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Abstract: Three approaches for visualization of transparent micro-objects 

from holographic data using phase-only SLMs are described. The objects  

are silicon micro-lenses captured in the near infrared by means of digital 

holographic microscopy and a simulated weakly refracting 3D object with 
size in the micrometer range. In the first method, profilometric/tomographic 

data are retrieved from captured holograms and converted into a 3D point 

cloud which allows for computer generation of multi-view phase holograms 

using Rayleigh-Sommerfeld formulation. In the second method, the 
microlens is computationally placed in front of a textured object to simulate 

the image of the textured data as seen through the lens. In the third method, 

direct optical reconstruction of the micrometer object through a digital lens 

by modifying the phase with the Gerchberg-Saxton algorithm is achieved. 

©2013 Optical Society of America 

O CIS codes: (070.6120) Spatial light modulators; (090.1760) Computer holography; 
(090.2870) Holographic display. 

References and links 

1. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. 
Lett. 24(5), 291–293 (1999). 

2. Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography 
for high resolution live cell imaging,” Opt. Express 17(1), 266–277 (2009). 

3. L. Onural, F. Yaras, and H. Kang, “Digital holographic three-dimensional video displays,” Proc. IEEE 99(4), 
576–589 (2011). 

4. SUSS MicroOptics, http://www.suss-microoptics.com/ 
5. F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell 

refractive index tomography by digital holographic microscopy,” Opt. Lett. 31(2), 178–180 (2006). 
6. F. Charrière, J. Kühn, T. Colomb, F. Montfort, E. Cuche, Y. Emery, K. Weible, P. Marquet, and C. Depeursinge, 

“Characterization of microlenses by digital holographic microscopy,” Appl. Opt. 45(5), 829–835 (2006). 
7. D. Ghiglia and M. Pritt, Two-Dimensional Phase Unwrapping (J. Wiley & Sons, 1998). 
8. U. Schnars and W. Juptner, Digital Holography (Springer, 2005). 
9. E. Stoykova, A. Alatan, P. Benzie, N. Grammalidis, S. Malassiotis, J. Ostermann, S. Piekh, V. Sainov, C. 

Theobalt, T. Thevar, and X. Zabulis, “3D Time-Varying Scene Capture Technologies – A Survey,” IEEE 
TCSVT 17(11), 1568–1586 (2007). 

10. J. P. Waters, “Holographic image synthesis utilizing theoretical method,” Appl. Phys. Lett. 9(11), 405–407 
(1966). 

11. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996). 
12. H. Kang, T . Yamaguchi, H. Yoshikawa, S. C. Kim, and E. S. Kim, “Acceleration method of computing a 

compensated phase-added stereogram on a graphic processing unit ,” Appl. Opt. 47(31), 5784–5789 (2008). 
13. F. Yaraş, H. Kang, and L. Onural, “Circular holographic video display system,” Opt. Express 19(10), 9147–9156 

(2011). 
14. F. Yaraş, “Three-dimensional holographic video display systems using multiple spatial light modulators,” Ph.D. 

dissertation (Bilkent University, 2011). 

#193802 - $15.00 USD Received 15 Jul 2013; revised 4 Oct 2013; accepted 7 Oct 2013; published 11 Nov 2013
(C) 2013 OSA 18 November 2013 | Vol. 21,  No. 23 | DOI:10.1364/OE.21.028246 | OPTICS EXPRESS  28246



15. R. Gerchberg and W. Saxton, “A practical algorithm for the determination of phase from image and diffraction 
plane pictures,” Optik (Stuttg.) 35, 237–246 (1972). 

16. G. Liu and P. Scott , “Phase retrieval and twin-image elimination for in-line Fresnel holograms,” J. Opt. Soc. Am. 
A 4(1), 159–165 (1987). 

1. Introduction 

Digital holography is a powerful tool for capture of transparent or semi-transparent micro-

objects. The captured holograms, after being processed with the known phase retrieval or 

tomographic methods, yield the necessary information for surface profiling or 3D 
reconstruction of the refractive index distribution inside the object [1,2]. A logical 

continuation of the holographic capture is to display holographically the process ed data in 3D 

with a single or multiple spatial light modulators (SLMs) taking into account the limitations 

and approximations arising from conversion of the 2D complex valued hologram pattern to a 
data format supported by the SLMs [3]. 

