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Abstract
We summarize the progress in the development and application of chiral metamaterials. After
a brief review of the salient features of chiral metamaterials, such as giant optical activity,
circular dichroism, and negative refractive index, the common method for the retrieval of
effective parameters for chiral metamaterials is surveyed. Then, we introduce some typical
chiral structures, e.g., chiral metamaterial consisting of split ring resonators, complementary
chiral metamaterial, and composite chiral metamaterial, on the basis of the studies of the
authors’ group. The coupling effect during the construction of bulk chiral metamaterials is
mentioned and discussed. We introduce the application of bianisotropic chiral structures in the
field of asymmetric transmission. Finally, we mention a few directions for future research on
chiral metamaterials.

Keywords: chiral media, subwavelength structure, metamaterial, polarization-selective
devices

(Some figures may appear in colour only in the online journal)

1. Introduction

Metamaterials are artificially structured media that are
engineered to possess electromagnetic properties that do
not exist in natural materials, and one typical instance
is the well-known negative refraction. The first negative
index metamaterial (NIM) [1] consists of two ingredients:
one is the continuous metallic wires that provide negative
permittivity [2], and the other is the split ring resonators
(SRRs) that provide negative permeability [3]. The simul-
taneous negative permittivity and permeability can result
in the negative refractive index. Subsequently, most of the
metamaterials that are designed for the negative refractive

index were based on this principle [4–6]. Although negative
permeability (using split ring resonators, for instance) can be
easily obtained in the microwave frequency range, that is not
the case in the optical frequency range [7, 8]. Meanwhile, an
alternative route to realizing negative refraction by utilizing
chirality was proposed theoretically by several independent
groups, i.e., those of Pendry [9], Tretyakov [10, 11], and
Monzon [12]. It was also demonstrated theoretically that a
chiral medium slab can be used as a perfect lens [9–13].
Among the reports, Pendry suggested a three-dimensional
(3D) helix structure (a chiral variant of the Swiss roll
structure) for realizing a chiral metamaterial (CM) with
negative refraction [9]. Tretyakov et al theoretically studied
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the possibilities for obtaining a negative refraction in chiral
composites consisting of chiral and dipole particles [11].
It was shown theoretically that a negative refractive index
can be obtained in a metamaterial made of metallic spheres
arranged in a 3D lattice of helicoidal symmetry [14]. It was
also shown that periodic arrangements of chiral scatterers can
provide 3D and isotropic negative refractive index media [15].
In fact, Bose once studied the rotation of the plane of
polarization of electromagnetic waves by a twisted structure
in 1898 [16]. Lindman was also a pioneer in the microwave
study of a chiral artificial medium [17]. Recently, Zhang
et al experimentally demonstrated a 3D chiral metamaterial
with a negative refractive index that works in the THz
regime [18]. Wang et al also demonstrated with experiments
in the microwave regime that 3D chiral metamaterials give
not only a negative refractive index, but also giant optical
activity and circular dichroism [19, 20]. However, these
above mentioned 3D chiral metamaterials are usually difficult
to fabricate. Meanwhile, it was reported that planar chiral
structures can also exhibit optical activity [21–24]. It should
be noted here that a planar chiral structure is different from a
true chiral structure (or 3D chiral structure). Arnaut and Davis
first introduced planar chiral structures into electromagnetic
research [25, 26]. A structure is defined as chiral if it lacks any
planes of mirror symmetry, while a planar object is considered
a planar chiral structure if it cannot be superimposed on its
in-plane mirror image (reflected by a mirror perpendicular to
the plane of the structure) unless it is lifted from the plane.
In practice, a planar chiral structure still possesses mirror
symmetry for the mirror in the plane. At normal incidence,
a structure with a symmetric configuration in the propagation
direction exhibits no optical activity [27]. Nevertheless, this
situation can be changed by adding a substrate to the structure
that breaks the symmetry in the propagation direction, and
optical activity can thus be obtained [22–24]. However,
chirality is usually quite small in these structures. Later,
Rogacheva et al went a further step, and they demonstrated
giant optical activity in a bilayered chiral structure [28]. The
two layers of planar metal rosette patterns are located in
parallel planes twisting with respect to each other, and they
are not directly connected as in the 3D chiral unit cells [18–20]
but can couple to each other electromagnetically. The optical
activity is so strong that the whole structure shows a signature
of a negative refractive index. Following this pioneering
work, several different bilayered chiral structures working
in the regimes from microwave to infrared were proposed,
e.g., bilayered rosette structure [29, 30], bilayered cross-wire
structure [31, 32], metallic cut wire pairs [33], conjugated
gammadion structure [34], four-‘U’-shape structure [35–37],
complementary chiral structure [38], etc. Moreover, chiral
metamaterials consisting of more than two layers of planar
structures were also investigated [29, 39]. It was shown that
to construct a bulk chiral metamaterial, the effect of coupling
between neighboring unit cells should be taken into account.
Due to the existence of the coupling effect, the bulk chiral
metamaterial and one unit cell of the chiral metamaterial
have different properties [39]. When a chiral metamaterial
is working at a band of negative refractive index, there is a

figure of merit (FOM) parameter for evaluating its degree of
loss [40]. FOM is defined as the absolute value of the ratio
between the real and imaginary parts of the refractive index
(|Re(n)/Im(n)|). Over a length corresponding to one medium
wavelength λ, the wave amplitude decays to exp(−2π/FOM).
In order to achieve a high FOM value, a composite chiral
metamaterial was proposed recently [41]. Moreover, tunable
chiral metamaterials were also reported [42].

