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Abstract—The question of whether foraging swarms can form
as a result of a noncooperative game played by individuals is
shown here to have an affirmative answer. A dynamic game
played by N agents in 1-D motion is introduced and models, for
instance, a foraging ant colony. Each agent controls its velocity to
minimize its total work done in a finite time interval. The game
is shown to have a unique Nash equilibrium under two different
foraging location specifications, and both equilibria display many
features of a foraging swarm behavior observed in biological
swarms. Explicit expressions are derived for pairwise distances
between individuals of the swarm, swarm size, and swarm center
location during foraging.

Index Terms—Artificial potentials, differential game,
Hamilton-Jacobi, multiagent systems, Nash equilibrium, swarm.

I. INTRODUCTION

WARM MODELING is a research topic that has attracted

the attention of many diverse disciplines such as physics,
biology, and engineering. Swarming behavior has been the ba-
sis for modeling of multirobot systems, multivehicle systems,
and also optimization algorithms. This multiagent system
modeling is mainly inspired by biological behaviors such as
schooling of fish, flocking of birds, and herding of sheep,
as stated in [1]. Therefore, swarming behavior was initially
studied for the purpose of biological modeling. The term
swarming behavior is defined as the cooperative coordination
of animals of the same species to achieve aggregation by
forming clusters [2]. This behavior has many advantages
such as reducing individual efforts, increasing the immigration
distances, providing safety of the animals, and also enhancing
the foraging performance [3]. For instance, the reasons behind
the flocking of birds in V formation are effort reduction and
longer immigration distances [4].

One of the most important applications of swarming is the
motion planning of teams of robots. In a multiple robot system,
the robots keep a formation while navigating to a target
location. In this setting, the agents achieve a cooperative task
by exchanging information with the others, while controlling
their individual dynamics [5]-[7]. Here, using a team of
simple robots instead of one sophisticated robot increases the
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robustness and resilience against communication errors [8]. An
example of optimal motion planning for multiple robots is [9].

Another biologically inspired field related to swarms is
the coordination of multiple vehicle systems. The swarm
theory has been applied to both platooning of vehicles and
air traffic control. Conflicts in the intersection crossings have
been resolved by swarm theory in [10] and [11] for vehicle
platooning on automated highways. In the current air traffic
control mechanism, the planes fly in predefined paths, which
may deviate from the shortest path significantly. In future free
flight paradigm that is discussed in [12] and [13], the air
vehicles will arbitrarily select the elevation, speed and path,
and the conflicts will be resolved by intelligent collision avoid-
ance algorithms. Such future multivehicle systems, namely
the unmanned aerial vehicles, are studied in [14]. Another
important application of swarming behavior is optimization.
The recent versions of such an algorithm, particle swarm
optimization, are [15] and [16].

Artificial potentials are commonly used to model the
interaction between individuals in multiagent systems. In
this technique, the interaction is modeled as attractions and
repulsions between the individuals so that a cluster form is
maintained [17], [18]. The individuals repel the neighbors in
near field, and attract them in the far field. One of the first
works that exploited artificial potentials is [19]. In that work,
a set of individuals is selected as virtual leaders so that the
system is semidecentralized to achieve scalability. Another
work that employs artificial potentials and that includes
stability analysis is [20].

Social foraging is defined as the searching act of a group of
animals for food or better environment. In [21], the problem
of the animal decision making in social foraging is modeled
in a game theoretical framework. In that work, the effect
of the ratio of the producers and scroungers on foraging
performance is investigated. In [22], foraging is modeled as
the minimization of a scalar field that represents the toxicity
and food characteristics of the environment.

Open-form algorithms are widely used to analyze multi-
agent systems. However, convergence, accuracy, and com-
putational complexity can be problematic in algorithm-based
techniques as opposed to closed-form solutions. An example of
a collision avoidance algorithm based on near field repulsion
is [23]. Lyapunov-based techniques are also applied [24],
[25] and focus on the stability of the system, but do not yield
explicit solutions of the dynamics of the system. A method
that yields an explicit solution of the system is, of course,
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preferable since it would lead to a simulation with low
complexity and display the stability of the system with ease.
A resource on obtaining explicit solutions of linear quadratic
games is [26].

In this paper, a game theoretical model is introduced to
examine how swarms form as in, for instance, the foraging
behavior of ant colonies or in platooning of vehicles on
automated highways. This is an individual focused study
of swarms that questions whether a swarm can form in a
time interval by noncooperative actions of a finite number
of individuals or agents. Here, we assume that each agent
in a group, while in search of, say, food, minimizes its total
effort by using the force that it applies as a control input.
This leads to an N-person infinite-dimensional dynamic
game [27], and to the question of whether this game has a
Nash equilibrium that carries the features of a swarm. An
affirmative answer means that noncooperative optimization
by N individuals results in a collective behavior, namely
swarming behavior. The answer indeed turns out to be
affirmative for particular individual cost functionals into
which artificial potential energy [22] terms that represent the
tradeoff between repulsion and attraction are incorporated.

