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Abstract

Objectives: Coronary artery diseases (CADs) are the leading
cause of death worldwide and early diagnosis is crucial for
timely treatment. To address this, our study presents a novel
automated Artificial Intelligence (AI)-based Hybrid Anomaly
Detection (AIHAD) technique that combines various signal
processing, feature extraction, supervised, and unsuper-
vised machine learning methods. By jointly and simulta-
neously analyzing 12-lead cardiac sympathetic nerve activity
(CSNA) and electrocardiogram (ECG) data, the automated
AIHAD technique performs fast, early, and accurate diag-
nosis of CADs.
Methods: In order to develop and evaluate the proposed
automated AIHAD technique, we utilized the fully labeled
STAFF III and PTBD databases, which contain the 12-lead
wideband raw recordings non-invasively acquired from
260 subjects. Using these wideband raw recordings, we
developed a signal processing technique that simulta-
neously detects the 12-lead CSNA and ECG signals of all
subjects. Using the pre-processed 12-lead CSNA and ECG
signals, we developed a time-domain feature extraction
technique that extracts the statistical CSNA and ECG fea-
tures critical for the reliable diagnosis of CADs. Using the
extracted discriminative features, we developed a super-
vised classification technique based on Artificial Neural
Networks (ANNs) that simultaneously detects anomalies

in the 12-lead CSNA and ECG data. Furthermore, we
developed an unsupervised clustering technique based on
Gaussian mixture models (GMMs) and Neyman-Pearson
criterion, which robustly detects outliers corresponding
to CADs.
Results: Using the automated AIHAD technique, we have,
for the first time, demonstrated a significant association
between the increase in CSNA signals and anomalies in
ECG signals during CADs. The AIHAD technique achieved
highly reliable detection of CADs with a sensitivity of
98.48 %, specificity of 97.73 %, accuracy of 98.11 %, posi-
tive predictive value of 97.74 %, negative predictive value
of 98.47 %, and F1-score of 98.11 %. Hence, the automated
AIHAD technique demonstrates superior performance
compared to the gold standard diagnostic test ECG in the
diagnosis of CADs. Additionally, it outperforms other
techniques developed in this study that separately utilize
either only CSNA data or only ECG data. Therefore, it
significantly increases the detection performance of CADs
by taking advantage of the diversity in different data
types and leveraging their strengths. Furthermore, its
performance is comparatively better than that of most
previously proposed machine and deep learning methods
that exclusively used ECG data to diagnose or classify
CADs. Additionally, it has a very low implementation
time, which is highly desirable for real-time detection of
CADs.
Conclusions: The proposed automated AIHAD technique
may serve as an efficient decision-support system to increase
physicians’ success in fast, early, and accurate diagnosis of
CADs. It may be highly beneficial and valuable, particularly
for asymptomatic patients, for whom the diagnostic infor-
mation provided by ECG alone is not sufficient to reliably
diagnose the disease. Hence, it may significantly improve
patient outcomes by enabling timely treatments and
considerably reducing the mortality of cardiovascular dis-
eases (CVDs).
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Introduction

According to the World Health Organization (WHO), car-
diovascular diseases (CVDs) are the leading cause of death
worldwide, with an estimated death rate of approximately
17.9 million deaths each year, accounting for 31 % of all
deaths worldwide annually [1]. The majority of these deaths
are caused by coronary artery diseases (CADs), including
myocardial ischemia (ISC), silent (asymptomatic) myocar-
dial ischemia (AISC), and myocardial infarction (MI, heart
attack).

In patients with CADs, significant anomalies in the ST
segment, QRS complex, and T wave of the electrocardiogram
(ECG) signals occur during ISC and MI [2–6]. However, a
considerable number of CAD patients worldwide suffer from
AISC, in which there are no anomalies in patients’ ECG
signals. Thus, an ECG signal that does not contain any
anomalies does not rule out the possibility of CADs. Due to its
limitations in diagnosing asymptomatic CAD patients with
AISC, ECG alone cannot be used to diagnose AISC based solely
on its diagnostic information. Since asymptomatic CAD
patients with AISC do not experience any symptoms, they
are prone to misinterpretation by cardiologists, which leads
to false-negative results, making AISC more dangerous and
fatal.

Moreover, previous artificial intelligence (AI) studies
that exclusively used ECG data to diagnose or classify CADs
may have significant limitations for asymptomatic CAD
patientswith AISC [3, 7–12]. Thus, an automated AI technique
that can accurately and quickly diagnose both asymptomatic
CAD patients (AISC) and symptomatic CAD patients (ISC, MI)
is a major and essential clinical need that may significantly
increase the detection performance of CVDs, provide timely
treatment, and reduce mortality rates.

Previous studies have shown that the sympathetic
nervous system (SNS) plays an important role in regulating
the cardiovascular system [13–15]. These studies have
established a direct and strong relationship between the SNS
and various CVDs, which is due to the fact that the extensions
of the SNS that regulate the heart are distributed throughout
the heart. The traditional method for directly recording and
monitoring high-frequency signals, including activities of
the SNS, is the microneurography technique, which requires
invasive procedures, such as inserting very fine microelec-
trodes into the nerve fibers to detect and measure their
electrical signals [13, 14, 16]. However, the invasive and
complex nature of the microneurography technique, which
requires highly specialized expertise from trained clini-
cians, greatly limits its utilization for research studies in
clinical practice.

Recent studies have shown that it is possible to non-
invasively record high-frequency signals, called cardiac
sympathetic nerve activity (CSNA), from the skin surface
of the chest using data acquisition equipment with wide
frequency bandwidth and high sampling rate [13, 14, 16]. A
few studies investigating the relationship between CSNA
and cardiac arrhythmias (CARs) using signal processing
techniques demonstrated an increase in the amplitude of
CSNA during CARs [14, 16]. Additionally, they indicated that
this increase in CSNA was accompanied by a simultaneous
increase in heart rate in the ECG signal. Therefore, they
suggested that early and reliable diagnosis of CARs can be
achieved by detecting the anomalies in CSNA. However,
none of these previous studies used AI techniques to
diagnose CARs using only CSNA data or both CSNA and ECG
data.

Since it has long been accepted that there is a direct and
strong relationship between the SNS and various CVDs
[13–15], we hypothesized that there can be anomalies in
CSNA during CADs. To the best of our knowledge, there are
no studies in the literature to date that have investigated
whether there is an association between CSNA and CADs
using AI techniques. This constituted a research gap in the
literature that highlights the need for further investigation.
Additionally, most of the existing AI studies have only used
ECG data to detect various CVDs. However, there are no
studies to date that have proposed an AI technique that
jointly and simultaneously uses CSNA and ECG data to
diagnose CADs or other CVDs.

The main aim and motivation of this study were
to develop an automated AI technique that accurately
diagnoses both asymptomatic CAD patients (AISC) and
symptomatic CAD patients (ISC, MI) by jointly and simulta-
neously analyzing 12-lead CSNA and ECG data. Hence, this
technique aims to address the limitations of existing related
studies that have only used ECG data and fill the research
gaps in the literature. For this purpose, we propose a novel
AI-based Hybrid Anomaly Detection (AIHAD) technique
consisting of various signal processing, feature extraction,
supervised, and unsupervised machine learning methods
that jointly and simultaneously analyzes 12-lead CSNA and
ECG data to perform fast, early, and accurate diagnosis of
CADs (i.e., AISC, ISC, MI).

By using the proposed automated AIHAD technique, we
aimed to investigate whether there are anomalies in CSNA
signals during CADs. Moreover, our purpose was to deter-
mine whether the joint and simultaneous detection of the
anomalies in the 12-lead CSNA and ECG data provides an
increase in the performance of CAD diagnosis. Furthermore,
we targeted to compare the performance of the AIHAD
technique with the gold standard diagnostic test ECG, as well

2 Terzi and Arikan: Artificial intelligence technique for the automated detection of coronary artery diseases



as previously proposed AI methods that have only used ECG
data to diagnose or classify CADs.

In the literature, various machine and deep learning
methods have been previously proposed for the diagnosis
and classification of various CVDs using only ECG data. The
feature extractionmethods can be divided into three groups,
which are time-domain techniques, frequency-domain
techniques, and time-frequency domain techniques. Specif-
ically, these techniques include Fourier transform [17, 18],
wavelet transform [19–30], Gabor transform [31], discrete
cosine transform [27], shearlet and contourlet transform
[32], Hilbert-Huang transform [33, 34], discrete orthogonal
Stockwell transform [35], empirical and variational mode
decompositions [26, 27, 34, 36], Wigner-Ville distribution
technique [37], Fourier-Bessel series expansion (FBSE)
[38–41], and independent and principal component analyses
[42, 43].

The previously proposed machine learning methods for
the diagnosis and classification of various CVDs using only
ECG data include logistic regression [10, 11, 44], artificial
neural network (ANN) [10, 19, 25, 37, 45–49], k-nearest
neighbor (KNN) [9, 27–29, 32, 39, 48, 50, 51], hidden Markov
model (HMM) [22, 52], Gaussian mixture model (GMM)
[23, 53], support vector machine (SVM) [8, 10, 17, 20, 24, 35, 36,
41, 48, 50, 53–57], random forest [22, 37, 48, 50, 58, 59], naive
Bayes [10, 46, 50, 60], decision tree [4, 21, 32, 46, 60, 61], fuzzy
logic [62, 63], self-organizing map (SOM) [64], mixture of
experts [65, 66], association rule learning [67], and linear
discriminant analysis [50].

Moreover, the previously proposed deep learning
methods for the diagnosis and classification of various CVDs
using only ECG data include one-dimensional (1D) convolu-
tional neural network (CNN) [3, 12, 42, 68–75], recurrent
neural network (RNN) [76–82], combined CNN-RNN [6, 83, 84],
capsule network [85], deep neural network (DNN) [26, 86],
deep belief network (DBN) [33], autoencoder [54, 64, 78, 87],
and restricted Boltzmann machine (RBM) [64, 88]. However,
none of these existing machine and deep learning studies
have jointly utilized CSNA and ECG data to benefit from the
diversity in different data types and to leverage their
strengths for the accurate and reliable diagnosis of CVDs.

The main contributions and novelty of the proposed
study are summarized as follows:
(1) We developed the first automated AIHAD technique

consisting of various signal processing, feature extrac-
tion, supervised, and unsupervised machine learning
methods that jointly and simultaneously analyze 12-lead
CSNA and ECG data to perform fast, early, and accurate
diagnosis of CADs.

(2) Our study is the first to demonstrate that there are
anomalies in CSNA signals during CADs. Additionally, we

have shown that there is a significant association be-
tween the increase in CSNA signals and the anomalies in
ECG signals during CADs.

(3) The proposed AIHAD technique outperforms other
techniques developed in this study that separately use
either only CSNA data or only ECG data. Therefore, it
significantly increases the detection performance of
CADs by benefiting from the diversity in different data
types and leveraging their strengths.

(4) The AIHAD technique can automatically process all
12-leads for enhanced diagnosis. Therefore, it takes
advantage of the diversity in diagnostic information
provided by all 12-leads and can accurately detect CAD
cases that cannot be diagnosed using only one-lead.

(5) The automated AIHAD technique demonstrates superior
performance compared to the gold standard diagnostic
test ECG in the diagnosis of CADs.

(6) The performance of the AIHAD technique is higher than
that of most previously proposed machine or deep
learning methods that have only used ECG data to di-
agnose or classify CADs.

(7) The AIHAD technique has a very short implementa-
tion time, which is highly desirable for real-time
detection of CADs. This may support fast decision-
making by physicians in clinical settings, which may
have significant implications in emergency situations
where rapid diagnosis is crucial for timely patient
treatment.

Materials and methods

This study proposes the first automated AIHAD technique consisting of
various signal processing, feature extraction, supervised, and unsu-
pervised machine learning methods that jointly and simultaneously
analyze 12-lead CSNA and ECG data to perform fast, early, and accurate
detection of CADs. The block diagram illustrating the overall structure
and methodology of the study is shown in Figure 1. In-depth explana-
tions of the various components and processing steps of the proposed
AIHAD technique can be found within the subheadings of the Materials
and Methods section.

Data acquisition and preparation

The STAFF III database: One of the databases used for the development
and performance evaluation of the proposed automated AIHAD tech-
nique is the fully labeled STAFF III database on PhysioNet, which is a
publicly available repository of medical research data [89, 90]. The
STAFF III database was constructed by acquiring wideband recordings
from 104 patients with CADs who underwent percutaneous coronary
intervention (PCI) at Charleston Area Medical Center (U.S.). The
demographics and clinical characteristics of the patients included in the
study are presented in Table 1.
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The database was constructed by Duke University as a part of a
clinical research study to investigate high-frequency anomalies in ECG
signals that occur during artificially induced ISC caused by complete
coronary artery occlusion due to PCI [89, 90]. PCI is aminimally invasive
surgical procedure that can cause significant anomalies in the ST
segment and T wave of the ECG signal.

Two different types of 12-lead wideband recordings that were
acquired before and during PCI from all patients in the STAFF III
database were included in this study, as detailed in Table 2. Hence, a

total of 1,248 pre-inflation (normal) and 1,248 inflation (abnormal)
recordings were utilized to develop and evaluate the proposed AIHAD
technique. To date, this database is the largest that simulates high-
frequency anomalies in wideband recordings acquired during artifi-
cially induced ISC under a PCI-controlled environment. Therefore, it
serves as an excellent testbed for developing and evaluating various AI
techniques that can diagnose and classify CAD.

Before PCI, the 12-lead pre-inflation (normal) recordings were
acquired prior to catheter insertion into the coronary artery at the
preoperative room. During PCI, the 12-lead inflation (abnormal)
recordings that started before coronary balloon inflation (CBI) and
ended after coronary balloon deflation (CBD) were continuously
acquired at the cardiac catheterization laboratory (operation room).

The database contains a total of 152 stenoses in the major coronary
arteries, distributed as 58 stenoses in the left anterior descendant artery
(LAD), 59 stenoses in the right coronary artery (RCA), 32 stenoses in
the left circumflex artery (LCX), and 3 stenoses in the left main artery
(LM) (Table 3). A total of 35 patients had a previousMI, as determined by
ECG criteria defined by the American Heart Association (AHA) [1].
Additionally, the database includes important annotations provided by
experienced cardiologists, including the occluded coronary artery in
which PCI was performed, the time instants related to CBI and CBD
during PCI, the patient’s history of previous MI, and the location of
previous MI.

The data were acquired using custom-made ECG data acquisition
equipment (Siemens–Elema AB, Sweden) with a wider frequency
bandwidth and a higher sampling rate compared to conventional ECG
devices. The recordings were digitized with a sampling rate of 1,000 Hz,
16-bit sampling resolution, and 0.6 μV amplitude resolution. The
patients who suffered from CARs or MI during data acquisition were
excluded from the database.