The retrieval of the effective refractive index on the
basis of the transmission and reflection parameters is a
convenient and useful tool for characterizing a designed
metamaterial [43–47]. Along with the progress in the study
of chiral metamaterials, a negative refractive index was also
obtained by several retrieval methods [18, 29, 48, 49]. Zhao
et al summarized these retrieval methods with several concise
formulas that can be used effectively in the studies of chiral
metamaterials [50].

Nonreciprocal transmission plays a fundamental role in
information processing, and the electrical diode is a typical
example that shows a nonreciprocal response in electric
circuits, which stimulates considerable effort devoted to the
study of the nonreciprocal propagation of light. There are
two conventional methods for achieving nonreciprocity in
optics. One method is to use a magneto-optical medium that
breaks the time-reversal symmetry by introducing a set of
antisymmetric off-diagonal dielectric tensor elements [51].
The other method is to use a nonlinear medium [52, 53].
Nonetheless, it has been demonstrated that nonreciprocal light
propagation can be realized by the breaking of parity–time
symmetry with complex optical potentials [54]. Meanwhile,
there were attempts to achieve asymmetric but still reciprocal
transmission by using conventionally isotropic, linear, and
lossy or lossless materials. For instance, the asymmetric
transmission of linearly polarized waves can be realized by
using diffractive nonsymmetrical volumetric gratings based
on photonic crystals [55], and using nonsymmetrical metallic
gratings supporting surface plasmons [56]. In a diffraction
scenario, asymmetric transmission was demonstrated by using
a planar chiral array [57]. The asymmetric transmission of
circularly polarized waves has been demonstrated at normal
incidence by using a planar chiral structure consisting of
a single layer of meta-atoms [58–60]. A thin structure
composed of 3D meta-atoms without any rotational symmetry
was proposed to achieve asymmetric transmission for an
arbitrary (including linear and circular) polarization of the
incident electromagnetic wave [61]. It has been demonstrated
that asymmetric transmission can also be achieved with chiral
metamaterials after slight changes to the structure [62, 63].

The remainder of this review is arranged as follows. In
section 2 we give a brief overview of the physical properties
of a typical chiral medium, and revisit the retrieval process for
chiral metamaterials. In section 3 we introduce several typical
chiral metamaterials with negative refractive indices and their
characteristics. In section 4 we mention the construction of
bulk chiral metamaterials. In section 5 we introduce two
cases of asymmetric transmissions based on deformed chiral
structures. Section 6 summarizes the review and gives some
perspectives for future studies.
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2. The physical properties of chiral metamaterials
and retrieval of the effective parameters

2.1. The physical properties of a chiral medium

In terms of the electromagnetic response, chiral material
is characterized by a cross-coupling between electric and
magnetic fields along the same direction. The electromagnetic
wave propagation in such a chiral structure obeys the
following constitutive relations [64]:(

D

B

)
=

(
ε0εr −iκ/c

iκ/c µ0µr

)(
E

H

)
(1)

where ε0 and µ0 are the permittivity and permeability
of vacuum. εr and µr are the relative permittivity and
permeability of the chiral medium. c is the speed of light
in vacuum. κ is the chirality that measures the effect
of cross-coupling between electric and magnetic fields.
Due to the existence of κ , the degeneracy of the two
circularly polarized waves is broken; i.e., the refractive
index is increased for one circular polarization and reduced
for the other. Assuming a time dependence of e−iωt, the
right circularly polarized (RCP, +) wave and left circularly
polarized (LCP, −) wave are defined as E± = 1

2 E0( x̂ ∓
îy ) [65]. The refractive index for RCP and LCP waves is
obtained as follows [64]:

n± =
√
εrµr ± κ = n0 ± κ. (2)

At the same time, RCP and LCP waves have the same
impedance of Z = Z0

√
µr/εr, where Z0 is the impedance

of the vacuum. Given the fact that the chirality κ is strong
enough, negative refraction may occur for one circularly
polarized wave even when both εr and µr are positive, while
for the other circular polarization the refractive index remains
positive. This constitutes Pendry’s earlier proposal of an
alternative route to realizing a negative refractive index [9].

