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1. Introduction

Killing vector fields have well-known geometrical and physical interpretations and
have been studied on Riemannian and pseudo-Riemannian manifolds for a long
time. The number of independent Killing vector fields measures the degree of sym-
metry of a Riemannian manifold. Thus, the problems of existence and character-
ization of Killing vector fields are important and are widely discussed by both
mathematicians and physicists [4, 5, 7, 8, 16, 17, 20, 26, 31, 32].

Generalization of Killing vector fields has a long history in mathematics for
different scales and purposes [10–12, 21]. In [28], the concept of 2-Killing vector
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fields, as a new generalization of Killing vector fields, was first introduced and
studied on Riemannian manifolds. The relations between 2-Killing vector fields,
curvature and monotone vector fields are obtained. Finally, a characterization of
2-Killing vector field on R

n is derived.
At this point, we want to emphasize that the concept of monotone vector fields

introduced by Németh (see [19, 22–24]) and since then they have been studied as a
research topic in the area of (nonlinear) analysis on Riemannian manifolds (see also
[6] as an additional reference to the above list). As noted above, the connections
between monotone vector fields and 2-Killing vector fields have been established.
In addition to that, by using space-like hypersurfaces of a Lorentzian manifold
(see [25]), these topics have been received attention in Lorentzian geometry as
well. Thus the notion of 2-Killing vector fields is important in different branches
of mathematics from (nonlinear) analysis on Riemannian manifolds to Lorentzian
geometry.

As far as we know, the concept of 2-Killing vector fields has been studied neither
on warped products nor on space-time models up to this paper in which we intent
to fill this gap in the literature by providing a complete study of 2-Killing vector
fields on such spaces. In this way, all the results related to 2-Killing vector fields and
thus monotone vector fields can be easily extended to a special class of manifolds,
namely, warped product manifolds.

We organize the paper as follows. In Sec. 2, we state well-known connection
related formulas of warped product manifolds and Killing vector fields. Thus some
of the proofs are omitted. In Sec. 3, as the core of the paper, the relation between
2-Killing vector fields on a warped product manifold and 2-Killing vector fields on
the fiber and base manifolds is discussed. Here, we now state our main results; the
following theorem represents an important and helpful identity.

Theorem 3.1. Let ζ = (ζ1, ζ2) ∈ X(M1 ×f M2) be a vector field on a warped
product manifold of the form M1 ×f M2. Then

(LζLζg)(X, Y ) = (L1
ζ1
L1

ζ1
g1)(X1, Y1) + f2(L2

ζ2
L2

ζ2
g2)(X2, Y2)

+ 4fζ1(f)(L2
ζ2

g2)(X2, Y2) + 2fζ1(ζ1(f))g2(X2, Y2)

+ 2ζ1(f)ζ1(f)g2(X2, Y2)

for any vector fields X, Y ∈ X(M1 ×f M2).

The proof of this result contains long computations that have been done using
previous results on warped product manifolds (see Appendix A). As an immedi-
ate consequence, the relation between 2-Killing vector fields on a warped product
manifold and those on product factors is given.

Some conditions for a 2-Killing vector field to be parallel vector field are con-
sidered in the following theorem.

1550065-2

In
t. 

J.
 M

at
h.

 2
01

5.
26

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 B
IL

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 o
n 

01
/0

7/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

August 14, 2015 12:25 WSPC/S0129-167X 133-IJM 1550065

2-Killing vector fields on warped product manifolds

Theorem 3.2. Let ζ ∈ X(M1×f M2) be a vector field on a warped product manifold
of the form M1 ×f M2. Then

(1) ζ = ζ1 + ζ2 is parallel if ζi is a 2-Killing vector field, Rici(ζi, ζi) ≤ 0, i = 1, 2
and f is constant.

(2) ζ = ζ1 is parallel if ζ1 is a 2-Killing vector field, Ric1(ζ1, ζ1) ≤ 0, and ζ1(f) = 0.
(3) ζ = ζ2 is parallel if ζ2 is a 2-Killing vector field, Ric2(ζ2, ζ2) ≤ 0, and f is

constant.

The preceding theorem also provides some results on the curvature of a warped
product manifold in terms of 2-Killing vector fields.

Theorem 3.3. Suppose that ζ ∈ X(M1×f M2) is a nontrivial 2-Killing vector field.
If Dζζ is parallel along a curve γ, then

K(ζ, γ̇) ≥ 0.

Finally, in Sec. 4, we apply these results on standard static space-times and
generalized Robertson–Walker space-times. For instance, the following result is
obtained.

Theorem 4.1. Let M̄ = If × M be a standard static space-time with the metric
ḡ = −f2dt2 ⊕ g. Suppose that u : I → R is smooth and ζ is a vector field on F .
Then ζ̄ = u∂t + ζ is a 2-Killing vector field on M̄ if one of the following conditions
is satisfied :

(1) ζ is 2-Killing on M, u = a and fζ(f) = b where a, b ∈ R.

(2) ζ is 2-Killing on M, u = (rt + s)
1
3 and ζ(f) = 0 where r, s ∈ R.

Furthermore, the converse of this result and many others on generalized
Robertson–Walker space-times are discussed.

2. Preliminaries

In this section, we will provide basic definitions and curvature formulas about
warped product manifolds and Killing vector fields.

