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Abstract

We introduce a practically important and theoretically challenging problem: find-

ing the minimum cost path for plug-in hybrid electric vehicles (PHEVs) in a net-

work with refueling and battery switching stations, considering electricity and

gasoline as sources of energy with different cost structures and limitations. We

show that this problem is NP-complete even though its electric vehicle and con-

ventional vehicle special cases are polynomially solvable. We propose three solution

techniques: (1) a mixed integer quadratically constrained program that incorpo-

rates non-fuel costs such as vehicle depreciation, battery degradation and stopping,

(2) a dynamic programming based heuristic and (3) a shortest path heuristic. We

conduct extensive computational experiments using both real world road network

data and artificially generated road networks of various sizes and provide signifi-

cant insights about the effects of driver preferences and the availability of battery

switching stations on the PHEV economics. In particular, our findings show that

increasing the number of battery switching stations may not be enough to over-

come the range anxiety of the drivers.

Keywords: plug-in hybrid electric vehicles, minimum cost path, vehicle routing,

energy management, integer programming, dynamic programming
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1. Introduction

The interest in electric vehicles (EVs) and their variants such as Plug-in Hy-

brid Electric Vehicles (PHEVs) is on the rise due to the economic, environmental

and security concerns associated with gasoline. A PHEV provides reduction in

both transportation costs and greenhouse gas emissions with respect to a compa-

rable conventional vehicle (CV) (Windecker and Ruder 2013). It has an electric

motor and an internal combustion engine (ICE) as its power resources. It has

the capabilities of an EV such as recharging from a regular power outlet and the

convenience of a gasoline powered CV such as long-range trips. On charge sustain-

ing (CS) mode, it travels using gasoline as the only energy resource. On charge

depleting (CD) mode, PHEVs can travel exclusively on electricity or blended with

both electricity and gasoline (Pistoia 2010, Axsen and Kurani 2010, Axsen et al.

2008, Markel and Wipke 2001). In blended fashion, the PHEV travels primarily

using the electric motor, supported by the ICE using gasoline for operations that

require extra power. All-electric CD mode drive is assumed in recent research

including Traut et al. (2011) and He et al. (2013). Similarly, in this article, we

focus on PHEVs that operate exclusively using electricity on CD mode. However,

the proposed methodology can also be regarded as a close approximation for those

PHEVs that operate in blended mode since the primary source of energy is again

electricity and ICE is only used as a supplement.

Recent research related to PHEVs focus mainly on the energy management

problem (Sioshansi 2012, Wei and Guan 2014), refueling station location problem

(Kuby and Lim 2005, MirHassani and Ebrazi 2013) and demand analyses (Glerum

et al. 2013, Dagsvik et al. 2002). In this research, we approach PHEVs from

the cost perspective. A driver of a vehicle may prefer to minimize total travel

distance, total travel time or total travel cost of a trip, and these problems have

been extensively studied in the existing literature. In terms of cost, there are
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various studies that separately investigate the minimum cost path problem for

CVs (MCPP-CV) and for EVs (MCPP-EV) as we review below, and polynomial

time algorithms are proposed for both problems. In this study, we formally present

the minimum cost path problem for PHEVs (MCPP-PHEV) and efficient solution

methodologies. To the best of our knowledge, this study is the first attempt to

address the MCPP-PHEV.

Several articles addressed the MCPP-CV in the literature (Lin et al. 2007,

Khuller et al. 2007, Lin 2008a,b, 2012, Suzuki 2008, 2009, 2012, Adler et al. 2013).

Mixed Integer Programming (MIP) formulations, heuristic techniques and linear-

time algorithms with dynamic programming approach are proposed as solution

methodologies for both fixed and non-fixed path assumptions. On the EV side,

the problem of energy efficient routing of EVs has been addressed in the literature

by considering limited cruising range and regenerative breaking capabilities of EVs

(Artmeier et al. 2010, Sachenbacher et al. 2011, Eisner et al. 2011) and polynomial

time algorithms have been developed. These problems only consider routing in

a network without charging facilities. Kobayashi et al. (2011) and Siddiqi et al.

(2011) further include battery recharging stations in their models and propose

heuristic techniques as solution methodologies. Schneider et al. (2014) also con-

sider time windows beside recharging stations. Note that assuming the electricity

as a commodity similar to gasoline, the algorithms mentioned above for MCPP-

CV can also be used as solution methodologies for MCPP-EV. In such a case, we

also need to assume that the EVs are charged at recharging stations. However,

due to long charging times of EV batteries, battery switching stations with short

battery switching times are more convenient for EVs. Even though it is presented

in a different context, Laporte and Pascoal (2011) present a methodology that can

be customized to solve the MCPP-EV problem in a network with battery switch-

ing stations. In the existing MCPP-EV studies, battery degradation costs are not
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considered. Furthermore, all the aforementioned studies consider a single energy

resource, either gasoline or electricity. Thus, their solution methodologies cannot

be directly used for the solution of MCPP-PHEV.

An important problem related to the minimum cost path problems is the short-

est weight-constrained path problem (SWCPP) which is known to be NP-complete

(Desrosiers et al. 1984, Desrochers and Soumis 1989). In SWCPP, there are typi-

cally two independent measures such as cost and time associated with a path (e.g.

Desaulniers and Villeneuve 2000, Ahuja et al. 2002). It can efficiently be solved

by a shortest path algorithm if one of the measures is disregarded or the two mea-

sures are consistent. Even though MCPP-PHEV has only the cost measure, we

conclude in Section 2 that it is equivalent to SWCPP and thus is NP-complete.

Note that the MCPP-PHEV is a generalization of MCPP-CV and MCPP-EV.

Furthermore, shortest path and minimum hop problems are also special cases of

the MCPP-PHEV.

The problem defined in this study is a challenging and a fundamental one

for long distance travels of a PHEV that possibly require several refueling/battery

switching stops. Moreover, it captures the drivers’ reluctance for the extra mileage

and frequent stops. There are four main contributions:

� We introduce the MCPP-PHEV and present its complexity status.

� We propose a realistic extension to the MCPP-PHEV that incorporates three

new dimensions: battery degradation cost, vehicle depreciation cost and

stopping cost. Our study is the first that addresses the battery degradation

cost in the MCPP context.

� We present a mixed integer quadratically constrained programming (MIQCP)

formulation, a dynamic programming based heuristic algorithm, and a short-

est path heuristic as solution methodologies.
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� We provide significant insights about the effects of driver preferences and the

availability of battery switching stations on the economics of PHEVs.