A chiral medium has two important properties. One is
called optical activity, which characterizes the rotation of
the polarization plane of linearly polarized light as it passes
through a chiral medium. Mathematically, it is defined as the
polarization azimuth rotation angle of elliptically polarized
light:

θ = [arg(T+)− arg(T−)]/2 (3)

where T+ and T− are the transmission coefficients for RCP
and LCP waves. The other property is the ellipticity angle η of
the transmitted wave. It characterizes the difference between
the transmissions of two polarizations:

η = arctan[(|T+| − |T−|)/(|T+| + |T−|)]. (4)

η also measures the circular dichroism which arises from
the different absorptions for RCP and LCP waves. Artificial
chiral metamaterials with large θ and small η are preferred for
applications of negative refractions.

Figure 1. Schematics of the transmission and reflection coefficients
of right and left circularly polarized waves for a chiral metamaterial
slab.

2.2. The process of retrieval for the effective parameters

Figure 1 shows the schematics of the transmission and
reflection coefficients of circularly polarized waves for a
chiral metamaterial slab standing in the air.

As seen in figure 1, after applying the condition of
continuity of tangential electric and magnetic fields at the
two interfaces of z = 0 and z = d, the coefficients of the
transmitted wave and the reflected waves have the following
values when the coefficient of the incident wave is set to be
unity:

T± =
4Z ein±k0d

(1+ Z)2 − (1− Z)2 ei(n++n−)k0d
(5)

R± =
(1− Z)2( ei(n++n−)k0d

− 1)

(1+ Z)2 − (1− Z)2 ei(n++n−)k0d
(6)

where k0 is the wavenumber of the electromagnetic wave
in the air. From equation (6), it is seen that the reflection
coefficients of LCP and RCP waves are the same. Therefore,
we have three unknowns (n+, n− and Z) that are contained
in three independent equations. On the basis of the three
equations, the three unknowns can be obtained as follows:

Z =

√
(1+ R)2 − T+T−
(1− R)2 − T+T−

(7)

n+ =
i

k0d

{
ln
[

1
T+

(
1−

Z − 1
Z + 1

R

)]
± i2mπ

}
(8)

n− =
i

k0d

{
ln
[

1
T−

(
1−

Z − 1
Z + 1

R

)]
± i2mπ

}
(9)

where m is an integer determined by the branches. The results
of equations (7)–(9) must obey the following conditions for a
passive medium:

Re(Z) ≥ 0, Im(n±) ≥ 0. (10)
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Figure 2. Schematics of the measurement method in the
experiment [39]. Reproduced with permission from [39]. c© 2010
OSA.

After obtaining the results for n+, n− and Z, other
parameters can be calculated through the following relations:
n0 = (n++n−)/2, κ = (n+−n−)/2, ε = n0/Z, and µ = n0Z.

In addition to developing the above retrieval process for a
slab of chiral metamaterials, Zhao et al also developed the
retrieval procedure for a slab of chiral metamaterial that is
fabricated on a substrate [50]. However, we will not reiterate
this here.

Although in practice it is usually not convenient to
directly measure the transmission and reflection coefficients
for circularly polarized waves, these coefficients can be
calculated from the transmission and reflection coefficients
of linearly polarized waves. The following formula shows
the relations between the coefficients of circularly polarized
waves and linearly polarized waves [31]:(

T++ T+−
T−+ T−−

)

=
1
2

(
txx + tyy + i(txy − tyx) txx − tyy − i(txy + tyx)

txx − tyy + i(txy + tyx) txx + tyy − i(txy − tyx)

)
.

(11)

Figure 2 shows the schematics for the measurement of
txx and tyx in the experiment. If the chiral structure is of C4
rotational symmetry, then the circular polarization conversion
(T+−,T−+) is absent, and the reflected wave of a linearly
polarized incident wave remains the state of polarization. The
transmission of circularly polarized waves can be converted
from the linear transmission coefficients txx and tyx [39]:

T± = txx ± ityx. (12)

3. Several typical chiral metamaterials with negative
refractive indices

Compared with the 3D chiral metamaterials, such as helix
and Swiss roll structures [9, 10], the bilayered planar chiral
structures are much more compatible with the planar process
and easier to fabricate. Consequently, we will concentrate on
the bilayered planar chiral structures in the following.

3.1. Chiral metamaterial consisting of U-shaped resonators

By stacking two mutually twisted SRRs, a magnetic dimer
can be formed, and an array of these magnetic dimers can

Figure 3. Schematic of a unit cell of the chiral metamaterials
consisting of U-shaped split ring resonators. These copper
resonators are fabricated on the opposite sides of the FR-4
board [36]. Reproduced with permission from [36]. c© 2010 AIP.

possess optical activity [66, 67]. However, due to the lack
of rotational symmetry, the optical activity is sensitive to the
linear polarization of the incident wave. To eliminate this
shortcoming, a design was proposed in which the U-shaped
SRR pairs are arranged in C4 symmetry (see figure 3) [36].
The structure is periodic in the x and y directions with both of
the periodic constants being 15 mm—that is, much less than
the operating wavelength—and the thickness of the structure
is 1.66 mm. The waves propagate in the z direction. Thus,
the constructed CM is effectively uniaxial for the normal
incidence wave.

