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W e consider an assemble-to-order (ATO) system with multiple products, multiple components which may be
demanded in different quantities by different products, possible batch ordering of components, random lead times,

and lost sales. We model the system as an infinite-horizon Markov decision process under the average cost criterion. A
control policy specifies when a batch of components should be produced, and whether an arriving demand for each pro-
duct should be satisfied. Previous work has shown that a lattice-dependent base-stock and lattice-dependent rationing (LBLR)
policy is an optimal stationary policy for a special case of the ATO model presented here (the generalized M-system). In
this study, we conduct numerical experiments to evaluate the use of an LBLR policy for our general ATO model as a
heuristic, comparing it to two other heuristics from the literature: a state-dependent base-stock and state-dependent
rationing (SBSR) policy, and a fixed base-stock and fixed rationing (FBFR) policy. Remarkably, LBLR yields the globally
optimal cost in each of more than 22,500 instances of the general problem, outperforming SBSR and FBFR with respect to
both objective value (by up to 2.6% and 4.8%, respectively) and computation time (by up to three orders and one order of
magnitude, respectively) in 350 of these instances (those on which we compare the heuristics). LBLR and SBSR perform
significantly better than FBFR when replenishment batch sizes imperfectly match the component requirements of the most
valuable or most highly demanded product. In addition, LBLR substantially outperforms SBSR if it is crucial to hold a
significant amount of inventory that must be rationed.
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1. Introduction

It is common knowledge that assemble-to-order
(ATO) systems are notoriously difficult to analyze:
Despite the popularity of ATO systems in practice,
the structure of the optimal inventory replenishment
and allocation policy is still unknown for general
ATO systems. Previous work has only established the
optimal policy structure for very specific ATO sys-
tems—such as the W-system and the M-system; see
Dogru et al. (2010), Lu et al. (2014), and Nadar et al.
(2014) for example. As a result, simple heuristic con-
trol policies for general ATO systems are attracting
widespread interest in practice (Lu et al. 2010). Like-
wise, several researchers have explored performance
evaluation and optimization techniques of various
heuristic policies; see, for instance, Zhang (1997),
Agrawal and Cohen (2001), and Akcay and Xu (2004).
We refer the reader to Song and Zipkin (2003) for a
comprehensive review of this literature.

In a recent study, Nadar et al. (2014) consider a
Markovian ATO “generalized M-system.” This sys-
tem involves a single master product which uses mul-
tiple units from each component, and multiple
individual products each of which uses multiple units
from a single unique component. They prove that if
replenishment batch sizes are determined by individ-
ual product sizes, the optimal inventory replenish-
ment policy is a lattice-dependent base-stock production
policy and the optimal inventory allocation policy is a
lattice-dependent rationing policy. This implies that the
state space of the problem can be partitioned into dis-
joint lattices such that, on each lattice, (a) it is optimal
to produce a batch of a particular component if and
only if the state vector is less than the base-stock level
of that component on the current lattice; and (b) it is
optimal to fulfill a demand of a particular product if
and only if the state vector is greater than or equal to
the rationing level for that product on the current
lattice.

647

Vol. 25, No. 4, April 2016, pp. 647–661 DOI 10.1111/poms.12498
ISSN 1059-1478|EISSN 1937-5956|16|2504|0647 © 2015 Production and Operations Management Society



In this study, we adapt the lattice-dependent base-
stock and lattice-dependent rationing (LBLR) policy
introduced by Nadar et al. (2014) to ATO systems
with general product structures, evaluating its use as a
heuristic replenishment and allocation policy. We also
compare the LBLR policy to two other heuristics, both
from Benjaafar and ElHafsi (2006): a state-dependent
base-stock and state-dependent rationing (SBSR) pol-
icy, and a fixed base-stock and fixed rationing (FBFR)
policy. We take the average cost rate as our perfor-
mance criterion.
Different versions of the FBFR and SBSR policies

have been extensively studied in the Markovian
inventory literature; see, for instance, Ha (1997, 2000),
de V�ericourt et al. (2002), Frank et al. (2003), ElHafsi
et al. (2008), ElHafsi (2009), Gayon et al. (2009), and
Benjaafar et al. (2011). Although FBFR is a subclass of
SBSR, it has the advantage of being relatively easy to
understand and implement (Dekker et al. 2002).
LBLR, FBFR, and SBSR are all deterministic policies, as
opposed to randomized policies. (A deterministic pol-
icy always chooses the same action in a state, while a
randomized policy may choose actions according to a
probability distribution.) Randomized policies are
often more difficult to implement, so in practice a con-
troller may prefer to use a deterministic, but poten-
tially suboptimal policy (Puterman 1994).
We develop a Linear Programming (LP) formula-

tion to find the globally optimal stationary random-
ized policy, and Mixed Integer Programming (MIP)
formulations to find the optimal stationary determin-
istic policy within each heuristic class (LBLR, SBSR,
and FBFR). We analytically show that LBLR outper-
forms the other heuristics with respect to objective
value, cf. Proposition 1. We then generate over 22,500
instances to numerically test efficacy of LBLR in a
variety of settings. Remarkably, we find that LBLR
yields the globally optimal cost in each of these
instances.
We also find that LBLR performs better than SBSR

(or FBFR) by up to 2.6% (or 4.8%) of the globally opti-
mal cost on a test bed constructed from 350 instances.
(The average distances from the optimal cost are 0.5%
and 1.4%, respectively.) LBLR also has a notable com-
putational advantage; the computation times of LBLR
are shorter by up to three orders and one order of
magnitude, respectively. Our numerical results indi-
cate that LBLR and SBSR perform significantly better
than FBFR when the component batch sizes imper-
fectly match the component requirements of the most
highly demanded and/or most valuable product. In
addition, LBLR has the greatest benefit over SBSR
when products are highly differentiated but demand
for each product should have a substantial fill rate.
The latter observation is also supported by a regres-
sion study.

Our results suggest that the LBLR policies may be
optimal for general ATO systems. However, we have
found counter examples (see the online appendix)
showing that the functional characterizations used in
Nadar et al. (2014) to prove the optimality of LBLR
for generalized M-systems need not hold for ATO
systems with general product structures. Thus, show-
ing the optimality of LBLR for general ATO systems
will likely require a different methodology.
We contribute to the ATO literature in several

important ways: First, our computational results
reveal the practicality of LBLR as a heuristic determin-
istic policy for the general ATO problem. Second, by
identifying the optimal policy structure as LBLR in
our numerical experiments, we are able to uncover
the role of different product characteristics in optimal
control of ATO systems. Specifically, we provide Rule
of Thumb 1 to guide the partitioning of the state space
into disjoint lattices for LBLR. Third, we highlight
when, and how, common heuristics may fall short,
producing high-level guidelines for control policy
choices in different environments.
The rest of this study is organized as follows:

Section 2 describes the model and LP formulation.
Section 3 describes the heuristics along with the
MIP formulation of LBLR. Section 4 presents and
interprets numerical results for the heuristics. Sec-
tion 5 offers a summary and concludes. The MIP
formulations of SBSR and FBFR, additional numeri-
cal results, and the structural counter examples to
Nadar et al. (2014) are contained in the online
appendix.

2. Model Formulation

We consider an ATO system with m components
(i = 1, 2, .., m) and n products (j = 1, 2, .., n). Define
A as an m 9 n nonnegative resource-consumption
matrix; aij is the number of units of component i
needed to assemble one unit of product j. Each com-
ponent i is produced in batches of a fixed size qi in a
make-to-stock fashion. Define q ¼ ðq1; q2; ::; qmÞ as
the vector of production batch sizes. Production time
for a batch of component i is independent of the sys-
tem state and the number of outstanding orders of
any type, and exponentially distributed with finite
mean 1=li. Assembly lead times are negligible so that
assembly operations can be postponed until demand
is realized. Demand for each product j arrives as an
independent Poisson process with finite rate �j.
Demand for product j can be fulfilled only if all the
required components are available; otherwise, the
demand is lost, incurring a unit lost sale cost cj.
Demand may also be rejected in the presence of all
the necessary components, again incurring the unit
lost sale cost cj.
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The state of the system at time t is the vector
XðtÞ ¼ ðX1ðtÞ; ::; XmðtÞÞ, where XiðtÞ is a nonnegative
integer denoting the on-hand inventory for compo-
nent i at time t. Component i held in stock incurs a
holding cost per unit time hiðXiðtÞÞ, which is convex
and strictly increasing. Denote by hðXðtÞÞ ¼P