2. Minimum Cost Path Problem for PHEVs (MCPP-PHEV)

We provide the basic definitions and assumptions necessary for the formaliza-

tion of MCPP-PHEV. Consider a directed transportation graph G = (N,A) and a

PHEV traveling from an origin node s ∈ N to a destination node t ∈ N . Refueling

and/or battery switching stations are located at some of the nodes of the graph

and pricing may vary between nodes. Therefore, a PHEV can reduce its travel

costs by a proper choice of refueling or battery switching stations.

Proposition 1. If a PHEV does not refuel or switch battery when traveling from

node i ∈ N to node j ∈ N , then the minimum cost path is the shortest path between

nodes i and j.

The proof of Proposition 1 is straightforward. Next, we introduce a graph

transformation which will be useful for the solution methodologies. A similar

construction in a complete different application setting is provided by Chen et al.

(2010), Smith et al. (2012) and Yıldız and Karaşan (2014).

Definition 1. Given a weighted graph G = (N,A): let N̂ = {s, t} ∪ {i ∈ N :

i has a battery switching and/or refueling station} and Â = {(i, j) : i, j ∈ N̂ and

j is reachable from i if a PHEV at node i with a full tank of gasoline and fully

charged battery can reach node j along a shortest path in G}. Arc (i, j) ∈ Â has a

distance equal to the shortest path distance, say d?ij, from i to j in G. The graph

Ĝ = (N̂ , Â) is called the meta-network of G.

Proposition 1 implies that an optimal solution of a MCPP on a given graph can

also be obtained by solving the same MCPP instance on its meta-network. Now,

consider nodes B, C and D in graph G in Figure 1. Only node C has a refueling
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station. The meta-network Ĝ is also shown in the same figure. Observe that the

arc from s to t is redundant and corresponds to traveling on the path s→ C → t.

Since the shortest path from s to t contains a node with a refueling station in the

original graph G, arc (s, t) can be omitted.

Figure 1: Graph Transformation

Meta-networks can be very dense due to the combined CD and CS mode ranges.

The size of the graph is a burden on the solution efficiency, and thus it is useful

to omit the redundant arcs in the meta-network. We refer to the graph formed by

the omission of redundant arcs as the reduced meta-network denoted by G′ in

Figure 1. In particular, the arcs that are present in the reduced meta-network G′

correspond to shortest paths in the original graph G that contain no intermediate

nodes with refueling or battery switching stations.

Definition 2. A vehicle instance (vehicle) is a vector with 6 entries:

〈P , P ,G,G, ε, ρ〉 where P and P are the battery maximum and minimum energy

capacities, respectively (kWh), G and G are the maximum and minimum tank

capacities, respectively (gallons), ε is the average electricity usage (kWh/mile) and

ρ is the average gasoline usage (gallon/mile).

Definition 3. A network instance (network) is a 7-tuple:

〈N,A, se, sg, ce, cg, d〉 where N , A are the sets of nodes and arcs, se : N → {0, 1}
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and sg : N → {0, 1} are functions indicating whether a battery switching or re-

fueling station is located at a node, respectively, ce : N → R+ is the electricity

price function (¢/kWh), cg : N → R+ is the gasoline price function (¢/gallon) and

d : A→ R+ is the length function (miles).

Definition 4. The Minimum Cost Path Problem for PHEV (MCPP-PHEV) is

defined as finding a path for a vehicle V from a departure node s to a destination

node t in a network, and deciding on how much to refuel and where to switch

battery on the path. More formally, the decision version of the problem is:

INSTANCE: 〈V,X, s, t, Ps, Gs, Pt, Gt〉 where V is a vehicle instance, X is a

network instance, nodes s and t are departure and destination nodes, Ps and Gs are

the initial electricity and gasoline storages at node s, Pt and Gt are the minimum

final electricity and gasoline storage requirements at node t, respectively, and a

positive number C.

QUESTION: Is there a path from s to t in network X that can be traveled

by vehicle V with initial electricity and gasoline levels of Ps and Gs and final

electricity and gasoline levels of at least Pt and Gt for a cost less than or equal to

C?

The solution of the MCPP-PHEV is a triplet 〈x, e+, g+〉 where x is the incidence

vector of the optimal path, e+ and g+ are vectors of size |N | representing the

electricity and gasoline purchases that are transferred to PHEV at each node,

respectively.

2.1. NP-Completeness

Consider the shortest weight-constrained path problem (SWCPP) for directed

graphs which is known to be NP-Complete (Garey and Johnson 1979):

INSTANCE: A directed graph G = (N,A) with length lij ∈ Z+ and weight

wij ∈ Z+ for each (i, j) ∈ A, specified nodes s, t ∈ N and positive integers K and
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W .

QUESTION: Is there a path in G from s to t with total length K or less and

total weight W or less?

First, note that multiplying both W and wij ∀(i, j) ∈ A by a positive constant

φ does not change the solution in SWCPP, and the question in the original instance

has a YES answer if and only if the modified instance has a YES answer.

Theorem 1. The MCPP-PHEV is NP-complete.

Proof. Proof Observe that the MCPP-PHEV is in NP: given a solution and a value

C, one can verify in polynomial time if the solution is feasible and the associated

cost is at most C. Given an instance 〈G, l, w, s, t,K,W 〉 to SWCPP, let lmin =

min(i,j)∈A lij, l
max = max(i,j)∈A lij, w

max = max(i,j)∈Awij, φ =
lmin

2× lmax × wmax
>

0, Ŵ = φ×W and ŵij = φ×wij ∀(i, j) ∈ A. Now, consider an equivalent SWCPP

instance 〈G, l, ŵ, s, t,K, Ŵ 〉.

Figure 2: Graph Transformation

We now transform this SWCPP instance into an MCPP-PHEV instance by

the following polynomial time transformation: we add a node, say node ij, on

each arc (i, j) ∈ A as shown in Figure 2. Let N ′ be the set of newly added nodes,

A1 be the set of arcs from node i to node ij ∀(i, j) ∈ A with distance equal to

ŵij and A2 be the set of arcs from node ij to node j ∀(i, j) ∈ A with distance

equal to 1 mile. The graph is then transformed into G′ = (N ∪ N ′, A1 ∪ A2). In

the transformed graph, no gasoline or battery switching station is located at node

i ∈ N/{s}. We locate only a refueling station at the source node and the cost of
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gasoline at this node is cgs = lmax. We also locate a battery switching station, but

no refueling station, at every node ij ∈ N ′ and the cost of electricity at node ij is

ceij = lij − ŵij × cgs = lij − φ× wij × lmax. Replacing φ, we get cgs > ceij > 0 for all

nodes ij ∈ N ′ so that traveling on electricity is always preferable to traveling on

gasoline. Let X be this transformed network. Let V be the vehicle 〈1, 0, Ŵ , 0, 1, 1〉.