For the structure shown in figure 3, when a linearly
polarized wave with the E field in the x direction is incident
in the z direction, the E field of the transmitted wave can be
found in both the x and y directions, i.e., txx and tyx. At the
same time, the reflected wave is still linearly polarized in the x
direction. On the basis of these scattering results, the reflection
and transmission intensity spectra for RCP and LCP waves,
the absorption spectra, the polarization azimuth rotation angle
θ , and the ellipticity angle η of the transmitted wave can be
calculated. In the following parts of the paper, for the purpose
of clarity, only simulation results will be shown, since they
are in good agreement with the corresponding experimental
results. Figure 4 shows the simulation results corresponding
to the structure of figure 3 [36].

On the basis of the transmission and reflection
coefficients of RCP and LCP waves, the effective parameters
(n+, n−, n0, κ , ε, µ) can be retrieved, as shown in figure 5.

Comparing figures 5(a), (b) and (c), (d), due to the
relation of n± = n0 ± κ , the strong chirality κ can push
the refractive index of the RCP (LCP) wave to be negative
around the resonant frequency of 5.1 (6.4) GHz as shown in
figures 5(c), (d). It is noted from figure 5(f) that in the vicinity
of 5.1 GHz, the imaginary part of the effective parameter µ
shows negative values. This phenomenon is very common in
the retrieval process due to the inhomogeneity and the finite
thickness of the unit cell [68].

The mechanism of the chiral metamaterial composed
of four U-shaped resonators has been discussed in [36],
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Figure 4. Simulation results for the chiral metamaterial of figure 3. (a) The intensity spectra of reflection and transmission for RCP and
LCP waves. (b) The absorption spectra for RCP and LCP waves. (c) The polarization azimuth rotation angle θ . (d) The ellipticity angle η of
the transmitted wave [36]. Reproduced with permission from [36]. c© 2010 AIP.

Figure 5. The retrieved effective parameters of the chiral metamaterials based on the simulation data. ((a), (b)) The refractive index n0 and
chirality κ . ((c), (d)) The refractive indices for RCP and LCP waves. ((e), (f)) The permittivity ε and permeability µ [36]. Reproduced with
permission from [36]. c© 2010 AIP.

by studying the current modes at resonances. A U-shaped
resonator at resonance can be seen as an electric dipole in
the plane coupled to a magnetic dipole perpendicular to the
plane [67]. Since the two layers of U-shaped resonators are
twisted by 90 degrees, all pairs of resonators can couple
to each other only through the magnetic dipoles. At the
lower resonant frequency of 5.1 GHz, the currents on the

top and bottom four-U-SRRs are in the same direction, so
the magnetic dipoles are parallel. In contrast, at the higher
resonant frequency of 6.3 GHz, the currents on the top and
bottom are in opposite directions, so the magnetic dipoles
are antiparallel. According to the current distributions, when
the chiral metamaterial is driven by the electric field in the x
direction at 5.1 and 6.3 GHz, the x component of the induced
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Figure 6. Schematic of a unit cell of the complementary cross-wire
pair metamaterial. These cross-wire shaped slits are etched on the
copper plates on the opposite sides of the FR-4 board [38].
Reproduced with permission from [38]. c© 2011 AIP.

magnetic field Hx is nonzero. And, moreover, at 5.1 GHz, Hx
and Ex are in opposite directions, while at 6.3 GHz, they are
in the same direction [36]. This causality between electric and
magnetic fields is consistent with the constitutive equation,
equation (1).

3.2. Complementary chiral metamaterials with a negative
refractive index

According to Babinet’s principle [65], if the metal wire
is normally illuminated from z < 0 by an incident field
(E0,B0) and its complementary screen is illuminated by a
complementary incident field (E0

c = −cB0,B0
c = E0/c), then

the pattern of the field scattered by the metal wire is the same
as that which is scattered by its complement except that the
polarization of the fields will be opposite for the two systems.
Since the field scattered by the wire can be approximated
as the radiation field by an electric dipole when the higher
order multipolar fields are negligible, the field scattered by
its complement can then be thought of as the radiation field
produced by a virtual magnetic dipole. Babinet’s principle has
been applied in the design of metasurfaces and single-layered
metamaterials [69, 70]. However, Babinet’s principle cannot
be applied directly to a bilayered structure. Consequently, this
principle is rarely seen to be used to construct multilayered
metamaterials. In this subsection, we introduce a novel
design of a complementary chiral metamaterial based on the
bilayered cross-wire chiral metamaterials [31, 38].

