who address the joint decision problem of cell
formation and parts scheduling in a cellular manufacturing system.

Table 8. Analysis of variance results.

Factor

Performance
measure A B C D E F

�T a a a a a b
�F a – a c a a
NT a a a a a –
�E – a a a a –
Cmax a – a c a a

Significant at the (a) 0.5% level, (b) the 2.5% level, and (c) the 25%
level.
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The coordination mechanism between the levels, based on the set of dual values of the
resource constraints at the cell loading level, influences the second level problem by
varying parameters in its objective function. In addition, the upper limits on resource
availabilities at the cell loading level were adjusted depending upon the feasibility status
feedback from the lower level. Since lot sizes and scheduling decisions were based on the
dual values, upper limits on resource availability, factor D, had an effect on the average
flow time and the makespan criteria at only the 25% level of significance. This was due to
the fact that the feasibility status feedback mechanism and pricing adjustments of the
resources at the scheduling level softened the effect. However, it does have a significant
effect on all of the due-date-related criteria at the 0.5% level of significance, since it affects
the amount of time available on each resource. The number of items in each family,
factor F, was used to represent the variability of the items in each family. If there is
variability in the characteristics of the items in each family, more inventory is the natural
consequence, which is not desirable. ANOVA tables show that the variability had the most
significant effect on the average flow time, which is directly proportional to the in-process
inventories. Therefore, if the variability of the items in each family is reduced, then the in-
process inventory level will be reduced.

6. Conclusion

In this study, instead of solving the cell loading, lot sizing, and cell scheduling problems
independently, they all became the levels of the proposed decision hierarchy. We can state
the contributions of this paper as follows. First, the interactions between these problems
were exploited to increase flexibility by adding more alternatives to be considered and
directing the search for a solution in a more favourable area of the solution space. The
proposed pricing mechanism coordinates the different levels by varying the parameters in
their objective functions, and provides ‘soft’ constraints to the higher level problem through
a feedback mechanism. Another key issue is that lot sizes and cell schedules change as the
cell loading decisions change over time to compensate for scheduling restrictions; therefore,
due dates can be more easily met. An advantage arises from simultaneously considering
multiple performance criteria with an a priori objective weighting scheme based on a trade-
off function technique instead of optimising a local performance measure at each level. The
proposed multi-objective search heuristic initially identified a list of candidate schedules
leading to a non-dominated schedule at each iteration. The best schedule from the set of
non-dominated schedules was found based on the trade-off functions, which transformed all
of the performance measures into a common metric (monetary terms). The parameters of
the proposed trade-off functions are derived from a pricing mechanism that calculates the
economics of the CM system resources through a set of dual variables. Consequently, a
unified total cost function, which captures multiple and usually conflicting objectives at
different levels, is minimised instead of seeking a best solution for a local goal. As future
research, the most logical extension would be the inclusion of the cell formation problem in
the proposed decision-making hierarchy.
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Hyer, N.L. and Wemmerlöv, U., 1989. Group technology in the U.S. manufacturing industry:
A survey of current practices. International Journal of Production Research, 27 (2), 1287–1304.

Maes, J. and Van Wassenhowe, L.N., 1986. Multi item single level capacitated dynamic lotsizing

heuristics: A computational comparison. IIE Transactions, 18 (2), 124–129.
Offodile, O.F., Mehrez, A., and Grznar, J., 1994. Cellular manufacturing: A taxonomic review

framework. Journal of Manufacturing Systems, 13 (3), 196–220.

Potts, C.N. and Van Wassenhove, L.N., 1992. Integrating scheduling with batching and lot-sizing:
A review of algorithms and complexity. Journal of the Operational Research Society, 43 (5),
395–406.

Potts, C.N. and Kovalyov, M.Y., 2000. Scheduling with batching: A review. European Journal of

Operational Research, 120 (2), 228–249.
Suer, G.A., Saiz, M., and Gonzalez, W., 1999. Evaluation of manufacturing cell loading rules for

independent cells. International Journal of Production Research, 37 (15), 3445–3468.

Suer, G.A., Arikan, F., and Babayigit, C., 2008. Bi-objective cell loading problem with non-zero
setup times with fuzzy aspiration levels in labour intensive manufacturing cells. International
Journal of Production Research, 46 (2), 371–404.

Suer, G.A., Subramanian, A., and Huang, J., 2009. Heuristic procedures and mathematical models
for cell loading and scheduling in a shoe manufacturing company. Computers & Industrial
Engineering, 56 (2), 462–475.

Suresh, N.C. and Gaalman, G.J.C., 2000. Performance evaluation of cellular layouts: Extension to
DRC system contexts. International Journal of Production Research, 38 (17), 4393–4402.

Venkataramanaiah, S., 2008. Scheduling in cellular manufacturing systems: A heuristic approach.
International Journal of Production Research, 46 (2), 429–449.

Wang, X., Tang, J., and Yung, K.L., 2010. A scatter search approach with dispatching rules for a
joint decision of cell formation and parts scheduling in batches. International Journal of
Production Research, 48 (12), 3513–3534.
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