That is, PHEV V has 1 mile of CD mode range and Ŵ miles of CS mode range.

Consider the MCPP-PHEV instance 〈V,X, s, t, 0, 0, 0, 0〉, i.e. a PHEV V trav-

els from node s to node t in network X with zero initial and final gasoline and

electricity levels. Let K be the associated cost input. In Figure 2, V at node i with

minimum electricity level needs to spend ŵij units of gasoline in order to arrive at

node ij. Since electricity is preferable to gasoline, it switches its battery at node ij

with a fully charged battery and travels to node j on the CD mode. At node j, its

battery depletes and it starts running on CS mode again. The cost of electricity

at node ij and the distance between nodes ij and j are such that the total cost

of traversing this arc is lij − ŵij × cgs cents. Observe that the vehicle needs to buy

the required level of gasoline at the source node at a cost of ŵij × cgs in order to

travel from node i to node j.

Now, it is easy to observe that V has a path from node s to t with cost at most

K if and only if the SWCPP has a path from s to t with length at most K and

weight at most Ŵ .

2.2. Extensions

In order to model real world more closely, non-fuel costs such as vehicle de-

preciation or stopping costs need to be taken into account (Suzuki 2008). To this

end, we extend the MCPP-PHEV from three aspects and refer to this problem

as the Extended MCPP-PHEV (E-MCPP-PHEV). The first extension is vehicle

depreciation cost. A PHEV incurs electricity and gasoline costs while traveling.

Furthermore, it loses its value with increasing mileage. Therefore, it incurs a vehi-

9



cle depreciation cost for every mile traveled. Unless depreciation cost is included

in the objective function, an optimal path might get much longer than the shortest

path which cannot be tolerated even for the most cost averse driver. Therefore, we

indirectly avoid long trip distances by including the depreciation cost in the model.

In a sense, the depreciation cost can be considered as the cost of tolerating longer

distances, and high depreciation costs would force the E-MCPP-PHEV solutions

to follow the shortest path.

Another cost component of a vehicle trip is the stopping cost. This cost

component can be a measure of the tolerance for stops on the route. That is, for

high enough stopping costs, the optimal solution would be the one with the least

number of stops. Note that by including the stopping cost, we avoid excessive

number of stops on the optimal path which is not tolerable even for the most cost

averse driver.
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Figure 3: Cycle Life of PHEV Batteries as a Function of DoD

At a battery switching station, a PHEV owner is charged for switching his/her

battery. The PHEV arrives at a battery switching station with a fully depleted

battery, or some remaining charge. Therefore, the PHEV is charged for the net

charge difference between arrival and departure. Furthermore, there is the battery
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degradation component of the cost. Similar to vehicle depreciation, the battery

deteriorates through usage and the PHEV incurs a battery degradation cost for

each battery charge/discharge cycle. In this context, we assume that a PHEV is

billed by the switching station for the net charge difference and the corresponding

battery degradation cost. To the best of our knowledge, Sioshansi and Denholm

(2010) are the first to include battery degradation cost in their energy management

model. The battery of a PHEV has a limited lifespan, and its life shortens at each

cycle. The number of cycles is a nonlinear function of depth of discharge (DoD) as

reported by Electric Power Research Institute (2005) and Millner (2010). A sample

cycle life function is presented in Figure 3 by dashed lines. The more the battery is

discharged, the less the number of cycles is. For instance, consider a battery worth

$2650 being discharged to 40% DoD throughout its lifetime. The expected number

of cycles at this DoD is approximately 10000. Therefore each discharging costs the

PHEV owner 26.5 ¢ ($2650 × 1/10000). A sample degradation cost function for

a $2650 battery is presented in Figure 3. In our study, we assume that a cycle is

completed each time a battery is switched at a station and a PHEV owner incurs

a battery degradation cost depending on the DoD level upon arrival to a battery

switching station. We determine this cost by evaluating a quadratic function of

DoD.

Within this context, the cost components of a PHEV trip are the gasoline cost,

the electricity cost, the battery degradation cost, the vehicle depreciation cost and

the stopping cost. For simplicity, in representing an E-MCPP-PHEV instance, we

use the MCPP-PHEV instance representation and assume that all cost components

are embedded in the corresponding network instance.

3. Solution Techniques

In this section, we provide a mathematical formulation for the E-MCPP-PHEV.

Then we present a dynamic programming based heuristic, a shortest path heuristic,
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and their extended versions.

3.1. E-MCPP-PHEV Mathematical Model

The parameters and variables to be used in the formulation of the E-MCPP-

PHEV are presented below:
• Parameters

N,A : Sets of nodes and arcs

s, t : Source and destination nodes

sei , s
g
i : 1 if there is an electricity or refueling station, respectively, at node i, and 0 otherwise

P , P : Battery maximum and minimum energy capacities, respectively (kWh)

G,G : Maximum and minimum tank capacities, respectively (gallons)

Ps, Pt : Initial and final energy stored in battery of the PHEV (kWh), respectively

Gs, Gt : Initial and final gasoline stored in tank of the PHEV (gallons), respectively

ε : Average electricity usage of the PHEV (kWh/mile)

ρ : Average gasoline usage of the PHEV (gallon/mile)

dij : Length of arc (i, j) (miles)

cei : Price of electricity at node i (¢/kWh)

cgi : Price of gasoline at node i (¢/gallon)

cst : Stopping cost (¢)

cdep : Depreciation cost of traveling for a mile (¢/miles)

• V ariables

eαi , e
β
i : Charge level at node i at arrival and departure, respectively (kWh)

e+i : Net electric energy change at node i (kWh)

gαi , g
β
i : Gasoline level at node i at arrival and departure, respectively (gallons)

g+i : Gasoline transferred to the PHEV at node i (gallons)

xij : 1 if arc (i, j) is on the minimum cost path, 0 otherwise

vi : 1 if the PHEV switches battery at node i, and 0 otherwise

ri : 1 if the PHEV refuels and/or switches battery at node i, and 0 otherwise

δi : Depth of Discharge (DoD) at node i at arrival

cbat(δi) : Degradation cost of the PHEV battery at node i

We assume the expected battery replacement cost as a quadratic function of DoD δ, i.e.,

cbat(δ) = a× δ2 + b× δ where a and b are coefficients for a given battery type

dcdij , d
cs
ij : Travel distance in charge-depleting (CD) and charge-sustaining (CS) mode while traveling on arc (i, j),

respectively (miles)
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The formulation is as follows:

minimize
∑
i∈N

cei × e+
i +

∑
i∈N

cgi × g+
i +

∑
i∈N

cbat(δi) +
∑

(i,j)∈A

dij × cdep × xij +
∑
i∈N

cst × ri

(1)

subject to∑
j:(i,j)∈A

xij −
∑

j:(i,j)∈A

xji = 1 i = s (2)