Figure 6 shows the schematic of one periodic unit cell
of the complementary CM which consists of double-layered
metal (copper) plates patterned on opposite sides of an FR-4
board. Two cross-wires that are mutually twisted by 30◦ are
cut out from the two metal plates [38]. The structure is
periodic in the x and y directions with both of the periodic
constants being 21 mm—that is, less than the operating
wavelength—and the thickness of the structure is 1.66 mm.
The waves propagate in the z direction.

Using a procedure similar to those of section 3.1, the
transmission spectra for RCP and LCP waves, the polarization

Figure 7. Simulation results for the complementary CM. (a) shows
the transmission spectra for RCP and LCP waves. (b) shows the
rotation angle θ and the ellipticity angle η of the transmitted
wave [38]. Reproduced with permission from [38]. c© 2011 AIP.

azimuth rotation angle θ , and the ellipticity angle η of the
transmitted wave can be calculated. Figure 7 shows the
simulation results. Figure 8 shows the retrieved effective
parameters (n+, n−, n0, κ , ε, µ).

On the κ curves shown in figure 8(b), there are two
resonances related to the chirality. The lower frequency
resonance happens at f = 5.28 GHz, and the upper one
happens at f = 8.77 GHz. Below f = 5.28 GHz, n0 is positive
while κ is negative. Above this frequency, n0 is negative and
κ is positive. For f = 8.77 GHz, only κ changes its sign while
n0 remains positive on both sides. Comparing figures 8(a), (b)
and (c), (d), due to the relation of n± = n0 ± κ , the strong
chirality κ has pushed the refractive index of the RCP wave
from positive to negative values below f = 5.28 GHz and
above f = 8.77 GHz. At the same time, above f = 5.28 GHz,
the originally negative index band of the LCP wave becomes
wider. Figures 8(e), (f) show the retrieved results for ε and
µ. It is noteworthy that in the frequency ranges 5.10–5.28
and 8.77–8.90 GHz, both Re(µ) and Re(ε) are positive and
will not result in a negative index in traditional metamaterials.
Therefore, the negative index of the RCP wave is actually
attributed to the relatively small n0 and the large chirality κ .
Like for the case of figure 5(f), there are regions where the
imaginary part of µ has negative values.

In order to understand the mechanism of the chiral
behaviors, the distributions of the H fields on the middle
plane between the two metal plates and the surface current
modes at resonances have been studied [38]. Figure 9 shows
the simulated H field distributions and the current modes at
the frequencies of two transmission peaks, e.g., figures 9(a)
and (b) at f1 = 5.17 GHz, and figures 9(c) and (d) at f2 =
5.58 GHz, respectively. For both cases, the incident waves
have the E field polarized in the x direction. From figures 9(a)
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Figure 8. The retrieved effective parameters of the complementary CM based on the simulation data. ((a), (b)) The refractive index n0 and
chirality κ . ((c), (d)) The refractive indices for RCP and LCP waves. ((e), (f)) The permittivity ε and permeability µ [38]. Reproduced with
permission from [38]. c© 2011 AIP.

Figure 9. The scattered H field distributions on the middle plane
between the two metal plates and the current modes when driven by
the incident field with E in the x direction at ((a) and (b)) 5.17 GHz
and ((c) and (d)) 5.58 GHz. The long solid (dashed) arrows
represent the front (back) virtual magnetic dipoles [38]. Reproduced
with permission from [38]. c© 2011 AIP.

and (b), one sees that the distributions of the H field and
the current mode both resemble the case for the coupling of
a pair of antisymmetrically arranged magnetic dipoles. The

two virtual magnetic dipoles are depicted in figure 9(a), with
the thick solid (dashed) arrow representing the front (back)
virtual magnetic dipole. The angle is 30◦ between the two
dipoles. For the case of figures 9(c) and (d), the distributions
of the H field and current mode also resemble the case for
the coupling of a pair of antisymmetrically arranged magnetic
dipoles. The only difference is the angle, which is 60◦ in
this case. At the higher resonant frequency of 8.77 GHz, the
H field distribution and the current mode do not resemble
those of magnetic dipoles [38]. These interesting phenomena
indicate that Babinet’s principle can really be applied in the
design of bilayered complementary chiral metamaterials at
lower resonant frequencies.