Game theory, in particular evolutionary game theory, has
been extensively applied to analysis of swarm behavior and
animal decision making [21], [28]. The use of game theory
in social foraging, such as in [28], is limited to two-person
games since the objective is to predict and explain the foraging
behaviors of animals while in groups. A combination of game
theory and optimal control theory has also been applied to the
modeling of dynamic behaviors of multiagent systems such as
in [27]. The cooperative control of a multiagent system has
been formulated as the Hamilton—Jacobi form in a differential
game framework in [29] and [30]. In [31], game theory is
employed for the optimal network consensus problem. The dy-
namic (or differential) game model introduced here is different
from the models in these works since it is a noncooperative
N-person game and focuses on a Nash equilibrium.

Our main contribution is to model foraging swarm behavior
as a noncooperative game played by N individuals and to
show that the game has a Nash equilibrium that is unique
with respect to a class of strategies. This indicates that a
swarming behavior can result from noncooperative actions of
individuals. The Nash equilibrium solution for this game is
described explicitly, i.e., expressions for optimal trajectories,
swarm size, and center trajectory are obtained. The game is
analyzed under two different terminal conditions.

This paper is organized as follows. Section II is on the
problem definition and introduces the dynamic games. In
Section III, main results on existence and uniqueness of Nash
equilibria are presented. Section IV contains the simulation
results and the last section is on conclusions. The proofs of
Theorems 1 and 2 and of Corollary 1 in Section III are given
in the Appendix. The results of this paper have been partly
presented in [32].

II. PROBLEM DEFINITION

1-D swarm behavior of N agents, such as the flocking
of ants in a queue, will be modeled as a noncooperative
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TABLE I
LIST OF NOTATIONS

Symbol Description

N Number of agents (players)

Lt Cost minimized by it player
u®(t) Input applied by 3" player
xt(t) Optimal trajectory of ¢ player
T Terminal time

a, r, and f | Attraction, repulsion, and foraging parameters

« vVNa

st(t) Sums of signs of pairwise relative positions
d(t) Swarm size at time ¢

t* Time for maximum swarm size

z(t) Optimal trajectory of the swarm center
pi(t) Lagrange multiplier of i*" player

o(t) State transition matrix

infinite-dimensional dynamic game. Two such games that
make different assumptions on the foraging target are intro-
duced in this section.

It is assumed that each agent minimizes its individual total
effort in a time interval by controlling its velocity. The total
work done in a finite interval [0, T'] that is minimized by agent-
i is given by

T
L= [xi(T)]2f+/ {u' (1)?
N ‘ ’ | | (1)
+ Y (alx') = OF = rlx' () — X (0)]) ) dr

=L

where f, a, and r are positive constants. The 7" parameter is
the duration for foraging of the colony, x'(¢) is the position of
the ith agent at time 7 and N is the number of agents. The
first term penalizes the distance to the foraging location at the
final time, which is assumed to be the origin in x!...x"N-space.
This formulation specifies a very simple attractant/repellent
profile [22]. The second term in the integrand gives the
attraction potential energy, and the last term, the repulsion
potential energy. These terms are introduced as a result of the
assumption that each agent measures its distance to every other
agent and optimizes these distances so as to remain as close as
possible to every other agent without getting too close to any
one of them. Introduction of such terms into the total potential
energy and its (cooperative) minimization have been shown to
lead to stable swarms in the stability analysis of [22]. The first
term of the integrand in (1) is the contribution to the total work
done by agent’s kinetic energy. Using velocity as a control
input u'(t) = x'(t) arises from applying force in a viscous
environment at which particle mass is neglected [22]. Thus,
each agent minimizes its total effort, total work done, during
the foraging process. The weights a and r are introduced in
order to compare the relative effects of the attraction and
repulsion terms in the integrand. The weight f, on the other
hand, will allow us to measure the severity of the distance-to-
target penalization. Here, we assume that the individuals are
identical point agents with the same attraction and repulsion
parameters. Moreover, we assume that all of the particles play
one foraging swarm game altogether. (If we consider that the
particles are separated into groups, then there would be as
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many different games as the total number of possible group
formations [33].)
The dynamic noncooperative game played by N agents is
mgn{Li} subject to X' =u' Vi=1,...,N. )
The problem that faces each agent is an optimal control
problem and necessary conditions are obtained by Pontryagin’s
minimum principle (see [27, Theorem 6.11] and [34]). A Nash
equilibrium solution exists provided the optimal solutions of
N agents result, when simultaneously considered, in well
defined position trajectories for given x'(0) € R, i =1, ..., N
[27, Section VI-C]. Here, we limit the permissible strategies
u'(t) = x(t) available to agents to be continuous with respect
to the initial conditions x'(0) (see [27, p. 227] and [35]). We
will refer to a solution of this problem as a Nash equilibrium
with free terminal state.