Despite recent advances in holographic displays, the proper visualization procedure for 

transparent objects is still an issue. Obviously, such a procedure should depend on their 

nature. A straightforward solution is to build a 3D point cloud of an object from the retrieved 
phase distribution that can then be used to create computer generated holograms for 

optoelectronic reconstruction of multiple perspectives. Another approach is to mimic the 

direct observation of a transparent object, which is positioned in front of a natura l texture. To 

this end, the captured hologram is blended properly with the computed diffraction pattern of a 

given background texture, and the combined hologram is then displayed. For those objects, 
which give rise to strong diffraction, one could try direct reconstruction of the object beam 

from the captured phase-only data. In general, the recording wavelength as well as the pixel 

size and the number of pixels of the used CCD camera differ from the corresponding values 

of these parameters on the display s ide. 
The present work reports application of three visualization approaches to holograms of 

pure phase micro-objects. As such silicon micro-lenses and a simulated weakly refracting 3D 

object with size in the micrometer range are used. The holograms of the micro-lenses are 

recorded in the near infrared by means of digital holographic microscopy as image-plane 
holograms whereas the holographic data for the simulated micro-object comprises complex 

amplitudes in the plane of holographic capture for multiple illumination directions. Based on 

the chosen visualization technique, either a single phase-only SLM or a circular configuration 

of multiple phase-only SLMs is used. 

2. Description of the phase objects  

We used two types of phase objects in our experiments. The first type comprises arrays of 

micro-lenses with a constant value of the refractive index. Figure 1 shows digital off-axis 

holograms for a small section from arrays of circular and square silicon micro -lenses. The 

circular microlens, type 35-9950-105-123, production of SUSS MicroOptics [4], is 
characterized with a period of 250 μm, radius of curvature 1.65 mm and numerical aperture 

NA = 0.18. The square microlens, type 38-5053-109-121, production SUSS MicroOptics [4], 

has a period of 1015 μm, radius of curvature 49 mm and NA = 0.18. The holograms were 

recorded by means of digital holographic microscopy at 1.28 μm as image-plane holograms at 
magnification 25.7 and 4.67 respectively. The detailed description of the digital holographic 

microscope can be found in [2,5,6]. The pixel size of the CCD camera was 30 μm, and the 
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Fig. 1. (Top) - image-plane off-axis holograms of silicon microlenses captured at 1.28 μm with 
a digital holographic microscope; (bottom) - profilometric reconstruction of the microlenses 
from the captured holograms. 

 

Fig. 2. (a) - 3D refractive index distribution of a simulated 3D transparent object with the 
refractive index values in different regions; (b) - simulated complex amplitudes (magnitudes 
and wrapped phases) of holograms of the transparent object; from right to the left illumination 
of the object is at 0, 70, 120 and 180 degrees. 
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size of the captured hologram was 256 pixels × 256 pixels. As is known, the silicon micro -

lenses are transparent in the near-infrared region. For phase retrieval, we removed the 

reference wave from the hologram in the frequency domain and filtered only one of the 

orders. Thus we obtained the wrapped phase distribution,  ,W x y , for each lens and applied 

a quality-guided algorithm for phase unwrapping [7]. The profilometric reconstructions of the 

micro-lenses are also shown in Fig. 1. Thanks to the high signal-to-noise ratio of the capture 
process, no smoothing of the reconstructed surface was required. 

The second phase object was a simulated transparent object represented by the 3D 

refractive index distribution shown in Fig. 2(a), where the regions with different colors 

correspond to different values of the refractive index. The holographic data for this object 

were obtained as a result of simulation of a noiseless diffraction tomography experiment. The 
simulated data comprised transmission holograms recorded at plane-wave illumination of the 

object along different propagation directions with angular separation of 10°. The recording 

wavelength was 0.68 μm. Distance between the center of the object and the measurement 

plane was 68 μm which was equal to 100 wavelengths. The size of the optical reconstruction 
in the reconstruction plane at a distance of 68 μm was about 24 μm. In total, 19 complex 

amplitudes of the light field diffracted from the object were derived by a phase shifting 

approach; the four of them are shown in Fig. 2(b). The size of the holograms in pixels was 

200 × 200. The size of a pixel in the measurement plane was Δhol = 2.4 × 10
7

 m. Refractive 
index of the medium was unity whereas the variation of refractive index within the object did 

not exceed 0.004 to allow the first Born approximation. 