3.3. Composite chiral metamaterial with a negative
refractive index and high value of the figure of merit

So far, quite a few negative index CMs have been
reported [29–38]. However, it was found that, except for the
complementary CMs as discussed in section 3.2, when a large
chirality κ is obtained, a large relative permittivity ε (or large
relative permeabilityµ) coexists below the frequency of chiral
resonances. Consequently, the absolute value of the chirality κ
is always less than n0 in the frequency range below the chiral
resonances. Therefore, the negative index can only happen in
the frequency range above the resonance, where the relative
permittivity ε (or relative permeability µ) is very low and/or
even in the negative region. Consequently, a composite CM

7
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Figure 10. The schematics of the construction of the composite CM
by the combination of a CM and a structure of continuous metallic
wires [41]. Reproduced with permission from [41]. c© 2012 OSA.

that consists of chiral components and continuous metallic
wires was proposed [41]. By using continuous metallic
wires, the large permittivity below the resonance is partially
compensated, which makes n0 become smaller than κ below
the frequency of resonance. Therefore, a negative index can be
realized in the frequency region below the chiral resonances.

Figure 10 shows the schematics of the construction
of the unit cell of the composite CM [41]. The copper
conjugated rosettes and continuous wires are patterned on the
opposite sides of a Teflon dielectric board. The structure is
periodic in the x and y directions with both of the periodic
constants being 19 mm—that is, less than the operating
wavelength—and the thickness of the structure is 2.06 mm.
The waves propagate in the z direction. In order to study
the effect of additional continuous metallic wires on the CM
structure that only consists of conjugated rosettes, both the
CM and the composite CM were investigated, in comparison.

Figure 11 shows the retrieved effective parameters for one
layer of the CM and composite CM (the real and imaginary
parts of n+, n−) based on the simulation data. For the CM, due
to the high value of ε and/or µ below the resonant frequencies
(see figure 3 of [41]), one cannot obtain a negative index
below the resonant frequencies. Furthermore, in the regions
just above the frequency of the chiral resonances, both n+ and
n− possess a high value for the imaginary part. Therefore,
the FOM of the negative refractive index deteriorates in
these regions. Only those small regions that are indicated by
shadowed regions in figures 11(a) and (c) can be useful in
the construction of negative index chiral metamaterials. For
the RCP wave, this useful negative index band is from 9.56
to 9.71 GHz, and the maximum figure of merit is 8.4. For
the LCP wave, the useful negative index band is from 4.42 to
4.53 GHz, and the maximum figure of merit reaches 6.6.

Figures 11(b) and (d) show the retrieved parameters for
the composite CM. For the RCP wave, the negative index band
still lies above the resonant frequency. The regions of negative
index, where the imaginary part is small, are indicated with
shadows. In particular, in the frequency range from 5.36 to
5.58 GHz, the maximum figure of merit can reach more than
50. For the LCP wave, there is a negative index band (from
5.13 to 5.29 GHz) below the resonant frequency, and the
maximum figure of merit reaches 18. In figures 11(b) and
(d), one sees very large values of the imaginary parts of
the effective indices in the left and right boundaries of the
frequency band studied. This is due to the existence of the
continuous metallic wires and the two resonances at 5.36 and

8.7 GHz that pushed the effective parameter of ε below zero
in the vicinity of these two frequencies, and more details can
be found from figures 5–7 in [41].

Obviously, the figure of merit of the composite CM is
much larger than that of the CM. The above results show that
the composite CMs may be a better choice for the construction
of negative index CMs.

4. Construction of bulk chiral metamaterials

Theoretical works showed that isotropic CMs can be
constructed by stacking chiral unit cells in a 3D periodic
lattice [15, 71]. It was also demonstrated experimentally for
the microwave regime that a two-dimensional CM can be
constructed with a nonplanar chiral unit cell [19, 20]. For
planar CMs, a straightforward way to construct a bulk CM is
to stack them layer by layer periodically. However, when one
tries to construct a bulk CM in this way, the situation may
become complex because the building blocks can strongly
interact. One must, therefore, investigate how the effective
parameters change when the interaction between these chiral
units is strong.

Figure 12(a) shows the schematic for a stack of two
layers of planar chiral units that are composed of twisted
cross-wires [39]. The structure is periodic in the x and
y directions with both of the periodic constants being
13 mm—that is, less than the operating wavelength—and
the thickness of each layer of chiral structure is 1.06 mm.
The waves propagate in the z direction. The four cross-wires
are labeled from w1 to w4. Obviously, there are coupling
effects between the cross-wire pair of w1 and w2 and the
pair of w3 and w4 that make each unit cell a chiral one.
When the two unit cells are placed near each other, there exist
additional coupling effects. One kind of coupling effect comes
from the coupling between the cross-wires of w1 (w2) and
w3 (w4). This kind of coupling does not contribute to the
optical activity, but it may affect the impedance of the whole
structure. The other kind of coupling effect comes from the
coupling between the cross-wires of w1 (w2) and w4 (w3). In
particular, due to the relatively small distance between w2 and
w3, as shown in figure 12(b), the coupling between them can
greatly change the optical activity of the whole structure. As
shown in [39], when the distance between the adjacent chiral
layers is small, the effective parameters of the bulk CM can be
very different from the parameters of a single layer of CM.