Note that in defining the above game, we have not spec-
ified the foraging target (food supply) location but added a
simple quadratic term to the cost functional that penalizes the
distances to the target location, which is the origin xt =0 for
i=1,..., N. A solution, if it exists, should have the property
that the swarm gets progressively closer to the origin. The
specification of the origin as the target would mean that each
agent knows the exact target location at the outset. Thus, if
we consider the same cost functional (1), but without the first
term, and specify x'(T) = 0 for i = 1, ..., N as the terminal
condition, then we obtain a different game and a new problem.
We will refer to a solution of this new problem as a Nash
equilibrium with specified terminal condition.

III. MAIN RESULTS

A Nash equilibrium, if it exists, is shown in the Appendix
to be a solution of a nonlinear differential equation (13)
in terms of positions of the agents. Since this differential
equation does not obey any local Lipschitz condition, the
existence and uniqueness of a solution is not evident. Existence
and uniqueness in dynamic games is a difficult problem,
and as an example of a result on existence and unique-
ness in a simpler problem than the one considered here,
see [36].

The results below show that there is a unique Nash equilib-
rium with free or specified terminal condition for every initial
position for the agents. These equilibria display many known
characteristics of a swarm behavior. Explicit expressions for
instantaneous pairwise distances between agents, the swarm
size, and the distance of the swarm center to the foraging
location are derived.

A. Free Terminal Condition

Theorem 1: A Nash equilibrium with free terminal condi-
tion of the game (2) and (1) exists, is unique, and is such
that the initial ordering among the N agents in the queue is
preserved during [0, T]. The Nash solution has the following
properties.

P1: The distance between any two agents i, j at time ¢ is
given by

. ; Vau(t, T) i i
X () —x/(t) = W[X (0) — x/(0)]
oDy oy
r AT s s

where with o := «/Na

A(T) := acosh(aT) + f sinh(aT)
Vare (1, T) := acosh[a(T — 1)] + f sinh[a(T — 1)]

Vrep(t, T) = 5 [h1(2, T) + ha(t, T))]
hi(t, T) := f{sinh(«T) — sinh(at) — sinh[a(T — 1)]} (4)
hy(t, T) := afcosh(aT) — cosh[a(T — )]}

N
> sgnlxi(0) — x40, i =

k=1 ks

s(0) = 1,...,N.

P2: For every T and as T — oo, the swarm size d(t) :=

max |x'(f) — x/(¢)| remains bounded in [0, 7]
i
_ 'ijf(t, T) Urep(t’ T)
d@) = 7A(T) *d(O) + 71}71(0)
< Van (1*, T)d(0)+ vrep(t ,T) m(0)
A(T) A(T)
where
= iln
(e"‘r{[f(e‘” — D +ae*T1rm(0) — 202(f + a)e"‘Td(O)}>
[f(eT — 1) +a]rm(0) + 222(f — a)d(0) ’

(5
d0) = max |x 0) — x/ (0)] is the distance between the first

and the last agent in the queue at the initial time, and m(0) :=
max |s 0)—s’ (0)] = 2N —2. The bound is attained if and only
i

if 0 <r* < T. Maximum swarm size is attained at 0 if * < 0.
The expression for the swarm size at the final time is

cosh(aT) — 1
d(T) = . rm(0)
2[a cosh(aT) + f sinh(aT)]
+ - d(0).
a cosh(aT) + f sinh(aT)
P3: The swarm center x(¢) := w is given by

(S
x(t) = %(0) (1 T+ 1) (6)

which monotonically approaches the origin as # — T and ends
up at the origin as 7 — oo.