The Physikalisch-Technische Bundesanstalt Diagnostic database:
Another database used for the development and performance evalua-
tion of the proposed automated AIHAD technique is the fully labeled
Physikalisch-Technische Bundesanstalt (PTB) Diagnostic (PTBD) data-
base on the PhysioNet repository [90–92]. It was constructed by
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Figure 1: The block diagram that demonstrates various components of the proposed automated AIHAD technique, which are signal processing, feature
extraction, supervised classification, and unsupervised clustering methods. The supervised and unsupervised machine learning methods were
independently trained with 12-lead CSNA and ECG data, during which they learned to successfully distinguish between patients with and without CADs.

Table : The demographics and clinical characteristics of the patients.

Age . ± 

Male  (.%)
Diabetes  (%)
Hypertension  (.%)
Smoking  (.%)

The numerical variables are presented as the mean ± standard deviation.
The categorical variables are presented as the number of patients and
percentage with respect to the total population.

Table : Two different types of recordings and numbers of the patients
and recordings for each type.

Diagnostic
Classes

Numbers
of the

Patients

Numbers
of the

Recordings

Numbers
of the
Leads

Total
Numbers

of the
Recordings

Pre-inflation
(Normal)

   ,

Inflation (Abnormal)    ,
Total 

a
  ,

aThe pre-inflation and inflation recordings belong to the same patients.
Therefore, the total number of patients is the same as the number of
patients with the pre-inflation or inflation recordings.
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Benjamin Franklin University (Berlin, Germany) to investigate high-
frequency anomalies in ECG signals of the patients with various CVDs.
Among several different diagnostic classes of CVDs present in the PTBD
database that are shown in Table 4, the only diagnostic class which is a
type of CAD is the MI class.

Since one of the aims of this study was to perform accurate and
reliable detection of CADs, we considered the MI patients in the PTBD
database as the abnormal class and the healthy controls as the normal
class to perform binary classification. Hence, the 12-lead wideband
recordings acquired from 52 healthy controls and 104MI patients, which
account for a total of 156 subjects, were included in this study to develop
and evaluate the proposed AIHAD technique (Table 5).

In order to overcome the class imbalance between the two classes
(MI andhealthy controls) in the PTBDdatabase andprevent bias towards
themajority class (MI), we adjusted thenumbers of recordings belonging
to each of the two classes to be equal. In order to equate the number of
recordings in the minority and majority classes, we employed the syn-
thetic minority oversampling technique (SMOTE) to generate new syn-
thetic samples in the minority class (healthy controls) by interpolating
between existing minority class samples and their nearest neighbors.
SMOTE created new synthetic samples that resemble the existing mi-
nority class samples, while introducing some variations to expand the
feature space. Thus, by producing synthetic samples that are represen-
tative of the minority class in the training set, the number of samples in
the minority class was equalized with that of the majority class. This
way, it was ensured that the class distributions were balanced using a
data resampling method and both classes had an equal number of re-
cordings (Table 5). This approach guaranteed that the AIHAD technique
assigned equal importance to both classes, improved the technique’s
ability to learn from the minority class, and increased the technique’s
generalizability. We implemented SMOTE exclusively on the training
set, hence it was not applied to the validation or test sets, which ensured
a fair performance evaluation of the proposed technique. Consequently,
a total of 1,248 normal recordings of 52 healthy controls, and 1,248
abnormal recordings of 104 MI patients were used for the development
and evaluation of the proposed AIHAD technique (Table 5). The training
of the automated AIHAD technique was performed on the oversampled
and balanced training set.

All data were acquired by experienced physicians using data
acquisition equipment (PTB prototype recorder, Germany) with a wide
frequency bandwidth and high sampling rate. The recordings were
digitized with a sampling rate of 1,000 Hz, 16-bit sampling resolution,
and 0.5 μV amplitude resolution. They were annotated by experienced
physicians to indicate the demographic and clinical information about
the patient’s age, gender, diagnosis, medical history, coronary artery
pathology, ventriculography, and echocardiography. Hence, the data-
base offers an excellent testbed for developing and evaluating various AI
techniques that can diagnose and classify CAD.

Enhanced signal processing technique for CSNA and ECG data
analysis: The electrical signals obtained from the skin surface of the
chest wall contain signals from a wide variety of nerve activities and
myocardium [13–16]. Because of the intensive connections between
the sympathetic, motor, and sensory nerves in the body, the nerves
originating from different sources can activate simultaneously. Thus,
the electrical signals acquired from the chest wall (yi(t)) contain raw
ECG (ei(t)), cardiac sympathetic nerve activity (CSNA) (ci(t)), motor and
sensory nerve activities (MSNA) (si(t)), and muscle activity (EMG) (mi(t))
(Equation (1)).

yi(t) = ei(t) + ci(t) + si(t) +mi(t), i = 1, .,N . (1)

In electrical signals acquired from the chest wall, CSNA will be
delayed and will decrease in amplitude as it propagates away from its
source. This delay and decrease in amplitude can be mathematically
modeled by the delay parameter τi and the amplitude parameter αi
(Equation (2)).

ci(t) = αi c(t − τi), 0 < αi < 1 (2)

Most of the diagnostic information in ECG resides below 150 Hz,
therefore, the AHA recommends a frequency bandwidth of 0.5 Hz–
150 Hz for the diagnostic monitoring of ECG [1]. Moreover, the

Table : The clinical characteristics of the patients.

Left anterior descendant artery (LAD)  (.%)
Right coronary artery (RCA)  (.%)
Left circumflex artery (LCX)  (.%)
Left main artery (LM)  (.%)

Balloon inflation time (second)  ± 

History of previous MI  (.%)

The numerical variables are presented as the mean ± standard deviation.
The categorical variables are presented as the number of patients and
percentage with respect to the total population.

Table : Two different types of recordings and numbers of the subjects
and recordings for each type.

Diagnostic
Classes

Numbers
of the

Subjects

Numbers
of the

Recordings

Numbers
of the
Leads

Total
Numbers

of the
Recordings

Healthy Controls
(Normal)

 
a

 ,

Myocardial
Infarction (MI)
(Abnormal)

   ,

Total    ,

aThe number of the recordings after the implementation of the synthetic
minority oversampling technique (SMOTE), which generates new synthetic
samples in the minority class (healthy controls).

Table : The diagnostic classes of the subjects in the PTBD database.

Diagnostic Classes Number of the Subjects

Healthy Controls 

Myocardial Infarction (MI) 

Cardiomyopathy/Heart Failure 

Bundle Branch Block 

Dysrhythmia 

Myocardial Hypertrophy 

Valvular Heart Disease 

Myocarditis 

Miscellaneous 
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electromyogram (EMG) is approximately band-limited to 100 Hz, with
small amounts of muscle activity occasionally reaching 400 Hz [13].
Therefore, the implementation of a high-pass filter with a cut-off fre-
quency of fC=150 Hz to the wideband raw recordings acquired from the
chest wall will eliminate ECG and EMG to a large extent. The hypothesis
of this study, which is based on the previous studies in the literature
[13–16], indicates that CSNA is uncorrelated with MSNA, and thus, it is
possible to decouple CSNA from MSNA. Therefore, the signal activity
obtained as a result of high-pass filtering the electrical signals acquired
from the chest wall will mostly originate from CSNA. In cases where the
parameters αi and τi are known, CSNA can be estimated as shown in
Equation (3).

c ̂(t) =
∑
N

i=1
αi yi(t + τ i)

∑
N

i=1
α2
i

(3)

We developed two signal processing techniques, which include
various digital filtering methods that remove unwanted frequency
components from the wideband raw recordings while preserving the
diagnostic information within the recordings, to detect the 12-lead CSNA
and ECG signals of all subjects in the STAFF III and PTBD databases
(Figure 1).

Firstly, we developed and implemented the band-pass and notch
filters on the wideband raw recordings in the STAFF III and PTBD da-
tabases to detect the 12-lead ECG signals of all subjects. The lowest fre-
quency component of the ECG signal is generally defined by the slowest
possible heart rate, which is 40 beats perminute (bpm) [1, 5, 6, 57, 93–95].
Hence, assuming a periodic signal, the lowest frequency component of
the ECG signal can be at least 0.67 Hz. Therefore, to enhance the quality
of ECG signals by eliminating low-frequency noises, such as baseline
wander and respiratory signals, the lower cut-off frequency of the band-
pass filter was designed to be fL1=0.5 Hz.

Moreover, we eliminated the high-frequency noises in ECG signals,
such as muscle activity (EMG) and motion artifacts, by designing the
band-passfilter to have a higher cut-off frequency of fH1=150 Hz, which is
compatible with the recommendations of the AHA for the diagnostic
monitoring of ECG [1].

Furthermore, we eliminated the 60 Hz power-line interference in
the STAFF III database by developing notchfilters with lower and higher
cut-off frequencies of fL2=59 Hz and fH2=61 Hz, respectively [94–96].
Similarly, we eliminated the 50 Hz power-line interference in the PTBD
database by developing notch filters with lower and higher cut-off fre-
quencies of fL3=49 Hz and fH3=51 Hz, respectively.

We developed a QRS complex detection technique that can adapt to
the instantaneous changes in ECG signals by setting an adaptive
threshold for each patient, which is higher than the P and T waves and
lower than the QRS complex in amplitude [5, 6, 57, 94, 95, 97, 98]. By
detecting the signal values where the ECG signal amplitude is higher
than the predefined threshold, we performed the robust localization of
the QRS complexes in the time domain. By using the detected QRS
complexes as the reference points, we segmented the ECG signals of all
subjects into individual periods, each corresponding to a single heart-
beat [12, 52, 87]. Lastly, we determined the isoelectric line, which rep-
resents the reference potential level of the measured heart activity for
each recorded heartbeat. We then removed the isoelectric line from
each ECG period to accurately detect ischemic ECG anomalies.

Secondly, we developed high-passfilterswith a cut-off frequency of
fC=150 Hz andwe implemented themon thewideband raw recordings in
the STAFF III and PTBDdatabases to detect the 12-lead CSNA signals of all

subjects [13, 14, 16]. Moreover, we investigated the performances of
various high-pass filters with different cut-off frequencies up to 500 Hz
to detect CSNA. The effortsmade to optimize thefilters’ cut-off frequency
for displaying CSNA revealed that a high-pass filter with a cut-off
frequency of fC=150 Hz provides a higher amplitude CSNA and better
signal-to-noise ratio (SNR), while effectively suppressing ECG signals.
Further increases in the cut-off frequency of the filter eliminated EMG
signals to a large extent. However, it also resulted in lower amplitude
CSNA andworse signal-to-noise ratio (SNR). Therefore, for higher cut-off
frequencies of the filter, the specificity of CSNA recording increased.
However, a majority of CSNA was filtered out, which reduced the
sensitivity of CSNA recording.

Furthermore, we investigated the power ratios of the inflation
(abnormal) CSNA (PRi) across different frequency bands for all patients
in the STAFF III and PTBD databases by designing band-pass filters that
have 6 consecutive overlapping frequency ranges, as shown in Table 6.

We obtained the power ratio of the inflation (abnormal) CSNA (PRi)
by calculating the ratio of the average inflation CSNA power during PCI
(Pburst) to the average inflation CSNA power before PCI (Pbaseline), as
shown in Equation 4, where ci(t) denotes the inflation (abnormal) CSNA.

PRi = Pburst

Pbaseline
=

1
Δt1

∫
t3
t2
|ci(t)|2 dt

1
Δt0

∫
t1
t0
|ci(t)|2 dt

, Δt1 = t3 − t2, Δt0 = t1 − t0 (4)

The experiment results demonstrated that the power ratio of the
inflation (abnormal) CSNA (PRi) was consistently higher for frequency
ranges between 150 and 400 Hz (frequency bands between 1≤ i ≤4) for all
patients in the STAFF III and PTBD databases.

Enhanced feature extraction technique

By using the pre-processed 12-lead CSNA and ECG signals in the STAFF III
and PTBD databases, we developed a time-domain feature extraction
technique that extracts the statistical CSNA and ECG features that are
critical for the reliable diagnosis of CADs [19, 28, 29, 42, 97, 99, 100].

Enhanced feature extraction technique for CSNA signals
Number of CSNA peaks:We detected the peaks of the CSNA signals (p[n])
by defining an adaptive threshold (ξ) that is specific to the CSNA signal
(c[n]) of each patient. By identifying signal values at which the ampli-
tude of CSNA was greater than the predefined threshold (ξ) through a
sliding time window (N ), we performed the time domain localization of
CSNA peaks (Equation (5)). We obtained the number of CSNA peaks
(u[n]) by calculating the summation of CSNA peaks through the sliding
time window (N ) (Equation (6)).

Table : The consecutive overlapping frequency bands and ranges.

Frequency Bands Frequency Ranges

i=  Hz− Hz
i=  Hz− Hz
i=  Hz− Hz
i=  Hz− Hz
i=  Hz− Hz
i=  Hz− Hz
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p[n] = 1, c[n + k] ≥ ξ, k = 0, .,N − 1.
0, c[n + k] < ξ{ (5)

u[n] = ∑
N−1

m=0
p[n +m] (6)

Average CSNA:We estimated the average voltage of CSNA per sample (a
[n]) by integrating CSNA signal (c[n]) over the sliding time window (N )
and dividing the total voltage by the overall number of samples (N ) in
the same window (Equation (7)).

a[n] = 1
N

∑
N−1

m=0
| c[n +m] | (7)

Maximum CSNA:We obtained it by calculating the maximum amplitude
of CSNA signal (c[n]) through the sliding timewindow (N ) (Equation (8)).

m[n] = max
0 ≤ m ≤ N−1

( c[n +m] ) (8)

Enhanced feature extraction technique for ECG signals
ST segment level: We obtained it by calculating the summation of all
signal amplitudes through the ST segment (q[n]) and dividing the total
voltage by the overall number of samples (L) in the same interval
(Equation (9)).

s[n] = 1
L

∑
L−1

k=0
q[n + k] (9)

ST segment slope: (β1̂ ): We estimated it as the slope of the bestfitting line
(q ̂[n]) in Equation (11) in terms of least squares to the samples of the ST
segment (q[n]). We performed this estimation by finding the least
squares estimates β0 and β1 that minimize the sum of squared residuals
in Equation (10).

f [β0, β1] = ∑
L−1

k=0
( q[n + k] − (β1 w[n + k] + β0))2 (10)

q[̂n] = β1 w[n] + β0 (11)

T wave area:We approximated it by implementing the trapezoidal rule
through the samples of the T wave (v[n]) (Equation (12)).

t[n] = ∑
M

k=1

(v[nk−1] + v[nk])
2

Δnk , Δnk = nk − nk−1
M

(12)

T wave amplitude:We obtained it by locating themaximumorminimum
amplitude of the T wave (v[n]) in the time domain (Equation (13)).

w[n] =
min

n0 ≤ n ≤ nM
(v[n]), v[n] ≤ 0

max
n0 ≤ n ≤ nM

(v[n]), v[n] > 0
⎧⎪⎨⎪⎩ (13)

Supervised classification technique using artificial
neural networks

In the literature, ANN is the most preferred machine learning method
for the diagnosis or classification of various CVDs by detecting anoma-
lies in ECG data [10, 25, 37, 45, 46, 48, 49]. This preference can be
attributed to the various advantages of ANN, including its strong ability
to learn and model non-linear complex relationships between the input
and output, its robustness to noise, its ability to handle missing or

insufficient data, its generalization capability, its remarkable scalability,
its ability to perform parallel processing, and its high speed. Addition-
ally, various types of ANNs can be customized to create tailored solu-
tions that address specific tasks required by physicians, which
significantly contributes to their superior performance in the detection
of CVDs.