∑
j:(i,j)∈A

xij −
∑

j:(i,j)∈A

xji = 0 ∀i ∈ N/{s, t} (3)

∑
j:(i,j)∈A

xij −
∑

j:(i,j)∈A

xji = −1 i = t (4)

eβi = eαi + sei × e+
i ∀i ∈ N (5)

M × (xij − 1) ≤ eαj − e
β
i + ε× dcdij ≤M × (1− xij) ∀(i, j) ∈ A (6)

P ≤ eαi ≤ P ∀i ∈ N (7)

P ≤ eβi ≤ P ∀i ∈ N (8)

e+
i ≤ vi × P ∀i ∈ N (9)

eβi ≥ vi × P ∀i ∈ N (10)

vi ≤ ri ∀i ∈ N (11)

eαs = Ps (12)

eαt ≥ Pt (13)

δi =
e+
i

P
∀i ∈ N (14)

cbat(δi) ≥ a× (δi)
2 + b× δi −M × (1− vi) ∀i ∈ N (15)
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gβi = gαi + sgi × g+
i ∀i ∈ N (16)

M × (xij − 1) ≤ gαj − g
β
i + ρ× dcsij ≤M × (1− xij) ∀(i, j) ∈ A (17)

G ≤ gαi ≤ G ∀i ∈ N (18)

G ≤ gβi ≤ G ∀i ∈ N (19)

g+
i ≤ ri ×G ∀i ∈ N (20)

gαs = Gs (21)

gαt ≥ Gt (22)

dcsij + dcdij = dij ∀(i, j) ∈ A (23)

xij, vk, rk ∈ {0, 1}; dcdij , dcsij , eαk , e
β
k , e

+
k , g

α
k , g

β
k , g

+
k ,δ

α
k , c

bat
k ≥ 0

∀k ∈ N,∀(i, j) ∈ A (24)

The objective function minimizes the cost of traveling. The cost components

are the cost of obtaining electricity and gasoline, the battery degradation cost, the

depreciation cost and the stopping cost. Constraints (2)-(4) enforce the solution

to be a path from s to t. Constraints (5) are the electricity balance equations for

nodes. The level of electricity upon leaving node i equals the entering electricity

level plus the electricity obtained at node i. Similarly, Constraints (6) are the

electricity balance equations for those arcs that are on the path. For the non-

path arcs, the constraints are relaxed. Constraints (7)-(8) set the upper and lower

bounds for the electricity level when entering or leaving a node. Constraints (9)

assign binary vi variable a value of 1 if battery is switched at node i. Because a

switched battery is necessarily full, Constraints (10) force the charge level upon

leaving the node to be full if the battery is switched. Constraints (11) require that

ri is set to 1 if vi equals 1 and therefore a stopping cost is incurred in the objective

function if the PHEV stops to switch its battery. Constraints (12)-(13) set the

electricity level at nodes s and t, respectively. Constraints (14) assign proper
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depth of discharge values and Constraints (15) calculate the battery degradation

for each node if battery is switched. Constraints (16)-(22) are the counterparts

of constraints (5)-(13) for the gasoline case. Constraints (23) make sure that the

sum of the distances on CS and CD modes is equal to the arc length if the arc is

on the path. Constraints (24) are the domain requirements.

A directed path is an alternating sequence of nodes (n0, n1, n2, ..., nk) with

(ni, ni+1) ∈ A, ∀i = 0, . . . , k−1. A directed path is a non-simple path if it repeats

nodes and simple path otherwise. Non-simple paths can occur in transportation

networks and as solution to the E-MCPP-PHEV. The presented MIQCP formu-

lation constructs a simple path in the input network G = (N,A). By choosing G

as the meta-network or as the reduced meta-network of the input transportation

network, a wide group of non-simple paths as potential solutions can be efficiently

handled by this formulation. All non-simple path occurrences, including extremely

rare ones, can be taken into account by duplicating the nodes in G at the expense

of computational inefficiency. In the Appendix, we present possible occurrences of

non-simple paths in the optimal solutions and ways to handle those cases.

Observe that one can easily extract the following information from the outputs

of the model: the path to travel from node s to node t, how many miles to travel

on CD and CS modes on each arc, where to stop to refuel or switch battery, and

how much to refuel at each refueling stop.

Lemma 1.
(∑
i∈N

e+
i + Ps − Pt

)/
ε+

(∑
i∈N

g+
i +Gs −Gt

)/
ρ ≥

∑
(i,j)∈A

xij × dij is a

valid inequality to (2)-(24).

The inequality simply states that we need to have enough electricity and gaso-

line to travel the trip distance. Computational studies in Section 4 show that the

above cut is very effective in improving the relaxation bound.
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3.2. Dynamic Programming Based Heuristic

In this subsection, we introduce a dynamic programming based heuristic algo-

rithm referred to as DH. We first define a set of states associated with electricity

and gasoline levels at nodes. Then, we present Bellman’s equations (Bellman 1956)

that should be satisfied by minimum cost path lengths in order to facilitate the

dynamic programming solution methodology. Lastly, we present a graph transfor-

mation by which the solution of these equations can be accomplished efficiently

by solving a shortest path problem on the transformed graph.

Definition 5. A state is a triplet 〈i, σ, λ〉 which represents the arrival at a node

i ∈ N with σ ∈ [P , P ] kWh electricity charge and λ ∈ [G,G] gallons of gasoline.

We will use the notation ωσ,λi to refer to a state and replace this notation with ω

or ωi when the context does not require specific values of i, σ and λ to be discerned.

Given an E-MCPP-PHEV instance 〈V,X, s, t, Ps, Gs, Pt, Gt〉, a solution 〈x, e+, g+〉

contains a path from s to t which can be extracted from the vector x. With the

specific energy (e+) and gasoline (g+) purchases at the nodes, the distances to

be covered in CD and CS modes on this path can easily be extracted. Together

with Ps and Gs, the vectors x, e+ and g+ induce the levels of state-of-charge and

gasoline at arrival to the nodes on the solution path. So, for every solution of the

E-MCPP-PHEV, there is a unique sequence of states that represents this solution.