P4: As T — oo, the distances between the consecutive
agents in the queue are the same and are equal to 2(++f)

Remark 1: The main result above is that a swarming be-
havior, an act of aggregation, does follow from noncooperative
actions of the N agents. The fact that the game has a unique
Nash equilibrium is also significant. The initial ordering of
the agents in the queue is preserved at all times in this Nash
solution. This is, of course, a consequence of the attraction
and repulsion terms in each agent’s cost functional, the effect
of which turns out to be similar to connecting the agents in
the queue to each other by translational springs [37].
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Remark 2: The swarm size throughout the foraging activity
is given in (P2). The foraging activity of the swarm is accom-
plished increasingly better given sufficient time by (P3). In
(P1), an explicit expression is given for pairwise distances. It
is also possible to describe the individual paths x'(z) explicitly.
However, the formula is rather lengthy and is not included
here. By (P4), given sufficient time, the foraging swarm will
be more regular as it gets closer to the foraging location since
distances between adjacent agents will be progressively more
uniform. A closer examination of d(T) reveals an additional
property of the swarm. If the agents start far apart from each
other at the initial time, then the attraction term becomes
effective and they end up being closer together at the final
time. Conversely, if they start close enough together, then the
repulsion term is more effective and they later get apart from
each other.

B. Specified Terminal Condition

The Nash equilibrium with specified terminal condition
x(T)=0fori=1,.., N is described next. We remark that the
expressions for distances between agents, swarm size, swarm
center, etc., are quite different from those in Theorem 1. This
is because, due to the difference in the terminal condition, a
new (but related) game is obtained.

Theorem 2: A Nash equilibrium with specified terminal
condition exists, is unique, and is such that the initial ordering
among the N agents in the queue is preserved during [0, T].
The Nash solution has the following properties.

PI: The distance between any two agents i, j at time ¢ is
given by

: ; Wi (2, T) i i
X)) — x/(t) = W[X (0) — x/(0)]
wrep(t7 T) i J (7)
+rw[s 0) — s/(0)]

where
A(T) := sinh(aT)
Way (2, T) := sinh[a(T — 1)]
Wrep(t, T) = i{sinh(aT) — sinh(at) — sinh[a(T — 1)]}.

P2: For every T and as T — oo, the swarm size d(1) :=
max |x'(r) — x/(¢)| remains bounded in [0, 7]
ij

_ War (1, T) wrep(t’ T)
d@t) = AT) *d(O) + AT *m(O)
< War (1", T)d(0)+ wrep(t ,T) m(0)
A(T) A(T)
where
L, 1 (e"‘T[(e"‘T — D rm(0) — ZaZe“Td(O)])
t=—1In . ®)
200 (e*T — 1) r m(0) + 2a2d(0)

The bound is attained if and only if 0 < ¢* < T. Maximum
swarm size is attained at O if r* < 0. The swarm size at the
final time is d(T) = 0.

P3: The swarm center is given by

(1) = %(0) (1 - %) ©)
so that x(7) = 0.
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Remark 3: It will be noticed that the above expressions are
all obtained by letting f — oo in the corresponding expres-
sions of Theorem 1. This is somewhat expected. Specifying
the cost of each agent being away from the target location as
infinity is as good as requiring that each agent is exactly at that
location at the terminal time. The expressions of Theorem 2
are, nevertheless, derived independent of Theorem 1 in the
Appendix by solving the game with the specified terminal
condition.

Remark 4: Properties (P1)—(P3) of Theorem 2 show that
the swarm that is formed with specified terminal condition
has entirely similar features to the swarm formed with free
terminal condition; the major difference is that the foraging
target is reached exactly at the final time, as specified in the
setup of the game.

C. Dense Versus Sparse Swarms

The degree of cohesion in our swarm model can be tuned
by the levels of attraction and repulsion between the agents.
The model is flexible in the sense that it can result in both
dense and sparse swarms by selecting different values for the
attraction constant a and the repulsion constant r. It is expected
that if the ratio % increases, then the swarm will get denser, and
the swarm will get sparser as it decreases, which is confirmed
by the following result.

Corollary 1: a) The maximum swarm size is always at-
tained in the interval [0, T') and b) the swarm size monotoni-
cally decreases in the interval [0, T'] if and only if

a N—1(T—12f+a® 1)

;d(O) > N (T + 1) f + a2l — 1) (10
a N —1 (e*T = 1)?
fao = S (n

in the free and specified terminal condition cases, respectively.

Thus, by a) and b), the value obtained when equality is
achieved in (10) or in (11) is a critical value of the ratio .
The maximum swarm size is attained at ¢ = 0O for values larger
than this critical value and it is attained in the open interval
(0, T) for values smaller. Note that this conclusion follows by
the fact that the right-hand sides in both (10) and (11) are
less than 1 for each value of r € [0, T] and for all values
of @ = v/Na. An asymptotic analysis of a) and b) indicates
that swarm size, the pairwise distances (3), and (7) all grow
hyperbolically and parabolically with time for ¢ sufficiently

large and small, respectively.

IV. SIMULATIONS

Simulations have been performed to verify the formulas
derived in Theorems 1 and 2 and to detect other features of
the swarming behavior than those already mentioned above.