3. Holographic display of generated 3D point cloud objects  

The 3D capture for holographic displays can be implemented by holographic means or by 

structured light methods with coherent or incoherent illumination [8,9]. Both approaches 

share common phase retrieval techniques to derive the 3D coordinates of objects points. The 

captured holograms or fringe patterns provide the necessary information for surface profiling 
or 3D reconstruction. By combining holographic and tomographic methods, one gets 3D 

distribution of the refractive index inside the object. The holographic methods are especially 

effective to capture transparent or semi-transparent objects [1]. The output from their 

profilometric or tomographic reconstruction can be converted into a point cloud which allows 
for computer generation of holograms for a given display as shown in Fig. 3. The captured 

data can be easily adapted to any holographic display, and this is a substantial advantage of 

the point cloud approach. The other benefit from this approach, when applied to 

tomographically reconstructed refractive index distributions, is  possible visualization of 

interesting inner 3D regions of micro-objects. The point cloud comprises collection of self-
emitting points, and the generation of holograms is usually based on a Rayleigh -Sommerfeld 

diffraction model to create a true 3D impact [10,11]. However, fast algorithms developed to 

overcome the high computational complexity of the rigorous approach can be applied to 

accelerate generation of holograms [12]. 
Following the diagram in Fig. 3, we converted the data obtained from the profilometric 

reconstruction of the micro-lenses and the simulated tomographic reconstruction of the 

transparent object in Fig. 2 into a 3D computer graphic model and then to a point cloud. We 

used Rayleigh-Sommerfeld diffraction model to generate multi-view phase-only holograms. 
For the hologram located at (x,y) plane, the complex amplitude of the light field coming from 

the point cloud is  

     
1

, exp ,
N

op

p p

p p

a
O x y j kr

r




   (1) 
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Fig. 3. Conversion of the data obtained from the profilometric or tomographic reconstruction 
into a 3D computer graphic model (point cloud), and computer generation of multi-view phase-
only holograms from the point cloud data by using Rayleigh-Sommerfeld diffraction model; 

 , ,O x y z - object wave,  , ,R x y z  - reference wave. 

 

Fig. 4. Continuous optical reconstruction of pure phase objects within 24° and 32° viewing 
zone by using a circular holographic display; (a) – video recording of reconstruction of a 
silicon microlens from profilometric data (Media 1); (a)-(c) – enlarged parts from the single-
frame excerpts of reconstruction of microlenses; (g) – video recording of reconstruction of a 
micrometer object given by a 3D refractive index distribution obtained by means of optical 
diffraction tomography (Media 2); (g)-(i) - enlarged parts from single-frame excerpts. 

where N is the number of points in the point cloud, pa  and pφ  denote the magnitude and the 

phase of the p-th object point with coordinates  , ,p p px y z , respectively, 2k  π λ is the 
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wave number in radians per unit length and 
pr is the distance between the p-th object point 

and the point  ,x y  in the hologram plane: 

    
2 2 2

p p p pr x y z       (2) 

We performed multiview optoelectronic reconstruction of the phase objects with a 

holographic video display system built from nine phase-only Holoeye HEO-1080P SLMs that 

formed a circular configuration. The detailed description of the dis play is given in [13]. (We 

used this type of a SLM, with the pixel size 
SLM  8 μm and the number of pixels 1920 × 

1080, in all experiments throughout the paper). A large beam splitter created a virtual 

alignment of the SLMs’ active areas without gaps between them by imaging the SLMs on one 

side of the beam splitter to the other side [13]. Thus a continuous increased field of view was 

achieved. The distance between the reconstruction volume and each SLM was 35 cm. The 
SLMs were slightly tilted up to position the reconstructed 3D image above the display setup 

and to avoid blocking of the observer’s vision by the display’s components. Good quality of 

the reconstructions for a tilted illumination of up to 20° has been proven by experiments and 

subjective test results [14]. Since the SLMs were illuminated by means of a cone mirror [13] 

with a single astigmatic expanding wave,  ,W x y , given by 

  