Therefore, in this study, we developed a supervised learning
method based on ANN that performs simultaneous and robust detec-
tion of anomalies in the 12-lead CSNA and ECG data to realize fast,
early, and accurate diagnosis of CADs. Firstly, we normalized the
12-lead normal and abnormal CSNA and ECG features using the min-
max normalization method to scale the features of different classes in
the same range and to ensure that the developed ANN classifier assigns
equal importance to data belonging to the two classes (i.e., normal and
abnormal). Hence, by bringing all input variables within a standard-
ized range, our aim was to avoid any bias that may arise due to dif-
ferences in the scales of the features and to guarantee that the ANN
classifier can accurately learn from the data, thereby assuring fairness
in the classification process.

In order to evaluate the performance of the developed ANN
classifier on previously unseen data, we independently and randomly
split the whole data in the STAFF III and PTBD databases into non-
intersecting training and test sets using the 10-fold cross-validation
method, as shown in Tables 7 and 8. Therefore, we randomly partitioned
the entire data in each database into 10 equal-sized subsets, where one
of these subsets formed the test set that was exclusively used to assess
the generalization performance of theANN classifier.We aggregated the
remaining subsets to form the training set, which was used to train the
ANN classifier and optimize its (hyper)parameters. The test set
remained unexposed during the training of the ANN to ensure an un-
biased estimate of the classifier’s performance on previously unseen
data.

Additionally, we further independently and randomly divided
the training sets in the STAFF III and PTBD databases into the training

Table : The numbers of the recordings in the training, validation and
test sets for the STAFF III database.

Diagnostic Classes Training Set Validation Set Test Set Total

Pre-inflation (Normal)    ,
Inflation (Abnormal)    ,
Total ,   ,

The numerical variables are presented as the total number of recordings
including all -leads.

Table : The numbers of the recordings in the training, validation and
test sets for the PTBD database.

Diagnostic Classes Training
Set

Validation
Set

Test
Set

Total

Healthy Controls (Normal)    ,
Myocardial Infarction
(Abnormal)

   ,

Total ,   ,

The numerical variables are presented as the total number of recordings
including all -leads.
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(75 %) and validation (25 %) subsets, as shown in Tables 7 and 8, using
the holdout cross-validation method to prevent the ANN classifier
from over-fitting to the training sets and ensure better generalization.
To guarantee robustness, we repeated this process 10 times for each
cross-validation fold, resulting in 10 independent and non-
intersecting training, validation, and test subsets that were
randomly constituted. Each pattern was used in the test set exactly
once in each cross-validation fold to maintain fairness. By taking the
average of the statistical performance results calculated across 10
different cross-validation folds, a single estimation that represents the
binary classification performance of the optimum ANN classifier for
each of the training, validation, and test subsets was independently
produced for the STAFF III and PTBD databases. The absence of class
imbalance between the two classes in the training and validation sets
of both databases prevented bias and over-fitting during training, and
allowed the ANN classifier to generalize very well on previously un-
seen data.

The feed-forward ANN classifier architecture consists of three
layers, which are an input layer with seven neurons, a hidden layer, and
an output layer with two neurons. The number of neurons in the input
layer is equal to the total number of CSNA and ECG features. In order to
empirically determine the optimum number of hidden layers, various
multilayer perceptrons (MLPs) with single and multiple hidden layers
were developed. The experimental results showed that MLP with a
single hidden layer exhibited better performance and shorter training
time. Moreover, we determined the optimum number of neurons and
the ideal activation function in the hidden layer using the grid search
method. For this purpose, we developed various MLPs with varying
numbers of hidden neurons and different activation functions,
including linear, sigmoid (logistic), binary step, hyperbolic tangent, and
Gaussian. The experimental results indicated that MLPs with 24 and 26
hidden neurons provided the best classification performances on the
STAFF III and PTBD databases, respectively. Furthermore, the activation
function in the hidden and output layers that provided the highest
classification performances onboth databaseswas the sigmoid (logistic),
which was also the most commonly preferred activation function in the
literature for binary classification tasks due to its good generalizability
[10, 37, 45, 48]. Consequently, the output of the optimum ANN classifier
demonstrates a patient’s probability of belonging to one of the two
classes (CAD and non-CAD).

The training of the ANN classifier consisted of the feed-forward and
back-propagation training parts, which is one of the most commonly
used training algorithms for supervised learning [25, 37, 48, 49]. We
initially assigned the weights of the ANN classifier arbitrarily using
small random and normally distributed numbers. In the course of
training, the ANN classifier was exposed to the training set for a pre-
defined number of feed-forward and back-propagation iterations to
perform the learning task. During the feed-forward phase, the output of
the ANN classifier was calculated for each sample. During the back-
propagation phase, the ANN classifier utilized the error in the output to
correct its future calculations, aiming to converge towards the desired
output. Hence, during back-propagation training, the weights were
gradually adjusted to optimize the overall computation carried out by
the ANN classifier and minimize the difference between the actual and
predicted outputs of the classifier. This difference is commonly referred
to as the cost function (E ) expressed in Equation 14, whereM represents
the number of samples in the training set, oi denotes the output vector of
the ANN classifier, and di corresponds to the target vector for each
training pair i.

E = 1
M

∑
M

i=1
‖di − oi‖2 (14)

The back-propagation algorithm is a gradient-descent method
used to minimize the mean squared error E, where w in Equation (16)
represents the weight vector between the layers, and η in Equation (15)
denotes the learning rate of the ANN classifier, which was optimized as
10−3.

Δwi = −η ∂E
∂wi

, 0 < η < 1 (15)

w(i+1) = wi − η
∂E
∂wi

(16)

We periodically evaluated the training length of the ANN classifier
using the early stopping regularization method to optimize its perfor-
mance and prevent over-fitting to the training set due to over-training.
Hence, after every predefined number of feed-forward and back-
propagation iterations, the current weights were saved, and the per-
formance of the ANN classifierwas assessed on the validation set, which
represents an estimate of its generalizability on previously unseen data.
The training of the ANN classifier was terminated when the mean
squared error (MSE) on the validation set was minimized. Thus, by
stopping the training early, we avoided the risk of over-optimizing the
parameters of the ANN classifier for the training set.

Therefore, we determined the optimum configuration of the ANN
classifierwith the ideal combination of (hyper)parameters that provides
the best classification performance on the independent validation set
using the early stopping regularization method. Finally, we evaluated
the binary classification performance and generalizability of the opti-
mum ANN classifier on previously unseen data by testing the classifier
on the independent test set. We conducted the experiments using a
computer equipped with an IntelR CoreTM i7 processor, 16 GB RAM, CPU
at 3.60 GHz, and NVIDIA GeForce RTX 2070 GPU. We prepared the soft-
ware that processes and analyzes the data using MATLAB (R2021)
(MathWorks, USA).

Unsupervised clustering technique using Gaussian
mixture models and Neyman-Pearson criterion

In order to developamethod that canbeused in caseswhere theabnormal
CSNA and ECG data are missing, we propose an unsupervised learning
method based on GMM and Neyman-Pearson criterion that performs
simultaneous and robust detection of anomalies in the 12-lead normal
CSNA and ECG data to realize fast, early, and accurate diagnosis of CADs.

In the literature, GMM has been widely employed as an unsuper-
vised machine learning method for the diagnosis and classification of
various CVDs [6, 23, 53, 101–106]. This can be attributed to the numerous
advantages of GMM, including its efficiency in clustering and model
fitting, its ability to model and estimate a wide range of probability
distributions, its capability to effectively handle missing or insufficient
data, and its robustness to outliers in the data. Moreover, GMM is a
generative method that is capable of generating new synthetic data
samples that resemble the original dataset, which can be beneficial for
data augmentation tasks. It can also be utilized to identify outliers in the
data by assigning low probabilities to data points that do not fit the
estimated mixture model, making it very useful in anomaly detection
tasks. Furthermore, it provides interpretable parameters for the
Gaussian components, which can offer insights into the underlying
distribution of the data.
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In this study, we performed the optimization of the Gauss pa-
rameters (ϒ) using the Expectation-Maximization (EM) algorithm to
maximize the probability density function (PDF) of the mixture,
which is mathematically formulated as a weighted sum of K Gaussian
density components, as shown in Equation (18). Here, x represents
the D-dimensional feature vector, πk denotes the mixture coefficients
(weights of the Gaussian components), μk corresponds to the mean
vector, and Σk represents the covariance matrix. The density of each
component was mathematically described by the multivariate
Gaussian distribution, which is a widely employed statistical model
for characterizing data distributions (Equation (17)) [6, 23, 53,
101–106].

N(x | μk , Σk) = 1

(2π)D2 |Σk |12
exp −1

2
(x − μk)T Σ−1

k (x − μk){ } (17)

g(x |ϒ) = ∑
K

k=1
πk N(x | μk , Σk) (18)

The probability density function (PDF) of theGaussianmixturewas
parameterized using the Gauss parameters (ϒ) in Equation (19), which
consists of themixture coefficients, themean vector, and the covariance
matrix of each component.

The mixture coefficients satisfied the conditions outlined in
Equation (20) to assure that the total probability distribution was
normalized. This guaranteed that the sum of the mixture coefficients
equals one, thereby ensuring that the resulting probability distribution
represents a valid PDF.

ϒ = (πk , μk , Σk), k = 1, .,K . (19)

∑
K

k=1
πk = 1, 0 ≤ πk ≤ 1 (20)

We normalized the 12-lead normal CSNA and ECG features using
the min-max normalization method to scale the features of different
data types in the same range and to ensure that the developed unsu-
pervised clustering technique assigns equal importance to different data
types (i.e., CSNA and ECG data). Hence, by bringing all input variables
within a standardized range, our aim was to avoid any bias that may
arise due to differences in the scales of the features and to guarantee
that the unsupervised clustering technique can accurately learn from
the data, thereby assuring fairness in the clustering process.

We independently and randomly divided the whole data in the
STAFF III and PTBD databases into non-intersecting training and test
sets using the 10-fold cross-validation method to evaluate the perfor-
mance of the unsupervised clustering technique on previously unseen
data, as shown in Tables 9 and 10. Each pattern was used in the test set
exactly once in each cross-validation fold to maintain fairness. The test
set remained unexposed during the training of the GMM to ensure an
unbiased estimate of the technique’s performance on previously unseen
data.

Moreover, we further independently and randomly divided the
training sets in the STAFF III and PTBD databases into the training (75 %)
and validation (25 %) subsets, as shown in Tables 9 and 10, using the
holdout cross-validation method to prevent the GMM from over-fitting
to the training sets and ensure better generalization. To assure robust
performance evaluation, we averaged the statistical performance re-
sults calculated across 10 different cross-validation folds to obtain a
single estimation that represents the clustering performance of the
optimum GMM for each of the training, validation, and test subsets in
the STAFF III and PTBD databases independently.

We estimated the optimum parameters of the Gaussian compo-
nents (ϒ) using the Expectation-Maximization (EM) algorithm, which is
an efficient iterative method for finding the maximum likelihood esti-
mation (MLE) of the parameters in statistical models [6, 23, 53, 101–106].
Subsequently, we robustly estimated the joint PDF of the normal CSNA
and ECG features by fitting the optimum GMM with the ideal (hyper)
parameters, which was optimized to improve the performance of the
joint PDF estimation.

Furthermore, we developed a Neyman-Pearson type approach to
perform the robust detection of outliers associated with CADs [97, 107].
The Neyman-Pearson decision strategy is based on the concept of sta-
tistical hypothesis testing, which includes two competing hypotheses
that are the null hypothesis (H0) and the alternative hypothesis (H1).
It provides an optimal solution to hypothesis testing when making
decisions based on limited data while effectively controlling the false-
positive and false-negative rates. The objective is to determine which
hypothesis is more likely based on the observed data.

We partitioned the 12-lead normal CSNA and ECG features into N
equal-length segments, denoted as X={x1, … , xN}. Each segment was
assumed to be independent and identically distributed (i.i.d.), meaning
that each segment has the same probability distribution, and all
segments are statistically mutually independent. We implemented the
Neyman-Pearson decision strategy by calculating the average log-
likelihood value of the segments (P(X | H0)), as shown in Equation (22),
where N represents the total number of segments. Subsequently, we
compared these average log-likelihood values with different discrimi-
nation thresholds (Γ), as shown in the decision rule in Equation (23),
where H1 represents the outliers that correspond to CADs. The decision
rule in Equation (23) states that if the average log-likelihood value ex-
ceeds the discrimination threshold, the null hypothesis (H0) was rejected
in favor of the alternative hypothesis (H1).

H0 : X ∈ C0, H1 : X ∉ C0 (21)

P(X |H0) = 1
N

log g(X |ϒ) = 1
N

∑
N

i=1
log g(xi |ϒ) (22)

Θ(X) = H0, P(X |H0) ≤ Γ
H1, P(X |H0) > Γ{ (23)

Table : The numbers of the recordings in the training, validation and
test sets for the STAFF III database.

Diagnostic Class Training Set Validation Set Test Set Total

Pre-inflation (Normal)    ,

The numerical variables are presented as the total number of recordings
including all -leads.

Table : The numbers of the recordings in the training, validation and
test sets for the PTBD database.