The simulations were conducted for N = 10 agents for
random initial conditions between 0 and 1. The swarm model
parameters were selected as f = 1/2, a =1/2, and r = 1.
The simulation duration was chosen as 7 = 1. The same set
of initial conditions and parameters were used for the two
cases to make comparisons unbiased. Examples of the optimal
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Swarm size and optimal trajectories for N=10 particles
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Fig. 1. Optimal trajectories and the swarm size for ten agents for the free
terminal condition case.

Swarm size and optimal trajectories for N=10 particles

Position{m)

0.4 0.6
Time(sec)

0 0.2 0.8 1

Fig. 2. Optimal trajectories and the swarm size for ten agents for the
specified terminal case.

trajectories are shown in Figs. 1 and 2 for one set of initial
conditions. The swarm size plots are shown with dashed lines
in these figures. The features observed were similar in all other
simulations.

The maximum swarm size for the free terminal state case is
1.4149 and the corresponding value for the specified terminal
state case is 1.2938. All the predicted features by Theorems
1 and 2 are confirmed. One additional observation in the
free terminal case is that no matter how nonuniform the
swarm initial conditions are, the swarm evolves into a regular
form, i.e., the distances between consecutive agents get more
uniform after some time [38]. It is an important property of
formation control [39] that the regularity is also maintained,
given sufficient time in the case of departures or new entries
into the swarm. This is also verified in Fig. 3 in which three
individuals depart at second 1 from the agents of Fig. 1 and
two new agents join the swarm at second 2.

Although formal expressions for the inputs u'(t) = x'(¢)’s
can be derived, these are lengthy and not given here. However,
in all simulations, their sizes remain within reasonable limits.
For instance, in the free terminal state simulation above, the
plots of inputs (velocities of the agents) are as given in Fig. 4.

Optimal Trajectories for Swarm with Births and Deaths

Position of ith particle

0 0.5 1 1.5 2 25 3
Time(sec)

Fig. 3. Optimal trajectories for a swarm with departures and arrivals at
different times.

Optimal Control Input for N=10 Particles

Control input for ith particle

-1

0.4 0.6
Time(sec)

0 0.2

Fig. 4. Optimal control inputs (velocities) for the free terminal condition
case.

Note that the sign of the velocities changes for each agent
and the change occurs at a different time instant for each agent.
This implies that each agent changes direction during foraging
activity. This can also be seen in Figs. 1 and 2 as the positions
first increase and then decrease after reaching a maximum at
t* in the open interval (0, T). The change of direction during
swarming is a well known phenomenon commonly observed in
many actual swarms [40]. For instance, abrupt changes occur
in the direction of birds in the foraging flocks. After their
maneuvers, the agents start navigating toward the foraging
location. In Fig. 4, an example of such a behavior is observed,
but in the case of a 1-D motion.

Simulations also indicate that the Nash equilibria are still
confined to those in which initial ordering is preserved even if
the strategy spaces of agents are enlarged to include those that
are discontinuous with respect to initial positions. A theoretical
justification of this observation is left for future work.

V. CONCLUSION

The dynamic game model introduced in this paper can
be generalized in different directions. The first interesting
generalization would be to extend the results on the 1-D
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motion presented here to 2-D and 3-D spaces. The model
would then be applicable to robot motion planning. The second
generalization would be to relax the assumption that every
agent knows the location of every other agent and to examine
whether the game in which every agent only knows the
location of adjacent agents in the queue has a Nash solution.
Furthermore, the cost functionals used by the agents and the
foraging terms in them can be made more general to cover
other interesting objectives for each agent. The main result
of this study, that a swarming behavior can result as a Nash
equilibrium of a noncooperative game played by individuals,
is expected to be true in all these generalizations.

We have assumed in our game that the agents are iden-
tical, having the same attraction, repulsion, and foraging
parameters—a reasonable assumption for biological swarms.
However, the behavior obtained for nonidentical agents would
still be of interest since it may clarify how essential the
likeness of agents is for obtaining a swarming behavior.