i hiðXiðtÞÞ the total inventory holding cost rate at
state X(t). Since all inter-event times are exponentially
distributed, the system retains no memory, and deci-
sion epochs can be restricted to times when the state
changes. Using the memoryless property, we can for-
mulate the problem as an Markov decision process
and focus on Markovian policies for which actions at
each decision epoch depend solely on the current
state. A control policy ‘ specifies for each state
x ¼ ðx1; ::; xmÞ, the action u‘ðxÞ ¼ ðuð1Þ; ::; uðmÞ; u1;
::; unÞ, uðiÞ; uj 2 f0; 1g, ∀i, j; where uðiÞ ¼ 1 means
produce component i, and uðiÞ ¼ 0 means do not pro-
duce component i; uj ¼ 1 means satisfy demand for
product j, and uj ¼ 0 means reject demand for pro-
duct j. Denote by UðxÞ the set of admissible actions at
state x. For any action u ¼ ðuð1Þ; ::; uðmÞ; u1;
::; unÞ 2 UðxÞ, we must have uj ¼ 0 if ∃i s.t. xi \ aij.
As each ordering decision specifies only whether or

not to produce a component, there is at most one out-
standing batch order for each component at any time.
Also, as component orders are not part of our system
state, these can in effect be cancelled upon transition
to a new state. Both of these assumptions are standard
in the literature (see, e.g., Ha 1997, Benjaafar and
ElHafsi 2006, and ElHafsi et al. 2008). Our numerical
results suggest that the latter assumption is benign:
Orders are cancelled optimally in 55% of the 350 com-
piled instances in subsections 4.1 and 4.2. However,
for those instances, if the optimal policy of our model
is followed but orders are never cancelled, it increases
costs by no more than 3.29%, and the average cost
increase is 0.08%.
Let v denote a real-valued function defined on Nm

0

(where N0 is the set of nonnegative integers and Nm
0 is

its m-dimensional cross product). For a given policy ‘
and starting state x 2 Nm

0 , the average cost per unit
time over an infinite planning horizon v‘ðxÞcan be
written as follows (see, e.g., ElHafsi et al. 2008 and
Nadar et al. 2014):

v‘ðxÞ ¼ limsup
T!1

1

T

Z T

0

hðXðtÞÞdtþ
Xn
j¼1

Z T

0

cjdNjðtÞ
8<
:

9=
;;

where NjðtÞ is the number of demands for product j
that have been rejected up to time t. The objective is
to identify a policy ‘� that yields v�ðxÞ ¼ inf‘v‘ðxÞ
for all states x.
We next formulate a linear program to find a global

optimal solution to the above problem. Define myjx;u as

the rate at which the system moves from state x to
state y if action u 2 UðxÞ is chosen, and px;u as the lim-
iting probability that the system is in state x and
action u 2 UðxÞ is chosen. As a computational
requirement, we restrict the state space to be finite;
define �x ¼ ð�x1; ::; �xmÞ as a vector of upper bounds for
component inventory levels. (The upper bound
should be sufficiently high so that the globally opti-
mal cost does not change with a further increase
in the upper bound.) Thus, for any action
u ¼ ðuð1Þ; ::; uðmÞ; u1; ::; unÞ 2 UðxÞ, we must have
uðiÞ ¼ 0 if xi þ qi [ �xi. The globally optimal average
cost Z� can be found by solving the following linear
program (see Puterman 1994):

ðLPÞminimize
X
x��x

X
u2UðxÞ

hðxÞpx;uþ
X
x��x

X
u2UðxÞ

X
j:uj¼0

�jcjpx;u

subject toX
u2UðyÞ

py;u
X
x��x

mxjy;u�
X
x��x

X
u2UðxÞ

myjx;upx;u ¼ 0;

8y� �x; ð1Þ
X
x��x

X
u2UðxÞ

px;u ¼ 1; ð2Þ

px;u � 0; 8x � �x; 8u 2 UðxÞ; ð3Þ

where “�” denotes component-wise inequality (i.e.,
x � �x () xi � �xi; 8i). The first term of the objective
function corresponds to the time-average inventory
holding cost and the second term corresponds to the
time-average lost sales cost. Constraints (1) and (2)
are the balance equations and normalization con-
straint that together yield the limiting probability
values.
Notice that the above linear program may yield a

randomized policy as the global optimal solution, that
is, there may exist a state x such that px;u1 [ 0 and
px;u2

[ 0, where u1;u2 2 UðxÞ. This can indeed occur:
We have found instances for which a randomized pol-
icy is optimal. But, for these instances there also exists
an optimal (deterministic) LBLR policy with the same
objective value.

3. Heuristic Policies and Their MIP
Formulations

3.1. Lattice-Dependent Base-Stock and
Lattice-Dependent Rationing
We introduce the notation Lðp; rÞ ¼ fp þ kr :
k 2 N0g to denote an m-dimensional lattice with ini-
tial vector p 2 Nm

0 and common difference r 2 Nm
0 ,

where ∃i such that pi \ ri. For any r 2 Nm
0 ,

Nm
0 ¼ S

p Lðp; rÞ and Lðp1; rÞ \ Lðp2; rÞ ¼ ;; 8p1;
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p2 s.t. p1 6¼ p2. In other words, we partition the state
space into multiple disjoint lattices with common dif-
ference r. We also define Di ¼ ðDi

1;D
i
2; ::;D

i
mÞ and

Dj ¼ ðDj1;Dj2; ::;DjmÞ as m-dimensional vectors of non-
negative integers. With these we describe an LBLR
policy as follows:

(i) Inventory replenishment of each component i
follows a lattice-dependent base-stock policy
with lattice-dependent base-stock levels
SiðpÞ 2 Lðp;DiÞ such that a batch of component
i is produced if and only if x 2 Lðp;DiÞ is less
than SiðpÞ; and

(ii) Inventory allocation for each product j follows
a lattice-dependent rationing policy with lat-
tice-dependent rationing levels RjðpÞ 2 Lðp;DjÞ
such that a demand for product j is satisfied if
and only if x 2 Lðp;DjÞ is greater than or equal
to RjðpÞ.

An illustration of such a policy for a 2-component
2-product system is shown in Figure 1.
We could optimize over the vectors Di and Dj to

obtain the LBLR policy with the least cost. But it is
both time-consuming and unnecessary to do so,
considering the optimal performance of LBLR in
Section 4 when these vectors obey the following rule
of thumb:

RULE OF THUMB 1. Given the parameters aij and cj, ∀i,j:
(i) Di

i ¼ maxj aij, and Di
k ¼ minj akj, ∀k 6¼i; and (ii)

Dji ¼ aij� where j� ¼ argmaxk 6¼j ck, ∀i.

Rule of Thumb 1 builds largely upon previously
established optimality results for ATO systems (see
Benjaafar and ElHafsi 2006, and Nadar et al. 2014).
See Figure 1 for an illustration in a 2-component 2-
product system: Consider the state space partitioning
scheme of component 1 for example. When we transi-
tion to a higher state on a given lattice (and a suffi-
cient amount of component 2 exists), the total
demand for any product that can be satisfied increases
by one since we increase the inventory level of
component 1 by the maximum of the numbers of
component 1 required by a product. Thus, the
desirability of producing a batch of component 1 is
likely to be weakly lower at a higher state.
Conversely, when we transition to a higher state on a
given lattice, we increase the inventory level of
component 2 by the minimum of the numbers of
component 2 required by a product as we want to
reduce the incentive to produce a batch of component
1. The inventory level of component 2 should not be
increased too much, because then it may be better to
produce component 1 at a higher state if the inventory
level of component 1 is significantly lower than the
inventory level of component 2 at this higher state.