Diagnostic Class Training Set Validation Set Test Set Total

Healthy Controls
(Normal)

   ,

The numerical variables are presented as the total number of recordings
including all -leads.
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Experimental results and
comparative analysis

In this section, we explain and interpret the results of the
experiments conducted to evaluate the performance and
generalizability of the proposed automated AIHAD tech-
nique on the STAFF III and PTBD databases. For this purpose,
we computed the confusion matrices to calculate all of the
statistical performance evaluation metrics, such as sensi-
tivity (TPR) (Eq. (24)), specificity (TNR) (Eq. (25)), positive
predictive value (PPV) (Eq. (26)), negative predictive value
(NPV) (Eq. (27)), F1-score (F1) (Eq. (28)), and accuracy (ACC)
(Eq. (29)). Here, TP, FN, FP, and TN indicate the numbers of
the true-positives, false-negatives, false-positives, and true-
negatives, respectively.

TPR (%) = TP
TP + FN * 100 (24)

TNR (%) = TN
TN + FP *

100 (25)

PPV (%) = TP
TP + FP *

100 (26)

NPV (%) = TN
TN + FN * 100 (27)

F1 (%) = 2
PPV x TPR
PPV+ TPR * 100 (28)

ACC (%) = TP + TN
TP + TN + FP + FN * 100 (29)

The performance results of the automated
artificial intelligence based hybrid anomaly
detection technique on the STAFF III
database

As a result of the implementation of the developed enhanced
signal processing technique on the 12-lead wideband raw
recordings in the STAFF III database, we simultaneously
detected the 12-lead ECG and CSNA signals of all patients.
Figures 2 and 3 demonstrate a single lead pre-inflation
(normal), inflation (abnormal), and post-inflation CSNA and
ECG signals of a patient in the STAFF III database,
respectively.

Figure 2: A single lead pre-inflation (normal), inflation (abnormal), and post-inflation CSNA signals of a patient in the STAFF III database that were
acquired before, during, and after PCI, respectively. The cardiologists annotated the CBI and CBD times, which are illustrated with red lines at the 182nd
second and 280th second, respectively. The inflation (abnormal) CSNA increases shortly after the onset of PCI and decreases after the termination of PCI.
Moreover, there is very little difference in the baseline amplitudes of the pre-inflation and post-inflation CSNA signals. This may be due to the fact that
these two signalswere acquired in different environments with different noise levels, where the former and latter were acquired in the preoperative room
and postoperative recovery room of the medical center, respectively.
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We considered the pre-inflation (normal) CSNA and ECG
signals of each patient as a reference to accurately detect
anomalies in the inflation (abnormal) CSNA and ECG signals
for the reliable diagnosis of ISC, which is a type of CAD [2–5,
15, 57]. The experimental results on the STAFF III database
revealed that there is an increase in the amplitude of the
inflation (abnormal) CSNA signals during artificially induced
ISC caused by coronary artery occlusion during PCI, which
indicates that there is a significant association between
CSNA and ISC, as illustrated in Figure 2. This association
offers novel perspectives into the relationship between
electrical and physiological changes within the cardiac sys-
tem during ISC, thereby fostering a profound comprehen-
sion of the underlying pathological mechanisms [13].

Moreover, the findings of the study demonstrated that
the increase in the amplitude of the inflation (abnormal)
CSNA signals during artificially induced ISC was accompa-
nied by simultaneous elevation or depression in the ST
segment, and polarity or amplitude changes in the T wave of
ECG signals, as presented in Figure 3. Therefore, the results
suggested that there is a correlation between the increase in
the amplitude of CSNA signals and the anomalies in ECG
signals during ISC.

Furthermore, the comparison between the inflation
(abnormal) and post-inflation signals revealed that the

increase in the amplitude of CSNA signals and the anomalies
in the ECG signals almost disappeared within several sec-
onds after PCI was terminated (Figures 2 and 3).

Exceptionally, a few patients in the STAFF III database
did not demonstrate any anomalies in their inflation
(abnormal) CSNA and ECG signals acquired during coronary
artery occlusion due to PCI, as depicted in Figure 4. This may
be attributed to the relatively shorter duration of PCI or the
comparatively small size of the coronary artery in which PCI
was performed, which may not have been sufficient to
induce ISC in some patients.

For the development of the proposed supervised clas-
sification technique, we utilized the 12-lead pre-inflation
(normal) and inflation (abnormal) CSNA and ECG data.
Moreover, we used only the 12-lead pre-inflation (normal)
CSNA and ECG data for the development of the proposed
unsupervised clustering technique. The mainmotivation for
developing the unsupervised clustering technique with the
Neyman-Pearson criterion that can work using only the pre-
inflation (normal) data was to construct a method that can
successfully diagnose ISC even in cases where the inflation
(abnormal) data are missing.

Table 11 presents the confusion matrix of the hybrid
GMM-based clustering technique on the test set of the STAFF
III database, which reveals its strong ability to distinguish

Figure 3: A single lead pre-inflation (normal), inflation (abnormal), and post-inflation ECG signals of the same patient in the STAFF III database that were
acquired before, during, and after PCI, respectively. There is an elevation in the ST segment and an increase in the amplitude of the T wave of the inflation
(abnormal) ECG signal, which are very common symptomsof ISC. Hence, the anomalies in the ECG signal that occurred during artificially induced ISCwere
accompanied by the simultaneous increase in the amplitude of CSNA signal.
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between patients with and without ISC (i.e., CAD). Out of a
total of 132 CAD (abnormal) recordings in the test set, the
proposed technique correctly classified 121 recordings, while
misclassifying only 11 recordings as non-CAD (normal).
Furthermore, out of a total of 132 non-CAD (normal) re-
cordings in the test set, the proposed technique accurately
classified 118 recordings, while misclassifying only 14 re-
cordings as CAD (abnormal).

Table 12 shows the confusion matrix of the hybrid
ANN-based classification technique on the test set of the
STAFF III database, which reveals its strong ability in
distinguishing between patients with and without CAD. Out
of a total of 132 CAD (abnormal) recordings in the test set, the

proposed technique correctly classified 127 recordings, while
misclassifying only 5 recordings as non-CAD (normal).
Additionally, out of a total of 132 non-CAD (normal)
recordings in the test set, the proposed technique accurately
classified 123 recordings, while misclassifying only 9
recordings as CAD (abnormal).

Table 13 demonstrates the statistical performance
results of the optimumGMM-based clustering technique and
the optimum ANN-based classification technique on the test
set of the STAFF III database. The performance results of the
developed techniques that separately utilized either only
12-lead CSNA data or only 12-lead ECG data are indicated
by the notations GMMCSNA, ANNCSNA or GMMECG, ANNECG,

Figure 4: A single lead pre-inflation (normal), inflation (abnormal), and post-inflation CSNA signals of a different patient in the STAFF III database that
were acquired before, during, and after PCI, respectively. The cardiologists annotated the CBI and CBD times, which are illustrated with red lines at the
53rd second and 74th second, respectively.

Table : The confusion matrix of the hybrid GMM-based clustering
technique on the test set of the STAFF III database for CAD diagnosis.

Technique Confusion Matrix

GMMHYB

True Label

CAD NON-CAD

Predicted
Label

CAD True-Positive
(TP)=

False-Positive
(FP)=

NON-CAD False-Negative
(FN) = 

True-Negative
(TN) = 

CAD: Coronary Artery Disease; NON-CAD: Not Coronary Artery Disease.

Table : The confusion matrix of the hybrid ANN-based classification
technique on the test set of the STAFF III database for CAD diagnosis

Technique Confusion Matrix

ANNHYB

True Label

CAD NON-CAD

Predicted
Label

CAD True-Positive
(TP)=

False-Positive
(FP)=

NON-CAD False-Negative
(FN)=

True-Negative
(TN)=

CAD: Coronary Artery Disease; NON-CAD: Not Coronary Artery Disease.
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respectively. Similarly, the performance results of the
hybrid techniques that jointly and simultaneously utilized
the 12-lead CSNA and ECG data are represented by the
notations GMMHYB and ANNHYB.

The experimental results on the STAFF III database
revealed that the proposed ANN-based classification tech-
nique has a relatively higher performance for the diagnosis
of ISC compared to the GMM-based clustering technique for
both separate and joint use of the 12-lead CSNA and ECG data.
This can be explained by the fact that the ANN-based clas-
sification technique utilizes both the pre-inflation (normal)
and inflation (abnormal) data, while the GMM-based clus-
tering technique exclusively utilizes the pre-inflation
(normal) data to detect the anomalies in CSNA and/or ECG
data.

Moreover, the comparison between the performance
results of all developed techniques indicated that the hybrid
ANN based classification technique (ANNHYB), which jointly
and simultaneously used CSNA and ECG data, achieved
significantly higher performance compared to the other
techniques that separately used either only CSNA data or
only ECG data. Therefore, by taking advantage of the
diversity in different data types, the proposed hybrid
ANN-based classification technique (ANNHYB) significantly
increased the detection performance of ISC. Hence, it can
be highly beneficial and useful by providing improved
diagnosis, especially for asymptomatic CAD patients with
AISC, for whom the diagnostic information provided by ECG
alone is not sufficient to reliably diagnose the disease.

Furthermore, the previous studies reported that the
sensitivity (TPR) and specificity (TNR) of the gold standard
diagnostic test ECG in the diagnosis of ISC were approxi-
mately 76 % and 88 %, respectively [2–5, 15, 57]. In this study,
the results obtained on the STAFF III database showed that
the proposed hybrid ANN-based classification technique
(ANNHYB), which jointly and simultaneously uses CSNA and
ECG data, exhibits superior sensitivity (TPR) and specificity
(TNR) compared to the gold standard diagnostic test ECG in

the diagnosis of ISC (Table 13). For these reasons, the hybrid
ANN-based classification technique (ANNHYB) was selected
as the classification method in the proposed automated
AIHAD technique.

Additionally, among the unsupervised machine
learning methods developed using only the pre-inflation
(normal) data, the hybrid GMM-based clustering technique
(GMMHYB), which jointly and simultaneously uses CSNA and
ECG data, achieved the best performance. Therefore, it was
selected as the clusteringmethod in the proposed automated
AIHAD technique.

The performance results of the automated
artificial intelligence based hybrid anomaly
detection technique on the PTBD database

As a result of the implementation of the developed enhanced
signal processing technique on the 12-lead wideband raw
recordings in the PTBD database, we simultaneously detec-
ted the 12-lead ECG and CSNA signals of all healthy controls
and MI patients. Figures 5 and 6 demonstrate a single lead
normal and abnormal CSNA and ECG signals of a healthy
control and MI patient in the PTBD database, respectively
(Figure 4). The experimental results on the PTBD database
revealed that there is an increase in the amplitude of the
abnormal CSNA signals during MI, which indicates that
there is a significant association between CSNA and MI,
as illustrated in Figure 5. This association provides novel
insights into the relationship between electrical and physi-
ological changes within the cardiac system during MI,
thereby facilitating a deeper understanding of the underly-
ing pathological mechanisms [13].

Moreover, the findings of the study indicated that the
increase in the amplitude of the abnormal CSNA signals
during MI was accompanied by simultaneous elevation or
depression in the ST segment, and polarity or amplitude
changes in the QRS complex, and the T wave of ECG signals,

Table : The statistical performance results (%) of the optimumGMM-based clustering technique and optimum ANN-based classification technique on
the test set of the STAFF III database for CAD diagnosis.

Performance Measures -Lead CSNA Features -Lead ECG Features -Lead CSNA and ECG
Features

GMMCSNA ANNCSNA GMMECG ANNECG GMMHYB ANNHYB

ACC . . . . . .
TPR . . . . . .
TNR . . . . . .
PPV . . . . . .
NPV . . . . . .
F . . . . . .

The best results are written with bold characters.
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Figure 5: A single lead normal and abnormal CSNA signals of a healthy control and MI patient in the PTBD database, respectively. The cardiologists
annotated the onset and end times of MI, which are illustrated with red lines at the 267th second and 300th second, respectively. The abnormal CSNA
increases shortly after the onset of MI and decreases after the termination of MI.

Figure 6: A single lead normal and abnormal ECG signals of the same healthy control and MI patient in the PTBD database, respectively. There is an
elevation in the ST segment and a decrease in the amplitude of the QRS complex, and T wave of the abnormal ECG signal, which are very common
symptoms ofMI. Hence, the anomalies in the ECG signal that occurred duringMI were accompanied by the simultaneous increase in the amplitude of the
CSNA signal.
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as illustrated in Figure 6. Therefore, the results suggested
that there is a correlation between the increase in the
amplitude of CSNA signals and the anomalies in ECG signals
during MI. Thus, the investigations conducted on the STAFF
III and PTBDdatabases showed that CSNA canbe utilized as a
new biomarker in the diagnosis and classification of ISC and
MI, both of which are types of CADs.

For the development of the proposed supervised clas-
sification technique, we utilized the 12-lead normal CSNA
and ECG data of the healthy controls, and the 12-lead
abnormal CSNA and ECG data of the MI patients. Moreover,
we utilized only the 12-lead normal CSNA and ECG data of the
healthy controls for the development of the proposed un-
supervised clustering technique. The main motivation for
developing the unsupervised clustering technique with the
Neyman-Pearson criterion that can work using only the
normal data was to construct a method that can successfully
diagnose MI even in cases where the abnormal data are
missing.

Table 14 presents the confusion matrix of the hybrid
GMM-based clustering technique on the test set of the PTBD
database, which reveals its strong ability to discriminate
between patients with and without MI (i.e., CAD). Out of a
total of 132 CAD (abnormal) recordings of MI patients in the
test set, the proposed technique correctly classified 125 re-
cordings, while misclassifying only 7 recordings as non-CAD
(normal). Furthermore, out of a total of 132 non-CAD
(normal) recordings of the healthy controls in the test set,
the proposed technique accurately classified 124 recordings,
while misclassifying only 8 recordings as CAD (abnormal).

Table 15 presents the confusion matrix of the hybrid
ANN-based classification technique on the test set of the
PTBD database, which reveals its strong ability to effectively
discriminate between patients with and without CAD. Out of
a total of 132 CAD (abnormal) recordings ofMI patients in the
test set, the proposed technique correctly classified 130 re-
cordings, while misclassifying only 2 recordings as non-CAD
(normal). Additionally, out of a total of 132 non-CAD (normal)

recordings of the healthy controls in the test set, the pro-
posed technique accurately classified 129 recordings, while
misclassifying only 3 recordings as CAD (abnormal).

Table 16 demonstrates the statistical performance re-
sults of the optimum GMM-based clustering technique and
the optimum ANN-based classification technique on the test
set of the PTBD database. The performance results of the
developed techniques that separately utilized either only
12-lead CSNA data or only 12-lead ECG data are indicated
by the notations GMMCSNA, ANNCSNA or GMMECG, ANNECG,
respectively. Similarly, the performance results of the
hybrid techniques that jointly and simultaneously utilized
the 12-lead CSNA and ECG data are represented by the no-
tations GMMHYB and ANNHYB.