Therefore, during the designing of a bulk CM by stacking
chiral units in a periodic lattice, if there are effects of coupling
between the unit cells, an approximate analytical theory based
on the Lorentz homogenization procedure [15, 71] may not be
enough, while rigorous full-wave electromagnetic simulations
must be carried out in order to identify the eigenmodes of the
bulk structure.

5. Asymmetric transmissions achieved with
deformed chiral metamaterials

Although a uniaxial chiral metamaterial is usually preferred
for application, sometimes an anisotropic chiral structure can
also provide interesting properties, e.g., acting as a circular
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Figure 11. The retrieved effective parameters of the CM and composite CM based on the simulation data. (a)–(d) show the real and
imaginary parts of the refractive index of RCP and LCP waves for the CM and composite CM, respectively. The shadowed regions show the
negative index bands with small imaginary parts and high values of the figure of merit [41]. Reproduced with permission from [41]. c© 2012
OSA.

Figure 12. (a) Schematic of a chiral metamaterial obtained by
stacking two layers of planar chiral structures. (b) Schematic
showing the coupling between two cross-wires belonging to two
unit cells [39]. Reproduced with permission from [39]. c© 2010
OSA.

polarizer [72] and achieving asymmetric transmissions [62,
63]. In this section, we would like to introduce the interesting
phenomenon of asymmetric transmissions by using deformed
chiral structures.

The transmission of coherent electromagnetic waves
through a dispersive medium that is embedded in vacuum or
air can be described by means of complex Jones matrices T .
Consider a normally incident plane wave propagating in the
+z direction Ei(r, t) = (Ix, Iy)

T ei(kz−ωt), with frequency ω,
wavevector k, and complex amplitudes Ix and Iy in the x and
y directions, respectively. The transmitted wave is given by
Et(r, t) = (Tx,Ty)

T ei(kz−ωt). The complex amplitudes of the
incident waves can be related to that of transmitted waves by
the T matrix [61, 73],(

Tx

Ty

)
=

(
Txx Txy

Tyx Tyy

)(
Ix

Iy

)
=

(
A B

C D

)(
Ix

Iy

)
= T̂ f

lin

(
Ix

Iy

)
.

(13)

The index f indicates the forward propagation, while lin
indicates the linear base with the base vectors parallel to the
coordinate axes, i.e., the incident and transmitted waves are

decomposed into the x and y polarized waves. For the fixed
coordinate system, the wave propagation in the backward
direction is defined as the situation where the sample is rotated
by 180◦ with respect to either the x or the y axis. For a medium
made of reciprocal materials, applying the reciprocity theorem
of four-port systems yields the T matrix T̂b

lin, [61, 73]:

T̂b
lin =

(
A −C

−B D

)
. (14)

These components (A,B,C, and D) obey fixed relations
for certain symmetries of the medium. For example, for
the planar chiral structures, due to the existence of mirror
symmetry perpendicular to the propagation direction, the
component B is equal to C and, therefore,

T̂ f
lin =

(
A B

B D

)
, T̂b

lin =

(
A −B

−B D

)
. (15)

On the other hand, for a uniaxial chiral structure, due to
the existence of the C4 symmetry with respect to the z axis,
the component A is equal to D and C is equal to −B and,
therefore,

T̂ f
lin = T̂b

lin =

(
A B

−B A

)
. (16)

From equations (13) and (14), the asymmetric transmis-
sion for a given linear base vector can be defined as the
difference between the transmitted intensities for different
propagation directions as

1
(x)
lin = (|A|

2
+ |C|2)− (|A|2 + |B|2) = |C|2 − |B|2

= (|D|2 + |C|2)− (|D|2 + |B|2) = −1(y)lin . (17)

From equations (15) and (16), it is clear that planar
chiral structures and uniaxial chiral structures cannot produce
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Figure 13. Schematic of a deformed chiral structure for achieving
an asymmetric transmission of linearly polarized incident waves.
The U1 and U2 split ring resonators have different dimensions [62].
Reproduced with permission from [62]. c© 2011 OSA.

asymmetric transmissions for linearly polarized incident
waves. To achieve asymmetric transmission for linearly
polarized incident waves, one approach is to break the mirror
symmetry perpendicular to the propagation direction based on
the planar chiral structure, such as the 3D structure proposed
by Menzel et al [61]. The other approach is to break the C4
rotation symmetry of the uniaxial chiral structures [62, 63],
which is what we are going to introduce in the following.

5.1. Asymmetric transmission based on a deformed chiral
structure

Taking the uniaxial chiral structure of figure 3, for instance,
one method of breaking the C4 rotation symmetry of the
uniaxial chiral structures is to make the whole structure
consist of U-shaped split ring resonators with different
dimensions, as demonstrated by Mehmet et al [62].