Hence, Rule of Thumb 1 seems likely to engender a
lower incentive to produce a component at a higher
state on a lattice. This justifies the use of a base-stock
policy.
Now consider what happens when we transition to

a higher state on a given lattice by increasing the
inventory levels by the component requirements of
product 2: The desirability of satisfying a demand for
product 1 is likely to be higher. This is because
demands of product 1 compete with those of product
2 for the components, and the competition becomes
less severe with the supply increase sufficient to sat-
isfy a demand for the competitor product 2. (For ATO
systems with more products the state space partition-
ing scheme of a product is based on the component
requirements of its competitor product with the high-
est lost sale cost.) Hence, Rule of Thumb 1 seems likely
to engender a weakly higher incentive to satisfy a
demand for a product at a higher state on a lattice,
justifying the use of a rationing policy.
We proceed to the MIP formulation of this heuristic

class. First, define the set Siðp;bÞ ¼ fðx;uÞ :
x 2 Lðp;DiÞ; x � �x; u 2 UðxÞ; and

P
x;u px;u ¼ 0 ,

SiðpÞ ¼ bg for b 2 Lðp;DiÞ. The elements of the set
Siðp;bÞ are state-action pairs (x,u) such that the limit-
ing probability that the system is in state x and action
u is chosen should be zero when the base-stock level
of component i equals b, on the lattice with initial vec-
tor p and common difference Di. Likewise, define the
set Rjðp;bÞ ¼ fðx;uÞ : x 2 Lðp;DjÞ; x � �x; u 2 UðxÞ;
and

P
x;u px;u ¼ 0 , RjðpÞ ¼ bg for b 2 Lðp;DjÞ. The

elements of the set Rjðp;bÞ are state-action pairs (x,u)
such that the limiting probability that the system is in
state x and action u is chosen should be zero when the
rationing level for product j equals b, on the lattice
with initial vector p and common difference Dj.
Lastly, define z

SiðpÞ
b and z

RjðpÞ
b as binary variables as

follows:

z
SiðpÞ
b ¼ 1 if SiðpÞ ¼ b;

0 otherwise.

�

z
RjðpÞ
b ¼ 1 if RjðpÞ ¼ b;

0 otherwise.

�

We are now ready to describe the constraints of the
MIP problem. First, the optimal solution of the MIP
problem should satisfy constraints (1)–(3) of the LP
formulation of the optimal policy (LP). Also, on each
lattice, the optimal solution should select exactly one
base-stock level for each component and one ration-
ing level for each product. Thus we impose the fol-
lowing constraints:

X
b2Lðp;DiÞ

z
SiðpÞ
b ¼ 1; 8p and 8i; ð4Þ
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X
b2Lðp;DjÞ

z
RjðpÞ
b ¼ 1; 8p and 8j: ð5Þ

The constraints below link our binary variables to
the appropriate limiting probability variables:

X
ðx;uÞ2Siðp;bÞ

px;u�1� z
SiðpÞ
b ; 8p; 8b; and 8i; ð6Þ

X
ðx;uÞ2Rjðp;bÞ

px;u � 1� z
RjðpÞ
b ; 8p; 8b; and 8j: ð7Þ

In constraint (6), if z
SiðpÞ
b equals one, then all limiting

probability variables corresponding to the state-
action pairs in set Siðp;bÞ are forced to equal zero.

Likewise, in constraint (7), if z
RjðpÞ
b equals one, then

all limiting probability variables corresponding to
the state-action pairs in set Rjðp;bÞ are forced to

equal zero. Otherwise, these constraints become
redundant. See Bhandari et al. (2008) for a similar
MIP formulation in a different context. The optimal
average cost of this policy ZLBLR can be found by
solving the following MIP problem:

Figure 1 Illustration of LBLR for a 2 3 2 System with A = ((1,1),(1,3)), q = (1,3), h1 ¼ 1, h2 ¼ 5, l1 ¼ l2 ¼ k1 ¼ k2 ¼ 1, c1 ¼ 20, c2 ¼ 100,
�x1 ¼ �x2 ¼ 10 (a) Optimal Replenishment Decisions for Component 1 (b) Optimal Replenishment Decisions for Component 2 (c) Optimal
Allocation Decisions for Product 1 (d) Optimal Allocation Decisions for Product 2

Notes. In graphs (a) and (b), a filled circle means produce a batch of components at the corresponding inventory levels. In graphs (c) and (d), a filled
circle means fulfill the demand at the corresponding inventory levels. In graphs (a)–(d), each dashed line forms a different lattice; its slope is determined
by D1 ¼ ð1; 1Þ, D2 ¼ ð1; 3Þ, D1 ¼ ð1; 3Þ, and D2 ¼ ð1; 1Þ, respectively.
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(LBLR)

minimize
X
x��x

X
u2UðxÞ

hðxÞpx;u þ
X
x��x

X
u2UðxÞ

X
j:uj¼0

�jcjpx;u

subject to ð1Þ–ð7Þ:

3.2. State-Dependent Base-Stock and
State-Dependent Rationing
Define x�i ¼ ðx1; ::; xi�1; xiþ1; ::; xmÞ as a vector of the
inventory levels for components k 6¼i. With this we
describe an SBSR policy as follows (as in Benjaafar
and ElHafsi 2006):

(i) Inventory replenishment of each component i
is governed by state-dependent base-stock
levels Siðx�iÞ: a batch of component i is pro-
duced if and only if xi � Siðx�iÞ; and

(ii) Inventory allocation for demand class j is gov-
erned by state-dependent rationing levels
Rijðx�iÞ: a demand from class j is fulfilled if
and only if xi �Rijðx�iÞ, ∀i.

Different demand classes in Benjaafar and ElHafsi
(2006) correspond to different products in our model.
The SBSR policy has the following additional proper-
ties (Benjaafar and ElHafsi 2006):

(a) The base-stock level of any component is non-
decreasing in the inventory level of any other
component;

(b) A unit increase in the inventory level of one
component leads to at most a unit increase in
the base-stock level of any other component;

(c) The rationing level for any demand class at
one component is nonincreasing in the inven-
tory level of any other component;

(d) Once initiated, the production of a component
is never interrupted;

(e) For each component, the rationing level for
any demand class is greater than or equal to
the rationing level for the demand class with
the next higher lost sale cost; and

(f) Demands with the highest lost sale cost are
always satisfied if sufficient inventory exists.

Properties (e) and (f) are inapplicable to our general
model, as our products differ not only in their lost sale
costs but also in their component usage rates, and
thus we do not enforce these properties. We also omit
property (d) from SBSR to keep the state space man-
ageable; this can only improve the performance of
SBSR. The MIP formulation for our “relaxed” SBSR
policy is contained in the online appendix; define
ZSBSR as the optimal average cost of this policy.
Benjaafar and ElHafsi (2006) showed that, under

Markovian assumptions, the SBSR policy is optimal
when the system involves a single end-product that

requires one unit from multiple components and is
demanded by multiple demand classes.

3.3. Fixed Base-Stock and Fixed Rationing
Lastly, we describe an FBFR policy as follows (as in
Benjaafar and ElHafsi 2006):

(i) Inventory replenishment of each component i
is governed by a fixed base-stock level Si: a
batch of component i is produced if and only if
xi � Si; and

(ii) Inventory allocation for each product j is gov-
erned by a vector of fixed rationing levels
Rj ¼ ðR1j;R2j; ::;RmjÞ: a demand for product j is
satisfied if and only if xi �Rij, ∀i.

We also provide the MIP formulation of this heuris-
tic class in the online appendix. Define ZFBFR as the
optimal average cost of this policy.

3.4. Analytical Comparison of Heuristic Policies
The proposition below ranks our heuristic policies in
terms of their optimal costs:

PROPOSITION 1. Z� �ZLBLR �ZSBSR �ZFBFR

PROOF OF PROPOSITION 1. The first and third inequali-
ties hold since LP is a relaxation of all the other
MIP formulations and since FBFR is a subclass of
SBSR. To prove the second inequality, we will show
that SBSR is a subclass of LBLR.
Recalling the definitions of Di ¼ ðDi

1;D
i
2; ::;D

i
mÞ

and Dj ¼ ðDj1;Dj2; ::;DjmÞ from subsection 3.1, we
choose any specific Di such that Di

i �
P

k 6¼i D
i
k, ∀i (re-

call LBLR chooses the optimal Di). The only con-
straint LBLR places on inventory replenishment
decisions is that if a batch of component i is not pro-
duced at inventory level x, then it is not produced
at inventory level x þ Di. This is also true under an
SBSR policy: If a batch of component i is not pro-
duced at inventory level x, then the base-stock level
of component i is less than xi at inventory level x.
Property (b) of SBSR implies that if the inventory
level of component k 6¼i increases by Di

k, ∀k, then the
base-stock level of component i increases by at mostP

k 6¼i D
i
k units. Consequently, the base-stock level of

component i is less than xi þ
P

k 6¼i D
i
k at inventory

level x þ Di. As we assume Di
i �

P
k 6¼i D

i
k, a batch of

component i is not produced at inventory level
x þ Di.
The only constraint on inventory allocation deci-

sions is that if a demand for product j is satisfied at
inventory level x, then it is satisfied at inventory
level x þ Dj. Property (c) of SBSR guarantees that if
a demand for product j is satisfied at inventory level
x, then it is also satisfied at inventory level y ≥ x.
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Hence, any SBSR policy can be replicated by LBLR
with an appropriate Di. h