Note that in general, the E-MCPP-PHEV has an uncountable number of feasible

solutions. Since each of these solutions maps uniquely to a sequence of states,

the state space is also uncountable. However this uncountable state space can be

approximated with a finite one which is the main idea behind the DH.

Let ξ, τ ∈ N be the discretization parameters for the state space. Consider

two sets Σ = {σ0, σ1, . . . , σξ} and Λ = {λ0, λ1, . . . , λτ} where σ0 = P , λ0 = G,

σk = σ0 + k × P−P
ξ

∀k ∈ {1, 2, . . . , ξ} and λl = λ0 + l × G−G
τ

∀l ∈ {1, 2, . . . , τ}.
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Every σi represents the interval of electricity levels [σi, σi+1] ∀i ∈ {0, 1, . . . , ξ−1}

and σξ represent the fully charged battery. The representation for each λ is similar.

For a given E-MCPP-PHEV instance 〈V,X, s, t, Ps, Gs, Pt, Gt〉, ξ and τ values,

we define the discrete state space Ω as:

Ω = {(ωσ,λi |i ∈ N − {s, t}, σ ∈ Σ, λ ∈ Λ} ∪ {ωPs,Gss , ωPt,Gtt } (25)

Observe that the cardinality of the discrete state space Ω is bounded by n×(ξ+

1)×(τ+1) where n is the number of nodes in X, and is finite. Algorithm DH uses Ω

and incurs an approximation error on representing the amount of electricity charge

and gasoline left with the PHEV arriving at a node. Obviously this approximation

error can be reduced arbitrarily by choosing ξ and τ large enough.

Definition 6. π : Ω→ R is called the value function and π(ωσ,λi ) is defined to be

the optimal solution value of the E-MCPP-PHEV instance 〈V,X, s, i, Ps, Gs, σ, λ〉.

The minimum cost transition function f : Ω × Ω → R+ takes two states

ωσ,λi , ωσ̄,λ̄j as its arguments and returns the minimum cost of the transition from

node i starting with σ kWh charge and λ gallons of gasoline to node j ending with

at least σ̄ kWh charge and λ̄ gallons of gasoline. When calculating f(ωσ,λi , ωσ̄,λ̄j ),

we only consider how much to refuel and whether or not to switch battery at node

i. Four cases as detailed below should be considered. A feasibility condition is

stated for each case. The cost value is as presented if the feasibility condition is

met, and is not finite otherwise. Let d? represent the shortest path lengths.

� Case 1: No battery switching and no refueling.

Feasibility Condition: The existing electricity charge and gasoline are enough

to travel from node i to node j while satisfying the end-state conditions, i.e.,

σ ≥ σ̄, λ ≥ λ̄ and
(σ − σ̄)

ε
+

(λ− λ̄)

ρ
≥ d?ij.
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Total Cost: The only cost component to be incurred is the depreciation cost.

Thus, f1(ωσ,λi , ωσ̄,λ̄j ) = cdep × d?ij.

� Case 2: Refueling but no battery switching.

Feasibility Condition: The existing electricity charge and full tank of gasoline

are enough to travel from node i to node j while satisfying the end-state

conditions, i.e.,

sgi = 1, σ ≥ σ̄ and
(σ − σ̄)

ε
+

(G− λ̄)

ρ
≥ d?ij.

Total Cost: The minimum cost transition requires to use (σ − σ̄) electricity

charge first. Thus dcdij = min{d?ij,
(σ−σ̄)
ε
} and dcsij = d?ij − dcdij . On the other

hand, we need to purchase enough gasoline at node i to cover the travel

distance and retain λ̄ gallons of gasoline at node j, i.e., g+
i = (dcsij×ρ+λ̄−λ)+

gallons of gasoline should be purchased at node i. Note that, by the feasibility

condition, we make sure that the purchased gasoline is between the limits,

i.e. 0 ≤ g+
i ≤ G − λ. Since the battery is not switched, only the gasoline

cost, vehicle depreciation cost and stopping cost are included in the total

cost function which is f2(ωσ,λi , ωσ̄,λ̄j ) = cgi × g+
i + cdep × d?ij + cst.

� Case 3: Battery switching but no refueling.

Feasibility Condition: A full battery charge and existing level of gasoline are

jointly enough to travel from node i to node j while satisfying the end-state

conditions, i.e.,

sei = 1, λ ≥ λ̄ and
(P − σ̄)

ε
+

(λ− λ̄)

ρ
≥ d?ij.

Total Cost: We have e+
i = P − σ. We first use this electricity charge to
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travel from i to j. Thus, dcdij = min{d?ij,
(P−σ̄)
ε
} and dcsij = d?ij − dcdij . We do

not purchase gasoline in this case. The electricity cost, battery degradation

cost, vehicle depreciation cost and stopping cost are included in the total cost.

Thus the total cost is, f3(ωσ,λi , ωσ̄,λ̄j ) = cei × e+
i + cbat(P−σ

P
) + cdep × d?ij + cst.

� Case 4: Both battery switching and refueling.

Feasibility Condition: A full battery charge and a full tank of gasoline are

enough to travel from node i to node j, while satisfying the end-state condi-

tions, i.e.,

sei = 1, sgi = 1 and
(P − σ̄)

ε
+

(G− λ̄)

ρ
≥ d?ij.

Total Cost: In this case, we switch battery and refuel. Similar to Case

3, we necessarily have e+
i = P − σ. We first use this electricity charge

to travel from i to j. Thus, dcdij = min{d?ij,
(P−σ̄)
ε
} and dcsij = d?ij − dcdij .

Similar to Case 2, we need to purchase g+
i = (dcsij × ρ + λ̄ − λ)+ gallons of

gasoline at node i. Note that, by the feasibility condition, we make sure

that the purchased gasoline is between the limits, i.e. 0 ≤ g+
i ≤ G − λ.

All cost components are included in the total cost and thus, f4(ωσ,λi , ωσ̄,λ̄j ) =

cei × e+
i + cgi × g+

i + cbat(P−σ
P

) + cdep × d?ij + cst.