2

2
2

, exp exp ,
2

SLM

h h s

h
y

x k
W x y jk jk

D D D

  
         

  
 
 

 (3) 

where Dh is the distance between the axis of the cone mirror and the SLM, hSLM is the height 

of the SLM, and Ds is the distance between the apex of the cone mirror and the point source of 

the wave positioned on the line of the cone mirror axis, the compensation for the 

asymmetrical illumination was taken care of. Since we used phase-only SLMs, we computed 

only the phase of    *, ,O x y W x y . The radius of curvature of the reference beam in the 

vertical plane was equal to 0.52 m whereas in the horizontal plane it was 0.27 m. To separate 

the image from the strong non-diffracted beam due to the pixelated nature of SLMs, we 

multiplied the result with    exp sin tP y jky   at θ t = 2°. The nine holograms were 

calculated from N = 200 × 200 points for each of the phase objects to generate viewing scenes 

at 3 or 4° angular separation between them. Thus, a moving observer is able to see continuous 

3D reconstruction within 24 or 32° viewing angle. Figure 4 depicts video recordings and 

enlarged parts from single frame excerpts for different viewing directions of optical 
reconstructions of both phase objects. For better visual perception of the micro -lenses we 

stretched their height profile. Note that the point cloud for the phase object in Fig. 2 consisted 

of the points corresponding to the outer envelope of the 3D refractive index distribution. 

Consequently the shown reconstruction is the visualization of the 3D shape enclosed with in 
this envelope. 

4. Imaging of a textured object 

If we use the wrapped phase distribution,  φ ,W x y , of the lenses retrieved from the 

holograms in Fig. 1 for imaging of a textured background, we can detect the alterations in the 
original textured background image or actually “see” the lenses as we do when we look 

through a lens in real life. The idea is schematically depicted in Fig. 5. The complex 

amplitude     , exp φ ,WL x y j x y   in the plane of the SLM is multiplied by the complex 

amplitude of the light field coming from a textured planar object positioned at some distance 
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from the SLM plane. The phase distribution,  φ ,W x y , is retrieved from a hologram captured 

at λ1 = 1280 nm, and displayed at λ2 = 532 nm. We placed the textured pattern at a distance 3f 

behind the lens plane, where f was the focal distance of  ,WL x y  at the wavelength 0.532 

μm. We chose the size of the textured background to be larger than the size of the lens 

aperture to easily distinguish the lens circumference when we look at the textured background 

through the lens. The magnification in the image plane of the lens was 0.5. The block-diagram 
of the algorithm is presented in Fig. 6. 

 

Fig. 5. Visualization of a textured pattern by means of a microlens with a focal distance f, that 
is reconstructed from an off-axis hologram and whose wrapped phase distribution is applied to 
the phase-only SLM. 

As the textured pattern of size 1080 pixels × 1080 pixels we used a low-pass filtered 

version  ,T x y of 2D amplitude mask in the form of a regular grid of fully transparent or 

fully reflecting squares with the following transmission/reflection function: 

  
   

1 1

2 1 2 1
, , ,

M M
t t

p q t t

x p y q
t x y rect

 

      
  

  
  (4) 

where  ,x y  are the coordinates in the texture plane, each small square has an edge size of Δt 

= mtΔ, where mt is an integer, and Δ is the pixel size at the texture plane; the distance between 

the neighboring squares is also Δt. The complex amplitude at the textured pattern plane to the 

right of the object is       , , exp φ ,tT x y t x y j x y , where the phase  φ ,t x y  may be 

added as a constant or as a uniformly distributed random value from 0 to 2π. In the first case 
the texture is non-diffusing, whereas the second case corresponds to a diffusing texture. To 

ensure the same pixel size at the texture plane,  ,x y , the SLM plane,  ,x y , and the image 

plane,  ,  , we modeled the wavefront propagation by using Rayleigh-Sommerfeld integral 

and the convolution approach [8], which was implemented using DFT. We assumed that the 
thin lens approximation is valid, that is, we can multiply the quadratic lens phase distribution 

by the complex amplitude of the incident light at the lens plane. The transfer function of 

propagation in the free space at distance d is given by 

  

22 22
2

, , exp 1
2 2

yx

x y

NNd
G l m d j l m

N N

  





 
      

                     
 