4. Numerical Experiments

We examine the performance of LBLR relative to
SBSR and FBFR, investigating how system parame-
ters affect the relative costs of each policy. For ease
of exposition, we initially focus on 2-component
2-product systems in which either (1) products are
nested—one product requires a subset of compo-
nents used by the other product (Subsection 4.1), or
(2) products are not nested (Subsection 4.2). Our
regression results indicate that the gap between
LBLR and SBSR decreases with the ratio of lost sale
costs in the nested structure (p-value of 0.001),
while there is no such monotonic relationship in the
non-nested structure.
Altogether we examine 350 instances in subsections

4.1 and 4.2. After comparing computational efforts in
subsection 4.3, we report numerical results for 24
selected larger instances in subsection 4.4. Finally, to
draw more general conclusions about LBLR, we com-
pare its cost to that of the optimal policy on 22,500
instances in subsection 4.5.
To construct our 2-component 2-product systems,

we select two products from a set of four (A, B, C, and
D), each of which requires different amounts of two
different components (/ and c):

For each of our 2-component 2-product systems we
generate instances by varying values of qi, hi, cj, and
�j, assuming linear holding cost rates (i.e.,
hiðxiÞ ¼ hixi). We impose �xi ¼ 10, ∀i, in all instances.
For each instance, we solve the LP and MIP problems
to find the minimum average costs and corresponding
product fill rates (denoted by fj). We compare the
heuristic policies in terms of (i) their percentage
differences from optimal cost Z�, calculated as
100� ZH�Z�

Z� where H 2 {LBLR,SBSR,FBFR}; and (ii)
their computation times. We coded the LP and MIP
formulations in the Java programming language,
incorporating CPLEX 12.5 optimization package, and
used a dual processor WinNT server, with Intel Core
i7 2.67 GHz processor and 8 GB of RAM. We
restricted the computation time of any instance to be
no more than 1000 seconds.
If we increase �xi from 10 to 11, ∀i, the globally opti-

mal cost decreases by no more than 2.67% and the
average percentage decrease is 0.31% for the 350 com-
piled instances in subsections 4.1 and 4.2. This may

suggest that we should impose a larger bound such
that the globally optimal cost stays the same. How-
ever, since the SBSR computation times exceed 1000
seconds in some instances when �xi ¼ 10, ∀i, increas-
ing the upper bound can lead to greater costs for
SBSR.
Although our configurations in subsections 4.1, 4.2,

and 4.4 violate the sufficient conditions ensuring the
optimality of LBLR in Nadar et al. (2014), LBLR, using
Rule of Thumb 1, yields the globally optimal cost in each of
those instances that could be solved within 5 hours. (We
verified that this result holds for the instances in sub-
sections 4.1 and 4.2 with �xi ¼ 40; 8i.) This motivates
our examination in subsection 4.5, where we generate
22,500 instances of general 2-component 2-product
systems: LBLR yields the globally optimal cost in all of
these instances as well.

4.1. Nested Structure
We consider three different examples: (a) An ATO
system with products A and D, q/ ¼ 1, and qc ¼ 3;
(b) an ATO system with products A and B, q/ ¼ 1,
and qc ¼ 2; and (c) an ATO system with products A
and B, and q/ ¼ qc ¼ 1. In each example we vary the
holding cost rates of the components and the ratio of
lost sale costs of the products, all else being equal.
Also, we vary demand rates, all else being equal.
LBLR yields the globally optimal cost in all instances.
(LBLR continues to yield the globally optimal cost in
all instances even when q/; qc 2 f1; 2; 3; 4; 5g.) The per-
centage differences for SBSR and FBFR are only suffi-
ciently large to convey meaningful information in
Example (a), so we relegate the numerical results for
Examples (b) and (c) to the online appendix. How-
ever, we will study each example in a separate regres-
sion analysis. An explanation of the lower percentage
differences in Examples (b) and (c) is that smaller
component usage rates lead to fewer lattices, making
use of LBLR less important.

4.1.1. LBLR vs. SBSR. We observe from Table 1
that, for fixed holding cost rates, the largest two gaps
always occur when the ratio of lost sale costs is 0.2 or
0.4: Products become less differentiated when the
ratio increases, and therefore they should be treated
as if they are almost equally important in stock alloca-
tion decisions, decreasing the benefit of a lattice-
dependent rationing policy. An important insight
here is that product differentiation is driven both by
differences in lost sale costs and component usage
rates. Thus, when the ratio of lost sale costs is suffi-
ciently large but lower than 1 (say 0.6 and 0.8), we
expect products A and D to be only slightly differenti-
ated, since product A requires fewer components.
But, when the ratio is 1, products again become
significantly differentiated, due to the difference in

A B C D

/ 1 1 2 1
c 1 2 1 3
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component usage rates. This explains why the fill
rates of product D are lower than those of product A
when the ratio is 1. However, such differentiation
results in smaller optimal cost gaps than when the
ratio is 0.2 and 0.4.
We next examine the percentage gaps under differ-

ent holding cost rates when cA=cD is equal to 0.2. As
h/ increases while hc is fixed, the gap declines. How-
ever, as hc increases while h/ is fixed, the gap
increases (there is a minor exception at h/ ¼ 5). As h/

increases, inventory control decisions rely more heav-
ily on component /, and therefore, since products A
and D use the same number of component / (but dif-
ferent numbers of component c), SBSR better mimics
LBLR and the gap diminishes. But the reverse is true
as hc increases. Also note that the gap declines as both
h/ and hc increase: Higher holding cost rates lead to
less inventory in the system, shrinking the action
space and the number of actions in which LBLR and
SBSR differ.

Table 1 Numerical Results for Nested Structure

Optimal solution
Percentage difference from

optimal cost Computation times (in seconds)

h/ hc cA=cD Average cost fA fD LBLR SBSR FBFR LBLR SBSR FBFR

1 1 0.2 54.974 0.160 0.707 0.000 1.397 1.481 0.39 138.74 2.44
– – 0.4 69.827 0.300 0.669 0.000 1.054 1.293 0.41 112.54 2.09
– – 0.6 83.416 0.340 0.642 0.000 0.495 0.513 0.37 20.03 1.65
– – 0.8 96.217 0.407 0.582 0.000 0.178 0.312 0.38 18.16 2.93
– – 1.0 106.280 0.631 0.360 0.000 0.123 0.993 0.44 17.05 2.31
– 3 0.2 63.591 0.213 0.690 0.000 2.000 2.511 0.40 1000 4.02
– – 0.4 78.085 0.316 0.651 0.000 1.550 2.456 0.38 68.87 2.21
– – 0.6 91.221 0.381 0.599 0.000 0.850 1.879 0.37 18.71 2.86
– – 0.8 102.751 0.474 0.508 0.000 0.364 1.789 0.36 14.59 2.62
– – 1.0 111.582 0.629 0.356 0.000 0.218 2.273 0.43 11.29 2.46
– 5 0.2 71.364 0.244 0.668 0.000 2.476 3.444 0.41 1000 4.56
– – 0.4 85.140 0.358 0.610 0.000 1.711 3.390 0.40 132.15 3.87
– – 0.6 97.362 0.423 0.551 0.000 1.014 2.668 0.39 81.19 2.30
– – 0.8 107.718 0.511 0.466 0.000 0.738 2.288 0.37 14.17 2.17
– – 1.0 116.091 0.623 0.358 0.000 0.129 3.165 0.36 9.99 2.24
3 1 0.2 61.368 0.112 0.689 0.000 0.917 1.121 0.32 60.17 3.29
– – 0.4 76.644 0.328 0.632 0.000 0.620 0.677 0.43 23.43 2.73
– – 0.6 89.403 0.389 0.598 0.000 0.377 0.391 0.35 13.77 1.72
– – 0.8 101.044 0.451 0.541 0.000 0.223 0.297 0.43 16.10 2.40
– – 1.0 110.406 0.608 0.385 0.000 0.033 0.604 0.36 13.98 1.67
– 3 0.2 70.509 0.132 0.670 0.000 1.103 2.088 0.33 18.15 3.86
– – 0.4 85.362 0.337 0.617 0.000 1.023 1.812 0.35 110.82 3.83
– – 0.6 97.654 0.429 0.555 0.000 0.668 1.589 0.37 24.11 3.06
– – 0.8 108.447 0.500 0.487 0.000 0.351 1.647 0.43 16.14 2.97
– – 1.0 116.867 0.615 0.375 0.000 0.436 2.347 0.42 15.42 2.33
– 5 0.2 78.196 0.150 0.652 0.000 1.270 2.136 0.40 127.20 1.97
– – 0.4 92.564 0.373 0.578 0.000 1.481 2.639 0.38 183.87 3.79
– – 0.6 104.024 0.466 0.515 0.000 0.710 2.623 0.37 19.34 4.33
– – 0.8 113.995 0.531 0.453 0.000 0.409 2.683 0.37 17.70 2.82
– – 1.0 122.202 0.622 0.365 0.000 0.222 2.885 0.37 16.22 2.53
5 1 0.2 65.655 0.123 0.664 0.000 0.786 1.250 0.31 18.92 3.03
– – 0.4 81.147 0.328 0.607 0.000 0.755 0.927 0.39 20.05 3.11
– – 0.6 93.924 0.407 0.561 0.000 0.103 0.152 0.35 16.73 2.15
– – 0.8 105.146 0.483 0.505 0.000 0.444 0.587 0.35 24.70 3.00
– – 1.0 114.037 0.588 0.406 0.000 0.030 0.349 0.37 11.03 1.19
– 3 0.2 75.148 0.137 0.646 0.000 0.816 2.354 0.32 29.74 5.13
– – 0.4 90.404 0.336 0.590 0.000 0.907 1.584 0.40 27.17 5.09
– – 0.6 102.664 0.450 0.518 0.000 0.363 1.257 0.43 12.98 3.12
– – 0.8 113.290 0.553 0.429 0.000 0.180 1.832 0.36 12.95 7.91
– – 1.0 121.537 0.606 0.384 0.000 0.310 2.120 0.44 11.71 2.26
– 5 0.2 82.579 0.151 0.612 0.000 0.679 1.672 0.32 34.04 5.68
– – 0.4 97.557 0.355 0.556 0.000 1.332 2.829 0.40 167.97 6.36
– – 0.6 109.376 0.478 0.484 0.000 0.434 2.200 0.40 37.17 3.11
– – 0.8 119.242 0.576 0.397 0.000 0.174 2.486 0.42 14.57 2.62
– – 1.0 127.367 0.612 0.373 0.000 0.422 2.850 0.43 15.80 3.01