Considering all possible cases, the minimum cost transition function is defined as:

f(ω, ω̄) = min
i∈{1,2,3,4}

{fi(ω, ω̄)} (26)

The following Bellman’s equations are based on the principle of optimality:

π(ωPs,Gss ) = 0 (27)

π(ω) = min
ω̄∈Ω
{π(ω̄) + f(ω̄, ω)} ∀ω ∈ Ω (28)
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Definition 7. G̃ = (Ω, Ã) is called the DH-Graph where the node set is the discrete

state space Ω. The arc set Ã includes an arc between states ωi and ωj ∈ Ω with a

cost of f(ωi, ωj) if this cost is finite.

Once the DH-Graph is obtained, solving the Bellman’s equations, which is the

core of the DH algorithm, reduces to solving the shortest path problem on G̃ from

state ωPs,Gss to the state ωPt,Gtt . Observe that arcs on the shortest path contain

the information where the PHEV stops for refueling/recharging and how much

electricity charge/gasoline to purchase at those stops. So obtaining the shortest

path in G̃ is sufficient to obtain a solution for the E-MCPP-PHEV instance.

G̃ contains |Ω| nodes and the cardinality of the arc set Ã is bounded by |Ω|2.

Constant time calculation of the transition function f results in O
(
|Ω|2

)
run time

bound for the generation of the DH-Graph. Using Dijkstra’s algorithm to find the

shortest path in G̃, the overall run time complexity of DH becomes O
(
|Ω|2

)
.

3.3. Extended Discrete State Space Heuristic (DHE)

Due to discretization of the levels of gasoline and electricity, DH might not

always give the optimal solution in terms of refueling and battery switching policies

even if the optimal path is correctly identified. To that end, we provide extended

version of DH (DHE) in which we take into account the path that is given by

the algorithm, but not the refueling and battery switching policies. Instead, we

consider the subgraph that consists of only the path nodes and the path arcs.

Then, we solve the model presented in Subsection 3.1 on this subgraph. Since the

subgraph size is much smaller than the original graph, the solution times of the

model formulation reduce drastically and we attain improved refuel and battery

switch strategies.
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3.4. Extended Shortest Path Heuristic (SPE)

Minimizing the operating cost on the shortest path is a commonly used solution

technique to solve the minimum cost path problems in the literature. Since well

known efficient algorithms are available for finding shortest paths, such heuristics

are also pervasive in industrial and commercial applications as well. In this context,

we propose the extended shortest path heuristic (SPE) in which MIQCP model is

solved considering the shortest path as the input graph.

4. Computational Study

To test the performances of the proposed solution methodologies and drive

insights about the solutions, we conducted extensive numerical experiments using

problem instances that represent various network structures and user behaviors.

IBM ILOG CPLEX Optimization Studio 12.4 was used on a 4x16C AMD Opteron

with 96 GB RAM computer for the computational study. We present the data

and the results related to computational performances and several measures in

the following subsections. It is important to note that with several preliminary

experimentations, we have observed that working with reduced meta-networks is

satisfactory in capturing the non-simple paths that might arise in our instances and

opted to using reduced meta-networks throughout our computational experiments.

4.1. Data

A 2013 Chevrolet Volt PHEV has the following specifications: 16.5 kWh bat-

tery capacity, 9.3 gallon tank capacity, 0.352 kWh per mile and 0.027 gallons per

mile (United States Department of Energy 2013) usages. We assume a 20% min-

imum battery level. Furthermore, we assume that the battery cannot be charged

over 85% to avoid overcharging degradation. Hence, we assume a hard bound

of 14 kWh on capacity rather than 16.5 kWh. The battery cost of PHEV is as-

sumed to be $2650 and the cost function with respect to depth of discharge is
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cdep(δ) = 79.517× δ2 + 37.854× δ, as presented in Figure 3. We also assume that

the minimum tank capacity is zero and the depreciation cost is 1 ¢/mile. In order

to analyze the effects of the stopping cost on the total travel costs, we consider

stopping costs of 0, 50, 100, 200 and 500 ¢.

For the network instances, we consider square mesh shaped networks of node

sizes 6x6, 7x7, 8x8, 9x9 and 10x10. We generate 10 instances of each size. Every

node in a given network is connected with an arc to the next node on the right,

left, top and bottom, if there is one. The source and destination nodes are the

top left and bottom right nodes of the graph, respectively. The arc distances are

random values uniformly distributed between 20 and 40 miles. A refueling station

is located at every node and the gasoline prices are uniformly generated in $3.5

and $4.1 range. We assume that battery switching stations are located randomly

at 0%, 25%, 50%, 75% and 100% of the total nodes and the electricity prices at

battery switching stations change uniformly between 10 ¢ and 12 ¢. In total, we

have 250 mesh shaped networks and 5 different stopping cost values, i.e. 1250 runs.

For each set of parameters, we report the averages corresponding to 10 network

instances.

Furthermore, in order to test the performances of the solution techniques in

large datasets, we consider a real-world California road network (Li et al. 2005).

After processing this network, we have 339 nodes and 1234 arcs as depicted in

Figure 4. It is assumed that there is a refueling station in every node, and the

nodes on the highway also have battery switching stations. The other settings

related to pricing are similar to those of mesh shaped networks. The minimum

cost path and refueling/battery switching policies are obtained for each origin-

destination pair between 10 randomly selected nodes as depicted in Figure 4.
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Figure 4: California Network with 339 Nodes and 1234 Arcs
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4.2. Performances of the Solution Techniques

We present the basic computational performance measures of the solution

methodologies in Table 1. DH is solved with two different levels ξ = τ = 4

and ξ = τ = 1, which we refer to as DH4 and DH1, respectively. The percentage

of the optimal solutions for DH4 (DH1) range in 46.4-67.9% (46.4-67.9%) for all

instances, which is improved by the extended versions of the algorithms to around

88.4-97.0% (82.4-92.9%). An optimal path is found by DH4 (DH1) in around 86.4-

97.6% (81.6-92.9%) of all the instances. Since a high percentage of the optimal

solutions (ranging between 64.4-88.7%) coincide with the shortest paths, the SPE

heuristic also performs well in minimum cost path problems. However, DHE1

performs equal or better than SPE in the network instances of this study.

We observe that the solution times for the MIQCP starts getting prohibitive as

the node number increases. Beyond 100 nodes, there exist problem instances with

more than 30 minutes solution times. On the other hand, observe that the average

solution time of the DH1 is less than 0.56 seconds on all network sizes. In fact,

the average runtime of DH1 for problem instances with 900 nodes is only 40.3

seconds which makes it the suitable solution technique for devices with limited

computational capacity. However, since other solution techniques did not scale up

to such dimensions, these results are not presented here.