Figure 13 shows the schematic of a deformed chiral
structure that is composed of different sized U-shaped split
ring resonators [62]. The structure is periodic in the x
and y directions with both of the periodic constants being
13.6 mm—that is, less than the operating wavelength—and
the thickness of the structure is 1.56 mm. The waves propagate
in the z direction. After the breaking of the C4 rotational
symmetry, the T matrices of the structure now have the
following form:

T̂ f
lin =

(
A B

C A

)
, T̂b

lin =

(
A −C

−B A

)
. (18)

Figure 14 shows the simulation results for the
transmission coefficients for x and y polarized incident waves.
The results in figure 14 are in agreement with equation (18).
Due to the different transmission amplitudes of Tyx and Txy,
asymmetric transmission can be realized for linearly polarized
incident waves [62].

Figure 14. (a) Simulation results for the linear transmission
coefficients when the deformed chiral structure is illuminated by (a)
x-polarized and (b) y-polarized incident waves [62]. Reproduced
with permission from [62]. c© 2011 OSA.

5.2. Asymmetric transmission using a deformed chiral
structure and electromagnetic wave tunneling

Although the structure of figure 13 can provide asymmetric
transmissions for linearly polarized incident waves, the extent
of this asymmetric transmission is not very good because of
the existence of the high transmission amplitudes of Txx and
Tyy. In an ideal asymmetric transmission, in one direction
the transmission is unity while in the opposite direction the
transmission is zero. This requires the diagonal components
of the T matrix to be zero, and one of the off-diagonal
components to be zero while the other is unity, such that

T̂ f
lin =

(
0 1

0 0

)
, T̂b

lin =

(
0 0

−1 0

)
. (19)

According to this idea, a structure consisting of a
deformed chiral structure and a continuous wire structure was
proposed for accomplishing this task [63].

Figure 15 shows the proposed structure [63]. This
structure consists of a deformed chiral structure similar to that
of figure 13 and an additional structure with continuous wires.
The structure is periodic in the x and y directions with both
of the periodic constants being 12.8 mm—that is, less than
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Figure 15. Schematic of the structure consisting of a continuous
wire structure sandwiched between two sets of U-shaped resonators
for achieving the asymmetric transmission of linearly polarized
incident waves. The U1 and U2 split ring resonators have different
dimensions [63]. Reproduced with permission from [63]. c© 2012
APS.

the operating wavelength—and the thickness of the structure
is 2.06 mm. The waves propagate in the z direction. Due
to the presence of the additional continuous wire structure,
which can effectively provide negative permittivity in the x
and y directions for the whole structure, the transmissions
of Txx and Tyy are greatly depressed in a selected frequency
range. However, this additional continuous wire structure has
very little effect on the permittivity or permeability in the
z direction. Therefore, the coupling between the magnetic
dipoles of the U-shaped resonator pairs still exists, which
provides the tunneling effect for the transmission of Txy and of
Tyx [63, 74]. Then, by tuning the geometric dimensions of the
resonators, Tyx is depressed in the selected frequency range
while at the same time Txy retains high values. Consequently,
a diode-like asymmetric transmission for x polarized incident
waves is realized, as shown in figure 16.

6. Conclusions

In this review, we have assessed recent progress in the field
of chiral metamaterials. Then, on the basis of the related
studies of the authors’ group, we primarily introduced some
typical chiral metamaterials that comprise bilayered planar
meta-atoms, e.g., chiral metamaterials consisting of U-shaped
split ring resonators, complementary chiral metamaterials,
and composite chiral metamaterials designed to achieve high
figure of merit values with a negative refractive index. We
also mentioned the construction of bulk chiral metamaterials
and the related possible problems when there are strong
effects of coupling between adjacent chiral unit cells. After
breaking the C4 circular rotation symmetry of a uniaxial
chiral metamaterial, a bianisotropic chiral structure can be
obtained that can show interesting properties, such as acting as
a circular polarizer and providing asymmetric transmissions
for linearly polarized incident waves.

Figure 16. Simulation results for transmission spectra for the
structure of figure 15: (a) and (b) are for x-polarized forward and
backward incident waves, respectively. (c) shows the spectrum of
asymmetric transmission [63]. Reproduced with permission
from [63]. c© 2012 APS.

Giant optical activity, circular dichroism, and a negative
refractive index due to chirality have been demonstrated
for the microwave and terahertz regimes [18, 19, 29, 31].
Although giant optical activity and circular dichroism have
also been achieved for infrared and visible frequencies [32,
35], chiral metamaterials with a negative refractive index have
not been realized in this frequency regime yet. Although it
has been proposed that chiral metamaterials with a negative
refractive index can be used to focus circularly polarized
waves, experiments are needed to demonstrate the focusing
effect. Apart from exhibiting properties such as giant optical
activity, circular dichroism, and a negative refractive index,
chiral metamaterials were also shown to be able to act as
absorbers [20], and even to affect the Casimir forces [75–77].
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We hope that more exotic designs and applications involving
chiral metamaterials will be developed in the future.
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