 (5) 
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at point  ,x yl N m N   in the frequency domain, where the ““ sign corresponds to 

forward propagation, 1... , 1...x yl N m N  , and 
xN  and 

yN  are the number of pixels along x 

and y axes. As has been mentioned above, we used Holoeye SLM of size in pixels 1920×1080 
and pixel period 8 μm. For this reason we increased 2 times the size of the distribution 

 ,WL x y  by interpolation. We place the distributions  ,WL x y  and 

      1, , 3T x y T x y G d f        at the SLM center which coincided with the point 

 0, 0x y  . We use only the phase of the complex amplitude distributions 

   , ,WL x y T x y  and  ,T x y to be fed to the corresponding areas of the phase-only SLM. 

We added a diverging digital lens with a focal distance 
dlf  

  
2 2

, exp
dl

x y
L x y i

f




 
  

 
 (6) 

to the part of the SLM, that was not occupied by the texture pattern and had a zero phase, to 
send the rays reflected from these pixels to outside the reconstructed image. Thus, the 

complex amplitude,  ,SLMT x y , at the SLM plane was built correspondingly from 

   , ,WL x y T x y ,  ,T x y  and  ,L x y  at the different parts of the SLM, as shown in Fig. 6. 

Finally, we wrote the phase of  ,SLMT x y on a single phase-only SLM and illuminated it with 

a plane wave. 

 

Fig. 6. Algorithm to visualize the textured pattern with a microlens, reconstructed from an off-
axis hologram (only phase distributions are applied to a phase-only SLM). 
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Fig. 7. Display of a textured pattern at λ2 = 532 nm by means of a microlens, whose wrapped 
phase distribution is reconstructed from a hologram, recorded in the near infrared region at λ1 = 
1280 nm and applied as a phase distribution to a SLM; (top) - square microlens; (bottom) – 
circular microlens. 

The reconstructed image can be obtained both numerically and optically. Before the 

optical reconstruction we conducted simulations of the display process with different textures. 

We observed the optically reconstructed focused images of the textured background at the 
expected reconstruction distance. Thus, we observe the lens while looking at the image of the 

textured background through the lens. While changing the observation position, the lens effect  

is clearly visible. The results of optical reconstruction with a single SLM are shown in Fig. 7 

for four different textures - uniform background and mt = 8, 16, 24. 

5. Reconstruction of a phase object in the micrometer range 

Optical reconstruction of the simulated phase object directly from the holographic data in Fig. 

2(b) was a challenging task due to the very small size of the object. Note that the holograms in 

Fig. 1 have been captured after the light has passed through the objective of the optical 
microscope whereas the complex amplitudes in Fig. 2 have been derived from a simulated 

phase-shifting measurement without any magnification. 

The reconstruction distance for the holograms in Fig. 2 for the pixel period ΔSLM = 8 μm 

and wavelength 0.532 μm becomes 0.096 m, and the lateral size of the reconstructed object is 
800 μm for a viewing direction of 70°. (We chose for illustrations the viewing direction of 70° 

as it corresponded to the maximum size of the object along the horizontal axis). For the 

numerical reconstruction using the full complex amplitude, 

      , , exp φ ,O OO x y a x y jk x y , of the object beam in the hologram plane, we obtained 

high-contrast intensity images as the one shown in Fig. 8(a) of different views of a concise 3D 

shape which rather closely resembled the 3D refractive index distribution in Fig. 2. One 

should take into consideration that the transmission holograms in Fig. 2 and hence the 
reconstruction in Fig. 8 (a) are influenced also by the inner parts of the 3D refractive index 

distribution. However, when we omitted the amplitude information and used only the phase, 

we obtained completely unsatisfactory result shown in Fig. 8(b). The phase information was 

not enough to yield the correct intensity distribution at the image plane, and the reconstructed 
image was severely distorted. 
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Fig. 8. (a) - full complex amplitude at the hologram plane and the image reconstructed from it; 
(b) - phase at the hologram plane and t he image reconstructed from it; (c) - schematic 
representation of the Gerchberg-Saxton algorithm between the SLM plane and the plane of the 
reconstructed image; numerical reconstruction in Figs. (a) and (b) is made for 0.532 μm 
wavelength and pixel period of 8 μm. 