Notes. q/ ¼ 1, qc ¼ 3, �A ¼ �D ¼ 1, l/ ¼ lc ¼ 1, cD ¼ 100. Computation times equal to 1000 seconds indicate termination of the algorithm.
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We list computation times for the heuristics in the
last three columns of this and subsequent tables. It is
clear LBLR has distinct computational advantage over
SBSR, and a slight one over FBFR. We discuss compu-
tation times in greater detail in subsection 4.3.
We next vary demand arrival rates, in Table 2. For a

fixed demand rate of product A, the largest two gaps
always occur when the demand rate of product D is
0.5 and 1. When �D takes greater values, the cost of
rejecting the demand per unit time for product D rela-
tive to the cost of rejecting all demands per unit time
(i.e., �DcD

�AcAþ�DcD
) is higher. Since product D has a greater

impact on total costs, product D dominates product A
and the system is close to the one with a single pro-
duct (where SBSR is optimal). But, when �D is 0.5 or
1, since product D has a higher lost sale cost, the effect
of product dominance is less significant and LBLR
can outperform SBSR by a couple of percent. Also,
observe that as �A increases while �D is 0.5, the gap
declines (there is a minor exception at �A ¼ 1:5), but
as �A increases while �D is 1, the gap first increases
and then decreases. Our explanation is again related
to dominance; when the arrival rates are comparable,
system performance can be improved by LBLR.
Finally, as �A increases while �D is 1.5, the gap
increases, again for the same reason. We expect the

gap to fall at higher values of �A, since product A will
eventually dominate product D.
Another important observation from Table 2 is that,

as both demand arrival rates go from 0.5 to 2.5, the
gap first increases and then declines. When capacity
is high relative to demand (i.e., �A ¼ �D ¼ 0:5), it is
optimal to hold less inventory and therefore the bene-
fit of LBLR is lower. When capacity is scarce (i.e.,
�A; �D � 1:5), the system focuses more on filling the
high value item, even under high base-stock levels.
Consequently, it is not critical to ration inventory in a
sophisticated manner, and again the benefit of LBLR
is lower.
Our overall conclusion is that LBLR may substan-

tially outperform SBSR when demands for both prod-
ucts are fulfilled in significant quantities, when
products are highly differentiated, or when products
differ mainly in their lost sale costs. Thus we predict
that the gap between LBLR and SBSR will increase as
the fill rates of both products increase, as the differ-
ence of fill rates increases, or as the ratio of lost sale
costs decreases. To test these predictions we use the
data in Tables 1 and 2 in a regression model for the
percentage gap between SBSR and LBLR with the fol-
lowing independent variables: (i) fA, (ii) fD � fA, and
(iii) cA=cD. As we report in Table 3, variables (i)–(iii)

Table 2 Numerical Results for Nested Structure

Optimal solution
Percentage difference from

optimal cost Computation times (in seconds)

�A �D Average cost fA fD LBLR SBSR FBFR LBLR SBSR FBFR

0.5 0.5 38.387 0.506 0.712 0.000 2.157 2.670 0.30 78.55 1.99
– 1.0 62.807 0.199 0.693 0.000 0.777 1.616 0.35 358.24 2.83
– 1.5 96.090 0.000 0.559 0.000 0.081 1.157 0.35 7.68 1.47
– 2.0 138.053 0.000 0.440 0.000 0.056 1.107 0.37 3.96 1.82
– 2.5 183.980 0.000 0.359 0.000 0.035 1.088 0.35 3.27 2.00
1.0 0.5 44.757 0.544 0.679 0.000 1.562 3.702 0.32 84.76 5.45
– 1.0 71.364 0.244 0.668 0.000 2.476 3.444 0.41 1000 4.56
– 1.5 106.032 0.045 0.552 0.000 0.128 1.103 2.80 11.18 2.95
– 2.0 148.053 0.000 0.440 0.000 0.052 1.032 0.37 4.60 1.48
– 2.5 193.980 0.000 0.359 0.000 0.034 1.032 0.33 8.08 4.32
1.5 0.5 52.369 0.433 0.667 0.000 1.566 4.785 0.34 30.30 3.97
– 1.0 80.498 0.194 0.659 0.000 2.052 4.129 0.36 1000 9.53
– 1.5 115.877 0.035 0.551 0.000 0.251 1.143 2.98 225.49 4.02
– 2.0 158.053 0.000 0.440 0.000 0.049 0.967 0.36 7.62 1.53
– 2.5 203.980 0.000 0.359 0.000 0.032 0.981 0.36 7.02 1.64
2.0 0.5 61.127 0.326 0.671 0.000 1.276 4.370 0.39 81.51 2.90
– 1.0 90.017 0.157 0.644 0.000 1.714 4.064 0.35 730.47 3.76
– 1.5 125.770 0.031 0.550 0.000 0.316 1.139 3.62 55.29 2.87
– 2.0 168.053 0.000 0.440 0.000 0.046 0.909 0.35 4.13 2.12
– 2.5 213.980 0.000 0.359 0.000 0.030 0.936 0.35 15.42 1.48
2.5 0.5 70.416 0.259 0.678 0.000 0.980 3.616 0.36 43.09 5.89
– 1.0 99.717 0.129 0.640 0.000 1.451 3.745 0.39 548.25 3.57
– 1.5 135.675 0.031 0.549 0.000 0.363 1.125 4.01 221.41 3.03
– 2.0 178.053 0.000 0.440 0.000 0.043 0.858 0.33 7.86 3.71
– 2.5 223.980 0.000 0.359 0.000 0.029 0.894 0.34 5.84 1.47

Notes. q/ ¼ 1, qc ¼ 3, h/ ¼ 1, hc ¼ 5, l/ ¼ lc ¼ 1, cA ¼ 20, cD ¼ 100. Computation times equal to 1000 seconds indicate termination of the
algorithm.
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have the predicted sign and are statistically signifi-
cant at p = 0.001. The results continue to hold when
stepwise regression is used by including all the candi-
date variables (i.e., system parameters) in the model
and eliminating those that are statistically insignifi-
cant.
The above prediction remains true in Example (b),

but not in Example (c). We report the regression
results of Example (b) in Table 3. The ambiguity in
Example (c) arises because the lower batch sizes in
Example (c) require less flexibility in inventory con-
trol decisions, enabling SBSR to perform very well.