APPENDIX
HAMILTON-JACOBI FORMULATION

The optimal control problem that faces the ith agent is
first considered. Introducing the Lagrange multiplier p’(r) and
minimizing the Hamiltonian

N
H = Z (a(x’ — x))* — rlx' — x7|) + @')* + p'u’
=L

leads to the necessary conditions

u' ==,
, . l oot —x))
p=2a01— N+ Y (2axf + ) (12)
=N et = ]
X =ul

and the boundary conditions
x'(0) € R, p'(T) =2fx(T)

for free and x/(T) = O for the specified terminal condition case.
Let Z denote the matrix with all entries equal to 1. Equation
(12) for all i = 1, ..., N combined can be written as

x| 0 = x(t) 0
{p]_{Za(I—NI) (2)][p(t)}+r{s(t)] (13)

where

s:=] Z sgn()c1 —xj)

J=1A

Z sgn(xN — DT,
=1 j#N

The signum vector s is piecewise-constant in the interval
[0, T] with each constant value obtained by a permutation of
entriesin [ 1 - N 3—N N—-3 N—11]". This is
because its ith entry s' = 27:1 ji5gn(x’ — x/) is equal to
2B(i)+1— N, where B(i) denotes the number of agents behind
the agent i and can assume a value between 0 and N — 1. Note
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that the vector s in (13) originates from the repulsion terms in
the cost functionals so that the part of the solution obtained
with s = 0 will be called the attraction term and summand due
to s, the repulsion term. Thus

x() | | Xau(D) Xrep(t)
[p@}‘[wﬁﬁ*{mﬂﬂ} 14
where
{ Xai (1) } _ [ o) P12(0) ] [ x(0) ]
Pan(t) @21(2)  ¢2a(1) p(0) (15)

Xrep(t) /t ¢12(t - T)

= r s(t)dr.
[pwm} RSN
Here, the partitioned matrix ¢(¢) is the state transition matrix

of (13) when s = 0. Its partitions can be computed to be given
by

¢ij) = ay;) [+ by;(DNT —1) i,j=1,2 (16)
where
1 N —1
ay(t) = axn(t) = v cosh(at)

1
by1(t) = by(t) = N[l — cosh(at)]
an(t) = —ﬁ[m + (N — 1) sinh(at)]

bir(t) = —m[at — sinh(at)]

2a(N — 1)

a (t)=— sinh(at)

2
by, (1) = W“ sinh(ar).

A solution for an arbitrary, but fixed, x(0) € RY of the
nonlinear differential equation (13) obeying the final condition
2 fx(T) = p(T), respectively, x(T) = 0, is a Nash equilibrium
with free, respectively, specified, terminal condition of the
dynamic game (2).

Observe that each ¢;;(¢) is a matrix with identical diag-
onal and identical off-diagonal entries. The sum, multiple,
and inverse of such matrices inherit the same property as
summarized in the following lemma, the proof of which is
straightforward and is omitted.

Lemma A.1. Let F =7 — I € RV v € R™*Y be a row
vector of all 1’s, w € RPN be a row vector of all zeros except
1 and —1 in entries i < j, respectively. Also, leta, b, ¢, d € R.
Then

F*=(N—-DI+(N —-2)F
(al + bF)(cI +dF) = [ac + bd(N — 1)]I
+[ad + bc + bd(N — 2)|F

4 _bF —la+b(N -2
(al +bF)~! =

(b—a)la+b(N —1)]
det{al + bF} = (a — b)¥ '[a+b(N — 1)]
v(al +bF) =[a+b(N — D]v
w(al + bF) = (a — b)w.

Proofs of Theorems 1 and 2: We first establish the existence
of a Nash equilibrium. Suppose that the initial ordering among
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agents is preserved so that s(¢) = s(0) for all ¢ € [0, T']. Then,
the repulsion term in (15) can be written as

Xrep(t) _ / ¢12(t
[mwﬂ‘( {@m }dm@ -
Y12, 0) 5(0)
Ya(2, 0)
where
Vit,0)=pi() 1 +qOT —1) i=1,2 (13)
? N-1 o
pi() = T Wzm A
—_— 2 —_—
qi(t) = t4N + N 5 sinh ( )
p(t)=—+ smh(at)

N
Q1) = m[at — sinh(at)].

Derivation of (P1)—(P4) of Theorem I: Using the boundary
condition p(T) =2 fx(T) in (14) for t = T gives

[2f011(T) — d21(T)]x(0) + [2 fp12(T) — ¢22(T)]p(0)
+[2 A1 (T, 0) — Ya(T, 0)]s(0) =

which can be solved for p(0) if 2 f¢1>(T) —

gular. By Lemma A.1, the determinant of 2 f¢,(T) —

$22(T)
. . a(ft+1) (—cosh(ott)— 7/:["::(&”) . . .
is obtained to be e racoshan) , which is easily seen

to be nonzero for all &« > 0, f > 0. Thus, 2 f¢12(T) — ¢ (T)
is invertible and there is a candidate solution of (13) for every
x(0). This solution is

¢2(T) is nonsin-

x(t) =

{$11(1) — P12(D[2 fp12(T) — oD 2 fep11(T)
x(0) + {Yr1(£, 0) — d12(O[2 fb12(T)
—n (T, 0)]}s(0).