One important fact to note is that the valid inequality presented in Subsection

3.1 greatly contributes to the solution times of the MIQCP. The average gap of

the LP relaxation solution from the optimal solution with and without the cut

is 29.63% and 90.46%, respectively. We also observe that optimal paths of DH4

(DH1) coincide with the shortest paths on the average 63.2-89.3% (61.6-91.7%) of

instances. On the average, the deviation from the shortest path changes in the

range of 0.254-0.518% (0.091-0.526%).
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Table 1: Computational Results

Node Solution Opt. sol. Avg opt. Opt. path Is shortest Avg deviation from Solution
Number Technique found (%) gap (%) found (%) path? (%) the shortest path (%) Time

36 MIQCP 100.0 0.000 100.0 78.4 0.357 0.552
DH4 54.0 0.761 95.2 81.6 0.322 0.517
DH1 54.0 1.762 91.2 79.6 0.376 0.003
DHE4 95.2 0.011 95.2 81.6 0.322 0.938
DHE1 91.2 0.060 91.2 79.6 0.376 0.396
SPE 78.4 0.418 78.4 100.0 0.000 0.261

49 MIQCP 100.0 0.000 100.0 84.4 0.400 1.484
DH4 52.0 0.712 96.4 82.8 0.421 1.171
DH1 52.0 1.847 87.6 81.2 0.415 0.003
DHE4 96.4 0.011 96.4 82.8 0.421 1.681
DHE1 87.6 0.144 87.6 81.2 0.415 0.539
SPE 84.4 0.398 84.4 100.0 0.000 0.307

64 MIQCP 100.0 0.000 100.0 70.4 0.334 9.248
DH4 49.6 0.784 91.2 69.2 0.355 2.235
DH1 49.6 1.908 83.6 65.6 0.358 0.005
DHE4 91.2 0.039 91.2 69.2 0.355 2.899
DHE1 83.2 0.134 83.6 65.6 0.358 0.660
SPE 70.4 0.548 70.4 100.0 0.000 0.344

81 MIQCP 100.0 0.000 100.0 75.6 0.321 54.779
DH4 50.8 0.788 90.4 75.2 0.295 4.003
DH1 50.4 1.925 86.4 74.4 0.343 0.009
DHE4 90.0 0.052 90.4 75.2 0.295 4.913
DHE1 86.0 0.132 86.4 74.4 0.343 0.883
SPE 75.6 0.396 75.6 100.0 0.000 0.370

100 MIQCP 100.0 0.000 100.0 64.4 0.482 294.201
DH4 46.4 0.836 86.4 63.2 0.518 6.476
DH1 46.4 2.075 81.6 61.6 0.526 0.015
DHE4 88.4 0.029 86.4 63.2 0.518 7.823
DHE1 82.4 0.126 81.6 61.6 0.526 1.322
SPE 64.4 0.642 64.4 100.0 0.000 0.430

CAa MIQCP 100.0 0.000 100.0 88.7 0.268 501.699
DH4 67.9 0.556 97.6 89.3 0.254 253.443
DH1 67.9 1.379 92.9 91.7 0.091 0.560
DHE4 97.0 0.009 97.6 89.3 0.254 256.294
DHE1 92.9 0.099 92.9 91.7 0.091 3.338
SPE 88.7 0.257 88.7 100.0 0.000 0.715

a 74.7% of the MIQCP runs were solved to optimality within 30 minutes. The results are given for only those
cases that are solved to optimality by the MIQCP.
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4.3. Insights

The cost reduction of a PHEV trip with respect to a CV is due to the CD mode

driving technology. How much benefit can be attained is directly proportional

with the CD mode driving mileage which is dependent on the number of battery

switching stations in the network and the driver’s tolerance for stopping. In our

numerical experiments, we investigate the effects of these two main parameters:

the percentage of nodes with battery switching stations (which we refer to as

the penetration level) and the stopping costs (higher stopping costs imply less

tolerance for stopping). In the following graphs, we present the optimal results

obtained by the MIQCP formulation for 100 nodes network instances. The results

for 36, 49, 64 and 81 nodes network instances follow very similar trends to those

that we present in these graphs and hence are not presented.
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Figure 5: Average Miles per Stop for Different Stopping Costs in a Network With
100 Nodes and 100% Switching Station Penetration Level

Figure 5 depicts the average miles per stop for different stopping costs. In

order to depict the sole effect of the stopping cost on the average miles per stop,
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100% penetration is chosen. In other words, a PHEV can stop at every node in

the network in order to refuel or switch its battery. Observe that lower stopping

costs result in frequent stops. This graph can be used for quantifying one’s own

stopping cost. Knowing the tolerance for average miles between stops, one can

easily obtain his/her dollar value for stopping cost. On the other hand, the graph

can also be used to determine how many stops one can tolerate in a trip and the

opportunity cost associated with the time spent in these stops.
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Figure 6: CD Mode Trip Percentage Change for Different Stopping Costs (SC)
and Penetration Levels

Figure 6 shows the percentage of the distance covered in CD mode. At zero

penetration level, there does not exist any battery switching station in the network

and the CD mode mileage is therefore zero. With increasing penetration level, the

CD mode mileage increases accordingly. For zero stopping cost, the CD mode

trip percentage increases to almost 100% for 100% penetration level. On the other

hand, for the stopping costs of more than 200 ¢, the CD mode trip percentage does

not go above 10%. This is due to the fact that even though there exists battery
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switching opportunities on the path, the driver cannot tolerate for frequent stops

and therefore continues on the CS mode rather than CD mode. This implies that

for those drivers with less tolerance for stopping, increasing the number of battery

switching stations does not necessarily imply more CD mode drive. Increasing the

battery capacity is more important than increasing the number of switching sta-

tions. On the other hand, if the drivers are more tolerant for stopping, increasing

the number of switching stations is equivalent to increasing the battery capacity

in terms of CD mode drive percentage. Observe that this result is crucial for both

infrastructure investors and governments. We believe that decision makers need to

consider the drivers’ tolerance for stopping which is neglected in the existing litera-

ture and more research must be directed towards determining the utility functions

of PHEV drivers’ willingness for making frequent stops.
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Figure 7: The Effect of Battery Switching Station Penetration Level on the Cost
Per Mile for Different Stopping Costs (SC)