4.1.2. LBLR vs. FBFR. As expected, the percent-
age gaps between LBLR and FBFR are higher than the
ones between LBLR and SBSR. In Table 1, in contrast
to the comparison of LBLR and SBSR, we observe sig-
nificant gaps between LBLR and FBFR when products
differ only in their component usage rates (i.e., when
cA=cD ¼ 1). This benefit comes from the coordination
of the components achieved by LBLR and SBSR but
not FBFR: Since batch sizes for components / and c
are 1 and 3, respectively, it is easier to match supply
with the demand of product D (using 1 and 3 units of
components / and c), compared to product A (using 1
unit of each component). Hence, it becomes more cru-
cial to coordinate inventory decisions when product
A becomes more important, as is the case when
cA=cD ¼ 1. Likewise, Table 2 indicates that the gaps
between FBFR and the other heuristics are noticeably

higher when product A is more highly demanded
(especially when �D � 1��A). These observations
underscore the importance of the coordinated inven-
tory decisions when the component batch sizes
imperfectly match the component usage rates of the
most valuable and/or mostly demanded product.

4.2. Non-Nested Structure
We consider two different examples: (a) An ATO sys-
tem with products B and C, and q/ ¼ qc ¼ 2; and (b)
an ATO system with products C and D, q/ ¼ 2, and
qc ¼ 3. LBLR yields the globally optimal cost in all
instances. (LBLR continues to yield the globally opti-
mal cost in all instances even when q/; qc 2 f1; 2;
3; 4; 5g.) Since the basic insights gained from Example
(a) can be extended to Example (b), we relegate the
numerical results of Example (b) to the online appen-
dix. However, we will again study each example in a
separate regression study.

4.2.1. LBLR vs. SBSR. We note from Table 4 that,
for fixed holding costs, LBLR provides the least
savings when cB=cC is 0.6 (there is a minor exception
when h/ ¼ 5 and hc ¼ 3). For smaller values of
cB=cC, products are highly differentiated and therefore
lattice-dependent rationing greatly improves the
system performance. For higher values of cB=cC, prod-
ucts are almost equally important since the total num-
bers of components they require are equal.
Nevertheless, when cB=cC is greater than 0.6, there are
cases where the optimal cost gaps between LBLR and
SBSR are comparatively large. To understand why
this happens, we examined the optimal solutions
when cB=cC is 1: If inventory levels are equal and suffi-
ciently great to satisfy any demand, it is optimal to
satisfy demands of both products. However, if the
inventory level of one component is much greater
than that of the other, it may be optimal to reject
demand of the product that uses a greater number of
the scarce component. SBSR cannot induce this kind
of structure, but LBLR does.
We next consider the percentage gaps between

LBLR and SBSR under different holding cost rates
when cB=cC is 0.2. In these cases LBLR provides the
greatest cost advantage when h/ ¼ 5 and hc ¼ 1, and
the smallest cost advantage when h/ ¼ 1 and hc ¼ 5.
These correspond to the cases when the fill rate of
product B takes the greatest and lowest values,
respectively. Any increment in hc (or h/) hurts pro-
duct B (or C) more since product B (or C) requires a
greater number of component c (or /). Hence, when
hc is higher, product C is so valuable that demands for
product B are rejected most of the time and stock
rationing becomes less critical.
We now vary demand arrival rates, in Table 5. Our

conclusions from the nested structure remain valid:

Table 3 Regression Results

Variable Estimate SE t-statistic p-value

4.1(a). Products A and D, q/ ¼ 1, and qc ¼ 3
Intercept �0.5117 0.3697 �1.3839 0.1711
cA=cD �2.0086 0.4289 �4.6835 0:0000*
fA 5.1516 0.4806 10.7194 0:0000*
fD � fA 2.4109 0.5836 4.1308 0.0001*
N = 70, R2 ¼ 69:62%, and adjusted-R2 ¼ 68:24%.

4.1(b). Products A and B, q/ ¼ 1, and qc ¼ 2
Intercept �0.2409 0.2174 �1.1081 0.2718
cA=cB �1.8301 0.2808 �6.5185 0:0000*
fA 4.0457 0.3309 12.2249 0:0000*
fB � fA 1.6889 0.3043 5.5500 0:0000*
N = 70, R2 ¼ 76:82%, and adjusted-R2 ¼ 75:76%.

4.2(a). Products B and C, q/ ¼ 2, and qc ¼ 2
Intercept �1.6409 0.2311 �7.1005 0:0000*
fB 3.2893 0.3740 8.7961 0:0000*
fC � fB 3.5478 0.3588 9.8868 0:0000*
N = 70, R2 ¼ 59:37%, and adjusted-R2 ¼ 58:15%.

4.2(b). Products C and D, q/ ¼ 2, and qc ¼ 3
Intercept �2.0301 0.4879 �4.1613 0:0000*
fC 4.4066 0.8245 5.3445 0:0000*
fD � fC 4.4873 0.8490 5.2856 0:0000*
N = 70, R2 ¼ 30:43%, and adjusted-R2 ¼ 28:35%.

*The corresponding variable is statistically significant at probability of
0.001.

Nadar, Akan, and Scheller-Wolf: Experimental Results for ATO Systems
656 Production and Operations Management 25(4), pp. 647–661, © 2015 Production and Operations Management Society



As one product grows more dominant, it becomes less
critical to ration inventory, and the gap between LBLR
and SBSR decreases. Likewise, when capacity
becomes scarce or high relative to demand, it is not
critical to ration inventory in a sophisticated manner,
and therefore the gap shrinks. Also, notice that the
gap between LBLR and SBSR is significant even when
�B is 2.5 and �C is 0.5, due to the lower lost sale cost of
product B.

Based on the previous findings, we again predict
that the gap between LBLR and SBSR increases with
the product fill rates or difference of fill rates. To test
this prediction, we use the data in Tables 4 and 5, and
develop a regression model with two independent
variables: (i) fB and (ii) fC � fB. Unlike the nested case,
we excluded cB=cC from the regression model due to
its nonmonotonic relationship with our dependent
variable, the percentage gap between LBLR and SBSR.

Table 4 Numerical Results for Non-Nested Structure

Optimal solution
Percentage difference from

optimal cost Computation times (in seconds)