To solve the problem we applied the Gerchberg-Saxton algorithm [15,16] to modify 

iteratively the phase at the hologram plane (x,y) knowing the correct complex amplitude 

            1, , exp φ , ,O OO a jk O x y G d               (7) 

at the plane of the reconstructed image (ξ,η) as is shown in Fig. 8(c). The block-diagram of 

the algorithm is depicted in Fig. 9. We used the Rayleigh-Sommerfeld diffraction model in 

convolution implementation to ensure the same spacing at the hologram and image planes. 

For each iteration 1,2,...i K we imposed the known value  ,Oa    at the image plane as 
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the amplitude of the reconstructed field,       , , exp φ ,
OO

i i iO a jk      , i.e. 

   , ,
O

i

Oa a    . After back propagation to the hologram plane 

            1, , exp , , ,
O O

i i iO x y a x y jk x y O G d           (8) 

we omitted again the amplitude information by setting  , 1
O

ia x y  and obtained the modified 

light field     , exp φ ,
O

i iO x y jk x y  for forward propagation. The iteration process 

continued until the difference between the image reconstructed from the full complex 

amplitude and the modified phase distribution fell beneath some chosen value. Numerical 

reconstruction of the object from the modified phase distribution obtained after K = 30 
iterations is shown in Fig. 10(a) for the viewing direction of 70°. As it can be seen, the quality 

of the reconstruction from the modified phase is satisfactory. The 3D shape is clearly seen as 

in Fig. 8(a); the only drawback, when compared to the reconstruction in Fig. 8(a), is the slight 

increase of the noise at the area surrounding the reconstructed image. 

 

Fig. 9. Schematic of the Gerchberg-Saxton algorithm for improving the image quality at 
reconstruction by modifying the phase. 

To increase the 3D shape size in the optical reconstruction  we incorporated a digital 

magnifying lens at the SLM plane, and calculated the required phase hologram by a Fresnel 

approximation. The optical reconstruction is shown in Fig. 10(b) for the reconstruction 
distance 1.75 m. The size of the reconstructed object is about 6 mm which gives about 250 

times magnification in comparison with its original size. 

#193802 - $15.00 USD Received 15 Jul 2013; revised 4 Oct 2013; accepted 7 Oct 2013; published 11 Nov 2013
(C) 2013 OSA 18 November 2013 | Vol. 21,  No. 23 | DOI:10.1364/OE.21.028246 | OPTICS EXPRESS  28256



 

Fig. 10. (a) - numerical reconstruction of the phase object in the micrometer range from 
holographic data after applying the Gerchberg-Saxton algorithm to modify phase distribution; 
(b) – optical reconstruction at λ2 = 532 nm with a single SLM after incorporation of a digital 
lens at the SLM plane; the size of the reconstructed 3D shape is 6 mm. 

6. Conclusion 

3D holographic display of transparent objects is achieved. The object may have a constant or 

varying refractive index. Different visualization modes are designed, implemented and tested. 
In one mode, the 3D point cloud structure is constructed from captured holographic data, and 

then the computer generated holograms of this 3D structure are formed and holographically 

displayed using a circular holographic display consisting of multiple phase-only SLMs. This 

display provides seamless viewing of the 3D point-cloud structure from continuous directions 
within a rather large viewing angle [13]. In another mode, a real-life viewing through 

transparent objects is imitated. An artificial planar textured pattern is generated and inserted 

as the background of the uniform refractive index transparent object to be visua lized. 

Diffraction signals corresponding to the combined 3D scene (planar textured background and 
the 3D transparent object in front of it) are computed and fed into a phase-only SLM for 

holographic reconstruction. In the third approach, the captured holog raphic data related to a 

3D transparent object a directly used to retrieve the complex amplitude of a diffracted light 

distribution as it passes and exits the transparent object. It is observed that only the phase 
component of this complex amplitude, obtained by simply discarding the magnitude, does not 

provide sufficient quality 3D reconstructions using a phase-only SLM as the holographic 

display device. Therefore, a more sophisticated procedure based on the iterative Gerchberg -

Saxton algorithm is employed to compute the phase distribution to be written on the phase-

only SLM. As a consequence, a satisfactory naked-eye 3D holographic display of a 
transparent (varying index) micro object is achieved, with a magnification of about 250. 
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