The experimental results on the PTBDdatabase revealed
that the proposed ANN-based classification technique has a
relatively higher performance for the diagnosis of MI
compared to the GMM-based clustering technique for both
separate and joint use of the 12-lead CSNA and ECG data. This
can be explained by the fact that the ANN-based classifica-
tion technique utilizes both the normal data of the healthy
controls and the abnormal data of MI patients to detect
the anomalies in CSNA and/or ECG data. On the other hand,
the GMM-based clustering technique exclusively utilizes the
normal data of the healthy controls to effectively detect the
anomalies in CSNA and/or ECG data.

Moreover, the comparison between the performance
results of all developed techniques indicated that the hybrid
ANN based classification technique (ANNHYB), which jointly
and simultaneously used CSNA and ECG data, achieved
significantly higher performance compared to the other
techniques that separately used either only CSNA data or
only ECG data. Therefore, by taking advantage of the
diversity in different data types, the proposed hybrid
ANN-based classification technique (ANNHYB) significantly
increased the detection performance of MI. Thus, the find-
ings of this study indicated that CSNA can serve as an addi-
tional diagnostic feature to ECG for considerably increasing

Table : The confusion matrix of the hybrid GMM-based clustering
technique on the test set of the PTBD database for CAD diagnosis.

Technique Confusion Matrix

GMMHYB

True Label

CAD NON-CAD

Predicted
Label

CAD True-Positive
(TP)=

False-Positive
(FP)=

NON-CAD False-Negative
(FN)=

True-Negative
(TN)=

CAD: Coronary Artery Disease; NON-CAD: Not Coronary Artery Disease.

Table : The confusion matrix of the hybrid ANN-based classification
technique on the test set of the PTBD database for CAD diagnosis.

Technique Confusion Matrix

ANNHYB

True Label

CAD NON-CAD

Predicted
Label

CAD True-Positive
(TP)=

False-Positive
(FP)=

NON-CAD False-Negative
(FN)=

True-Negative
(TN)=

CAD: Coronary Artery Disease; NON-CAD: Not Coronary Artery Disease.
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the detection performance of CADs (i.e., MI, ISC, AISC) and
decreasing the number of false-negatives, which can lead to
reduced mortality and morbidity rates.

Furthermore, the previous studies reported that the
sensitivity (TPR) and specificity (TNR) of the gold standard
diagnostic test ECG in the diagnosis of MI were approxi-
mately 84 % and 91 %, respectively [1, 9, 28, 53, 81, 83]. In this
study, the results obtained on the PTBD database showed
that the proposed hybrid ANN-based classification technique
(ANNHYB), which jointly and simultaneously uses CSNA and
ECG data, exhibits superior sensitivity (TPR) and specificity
(TNR) compared to the gold standard diagnostic test ECG in
the diagnosis of MI (Table 16). For these reasons, the hybrid
ANN-based classification technique (ANNHYB) was selected
as the classification method in the proposed automated
AIHAD technique.

Additionally, among the unsupervised machine
learning methods developed using only the normal data
of healthy controls, the hybrid GMM-based clustering tech-
nique (GMMHYB), which jointly and simultaneously uses
CSNA and ECG data, achieved the best performance. There-
fore, it was selected as the clusteringmethod in the proposed
automated AIHAD technique.

Consequently, the results we obtained on the PTBD
database using the proposed automated AIHAD technique
strongly supported our previous results on the STAFF III
database. In addition, the consistently high performance
results of the automated AIHAD technique on two different
databases that contain different and diverse patients with
CADs indicate that the technique is quite robust and
generalizable.

Moreover, the performance of the automated AIHAD
technique on the PTBD database is relatively higher
compared to its performance on the STAFF III database.
There are several reasons that may have contributed to this
outcome. It is important to consider the characteristics of the
two databases to justify the differences in the AIHAD

technique’s performance on these two databases. Firstly, the
ECG patterns obtained during PCI in the STAFF III database
may differ from those of patients in the PTBD database who
have suffered from MI. Specifically, the anomalies in ECG
signals of MI patients in the PTBD database were generally
more pronounced, distinct, and apparent compared to those
of ISC patients in the STAFF III database [27, 46, 72, 85, 86,
104]. Hence, the data in the STAFF III database are compar-
atively more difficult to classify than the data in the PTBD
database. Secondly, the two databases have different char-
acteristics in terms of the context in which the data was
collected. The inflation (abnormal) recordings in the STAFF
III database were acquired at the cardiac catheterization
laboratory (operation room); however, this was not the case
for the PTBD database. Moreover, the recordings in the
STAFF III database were acquired during PCI, which implies
that they were collected in real-time during an invasive
procedure in a clinical setting under specific conditions.
Factors such as interference from other medical equipment
in the operating room may have introduced noise and arti-
facts into the raw recordings in the STAFF III database.
Therefore, the quality of the raw recordings in the PTBD
database may be better than those in the STAFF III database.

Discussion

The accurate and timely diagnosis of CADs is crucial for
effective patient treatment and management. The visual
and manual interpretation of the 12-lead ECG signals by
cardiologists for diagnosing various CVDs is a complex and
time-consuming task that requires experienced physicians.
Moreover, misdiagnoses are very likely to occur during
visual inspection by physicians due to the small amplitudes
of ECG signals [9, 12, 19, 27, 32, 44, 48, 70, 79, 104, 108].
Therefore, there is a great need for computer-aidedmachine
learning methods that accurately perform automated

Table : The statistical performance results (%) of the optimumGMM-based clustering technique and optimum ANN-based classification technique on
the test set of the PTBD database for CAD diagnosis.

Performance Measures -Lead CSNA Features -Lead ECG Features -Lead CSNA and ECG
Features

GMMCSNA ANNCSNA GMMECG ANNECG GMMHYB ANNHYB

ACC . . . . . .
TPR . . . . . .
TNR . . . . . .
PPV . . . . . .
NPV . . . . . .
F . . . . . .

The best results are written with bold characters.
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detection of CVDs to reduce the number of misdiagnoses by
human experts and decrease the workload of physicians in
daily clinical practice.

In patients with CADs, significant anomalies in the ST
segment, QRS complex, and T wave of ECG signals occur
during ISC andMI [2–6]. However, a considerable number of
CAD patients worldwide suffer fromAISC, inwhich there are
no anomalies in patients’ ECG signals. Hence, ECG alone is
limited in its ability to diagnose asymptomatic CAD patients
with AISC. Thus, an ECG signal without anomalies does not
exclude the possibility of CADs. This limitation makes AISC
more dangerous and fatal, as asymptomatic CAD patients
with AISCwho do not experience any symptoms are prone to
misinterpretation by cardiologists, leading to false-negative
results.

The significance of this innovative study lies in its pro-
posal of the first automated AI technique that consists of
various signal processing, feature extraction, supervised,
and unsupervised machine learning methods that jointly
and simultaneously analyze 12-lead CSNA and ECG data to
perform fast, early, and accurate diagnosis of CADs
(i.e., AISC, ISC, MI).

The proposed automated AIHAD technique was imple-
mented on two different publicly available databases to
ensure data heterogeneity, and diversify the results and
findings of the study. By using the automated AIHAD tech-
nique, we demonstrated for the first time that there are
anomalies in CSNA signals during CADs, which further
supports the well-established fact that there is a direct and
strong relationship between the SNS and CVDs [13–15].
Therefore, this study’s findings support those of previous
studies, which have shown that the SNS plays an important
role in regulating the cardiovascular system [13–15].

As discussed earlier, recent studies in the literature have
shown a significant association between CSNA and CARs
[14, 16]. However, our study is the first to demonstrate a
significant association between CSNA and CADs using the
proposed automated AIHAD technique, which fills the
research gap in the literature. This association offers new
perspectives on the connection between electrical and
physiological alterations in the cardiac system during CADs,
which in turn enhances comprehension of the underlying
pathological processes [13].

Moreover, the findings indicated that there is a corre-
lation between the increase in CSNA and the anomalies in
ECG signals during CADs. For these reasons, the findings of
recent studies [14, 16] and our study collectively suggested
that CSNA can be a new biomarker for the diagnosis and
classification of both CARs and CADs, respectively.

The performance results of the automated AIHAD
technique on the STAFF III and PTBD databases suggested

that the technique achieves highly accurate and reliable
diagnosis of CADs by simultaneously and robustly detecting
anomalies in the 12-lead CSNA and ECG data. Additionally, it
has been shown that the automated AIHAD technique
achieves superior performance compared to the gold stan-
dard diagnostic test ECG in the diagnosis of CADs. This
achievement signifies the potential of the automated AIHAD
technique to provide an efficient and reliable alternative to
the current diagnostic method for diagnosing CADs.

Moreover, the automated AIHAD technique out-
performed other AI techniques developed in this study,
which separately used either only CSNA data or only ECG
data. Therefore, by leveraging the strengths of different data
types, the AIHAD technique considerably improved the
detection performance of CADs. Hence, the study’s findings
indicate that CSNA can serve as an additional diagnostic
feature to ECG for considerably improving the performance
of CAD diagnosis and decreasing the number of false-nega-
tives, potentially leading to reducedmortality andmorbidity
rates.

The performance comparison between the proposed
automated AIHAD technique and previously proposed
machine learning approaches that used only ECG data to
diagnose or classify CADs is summarized in Table 17, which
presents all statistical performance evaluation metrics to
comprehensively evaluate the effectiveness of the AIHAD
technique.

Magrans et al. aimed to develop a non-linear SVMmodel
with a radial basis function (RBF) kernel to detect CAD [57].
The feature selection was done using a univariate statistical
test and an algorithm for sequentially selecting the most
important statistically significant variables. The grid search
method was used to optimize SVM parameters and generate
the final prediction model. Repeated 5-fold cross-validation
was used to estimate the generalization performance. The
model had a sensitivity of 83.3 %, specificity of 91.7 %, pre-
cision of 90.9 %, and negative predictive value (NPV) of
85.7 %.

Sadhukhan et al. proposed using the harmonic phase
distribution pattern of ECG data for MI identification [44].
The morphological and temporal changes of the ECG wave-
form caused by the presence of MI were reflected in the
phase distribution pattern of the Fourier harmonics. The
changes in the ECG waveform morphology were clearly
manifested as changes in the relative phases of the harmonic
components. Two discriminative features that reflect these
variations were identified for 3-lead ECG. The binary clas-
sification was performed using a threshold-based classifi-
cation rule and logistic regression. The model achieved an
accuracy of 95.6 %, sensitivity of 96.5 %, and specificity of
92.7 %. The algorithm was then implemented and validated
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on a commercially available microcontroller based Arduino
board. The firmware used the pretrained logistic regression
classifier. The model did not outperform all earlier reported
techniques, but it has computational simplicity of the fea-
tures, reduced feature dimension, and use of simple linear
classifiers. The drawback of this study is the use of only
3-lead ECG, which can limit the detection performance of
certain types of MI.

Tripathy et al. proposed an approach for the detection
of MI using multi-resolution analysis of 12-lead ECG signals
[41]. Baseline wander noise in ECG data was filtered out
using a high-pass filter. The filtered ECG data was segmented
using a rectangular window. The segmented ECG frames
were subjected to FBSE-based empirical wavelet transform
(FBSE-EWT) for the time-scale decomposition of the 12-lead
ECG signals. For each ECG lead, nine subband signals were
evaluated using FBSE-EWT to extract the statistical features.
The deep layer least-squares SVM (DL-LSSVM) classification
layer, which was formulated using the hidden layers of
sparse auto-encoders and the LSSVM, was used for the
detection of MI from the feature vector of 12-lead ECG. The
entropy features were shown to be more significant for
the detection of MI and exhibited higher performance us-
ing the proposed classifier compared to the kurtosis and
skewness features, which failed to capture the pathological
variations in the subband signals. The combination of
FBSE-EWT-based entropy features and DL-LSSVM had an

accuracy of 99.7 %, sensitivity of 99.8 %, and specificity of
99.6 %.

Dohare et al. proposed amethod for detecting CAD using
12-lead ECG data and analyzed each lead with the help of a
composite lead [8]. The min-max normalization method
was used to rescale the attributes. The raw signal was pre-
processed by a two stage median filter to remove baseline
drift using a sliding window. The composite lead was used to
detect ECG wave components and clinical wave intervals.
The complexes of the composite signal were enhanced using
the sixth power of the signal. The mean value of the
enhanced signal was used as the threshold to determine the
high peak of the QRS of the composite signal and individual
leads at a variable window size. The four clinical ECG
features were determined globally from the average beats
of the 12-lead ECGs. Peak-to-peak amplitude, area, mean,
standard deviation, skewness, and kurtosis were deter-
mined for the ECG features. The binary classification for the
detection of CAD was performed using a simple SVM classi-
fier with an RBF kernel. After implementing principal
component analysis (PCA) as a feature dimension reduction
method to reduce the number of features and computational
complexity, the sensitivity remained the same (96.6 %),
while the specificity (96.6 %), and accuracy (96.6 %) were
slightly reduced.

Ahmad et al. proposed two computationally efficient
multimodal fusion frameworks for MI detection, called

Table : The performance comparison between the proposed automated AIHAD technique and recent machine learning studies that used only ECG
data for CAD diagnosis or classification.