The cost per mile graph is depicted in Figure 7 for different stopping costs

and penetration levels. When solving the MIQCP model, the objective function
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included the stopping cost, but the cost in the graph is composed of only the

following components: electricity cost, gasoline cost, depreciation cost and battery

degradation cost. This way, we are able to compare the costs for different stopping

cost configurations. Observe that Figure 7 proposes similar results to previous

findings. Consider zero stopping cost. As the penetration level increases, the cost

per mile decreases to 4 ¢ for 100% penetration level. This result is due to more CD

mode trip which can also be observed in Figure 6. The decrease is not as high for

100 ¢ stopping cost case. Note that the cost is almost not affected by penetration

level increase for higher stopping costs. These results are also parallel to those in

Figure 6.
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Figure 8: The Effect of Battery Switching Station Penetration Level on the Cost
Components for 0¢ Stopping Cost

Lastly, we investigate the change of cost components with increasing penetra-

tion level. Figures 8 and 9 depict the percentage of cost components with increasing

penetration level for 0 ¢ and 500 ¢ stopping cost values, respectively. The effect

of penetration level is significant for no stopping cost and the gasoline usage sig-
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Figure 9: The Effect of Battery Switching Station Penetration Level on the Cost
Components for 500¢ Stopping Cost

nificantly diminishes for 100% penetration level. On the other hand, gasoline is

the main source of energy for every penetration level for high stopping costs as

depicted in Figure 9 and the PHEV is mainly driven in CS mode.

In the literature, several studies including Wang and Lin (2009) and Romm

(2006) argue that the main barrier for the growth of PHEVs on the road is the

scarcity of a battery switching station in the road network. However, our results

show that increasing the penetration level of the battery switching station infras-

tructure might not be enough for promoting PHEVs and the tolerance for stopping

need to be taken into account as well. For drivers with less tolerance for stopping,

increasing the battery capacity of a PHEV is more important than increasing the

number of battery switching stations. This result might affect each of the stake

holders, namely potential PHEV users, infrastructure investors and governments.

More detailed analyses on the impacts of battery characteristics, driver prefer-

ences and road network features on travel costs of a PHEV for long-distance trips
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is carried out by Arslan et al. (2014) using the presented problem and the solution

methodology.

5. Conclusion

In this article, we introduce a practically important and theoretically chal-

lenging problem: finding the minimum cost path for plug-in hybrid electric vehi-

cles. The theoretical challenge arises due to two modes of drive (CS and CD). In

fact, we show that this problem is NP-complete even though there are polynomial

time algorithms to solve its electric and gasoline special cases. Fluctuations in

fuel/electricity costs, battery degradation issues and scarcity of battery switching

stations add further and realistic challenges to our problem. Our computational

studies show that the proposed MIQCP formulation can solve problems with real-

istic sizes. A dynamic programming based heuristic and a shortest path heuristic

methodologies further extend the sizes of the solvable problems drastically and

produce near optimal solutions. The methodologies that we present in this article

are not only applicable for PHEVs, but also for all types of hybrid vehicles that

run on two types of energy resources. Furthermore, our solution methodologies

encompass fast-charging option of PHEVs as well.

Our study reveals one strategic insight about the alternative energy vehicles:

In the literature, most of the studies related to alternative energy vehicles - EV

and PHEV in particular - discuss the problem of availability of refueling and

battery switching stations as a barrier to proliferation of those vehicles. However,

the limited range of a non-fossil-fuel-energy drive not only brings the problem of

finding battery switching stations on the route, but also results in frequent battery

switching stops which may not be preferable for most of the drivers. Our study

shows that this neglected problem can also be a significant barrier. Governments

that put subsidies to promote the development and proliferation of alternative

31



energy vehicles and industries that make decisions about directing their R&D

efforts and infrastructure investments need to take drivers’ tolerance for stopping

into consideration as well.

In this appendix, we demonstrate examples of non-simple paths that might ap-

pear as the optimal solution of the E-MCPP-PHEV problem and present methods

to handle these non-simple paths by the mathematical model presented in Section

3.1.

First, note that all of the non-simple paths can be handled by duplicating every

node in the graph G (as many times as the drivers are willing to revisit the same

node in the same trip or as the number of nodes in the worst case). But this

implies a much larger graph size and brings along computational burden. Thus,

we first present ways to handle those cases by modifying the input graph for the

MIQCP model before resorting to the costly node duplication.

Problem Instance

� We consider the vehicle Instance V = 〈P = 1, P = 0, G = 9, G = 0, ε =

1, ρ = 1〉. Thus the gasoline range of a PHEV is 9 miles and the electricity

range is 1 mile.

� To illustrate different cases, we use a different network instance for each of

the three examples (Figure 10). In all three networks, nodes A, B and C are

points on the highway.

� The problem instance is given as 〈V,X,A,C, 1, 9, 0, 0〉 where X is the input

network instance. For the sake of simplicity, we also assume that battery

degradation, vehicle depreciation and stopping costs are all zero.

Case-1: Detour from the highway to refuel

We can think of nodes A, B and C as points on the highway, and D is a

refueling station just one mile away from the highway. Node B is deleted in the
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Figure 10: Non-Simple Path Examples

meta-network or reduced meta-network since it does not have a station. The

optimal non-simple path from A to C in G is A → B → D → B → C and

can be attained by using the reduced meta-network G′ as input to the MIQCP

formulation.

Case-2: Detour from the highway to refuel in a cheaper station

The middle figure illustrates a detour from the highway. But this time, there

is a refueling station on the highway (possibly with a more expensive gasoline

price) at which the PHEV can detour and go to node D in order to refuel. In

this case, MIQCP formulation can handle the optimal non-simple path A→ B →

D → B → C by using meta-network Ĝ as the input graph. Indeed, simple path
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A→ D → C in Ĝ will correspond to this solution.

Case-3: Refuel twice in the same station

Now, consider the bottom figure. This time, node B has a battery switching

station and node D has a refueling station. Observe that there is only one feasible

solution for this problem: A → B → D → B → C. The PHEV switches battery

at node B, travels to node D to refuel. Then it necessarily returns back to node

B and switches its battery again in order to be able to reach to node C. In this

example, the optimal path is a non-simple path in all three graph types and thus,

MIQCP formulation can only handle such non-simple paths by a node duplication

in this case.

Note that this particular instance can be generalized so that more than two

visits to the same node, and hence more than one duplication of the node set,

is necessary. Note also that this is a rather rare occurrence. The emergence

of such non-simple paths is not only due to price differences, but also to range

limitations as well. In the example, node B is reachable from node A, but node D

is not. Considering the combined gasoline and electric range of existing PHEVs,

this example is not very representative of the real network instances under our

scope.
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