— (D]}
— (D2 /i (T, 0)

(19)
In this expression, by Lemma A.1, the coefficient matrices
of x(0) and s(0) have identical diagonal/off-diagonal entries.
Multiplying each term in (19) by the row vector w of Lemma
A.1 and employing the left eigenvector property of w given
there, the simple expressions (3) for pairwise distances are
obtained.
A crucial step is to verify that for any pair i, j
sgnlx'(t) = x' (0] = sgnlx'(0) — x7(0)] (20)
for all ¢ € [0, T]. To see this, we first note that s'(0) — s7/(0) =
2r[B(i) — B(j)] so that sgn[s'(0) — s/(0)] = sgn[x'(0) — x/(0)].
Next, we note that v,,(f) > 0 and A(T) > O since they are
linear combinations of hyperbolic functions which are positive
for positive arguments. Also, v,.,(t) > 0 for all + € (0, T,
since vp(0) = 0 and v.,(T) > O and the coefficient of
the highest degree term in the quadratic parabola of v,,,(f)
is negative which indicates that v,,,(t) is a parabola oriented
to —oo that is positive between 0 and 7'. This proves that (19)
is indeed a solution.

The expression in (P2) and (P3) of Theorem 1 will now be
derived. The swarm size at any ¢ € [0, T'] is given by

() U“Z((I’T)T) max((0) - /(0)
Urep(tv T) _
+7A((T)T)r max(s’ (0)( sJ)(O)]
LAY Vrep(l i o
= A 4O+ L rmaxis )~ S O)

where max; ;[s'(0) — s/(0)] is the difference between the first
and last agent’s signum numbers, respectively, N—1 and 1 —N.

This yields m(0) = max; ;[s'(0) — s/(0)] = 2N — 2 and
_ Van(t, T) Vrep(t, T) _
A = XSO+ TE N =), @)

Maximizing this expression, it is easily shown that maximum
is attained at * of (P2) if t* € (0, T), at r =0 if * < 0, and
att =T if t* > T. The expression in (P2) at the final time is
obtained by evaluating (21) at r = T.

The expression for the swarm center in (P3) is obtained from
(19) by multiplying each term on the left by N~'v, where v
is the row vector of Lemma A.1, the average of the entries of
x(?) is obtained and yields (6).

The last property (P4) follows by (3), where i and j are
taken as consecutive agents in the queue, evaluating at t = T
and by taking the limit as T — oo. Note that if i, j are two
consecutive agents with j behind i, then s'(0) —s/(0) = 1. This
gives
cosh(aT) — 1

X(T) = x/(T) = AT

[x(0) — x/(0)] + 7

A(T)

so that in the limit T — oo, the distance between agents i and
J is indeed 5

Derivation of[ (PI )—(P3) of Theorem 2: Using the boundary
condition x(7) =0 in (14) for r = T gives

$11(T)x(0) + ¢12(T)p(0) + ¥ (T, 0)s(0) = 0

which can be solved for p(0) since ¢>(T) is nonsingular. It
follows that there is a candidate solution of (13) for every x(0).
This solution is

{¢11() = P12(D[P12(T)] ™" ¢11(T)}x(0)
(1, 0) = pra()[P12(T)H] "1 (T, 0)}s(0).

Again, the coefficient matrices of x(0) and s(0) have identical
diagonal/off-diagonal entries by Lemma A.1 so that proceed-
ing similarly to the case of Theorem 1, expressions (7) for
pairwise distances are obtained from (22).

In order to verify (20), we again observe that sgn[s'(0) —
57(0)] = sgn[x'(0) — x/(0)] and note that wy,(z) > 0, A(T) > 0
since both are hyperbolic functions that are positive for pos-
itive arguments. Also, w,.,(1) > 0 for all # € (0, T], since
Wrep(0) = 0 and w,,(T) = 0 and the coefficient of the highest
degree term in the quadratic parabola of v,,(f) is negative
which indicates that w,,,(?) is a parabola oriented to —oo that
is positive between 0 and 7. This proves that (19) is indeed a
solution.

The expressions in (P2) and (P3) of Theorem 2 are obtained
by a similar procedure to that in the proof of Theorem 2.

x(0) = 22)
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Uniqueness: We now prove that the solutions given in The-
orems 1 and 2 are actually unique solutions of the two games
(2) with respect to strategies that are continuous against initial
positions. We only prove the uniqueness of Nash equilibrium
for the free terminal condition case as the proof in the case of
specified terminal condition is similarly done.