Study Technique Database TPR (%) TNR (%) PPV (%) F (%) ACC (%) NPV (%)

Magrans et al. [] SVM STAFF III database . . . – – .
Proposed method AIHAD STAFF III database . . . . . .
Sadhukhan et al. [] Logistic regression PTBD database . . – – . –

Tripathy et al. [] LS-SVM PTBD database . . – – . –

Dohare et al. [] SVM PTBD database . . – – . –

Ahmad et al. [] SVM PTBD database  –  – . –

Acharya et al. [] KNN PTBD database . . – – . –

Sharma et al. [] KNN PTBD database . . . –  –

Jothiramalingam et al. [] KNN PTBD database . . – – . –

Sraitih et al. [] Random forest PTBD database  –  –  –

Agrawal et al. [] Decision tree PTBD database – . – – . –

Liu et al. [] Random tree PTBD database .  – – . –

Chang et al. [] GMM PTBD database . . – – . –

Proposed method AIHAD PTBD database . . . . . .
Al-Zaiti et al. [] GBM Self-collected ECG data    – – 

Daraei et al. [] J (C.) Self-collected ECG data . – –  . –

Sun et al. [] SVM, BT Self-collected ECG data . . – – . –

Bashir et al. [] Naive Bayes, SVM, Decision
tree

UCI machine learning
repository

. . – . . –

Ramasamy et al. [] KNN MIT-BIH database . . – – . –

Exarchos et al. [] Association rule mining European ST-T database   – – – –
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Multimodal Image Fusion (MIF) and Multimodal Feature
Fusion (MFF) [56]. At the input of these frameworks, they
converted the raw ECG data into three types of two-
dimensional (2D) images using three different statistical
methods, which are Gramian Angular Field (GAF), Recur-
rence Plot (RP), and Markov Transition Field (MTF). In MIF,
they performed image fusion by combining three grayscale
input images (GAF, RP, MTF) to create a three-channel
colored single image that served as input to the CNN. They
used AlexNet CNN and the softmax classifier for feature
extraction and classification tasks, respectively. The limita-
tion of the MIF framework was that it required exactly three
different statistical grayscale images to create a three-
channel compound image. In MFF, they transformed ECG
heartbeats into GAF, RP, andMTF images. They extracted the
features from the penultimate layer of AlexNet CNN, which
consisted of three convolutional layers, two pooling layers,
and one fully connected layer. By using a Gated Fusion
Network (GFN), they fused these extracted features, which
were finally used to train an SVM classifier. MFF yielded
higher performance compared to MIF. The limitation of the
MFF framework was that it required using three separate
AlexNet CNNs for training on the GAF, RP, and MTF images,
which necessitated more time for training and inference.
The SVM classifier performed better than the softmax clas-
sifier. They achieved a classification accuracy of 98.4 %,
sensitivity of 94 %, and precision of 98 %. They concluded
that the multimodal fusion of the modalities increased the
performance of the machine learning task compared to us-
ing the modalities individually. The disadvantage of this
study is the use of only one-lead ECG, which can limit the
detection performance of certain types of MI.

Acharya et al. introduced a method for the automated
detection and localization of MI [29]. Firstly, ECG signals
were pre-processed to eliminate noise and baseline wander
using a wavelet basis function. Using the Pan–Tompkins
algorithm, the pre-processed ECG signals were segmented
and subjected to discrete wavelet transform (DWT) up to
four levels of decomposition. Thus, a total of eight DWT co-
efficients were obtained and twelve nonlinear features were
extracted from these coefficients. Feature ranking methods,
such as Student’s t-test and ANOVA, were used to rank the
extracted features according to their significance. The
selected significant features were used for binary andmulti-
class classification using a KNN classifier for the detection
and localization of MI, respectively. The ranked features
were fed into the KNN classifier one by one to find the
minimum number of features necessary for obtaining the
highest classification performance. The classifier exhibited
an average accuracy of 98.8 %, sensitivity of 99.4 %, and
specificity of 96.2 % for MI detection. They claimed that the

method can be used as an automated diagnostic tool for the
detection of MI using 12-lead ECG and the localization of MI
using one-lead ECG.

Sharma et al. presented a technique for the detection
and localization of MI using one-lead ECG [28]. Firstly, the
ECG signals were segmented into short-duration ECG seg-
ments, which were then passed through a two-stage median
filter to remove baseline wander. This was followed by a
Savitzky-Golay filter to obtain smoothened ECG segments,
which were decomposed into wavelet bands using station-
ary wavelet transform (SWT), so that they can be analyzed at
different frequencies. Energy, entropy, and slope-based
features were extracted at specific wavelet bands from the
decomposed ECG segments. The relevance of the features
was measured on the basis of Fisher score. The top-ranked
features were fed to the KNN classifier with Mahalanobis
and Euclidean distance functions to perform binary classi-
fication for MI detection. To handle the imbalanced data, the
adaptive synthetic (ADASYN) sampling approach was
employed due to disparity in the instance space. They uti-
lized 10-fold cross-validation for both MI detection and
localization. The technique has shown a sensitivity of 98.3 %,
specificity of 99.4 %, precision of 99.4 % and accuracy of 99 %
for MI detection using top-ranked features. The drawback of
this study is the use of only one-lead ECG, which can limit the
detection and localization performance for certain types of
MI.

Jothiramalingam et al. proposed a polynomial curve-
fitting technique based on optimization strategies to
diagnose CAD [51]. Firstly, the noises in ECG signals were
removed using a DWT. The ECG signals were then parti-
tioned using a Hamming window. The polynomial
coefficients were obtained by choosing the best polynomial
order using the genetic algorithm (GA) and particle swarm
optimization (PSO) algorithm. Using these polynomial co-
efficients, five features were computed, including area,
variance, kurtosis, root mean, and form factor. These fea-
tures were fed into different classifiers to perform binary
classification, such as MLP, SVM, KNN, Levenberg–
Marquardt Neural Network (LMNN), and Scaled Conjugate
Gradient Backpropagation Neural Network (SCGBNN). The
GA and PSO-based classifiers achieved good performances
compared to classifiers that were not based on GA and PSO.
The highest classification performance was achieved using
the KNN classifier, with a sensitivity of 77.4 %, specificity of
81.8 %, and accuracy of 82.8 %.

Sraitih et al. investigated an automatic CAD detection
system using ECG data and presented an approach to eval-
uate its robustness in classifying CAD under different types
of noise [59]. The preprocessing stage consisted of normal-
izing 12-lead ECG signals using the min–max normalization
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method. They used a low-pass Butterworth filter to remove
the noises from the ECG data. They employed three well-
known supervised machine learning models, which are
SVM, KNN, and random forest, and tested their perfor-
mances in classifying normal and CAD classes. These models
were trained on the preprocessed data and no feature
extraction was performed. They conducted a grid search on
each model by supplying a mixture of parameter grids to
obtain the appropriate combinations of hyper-parameters
that provide the most accurate predictions. The perfor-
mances of all the models in detecting CAD were low, espe-
cially in detecting the normal class samples. Random forest
obtained the best performance in predicting CAD with an
accuracy of 75 %, precision of 74 %, and sensitivity of 73 %.
While dealing with the noisy test set, the SVM classifier
outperformed the other models with an accuracy of 68 %,
precision of 66 %, and sensitivity of 66 %.

Agrawal et al. investigated the application of machine
learning techniques on the vector magnitude data of heart
signals generated via Vectorcardiography (VCG) to distin-
guish CAD patients from healthy subjects [49]. To eliminate
low-frequency noise in cardiac signals, the patients’ VCG
data were filtered using a bandpass filter via Biopac Acq-
knowledge software’s built-in functions. Vector magnitude
was derived from patients’ orthogonal VCG leads using the
3D Pythagorean theorem. Each patient’s QT and RR intervals
were marked on the vector magnitude using Biopac Acq-
knowledge software’s computer-assisted manual marking
methods. The statistical features were extracted from the QT
and RR intervals and used as inputs for machine learning
techniques, such as ANN, SVMwith RBF kernel, and decision
tree, to performbinary classification. Stratified 10-fold cross-
validation was employed for all models. Results indicated
that vector magnitude-derived QT variability has more
predictive value than RR variability in classifying CAD
patients, and it showed a higher contribution towards
increased accuracy of the prediction class. However, adding
the RR variability to obtain combined variables further
improved the overall performance. Decision tree generated
relatively higher performance for CAD classification with an
accuracy of 98.3 % and specificity of 96.5 %, while using
fewer predictor variables than other models. IBM SPSS
Modeler and KNIME were employed as the software
platforms.

Liu et al. proposed an ECG feature for CAD detection by
fitting a given ECG signal with a 20th-order polynomial
function, which they defined as PolyECG-S [109]. First, a DWT
was employed to remove high-frequency noise and baseline
shifting from ECG signals. Next, all the R peaks in the ECG
signals were detected using the wavelet transform and all
the ECG signals were split into ECG cycles, which were

normalized on both the time and voltage axes to make
different ECG signals comparable to each other. The poly-
nomial function was fitted to the ECG signals, and each ECG
cycle was represented as a vector of the coefficients of this
polynomial function. Akaike information criterion (AIC) was
used to determine the best choice of the polynomial fitting
function order with the minimum AIC value. The optimal
similarity between the PolyECG-S curve and ECG signals was
observed when the polynomial fitting function order was 20.
The fitted coefficients were defined to be the ECG repre-
senting features. The best feature subsetswere chosen by the
feature selection algorithms, such as GA and PSO. There
were seventeen features chosen by GA and seven features
chosen by PSO, respectively. The two feature subsets chosen
by GA and PSO were tested for their discrimination perfor-
mance with four classification models, which are J48
decision tree, random tree, SVM, and naive Bayes. The
feature selection and binary classification models were
formed using the Weka software, and the software’s default
parameters were utilized. The top CAD detection model was
the J48 decision tree with the feature subset chosen by GA,
which showed an accuracy of 89.5 %, sensitivity of 94.2 %,
and specificity of 74 %. The disadvantage of this study is that
although different individuals have different optimal poly-
nomialfitting functions for their ECG signals, the polynomial
fitting function’s order was set to be the same for all
individuals.

Chang et al. presented a diagnosis system for classifying
CAD by converting 4-lead ECG data into a density model [53].
During ECG signal segmentation, the location of the R peak
was used to divide the ECG complex into separate heart-
beats. A hybrid system combining HMM and GMMwas used
to classify 4-lead ECG data. Four HMMs were used to learn
the 4-lead ECG complex and to calculate the probability of
the state change in each lead. These probabilities were
further converted into the log-likelihood values, which were
treated as different statistical feature vectors that were then
given as input to GMM and SVM. The 16-State HMMs were
trained using CAD data, so that CAD and normal data can
have differences in likelihood values. The four-dimensional
(4D) feature vector extracted by the four HMMs was clus-
tered by GMM with different numbers of distributions. The
density model of data distribution was fitted by the
maximum likelihood estimation (MLE) using the expecta-
tion–maximization (EM) algorithm via the NETLAB tool.
The SVM classifier with the RBF kernel function was also
utilized for binary classification, since the data were linearly
inseparable. The combination of HMMs as a feature
extraction tool and GMM as a classification tool performed
much better for CAD detection when the data distribution
was overlapped, as the feature space in this study. The
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sensitivity, specificity, and accuracy were 85.7 %, 79.8 %, and
82.5 %, respectively. They claimed that this was because the
4D feature inputs were very challenging to classify. The
disadvantage of this study is that the length of each heart-
beat was fixed to 400 points.

Green et al. employed ANN ensembles on ECG data to
detect acute coronary syndrome (ACS), which is a type of
CAD [45]. The ECG data were acquired from ACS patients
presenting to an emergency department with chest pain.
Feature reduction was accomplished using PCA and 16 PCA
variables were used for the training of themodels. The cross-
entropy error function was used, which was minimized
using the gradient descent method. Two methods were used
for constructing the ensemble models, which were the
baggingmethod and S-fold cross-splitting. Bagging ensemble
containedMLPs trained on bootstrap samples of the original
training set. Model selection was performed using a grid
search and the best model was found to be an ANN cross-
splitting ensemble trained on only the ECG data. Hence, they
found an advantage in using ANN ensembles compared to
both MLPs and logistic regression. The addition of clinical
data did not improve the performance of the ANN ensemble.
At the sensitivity of 95 %, the specificity was 41 %, corre-
sponding to an NPV of 97 %. They claimed that the ensemble
model, combined with the judgment of trained emergency
department personnel, could be useful for the early
discharge of chest pain patients. The limitation of the study is
the relatively small study population.

Al-Zaiti et al. used ANN, logistic regression, and gradient
boosting machine (GBM) for the prediction of ISC in patients
with chest pain using only the 12-lead ECG [11]. First, they
preprocessed all ECGs using manufacturer-specific com-
mercial software and manually inspected tracings for noise
and artifacts. After ectopic beats were removed and median
beats were computed, they extracted the temporal–spatial
ECG features from each prehospital ECG using previously
validated commercial algorithms. Feature selection and
annotation based on existing clinical knowledge boosted the
classification performance of linear prediction models like
logistic regression. This is reasonable given that data
reduction and labeling could reduce the dimensionality and
complexity in the data. Nonlinear models like ANN and GBM
were more powerful tools to handle the high-dimensional
and highly correlated nature of ECG features. They trained
and tested the performance of these three classifiers on two
independent prospective patient cohorts using the same
temporal-spatial features. They employed the classifiers
with the best low bias–low variance trade-off to create a
simple machine learning fusion classifier, which showed a
sensitivity of 77 %, specificity of 76 %, precision of 43 %, and
NPV of 94 %. Supplementing the algorithm with patient

history data did not improve classification performance.
They claimed that the model can be used as a clinical deci-
sion support tool, when combined with the judgment of
trained emergency department personnel, to help improve
clinical outcomes in patients with chest pain.

Daraei et al. presented a prediction model for MI using
classification data mining methods that consider the
imbalanced nature of the problem [61]. Firstly, the min-max
normalization method was applied to scale the features’
values. A hybrid feature selection method, including GA and
Weight by Relief, was then applied to select the best subset of
features. Top-weighted features selected by the Weight by
Relief method were given to GA for choosing the best final
features. Feature selection improved the performance of
both cost-sensitive and cost-insensitive models. Metacost
classifier was applied to create a cost-sensitive J48 (C4.5)
decision tree by assigning different cost ratios for mis-
classified cases. Implementing the cost-sensitive J48 decision
tree on the imbalanced dataset provided better results
compared to not using a cost-sensitive model. Moreover,
making J48 decision tree cost-sensitive improved perfor-
mance over traditional classifiers. Using the hybrid feature
selection method along with cost-sensitive classification
method yielded an accuracy of 82.6 %, sensitivity of 86.6 %,
and F-measure of 80 %, respectively. Rapidminerwas used to
implement the proposedmodel. The limitation of the study is
the unavailability of the Q-wave features and rhythm in the
dataset.

Sun et al. presented a method for the detection of ISC in
patients with subtle ECG waveform changes using ensemble
learning to integrate ECG dynamic features obtained via
deterministic learning [4]. Wavelet transform-based anal-
ysis was performed to remove the noise in the 12-lead ECG
signals, which were then linearly converted to 3-lead VCG
signals using the Kors matrix to minimize computational
complexity. The dynamic modeling of VCG by deterministic
learning was implemented to generate a cardiodynamics-
gram. Three low-dimensional and discriminative dynamic
features, namely spectrum fitting exponent, Lyapunov
exponent, and Lempel-Ziv complexity, were extracted from
the cardiodynamicsgram. Random feature selection was
used to obtain different feature subsets. A random sampling
method was employed to generate various data subsets for
each feature subset to train multiple individual classifiers,
including SVMwith an RBF kernel, SVMwith a linear kernel,
and a boosting tree. Subsequently, the bagging-based
heterogeneous ensemble learning algorithm was applied
to these features to generate different base classifiers. The
bagging algorithm was used to fuse outputs of different
individual base classifiers using a weighted voting method
to generate a final classifier for ISC detection. The
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heterogeneous ensemble learning algorithm exhibited an
accuracy of 89.1 %, sensitivity of 91.7 %, and specificity of
82.7 % using repeated 5-fold cross-validation. They claimed
that the proposed ensemble model that fused SVM and the
boosting tree outperformed conventional base classifiers
and homogeneous ensemble models. However, their pro-
posed ensemble model did not achieve better results on the
external test set, which was obtained from a different
medical center.