h/ hc cB=cC Average cost fB fC LBLR SBSR FBFR LBLR SBSR FBFR

1 1 0.2 45.970 0.135 0.800 0.000 1.416 2.291 0.36 1000 2.32
– – 0.4 61.586 0.313 0.743 0.000 0.671 1.416 0.41 345.36 2.50
– – 0.6 72.943 0.505 0.654 0.000 0.090 0.106 0.39 10.51 1.88
– – 0.8 82.243 0.560 0.615 0.000 0.554 0.554 0.39 23.26 2.21
– – 1.0 90.722 0.589 0.589 0.000 0.257 0.257 0.38 13.45 2.11
– 3 0.2 52.497 0.138 0.778 0.000 1.158 2.101 0.36 51.67 1.62
– – 0.4 68.437 0.294 0.727 0.000 0.576 2.588 0.36 21.51 2.04
– – 0.6 80.874 0.456 0.653 0.000 0.117 0.904 0.41 14.29 2.39
– – 0.8 90.622 0.565 0.595 0.000 0.559 0.818 0.36 20.31 1.93
– – 1.0 98.944 0.605 0.567 0.000 0.609 0.658 0.37 21.56 2.74
– 5 0.2 57.452 0.122 0.764 0.000 0.782 2.256 0.35 39.97 2.85
– – 0.4 73.412 0.255 0.726 0.000 0.646 2.921 0.37 36.04 2.33
– – 0.6 86.437 0.411 0.660 0.000 0.174 1.459 0.36 13.73 1.52
– – 0.8 97.158 0.516 0.604 0.000 0.899 1.608 0.35 26.59 2.96
– – 1.0 106.030 0.587 0.555 0.000 0.277 0.705 0.38 22.90 2.91
3 1 0.2 54.913 0.199 0.783 0.000 1.377 2.509 0.37 728.96 3.73
– – 0.4 69.340 0.346 0.733 0.000 0.798 1.196 0.41 56.62 2.85
– – 0.6 80.220 0.499 0.658 0.000 0.131 0.143 0.39 18.52 1.93
– – 0.8 90.026 0.539 0.629 0.000 0.190 0.231 0.37 23.94 2.27
– – 1.0 98.944 0.567 0.605 0.000 0.609 0.658 0.36 21.55 2.80
– 3 0.2 61.973 0.183 0.763 0.000 1.272 3.135 0.37 273.83 4.18
– – 0.4 76.955 0.306 0.725 0.000 0.720 2.196 0.34 31.56 1.93
– – 0.6 88.944 0.473 0.651 0.000 0.111 0.768 0.42 15.74 1.99
– – 0.8 98.931 0.554 0.607 0.000 0.171 0.620 0.38 24.46 2.97
– – 1.0 107.503 0.586 0.586 0.000 0.649 0.680 0.37 20.58 2.71
– 5 0.2 67.262 0.165 0.748 0.000 0.990 2.795 0.37 494.28 2.88
– – 0.4 82.624 0.272 0.721 0.000 0.736 2.585 0.36 166.12 2.57
– – 0.6 95.092 0.426 0.656 0.000 0.160 1.287 0.34 15.08 2.06
– – 0.8 105.871 0.493 0.627 0.000 0.397 1.269 0.37 22.49 2.67
– – 1.0 115.073 0.570 0.584 0.000 0.655 1.122 0.36 30.54 3.48
5 1 0.2 62.755 0.227 0.750 0.000 1.613 2.680 0.34 1000 3.75
– – 0.4 76.537 0.366 0.708 0.000 0.784 1.303 0.36 251.68 3.02
– – 0.6 87.039 0.500 0.642 0.000 0.227 0.511 0.36 19.24 1.72
– – 0.8 96.899 0.517 0.621 0.000 0.071 0.517 0.38 19.39 2.57
– – 1.0 106.030 0.555 0.587 0.000 0.277 0.705 0.35 22.28 3.07
– 3 0.2 69.789 0.173 0.724 0.000 1.550 2.015 0.34 940.33 2.42
– – 0.4 84.698 0.312 0.703 0.000 0.702 1.975 0.37 73.35 3.45
– – 0.6 96.246 0.481 0.630 0.000 0.062 1.007 0.34 16.87 2.90
– – 0.8 106.112 0.516 0.613 0.000 0.098 0.812 0.36 20.54 3.01
– – 1.0 115.073 0.584 0.570 0.000 0.656 1.122 0.37 28.36 2.95
– 5 0.2 74.924 0.144 0.703 0.000 0.814 2.156 0.35 73.13 2.07
– – 0.4 90.553 0.284 0.694 0.000 0.550 2.294 0.37 40.73 2.74
– – 0.6 102.748 0.446 0.621 0.000 0.169 1.373 0.34 15.12 1.96
– – 0.8 113.464 0.490 0.608 0.000 0.296 1.385 0.37 18.11 3.23
– – 1.0 123.004 0.564 0.564 0.000 0.599 1.729 0.42 19.59 3.49

Notes. q/ ¼ qc ¼ 2, �B ¼ �C ¼ 1, l/ ¼ lc ¼ 1, cC ¼ 100. Computation times equal to 1000 seconds indicate termination of the algorithm.
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All the variables have the predicted sign and are sta-
tistically significant (see Table 3). The above predic-
tion remains true in Example (b) (see Table 3).

4.2.2. LBLR vs. FBFR. FBFR performs, on aver-
age, better than in the nested structure. As component
usage rates of both products are closer to component
batch sizes, it is easier to match supply with demand,
and thus coordination of inventory decisions is less
crucial. Furthermore, no matter which product is
more valuable or dominant, the degree of difficulty of
inventory coordination remains the same since prod-
ucts B and C are symmetric. Hence, the performances
of SBSR and FBFR are closer, although SBSR again
significantly outperforms FBFR in many instances.

4.3. Computational Effort
In Table 6 we report the average, standard deviation,
minimum, and maximum computation time for the
350 instances in subsections 4.1 and 4.2 within each
heuristic class. (Computation times for the global
optimal solution are instantaneous.) Table 6 indicates
that LBLR outperforms the other heuristics in terms
of average computation times. The computational
advantage of LBLR over FBFR is interesting because

LBLR has a significantly larger number of base-stock
and rationing levels than FBFR. This can be explained
by the optimality of LBLR: The MIP typically first
solves an LP relaxation, which in all instances yields
an integral, and thus optimal solution, with LBLR
form. In addition, the range of LBLR computation
times is lower within each example, implying that the
computation time of LBLR is more robust to parame-
ter change in our instances.

Table 5 Numerical Results for Non-Nested structure

Optimal solution
Percentage difference from optimal

cost Computation times (in seconds)

�B �C Average cost fB fC LBLR SBSR FBFR LBLR SBSR FBFR

0.5 0.5 32.743 0.506 0.794 0.000 1.426 2.147 0.45 22.59 2.20
– 1.0 53.926 0.259 0.758 0.000 1.643 1.901 0.41 1000 3.73
– 1.5 84.862 0.026 0.626 0.000 0.015 0.516 0.38 19.98 2.69
– 2.0 126.450 0.000 0.488 0.000 0.000 0.275 0.40 8.51 3.19
– 2.5 172.774 0.000 0.395 0.000 0.002 0.149 0.38 11.32 1.63
1.0 0.5 39.922 0.456 0.803 0.000 1.265 2.167 0.35 110.82 2.32
– 1.0 62.755 0.227 0.750 0.000 1.613 2.680 0.41 1000 3.66
– 1.5 94.745 0.034 0.622 0.000 0.137 0.586 0.39 28.89 2.60
– 2.0 136.450 0.000 0.488 0.000 0.000 0.255 0.38 6.95 2.75
– 2.5 182.774 0.000 0.395 0.000 0.000 0.141 0.38 8.91 1.94
1.5 0.5 47.885 0.380 0.794 0.000 1.134 2.381 0.35 39.28 2.62
– 1.0 72.092 0.176 0.745 0.000 1.364 2.283 0.35 1000 3.14
– 1.5 104.645 0.029 0.621 0.000 0.220 0.626 0.36 139.78 3.06
– 2.0 146.450 0.000 0.488 0.000 0.000 0.238 0.38 8.78 2.03
– 2.5 192.774 0.000 0.395 0.000 0.000 0.134 0.38 8.04 2.71
2.0 0.5 56.723 0.310 0.778 0.000 0.883 1.849 0.35 8.51 5.21
– 1.0 81.721 0.132 0.751 0.000 1.202 1.948 0.39 1000 4.15
– 1.5 114.577 0.024 0.620 0.000 0.260 0.631 0.35 704.68 3.27
– 2.0 156.450 0.000 0.488 0.000 0.003 0.222 0.41 9.31 3.71
– 2.5 202.774 0.000 0.395 0.000 0.002 0.127 0.37 7.43 1.97
2.5 0.5 66.026 0.261 0.773 0.000 0.729 1.558 0.37 31.06 2.50
– 1.0 91.469 0.109 0.748 0.000 1.092 1.705 0.39 1000 5.19
– 1.5 124.528 0.021 0.620 0.000 0.279 0.620 0.36 484.24 3.28
– 2.0 166.450 0.000 0.488 0.000 0.000 0.209 0.35 11.83 3.44
– 2.5 212.774 0.000 0.395 0.000 0.000 0.121 0.35 7.59 1.67

Notes. q/ ¼ qc ¼ 2, h/ ¼ 5, hc ¼ 1, l/ ¼ lc ¼ 1, cB ¼ 20, cC ¼ 100. Computation times equal to 1000 seconds indicate termination of the
algorithm.