If the ordering of the agents in the queue is not the same
during the interval [0, T], then there is a time # € (0,7)
at which x'(ty) = x/(;) for some i # j. Because the
terminal conditions at time 7 are to be satisfied exactly (not
asymptotically), the number of changes in the ordering in the
queue must be finite in number, i.e., there is a finite n and
s oos ta1 € (0, T) such that x'(#) = x/(t;) for some i # j for
k=1, ...,n—1 and the ordering is unchanged in each interval
(o1, ) k =1,...,n. Let ty := 0, 1, := T. It follows that
the signum vector s(¢) has constant value s;_; € R" in each
interval (t;_1, ty) for k = 1, ..., n. Here, we assume that there is
alsoa k € {0, 1, ...,n} and i # j at which x(t;) # x/(t;), since
the singular case x'(t;) = x/(t) for all i, j, k is covered by
the Nash equilibrium in which s; = 0 for all k € {0, 1, ..., n}.
(Agents start and travel glued together in the whole interval
[0, T].) Then, for ¢t € (t;_;, t;), we have

" -1 P12t — 1)
/ [ $n(t — 1) ]rs(r)dr B (/ { $n(t — 1) ] 40) Sk

Yi(te-1, 1)
= Sik—1 = Tk—1,1)Sk—
|:W2(tk17t) -1 = Y(lk—1, 1) Sk—1
so that the solution of (15) is
2(1) = ¢t — t—D2(t—1) + Y@, le—1)Sk—1 1 € [fx—1, 1)
for k =1, ..., n. The solution in terms of the initial value z(0)
is
z(1) = ¢(t)Z(0) + Y1, tk—1)Sk—1
23
+Z¢(t_tl)¢(tlvtl DSi—1 1€ [tk—1, 1) @3
I=1
for k = 1, ...,n. Employing the terminal condition p(7) =

2 fx(T), multiplying each term in (23) (with ¢t = T') on the left
by [2fI — I], and using the fact that 2 f¢12(T) — ¢2(T) is
invertible, we determine

p(0) = —[2fp12(T) — ¢ (D] H[2 fp11(T) — ¢21(T)1x(0)
+Y [ 2T =1 (T — ), t)sia}-

I=1

Substituting in (23) and solving for x(¢) for r € [0, t;), we get

x(t) =
{P11(1) — P22 f12(T) — hoo (T [2 fb11(T) — po1 (D)1}
X(0)+ Y LUt to, ooos ta)Si— (24)

I=1

for some functions I'y(z, fo, ..., t,) for [ =1, ..., n [independent
of x(0)]. At r = ¢, the first time instant at which the ordering
changes, we have x'(t;) = x/(#;) for some i < j. Multiplying

IEEE TRANSACTIONS ON CYBERNETICS

each term in (24) on the left by the row vector of all zeros
except 1 at ith and —1 at the jth entry, we get

. : Var (1, T) i
X —xi@) - W[x 0) — x/(0)]
rep(t t07 (AR )
= Z B VY
A(T)

for some functions vrep(t, to, ..., 1) that are independent of
x(0). In this equality, the first term can be made as small
as desired by choosing t = #; + € for € sufficiently small.
As x(0) is perturbed, the last term can assume only a finite
number of values since s; has only a finite number of values
for [ =1, ...,n — 1. Since, by continuity of strategies, the left-
hand side assumes an infinity of values for perturbed values of
x(0), it follows that the equality cannot hold. This implies that
a solution that has a change of ordering in (0, T') cannot be a
solution of (13). Therefore, there is a unique Nash equilibrium.
Proof of Corollary 1:

a) From the proof of Theorem 1, we know that the maxi-
mum swarm size is at ¢t = T if and only if #* > T, which
is the case if and only if

[f(e“T — D +ae*T1rm(0) — Zaz(f +a)e?Td(0) o aT

[f(e*T — 1)+ a]rm(0) + 202(f — a)d(0) -
(25)

and

eI = Drm(©) — 222¢TdO)] _
@ — 1)rm0) +2a2d©0)  —°

in free and specified terminal cases, respectively. Noting
that the denominators are positive for all ¢ in both
expressions, the inequality does not change direction
when (25) or (26) is multiplied by its denominator. This
gives that (25) and (26) are both equivalent to

(26)

T — 1)*rm(0) + 4a?¢*Td(0) < 0

which is only possible when m(0) = 0 and d(0) = 0O, the
singular solution of the swarm traveling glued together
in the whole interval [0, T].

b) Again, from the proof of Theorem 1, we know that the
maximum swarm size is at ¢ = 0 if and only if * < 0,
which is the case if and only if the left-hand sides of (25)
or (26) are less than or equal to e~%7. Again, multiplying
by their denominators, substituting m(0) = 2N — 2, and
organizing, these inequalities turn out to be equivalent
to (10) and (11).
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