Bashir et al. proposed a weighted vote-based ensemble
model for the prediction of CVDs [60]. Firstly, different pre-
processing techniques were used to clean the data. They
claimed that the proposed ensemble model overcomes the
limitations of conventional data-mining techniques by
combining different types of heterogeneous classifiers,
including SVM, naive Bayes, decision tree, and instance-
based learner. They used a weighted vote-based ensemble
technique to combine all the trained individual classifiers.
They employed the 10-fold cross-validation method to alle-
viate the insufficiency of samples. The ensemble model
exhibited an accuracy of 87.3 %, sensitivity of 93.7 %, speci-
ficity of 92.8 %, and F-measure of 82.1 %. It achieved higher
performance compared to the other individual classification
techniques. RapidMiner was used for model building,
training, and testing.

Ramasamy et al. presented a rhythm-based approach to
screen patients with CARs at the primary level [39]. During
pre-processing, various noises associated with the ECG
signals were removed. The R peaks in the ECG signals were
located, and the signals were segmented based on the R peak
locations to detect a single heartbeat. The FBSE features of
the segmented ECG signals were extracted by computing the
Fourier-Bessel coefficients using the FBSE method on the
segmented ECG beats. The feature vector dimensions were
reduced using PCA to acquire low-dimensional FBSE fea-
tures for reducing the computational complexity. These
features were used as input to the Jaya-optimized ensemble
random subspace KNN (JO-ERSKNN) classifier to classify five
types of CAR beats. Jaya optimization was applied to grad-
ually tune the hyper-parameters of the ensemble random
subspace KNN classifier. The model demonstrated an accu-
racy of 99.4 %, sensitivity of 95.4 %, and specificity of 99.4 %
for classification of CARs. They claimed that themodel can be
made compatible with various wearable devices.

Exarchos et al. presented an automated methodology
based on association rules for the detection of ISC in long-
duration ECG recordings [67]. During preprocessing, the
noise was removed from the ECG signals. The ECG features
were extracted from the ST segment and T wave of ECG
beats. The features were then discretized by transforming
the continuous-valued features into categorical using the

modified classification tree algorithm. This tree was created
from the training set during the discretization stage andwas
applied to classify the cases in the test set. They used an
association rule extraction algorithm and a rule-based
classification model to perform binary classification. The
classification tree discretizer combined with predictive
association rules algorithm yielded higher classification
performance and required less time for rule generation. The
model showed a sensitivity and specificity of 87 and 93 %,
respectively. They claimed that the model has the ability to
provide interpretation for the decisions made, due to the
employment of association rules for classification. The
disadvantage of the study is that the association rules
method can also find spurious relationships among the data.

The performance of the proposed automated AIHAD
technique is superior to that of most previously proposed
machine learning approaches that exclusively used ECG
data to diagnose or classify CADs. Specifically, the binary
classification performance results of the automated AIHAD
technique on the PTBD database demonstrated higher
sensitivity (TPR), higher specificity (TNR), higher accuracy
(ACC), comparable precision (PPV), and higher negative
predictive value (NPV) compared to most of the existing
studies in the literature that utilized machine learning
methods and only ECG data to diagnose or classify CADs
(Table 17).

Moreover, the performance comparison between the
proposed automated AIHAD technique and previously
proposed deep learning approaches that used only ECG data
to diagnose or classify CADs are summarized in Table 18.
Most of the existing deep learning methods are based on the
development of various CNN architectures commonly
trained using transfer learning or fine-tuning methods
and using only ECG data to diagnose or classify various CVDs
[3, 12, 69, 71, 72, 74].

Brisk et al. conducted a retrospective and observational
study designed to assess the feasibility of detecting induced
CAD in human subjects earlier than experienced cardiolo-
gists using a deep CNN trained with transfer learning [73].
Firstly, ECG signals were split into short-length ECG
segments. They used a 34-layer CNN that had residual con-
nections culminating in a fully connected layer with a single
and sigmoid-activated output node. The model was evalu-
ated using the 10-fold cross-validation and the loss was
calculated using binary cross-entropy. Themodel achieved a
sensitivity of 84.2 %, specificity of 94.7 %, accuracy of 80.3 %,
and F1-score of 81.4 %. They claimed that the dataset was too
small for the model to achieve meaningful performance,
despite the use of transfer learning. The study highlighted
the risk of deep learning models leveraging data leaks to
produce spurious and falsely high results. The drawback of
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this study is that the model was initiated using weights from
the CAR detection task, on the assumption that the ECG
features learned during CAR detection would improve the
generalization for CAD detection, whichmay not be accurate
for all types of CADs.

Reasat et al. presented a shallow CNN architecture for
the detection ofMI using 3-lead ECG signals [71]. Firstly, each
signal was downsampled from 1 kHz to 250 Hz. A two-stage
median filter was then used to remove baseline wander.
Next, Savitzky-Golay smoothing filter was used to remove
other noises. The denoised signal was further downsampled
to 64 Hz to decrease computational burden and speed up
training time. The signals were then partitioned into short-
length ECG segments. The CNN benefited from the use of
varying filter sizes in the same convolutional layer, which
allowed it to learn features from signal regions of varying
length. Feature maps extracted by the inception blocks were
concatenated and passed on to a global average pooling
layer. Lastly, therewas a two-unit dense layerwith a softmax
activation layer, which gave the categorical probability. The
weights of the dense layer were L2 regularized to prevent
over-fitting. The back-propagation training algorithm and
the Adam optimizer was used to update the weights. A
subject-oriented approach was used, in which the CNN was
tested on one patient and trained on the rest of the patients.
The model achieved an accuracy of 84.5 %, sensitivity of
85.3 %, and specificity of 84.1 % when compared to the
benchmark. The model was implemented using the Keras
neural network library.

Makimoto et al. presented a CNN equipped with a
6-layer architecture to diagnose MI using ECG images ob-
tained from a reduced and optimized number of ECG leads
[74]. During the network training, they incorporated data
augmentation to increase the learning efficacy. They
generated activation maps of the final convolutional layer
using Grad-CAM to visualize the CNN’s focus points on the
ECGs during its MI recognition. They observed that the CNN
focused strongly on the ST segment and T wave elevation in
the ECG to diagnose MI, as cardiologists do. The model was
then tested together with 10 physicians using the data in the
test set and their MI recognition performances were
compared. The performance of the CNN model was higher
compared to those of the physicians. Themethod revealed an
accuracy of 75 %, sensitivity of 65 %, specificity of 86 %,
precision of 82 %, NPV of 71 %, and F1-score of 72 %. Hence,
they suggested that a simple 6-layer CNN architecture
derived from a small ECG database may achieve comparable
capability compared to cardiologists in recognizing MI using
ECG images. Additionally, ECG image compression up to a
quarter resolution did not significantly decrease the MI
detection capability of the CNN.

Hammad et al. presented a method based on an end-to-
end deep CNN model to perform binary classification for
automated detection ofMI using ECG data [75]. The proposed
CNNmodel included three blocks of 1D convolutional layers,
batch normalization, dropout operation, two dense layers,
rectified linear unit (ReLU), and softmax activation func-
tions. To reduce the impact of imbalanced ECG data, they
focused on the loss of the minority classes and optimized the
model using the focal loss function. They used the Adam
optimization algorithm and stratified 5-fold cross-validation.
The proposed method using the focal loss performed better
and converged earlier than the one without using the focal
loss. It showed an overall accuracy of 89.7 %, precision of
88.5 %, sensitivity of 81.1 %, and F1-score of 83 %.

Darmawahyuni et al. suggested sequence modeling
based on a long short-term memory (LSTM) network for the
binary classification of sequential ECG data to automatically
detect MI using ECG signals [82]. The performance of the
proposedmethod was compared to that of the standard RNN
and gated recurrent unit (GRU). The best sequence model
classifier was found to be LSTM with a 90 %:10 % training
and test set split. They claimed that a simple LSTM network
presented better performance results in the training and test
sets compared to the standard RNN and GRU architectures
with identical hyper-parameters. Specifically, LSTM had a
sensitivity of 98.4 %, specificity of 97.9 %, precision of 95.6 %,
and F1-score of 96.3 %, respectively. They stated that LSTM
was able to learn and select which data needs to be stored or
discarded, which resulted in its better performance
compared to the standard RNN and GRU.

Feng et al. used a combined 16-layer CNN-LSTM model
for binary classification of MI using one-lead ECG data [83].
During pre-processing, they used the wavelet transform
method to filter the original ECG noise and the Daubechies
wavelet basis function to decompose the ECG signals into 10
levels. They used the Pan–Tompkins algorithm to detect the
R-peaks in ECG recordings, which were then utilized for
heartbeat segmentation to a fixed length. Since the ECG data
were not balanced, they performed random over-sampling
to avoid over-fitting during training and improve the
model’s generalizability. They trained the CNN-LSTM model
to automatically learn spatial and temporal characteristics
of ECG signals. They observed that the model achieved the
highest accuracy when the data of five adjacent heartbeats
were selected as the input and the Adam optimizer was
utilized. They obtained an accuracy of 95.4 %, sensitivity of
98.2 %, specificity of 86.5 %, and F1-score of 96.8 %.

Rath et al. used four deep learning models, including
autoencoder, RBM, SOM, and radial basis function network
(RBFN), to detect CAD using ECG signals [64]. Additionally,
they developed an ensemble model by combining the two
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best-performing deep learning models, which were
autoencoder and SOM models, based on the principle of
majority voting. The order of performance rankings for CAD
detection, from the highest to the lowest, belonged to the
SOM-autoencoder, autoencoder, SOM, RBFN, and RBM
models, respectively. Hence, the SOM-autoencoder ensemble
model outperformed all individual deep learning models
with an accuracy of 98.4 % and F1-score of 97.1 %. They
asserted that this could be attributed to the ensemble
model’s ability to overcome the statistical, computational,
and representational problems associated with the datasets.

Prabhakararao et al. introduced an end-to-end multi-
lead diagnostic attention-based RNN (MLDA-RNN) for auto-
mated diagnosis of the three MI severity stages from healthy
control subjects [80]. They employed RNNs to encode the
temporal variations in the 12-lead ECG signals. These enco-
ded vectors from the RNN encoding blocks were fed to the
intra-lead attention module to summarize the within-lead
discriminative vectors and obtain lead-attentive represen-
tations. Then, the inter-lead attention module aggregated
these representative vectors from the intra-lead attention
module based on their clinical relevance to obtain a high-
level feature representation for reliable diagnosis. The vec-
tor obtained from the inter-lead attention module was fed to
the fully connected layer with a softmax activation function
to classify the MI severity stages. They employed batch
normalization layers after the inter-lead attentionmodule to
improve the speed of convergence. They used a dropout
layer before the output layer to improve the model gener-
alization. They trained the model using back-propagation
through time (BPTT) and they employed early stopping
method to avoid over-fitting. They utilized the grid search
method to optimize the hyper-parameters of the RNN and
attention modules. The model exhibited an overall accuracy
of 97.7 %, sensitivity of 97.6 %, and specificity of 99.4 %
without compromising on the class-wise detection rates.
They claimed that MLDA-RNN showed promising results for
model interpretability, as the learned attention weights
often correlated with the clinicians’ way of diagnosing MI
severity stages.

Hernandez et al. proposed an automatedmethod for the
detection of MI from continuous ECG monitoring using a
set of ECG and VCG features [81]. First, they applied a me-
dian filter to remove high-frequency noise. Next, they
implemented a moving window over the filtered signal
and calculated the distribution parameter values in each
window. They selected the optimal distribution parameters
by performing a statistical analysis to control the model’s
complexity, prevent over-fitting, and facilitate the model’s
learning process. From this, they obtained another time-
series for each distribution parameter. They derived seven

ECG features from VCG, which were found to be optimal for
detecting MI using the reduced 3-lead ECG signals. Out of the
seven ECG features, five were VCG features derived from the
QRS and T wave complexes, while the other two were ST
elevation features. They analyzed the distribution properties
of each ECG feature to facilitate the identification of under-
lying patterns in the data. They used these features to train
and validate the RNN that was composed of two unidirec-
tional LSTMs with a fully connected layer and ReLU activa-
tion function. They observed a clear separation in ECG
feature median values between the baseline and MI condi-
tions for the two distribution parameters, indicating that
these may be suitable parameters for characterizing MI. The
proposed method had an accuracy of 97.4 % and sensitivity
of 94.7 %. The drawback of this study is the use of a reduced
number of ECG leads, which can limit the detection perfor-
mance of certain types of MI.

Miao et al. presented an enhanced DNN model for the
diagnosis and prognosis of CAD [86]. The proposed DNN
model includes two hidden layers and an output layer with a
sigmoid activation function. It was built based on a deepMLP
architecture equipped with linear and non-linear transfer
functions, regularization, dropout, and a binary classifica-
tion layer. During the training of the DNN, the dropout rates
in both hidden layers were randomly applied, resulting in
random connections within the DNN architecture to reduce
over-fitting. The model had an accuracy of 83.6 %, sensitivity
of 93.5 %, specificity of 72.8 %, precision of 79.1 %, and
F1-score of 85.7 %. The limitation of this study is that they did
not use cross-validation to ensure robustness.