Table 6 Computation Times (in Seconds)

LBLR SBSR FBFR

Numerical instances in subsection 4.1
Average 0.59 129.79 3.58
SD 0.87 282.11 1.65
Minimum 0.28 2.58 1.19
Maximum 5.56 1000.00 9.90
Numerical instances in subsection 4.2
Average 0.37 120.11 2.44
SD 0.23 260.48 0.80
Minimum 0.27 1.98 1.01
Maximum 2.98 1000.00 5.21

Notes. Subsection 4.1 contains 210 compiled instances. Subsection 4.2
contains 140 compiled instances.
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4.4. Selected Larger Instances
We next generate several instances with more compo-
nents and/or products to determine the maximum
problem size that can be solved within a reasonable
time for each heuristic:

Table 7 exhibits our numerical results; the compo-
nents and products that we select to construct our
instances are shown in the first two columns. We
restricted the computation time of each instance to be
no more than 5 hours; LBLR again yields the globally
optimal cost in all the instances that could be solved within
5 hours. (Even when qi ¼ q, ∀i, and q 2 {1,3,4,5},
LBLR continues to yield the globally optimal cost in
all the instances that could be solved within 5 hours.)
Computation times for each of our heuristics

increase considerably with the number of components
and/or products. Relatively speaking, an increment
in the number of components increases computation
times more than an increase in the number of prod-
ucts, since both the state and action spaces rapidly
grow with the number of components. For LBLR, we
could solve instances with two components and thir-
teen products, three components and eight products,
or four components and two products, within 5 hours.
For SBSR, we could solve an instance with two com-
ponents and seven products within 5 hours. For
FBFR, we could solve instances with two components
and ten products, or three components and three
products, within 5 hours. (We could find global opti-
mal solutions for instances with two components and
fifteen products, three components and eleven prod-
ucts, or four components and seven products.)
Below we report the average numbers of lattices

per component/product that we need to implement
into the MIP formulation of LBLR in our instances of
various sizes:

m

n

2 3 4 5 6 7 8 9 10 11 12 13 14

2 26 31 38 39 41 46 47 48 48 48 48 48 48
3 371 446 522 545 563 620 633 637
4 5941 6027
5 76,065

The average number of lattices converges as the
number of products grows. Thus, for LBLR, the
primary cause of the increase in the computation time
as the number of products increases is due to the grow-
ing action space for inventory allocation. However,

the average number of lattices rapidly grows with the
number of components. This conceivably leads to a
significant increase in the computation required by
LBLR. Nevertheless, the average number of points on
any lattice does not increase with the number of
components, and thus the MIP constraints of LBLR
individually become no more burdensome as the state
space grows. This gives an explanation for the much
lower computation times of LBLR, in comparison
with FBFR, in systems with more components.

4.5. LBLR vs. Optimal Policy on a Larger Test Bed
We generated 22,500 instances for five different 2-
component 2-product systems in which the products,
j and k, are: (i) A and B, (ii) A and D, (iii) B and C, (iv)
B and D, and (v) C and D, respectively. For each of
these systems, we consider 4,500 instances in which
q/; qc 2 f1; 2; 3; 4; 5g, h/; hc 2 f1; 3; 5g, l/ ¼ lc ¼ 1,
cj 2 f20; 40; 60; 80; 100g, ck ¼ 100, and �j; �k 2 f0:5; 1g.
(Some of these instances overlap with those in subsec-
tions 4.1 and 4.2.) LBLR, using Rule of Thumb 1, contin-
ues to yield the globally optimal cost in all of these
instances.

5. Concluding Remarks

We have studied the LBLR policy for Markovian ATO
systems with general product structures. We analyti-
cally and numerically compare the LBLR policy to
two other heuristics from the literature: the SBSR pol-
icy and the FBFR policy, establishing the superiority
of LBLR. In addition, we numerically show that LBLR
minimizes the average costs in each of the more than
22,500 instances of general ATO problems we tested.
Identifying the optimal policy structure in our

numerical experiments enables us to uncover the role
of different product characteristics in optimal control
of ATO systems. Our numerical experiments also

Components

Products

A B C D E F G H I J K L M N qi hi li

/ 1 1 2 1 2 3 2 3 1 1 2 1 2 3 2 1 1
c 1 2 1 3 2 1 3 2 1 2 1 3 2 1 2 1 1
g 1 1 2 2 1 1 2 2 1 2 1 1
h 2 2 1 2 1 1
ϑ 1 2 2 1 1
cj 30 50 40 70 60 50 80 70 25 45 35 65 55 45
�j 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
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reveal when SBSR and FBFR significantly deviate
from the optimal policy, producing high-level guideli-
nes for control policy choices in a variety of settings.
Specifically, LBLR performs significantly better than
SBSR (by up to 2.6% of the optimal cost) when prod-
ucts are highly differentiated and it is optimal to ful-
fill a significant fraction of the demand for each
product. FBFR performs substantially worse than the
other two heuristics (by up to 4.8% of the optimal
cost) when replenishment batch sizes imperfectly
match the component requirements of the most valu-
able and/or most highly demanded product. LBLR,
despite its complicated structure, could also be easily
implemented in practice since the basic easy-to-under-
stand principles of FBFR still hold for LBLR after state
space partitioning. For instance, FBFR specifies one
rationing level on the entire state space for a particular
product. LBLR specifies one rationing level on each of
the multiple disjoint lattices of the state space.
We can modify the ATO model in this study by

allowing the controller to produce any number of
units of each component at any time, extending the
replenishment policy of LBLR to this case as follows:
Produce j units of component i (i) if the inventory
level is less than the base-stock level on the current
lattice, (ii) if the inventory level is less than the
base-stock level on the lattice that we reach after

producing z units of component i, for all z ≤ j � 1,
and (iii) if the inventory level is no less than the
base-stock level on the lattice that we reach after
producing j units of component i. This extended
version of LBLR again minimizes the average costs
in all the instances in Section 4 that could be solved
within 5 hours.
The evidence from our study leads naturally to the

conjecture that LBLR may be optimal for ATO systems
with general product structures and lost sales under
Markovian assumptions on production and demand. Fur-
thermore, for LBLR, the state space of the ATO problem
may be optimally partitioned into disjoint lattices based on
products’ component requirements and lost sales costs, as
stated in Rule of Thumb 1. Our conjecture may guide
future research aimed at characterizing the optimal
policy structure for general ATO systems. However,
the existence of counter examples shows that the
functional characterizations used to show the opti-
mality of LBLR in Nadar et al. (2014) need not hold
for general product structures. Thus, if LBLR is to be
shown to be optimal for general ATO systems, a dif-
ferent methodology will likely be required.
Another direction for future research is to study the

performance of LBLR in ATO systems with backo-
rdering and/or general component production and
demand interarrival times. We could generalize LBLR

Table 7 Numerical Results for Selected Larger Instances

Optimal solution Heuristic solutions Computation times

Components Products Average cost Computation time LBLR SBSR FBFR LBLR SBSR FBFR

/ and c A and B 7.076 0.13 7.076 7.076 7.097 0.39 10.29 1.23
– A,B, and C 9.765 0.27 9.765 9.765 9.825 0.57 22.94 3.60
– A–D 14.674 0.39 14.674 14.674 14.745 1.42 71.67 8.37
– A–E 19.434 0.52 19.434 19.434 19.564 2.14 178.66 21.32
– A–F 24.996 1.01 24.996 25.049 25.141 5.07 3941.82 69.53
– A–G 35.976 2.13 35.976 36.026 36.112 10.58 13,122.17 242.00
– A–H 47.412 4.88 47.412 90.000 47.513 23.17 18,000 853.98
– A–I 51.870 10.30 51.870 51.987 52.007 53.92 18,000 11,410.01
– A–J 59.723 22.20 59.723 104.000 60.640 141.52 18,000 20,750.36
– A–K 66.177 49.83 66.177 111.000 * 300.10 18,000 *
– A–L 78.074 108.40 78.074 124.000 * 1438.19 18,000 *
– A–M 88.648 236.45 88.648 * * 11,407.78 * *
– A–N 97.126 521.87 * * * * * *
/,c, and g A and B 9.471 0.79 9.471 16.000 9.570 10.04 18,000 1815.83
– A, B, and C 13.548 2.37 13.548 24.000 13.660 222.76 18,000 12,453.59
– A–D 20.141 5.31 20.141 38.000 65.000 773.80 18,000 18,000
– A–E 25.464 11.04 25.464 50.000 * 3783.45 18,000 *
– A–F 31.283 25.15 31.283 62.000 * 2298.46 18,000 *
– A–G 42.429 55.32 42.429 103.000 * 1566.59 18,000 *
– A–H 53.995 128.41 53.995 117.000 * 5492.18 18,000 *
– A–I 58.525 267.37 105.000 * * 18,000 * *
/,c,g, and h A and B 12.489 25.59 12.489 52.000 * 11,342.35 18,000 *
– A, B, and C 17.883 172.24 26.000 60.000 * 18,000 18,000 *
/,c,g,h, and ϑ A and B * * * * * * * *

*The MIP solver fails to report a feasible solution as it runs out of memory. Computation times equal to 18,000 seconds indicate termination of the
algorithm.
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and its MIP formulation to models with phase-type
component production times and/or compound Pois-
son demand. But such generalizations come at the
expense of increased computational burden since the
state and/or action spaces become extremely large.
Lastly, future research could develop effective
solution procedures for the optimization of lattice-
dependent base-stock and rationing levels in high-
dimensional ATO problems for which even solving
the linear program formulation to optimality might
prove problematic. The structural knowledge of the
optimal policy gained from our study can potentially
inspire and facilitate future research on smarter com-
putational methods.
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