Bigler et al. introduced a CNN trained with transfer
learning to perform binary classification for ISC diagnosis
using one-lead ECG images [3]. They conducted a retrospec-
tive observational study to test a hypothesis-generating
approach using an open-access CNN model with different
depth andnetworkarchitecture thatwas pretrainedusing the
images on the ImageNet dataset. Before training the CNN on
this study’s database, all training images were randomly
shuffled and processed by adding noise to prevent over-
fitting. The underlying morphology responsible for the
network prediction for ISC detection focused mainly on the
distinctive features in the ST-segment and T-wave of ECG.
During transfer learning, the last three layers of the CNN
responsible for the network prediction were replaced for
the new task. Remaining layers responsible for pattern
recognition and feature extraction were not changed. A
dropout layer was added to prevent the CNN from over-
fitting. The CNN showed a sensitivity of 83%, specificity of
98%, accuracy of 91.5 %, and F1-score of 89.9%, which
revealed higher performance than manually obtained quan-
titative intracoronary ECG ST-segment shift for ISC detection.
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Altan et al. suggested a decision-support system to aid
cardiologists in CAD diagnosis [33]. Firstly, short-term ECG
segments were randomly obtained from 24-hour ECG signals
using the moving window analysis technique to increase the
number of samples from each subject. In the first stage of the
Hilbert-Huang Transform, frequency-modulated signals,
named intrinsic mode functions, were extracted by applying
empirical mode decomposition (EMD) to short-term ECG
segments. In the second stage, the Hilbert Transform was
applied to each intrinsic mode function to calculate the
instantaneous frequency spectral features. The binary clas-
sification using the statistical features of intrinsic mode
functions was performed using a DBN classifier, which had
one input layer, two hidden layers, and one output layer
with two outputs for binary classification. The DBN classifier
first evaluates weights and biases between visible and
hidden layers using an unsupervised pre-training of stacked
RBMs. Next, in the supervised learning phase, weights
and biases were updated using fine-tuning to optimize
the parameters for improving classification performance.
The activation functions of the hidden and output layers
in the supervised learning phase were the hyperbolic
tangent and sigmoid functions, respectively. The DBN clas-
sifier had an accuracy of 98 %, specificity of 98.8 %, and
sensitivity of 96 % using the 10-fold cross-validation method.

Xiao et al. explored the application of CNN to detect
significant changes in the ST segments of whole-day Holter
ECG signals for CAD diagnosis [68]. They generated image-
based samples by taking 10-second snapshots of one-lead
ECG waveforms and transforming them into grayscale
images using a grid overlay to remove redundant color
information that does not contribute to the classification
task. These images were then saved as 8-bit JPEG files and
resized using bilinear interpolation to adhere to the input
requirements of the Google Inception V3 model, which had
been pre-trained using transfer learning from the images in
the ImageNet dataset. The image features that differentiate
ST from non-ST conditions were extracted by the convolu-
tional layers in the CNN model for the classification of each
10-second image sample. They kept all themodel parameters
in the Google Inception V3 model, except for the final layer
that was retrained using the training images in the present
study. The model exhibited a sensitivity of 82.6 %, specificity
of 80.3 %, and F1-score of 87.3 %. It achieved comparable
performance to that of expert cardiologists in detecting ST
changes. The limitation of the study is that the algorithmwas
built upon one-lead ECG data.

Butun et al. proposed a computer-aided diagnosis sys-
tem with a 1D capsule network (1D-CapsNet) for automated
detection of CAD from short-length ECG segments [85]. First,
they applied DWT to raw ECG signals to eliminate noise.

Subsequently, they used Z-score normalization to make the
ECG signals suitable for input to the proposed network. They
modified the original capsule network model for 1D signal
applications by redefining the layer parameters and adding
some sub-layers to detect CAD. They employed two ECG
capsules that represented the normal and CAD classes. The
decoder section of the capsule networks compressed the ECG
signals and acted as a regulator for the protection of
important features in the capsule layers during training. The
model yielded an accuracy of 98.6 %, sensitivity of 97.9 %,
specificity of 98.7 %, and precision of 93.3 % for short-length
ECG segments using 5-fold cross-validation method. They
asserted that the model can be used as a diagnostic tool to
assist cardiologists during medical examinations by
providing a second opinion on the patient’s condition.

Acharya et al. utilized a 1D-CNN structure for the
diagnosis of CAD using short-length ECG segments [12]. First,
they applied DWT to the ECG segments to eliminate noise.
Subsequently, they used z-score normalization to normalize
the ECG segments. They developed an 11-layered CNN
structure, including four convolutional layers, four max-
pooling layers, and three fully connected layers, to perform
binary classification. The 1D-CNN was able to differentiate
between normal and abnormal ECG with an accuracy of
95.1 %, sensitivity of 91.1 %, specificity of 95.8 %, and preci-
sion of 80.8 %. They claimed that the proposed CNN structure
was robust to shifting and scaling invariance, and that the
proposed system is suitable for real-time monitoring.

Dutta et al. presented a simple 2-layer CNN that is
resistant to class imbalance and performs binary classifica-
tion on significantly class imbalanced ECG data for CAD
diagnosis [72]. Data preprocessingwas performed using least
absolute shrinkage and selection operator (LASSO) based
feature weight assessment. LASSO regression was per-
formed repeatedly using multiple instances of randomly
subsampled datasets to assess the consistency of the attri-
bute contributions. A majority-voting algorithmwas applied
to extract the important features and identify the contribu-
tion of significant attributes in the data variation, which
provides dimensionality reduction by excising unimportant
variables. Subsequently, the important features were fed to
the 1D-CNN and then homogenized using a fully connected
layer. They employed a simulated annealing-like training
schedule to minimize the generalization error between
train and test losses. The nonlinear transformation was
performed using ReLU and dropout was applied to reduce
over-fitting. The shallow CNN architecture demonstrated a
classification power of 77 % in correctly classifying the
presence of CAD on the test set. The recall values of other
machine learning methods, such as SVM and random forest,
were comparable to that of the CNN model. However, the
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accuracy of CNN (79.5 %) was better than individual accu-
racies of SVMor random forest classifiers and CNNpredicted
the negative (non-CAD) cases with higher accuracy. They
asserted that the CNN exhibited a considerable degree of
resilience towards data imbalance.

Sharma et al. presented a rhythm-based methodology
for the point-of-care diagnosis of CARs at a primary level
[40]. During pre-processing, the frequency normalization
was performed to match the sampling frequency of the
datasets from different sources to the input of the proposed
algorithm. Therefore, the three databases were down-
sampled to 300 Hz to maintain homogeneity with the
training data and the algorithm. A Butterworth band-pass
filter was employed to eliminate the baseline drift and high
frequency noise from one-lead ECG signals. A dataset
dependent notch filter with an appropriate frequency of
either 50 Hz or 60 Hz was used to remove the power-line
interference. The QRS detection algorithmwas applied to the
filtered ECG signals, and the RR-interval sequences of one-
lead and short-length ECG segments were computed.
Fourier-Bessel sequences were calculated using the FBSE to
transform the RR-interval sequences into more meaningful
sequences that can better characterize the cardiac rhythms
into normal and abnormal classes. The computed Fourier-
Bessel coefficients of different lengths for different subjects
were upsampled to a fixed number to make Fourier-Bessel
sequences homogeneous in terms of length. The derived
Fourier-Bessel sequences-based intelligent series were used
as input to the unidirectional LSTM model, which was used
to directly extract significant information required for
binary classification. They obtained an accuracy of 78.4 %,
sensitivity of 65.1 %, specificity of 86.8 %, and F1-score of
76.5 % in classifying normal and CAR classes using 10-fold
cross-validation. They claimed that the addition of the
FBSE-layer improved CAR detection performance, and that
the proposed intelligent series can reveal the differences
between normal and CAR ECG signals.

The performance of the automated AIHAD technique is
better than that of most previously proposed deep learning
approaches that exclusively used ECG data to diagnose or
classify CADs. Specifically, the binary classification perfor-
mance results of the automated AIHAD technique on the
PTBD database showed that the technique has higher
sensitivity (TPR), higher specificity (TNR), higher F1-score
(F1), higher precision (PPV), higher accuracy (ACC), and
higher negative predictive value (NPV) compared to most of
the existing studies in the literature that utilized deep
learning methods and only ECG data to diagnose or classify
CADs (Table 18).

However, a few studies in the literature that used
machine or deep learning approaches and only ECG data

demonstrated slightly better performance compared to our
proposed automatedAIHAD technique [28, 29, 39, 41, 85]. This
is a highly anticipated result, since deep learning methods
often work with larger amounts of data, which improves
their performance results. Moreover, they can benefit from
transfer learning, in which they are pretrained on signifi-
cantly larger databases and then fine-tuned on the specific
database of interest. Additionally, some of these existing
studies [39, 85] were developed and evaluated on different
databases, which may have contributed to their slightly
better performance results. Although these few existing
studies [28, 29, 41] achieved slightly better performance, our
results are still highly competitive.

Compared to existing relatedmethods, one of the biggest
advantages of the proposed automated AIHAD technique is
that it can provide accurate and reliable diagnosis of AISC,
which was one of the aims and motivations of this study.
Therefore, the AIHAD technique targets to address the
limitations of existing related studies that have used only
ECG data to detect CADs and fill the research gaps in the
literature. Thus, the automated AIHAD technique can be
highly beneficial and valuable by providing improved diag-
nosis, particularly for asymptomatic CAD patients with AISC,
for whom the diagnostic information provided by ECG alone
is not sufficient to reliably diagnose the disease.

Another advantage of the proposed AIHAD technique,
over some of the existing machine and deep learning
methods, is that it can automatically process all 12-leads for
enhanced CAD diagnosis, instead of only one-lead. This
is particularly important as each lead provides diagnostic
information about the heart from a different angle, and
multiple leads are required for the accurate and reliable
diagnosis of CADs [1, 4, 7, 8, 11, 28, 29, 53, 110]. Therefore, the
automated AIHAD technique benefits from the diversity in
diagnostic information provided by all 12-leads and can
accurately detect CAD cases that cannot be diagnosed using
only one-lead. This advantage may have substantially
contributed to the relatively higher performance of the
automated AIHAD technique on the STAFF III and PTBD
databases.

Conversely, either one-lead or a limited number of leads
was used to diagnose or classify CADs in some of the existing
methods in Tables 17 and 18 [12, 28, 39, 40, 44, 56, 67, 68, 71, 75,
77, 81, 83, 85, 88]. However, certain types of CADs are lead-
specific and can only be detected through particular leads.
Consequently, they might be missed by methods that
monitor only one-lead or a very few number of leads. This
limitation may result in poor generalization and these
existing methods may not provide a reliable diagnosis for
CADs that are localized in various heart locations [1, 4, 7, 8, 11,
28, 29, 53, 110].
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Another advantage of the automated AIHAD technique
is its very short implementation time, which is highly
desirable for real-time detection of CADs. This may support
fast decision-making by physicians in clinical settings, which
could have significant implications in emergency situations
where rapid diagnosis is crucial for timely patient treatment.

Furthermore, the advantage of the automated AIHAD
technique over the microneurography technique, which is
the conventional method for invasively recording and
monitoring SNS activities, is that it uses wideband re-
cordings non-invasively acquired from patients to detect
CSNA. Thus, it significantly reduces the risks associated with
invasive procedures and the limitations associated with the
requirement of highly specialized skills and expertise from
trained clinicians, while also improving patient comfort.

Moreover, in clinical practice, two different physicians
can often make inconsistently different diagnoses for the
same patient successively [9, 11, 53, 85]. An important
advantage of the automated AIHAD technique is its ability to
provide the patient with consistently accurate diagnoses
successively.

Additionally, two publicly available databases were
used for the development and evaluation of the automated
AIHAD technique. The results obtained on both databases
using the automated AIHAD technique strongly support each
other. The consistently high performance results of the
AIHAD technique on two different databases that contain

different and diverse patients with CADs indicate that the
technique is quite robust and generalizable.

The common drawback of most previously proposed AI
studies that investigated the diagnosis or classification of
CADs is that they only utilized ECG data [3–9, 11, 12, 15, 17,
19–30, 32–37, 39, 41–45, 48, 49, 51–61, 64–69, 71–88, 94–97, 109,
110]. To the best of our knowledge, this is the first study that
proposes a hybrid AI technique that jointly and simulta-
neously analyzes 12-lead CSNA and ECG data to provide fast,
early, and accurate diagnosis of a heart disease. Since, there
are no other studies in the literature that proposed a hybrid
AI technique that jointly uses CSNA and ECG data or sepa-
rately uses only CSNA data to diagnose or classify CVDs, it is
not possible to compare the performance results of the
proposed automated AIHAD technique with those of other
studies.

Conclusions and future work

This study presents a novel automated hybrid AI technique
that simultaneously and robustly detects anomalies in the
12-lead CSNA and ECG data for fast, early, and accurate
diagnosis of CADs. We evaluated the performance and
generalizability of the proposed AIHAD technique on the
fully-labeled STAFF III and PTBDdatabases. The experimental
results have shown that the automated AIHAD technique

Table : The performance comparison between the proposed automated AIHAD technique and recent deep learning studies that used only ECG data
for CAD diagnosis or classification.

Study Technique Database TPR (%) TNR (%) PPV (%) F (%) ACC (%) NPV (%)

Brisk et al. [] CNN STAFF III database . . – . . –

Proposed method AIHAD STAFF III database . . . . . .
Reasat et al. [] CNN PTBD database . . – – . –

Makimoto et al. [] CNN PTBD database      

Hammad et al. [] CNN PTBD database . – .  . –

Darmawahyuni et al. [] RNN PTBD database . . . . – –

Feng et al. [] CNN-RNN PTBD database . . – . . –

Rath et al. [] SOM-autoencoder PTBD database – – – . . –

Proposed method AIHAD PTBD database . . . . . .
Prabhakararao et al. [] RNN PhysioNet database . . – – . –

Hernandez et al. [] RNN PhysioNet database . – – – . –

Miao et al. [] DNN UCI machine learning repository . . . . . –

Bigler et al. [] CNN Self-collected ECG data   – . . –

Altan et al. [] DBN Long-term ST database  . – –  –

Xiao et al. [] CNN Long-term ST database . . – . – –

Butun et al. [] D-CADCapsNet St. Petersburg ICT database . . . – . –

Acharya et al. [] CNN St. Petersburg ICT database . . . – . –

Dutta et al. [] CNN Nhanes database  – – – . –

Sharma et al. [] LSTM MIT-BIH database . . – . . –
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yields very promising results for the reliable and robust
detection of CADs from the 12-lead ECG and CSNA data.

In the future, we will embed the automated AIHAD
technique in hospitals’ software systems and clinically
validate it through multi-center prospective studies to
demonstrate its high performance, generalizability, and
robustness on a larger and more diverse patient population,
as well as to determine the amount of time it saves physi-
cians in daily clinical practice.

After ensuring its reliability for widespread clinical
applicability, it may be integrated into wearable devices,
such as wireless patches and smartwatches, for continuous,
simultaneous, and long-termmonitoring of CSNA and ECG in
real-time. In this way, it may provide early warnings to the
patients for early diagnosis and treatment of CADs, which
highlights the potential benefits of this study in real-world
medical scenarios.

Consequently, it may serve as an efficient decision-
support system to increase the success of physicians in fast,
early, and accurate diagnosis of CADs. This can help reduce
the risk of misdiagnosis by human experts and aid physi-
cians in making informed diagnostic decisions efficiently.
Therefore, the contribution of the automated AIHAD tech-
nique to the reliable diagnosis of CADs can be much higher
than that of conventional ECG devices and the utilization of
CSNA in the diagnosis of CVDs can gain a new perspective.
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