Suppose that (M1, g1, D1) and (M2, g2, D2) are two C∞ pseudo-Riemannian
manifolds equipped with Riemannian metrics gi where Di is the Levi-Civita con-
nection of the metric gi for i = 1, 2. Further suppose that π1 : M1 × M2 → M1

and π2 : M1 × M2 → M2 are the natural projection maps of the Cartesian prod-
uct M1 × M2 onto M1 and M2, respectively. If f : M1 → (0,∞) is a positive
real-valued smooth function, then the warped product manifold M1 ×f M2 is the
product manifold M1 ×M2 equipped with the metric tensor g = g1 ⊕ g2 defined by

g = π∗
1(g1) ⊕ (f ◦ π1)2π∗

2(g2),

where ∗ denotes the pull-back operator on tensors [9, 27]. The function f is called
the warping function of the warped product manifold M1 ×f M2. In particular, if
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f = 1, then M1 ×1 M2 = M1 × M2 is the usual Cartesian product manifold. It is
clear that the submanifold M1×{q} is isometric to M1 for every q ∈ M2. Moreover,
{p} × M2 is homothetic to M2. Throughout this paper we use the same notation
for a vector field and for its lift to the product manifold.

Let D be the Levi-Civita connection of the metric tensor g. The following propo-
sition is well known [9].

Proposition 2.1. Let (M1 ×f M2, g) be a Riemannian warped product manifold
with warping function f > 0 on M1. Then

(1) DX1Y = D1
X1

Y1 ∈ X(M1),
(2) DX1Y2 = DY2X1 = X1(f)

f Y2,

(3) DX2Y2 = −fg2(X2, Y2)∇1f + D2
X2

Y2

for all Xi, Yi ∈ X(Mi), with i = 1, 2 where ∇1f is the gradient of f .

A vector field ζ ∈ X(M) on a pseudo-Riemannian manifold (M, g) with metric
g is called a Killing vector field if

Lζg = 0,

where Lζ is the Lie derivative on M with respect to ζ. One can redefine Killing
vector fields using the following identity. Let ζ be a vector field, then

(Lζg)(X, Y ) = g(DXζ, Y ) + g(X, DY ζ) (2.1)

for any vector fields X, Y ∈ X(M). A simple yet useful characterization of Killing
vector fields is given in the following proposition. The proof is straightforward by
using the symmetry in the above identity.

Lemma 2.1. If (M, g, D) is a pseudo-Riemannian manifold with Riemannian con-
nection D. A vector field ζ ∈ X(M) is a Killing vector field if and only if

g(DXζ, X) = 0 (2.2)

for any vector field X ∈ X(M).

Now we consider Killing vector fields on Riemannian warped product manifolds.
The following simple result will help us to present a characterization of Killing
vector fields on warped product manifolds.

Lemma 2.2. Let ζ ∈ X(M1 ×f M2) be a vector field on the pseudo-Riemannian
warped product manifold M1 ×f M2 with warping function f . Then for any vector
field X ∈ X(M1 ×f M2) we have

g(DXζ, X) = g1(D1
X1

ζ1, X1) + f2g2(D2
X2

ζ2, X2) + fζ1(f)‖X2‖2
2. (2.3)

1550065-4

In
t. 

J.
 M

at
h.

 2
01

5.
26

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 B
IL

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 o
n 

01
/0

7/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

August 14, 2015 12:25 WSPC/S0129-167X 133-IJM 1550065

2-Killing vector fields on warped product manifolds

Proof. Using Proposition 2.1, we get

g(DXζ, X) = g1(D1
X1

ζ1 − fg2(X2, ζ2)∇f, X1) + f2g2(D2
X2

ζ2 + ζ1(ln f)X2

+ X1(ln f)ζ2, X2)

= g1(D1
X1

ζ1, X1) − fg2(X2, ζ2)X1(f) + f2g2(D2
X2

ζ2, X2)

+ fζ1(f)g2(X2, X2) + fX1(f)g2(ζ2, X2)

= g1(D1
X1

ζ1, X1) + f2g2(D2
X2

ζ2, X2) + fζ1(f)‖X2‖2
2.

The preceding two theorems give us a characterization of Killing vector fields on
warped product manifolds. They are immediate consequence of the previous result.

Theorem 2.1. Let ζ = (ζ1, ζ2) ∈ X(M1 ×f M2) be a vector field on the pseudo-
Riemannian warped product manifold M1 ×f M2 with warping function f . Then ζ

is a Killing vector field if one of the following conditions holds:

(1) ζ = (ζ1, 0) and ζ1 is a killing vector field on M1.
(2) ζ = (0, ζ2) and ζ2 is a killing vector field on M2.
(3) ζi is a Killing vector field on Mi, for i = 1, 2 and ζ1(f) = 0.

The converse of the above result is considered in the following result.

Theorem 2.2. Let ζ = (ζ1, ζ2) ∈ X(M1 ×f M2) be a killing vector field on the
warped product manifold M1 ×f M2 with warping function f . Then

(1) ζ1 is a Killing vector field on M1.
(2) ζ2 is a Killing vector field on M2 if ζ1(f) = 0.

In [16], the authors proved similar results on standard static space-times using
the following proposition.

Proposition 2.2. Let ζ = (ζ1, ζ2) ∈ X(M1 ×f M2) be a vector field on the warped
product manifold M1 ×f M2 with warping function f . Then

(Lζg)(X, Y ) = (L1
ζ1

g1)(X1, Y1) + f2(L2
ζ2

g2)(X2, Y2) + 2fζ1(f)g2(X2, Y2), (2.4)

where Li
ζi

is the Lie derivative on Mi with respect to ζi, for i = 1, 2.

3. 2-Killing Vector Fields

In this section after we define and state fundamental results about 2-Killing vector
fields, we obtain the main results of the paper.

A vector field ζ ∈ X(M) is called a 2-Killing vector field on a pseudo-Riemannian
manifold (M, g) if

LζLζg = 0, (3.1)

where Lζ is the Lie derivative in the direction of ζ on M [28].
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The following two results [28] are needed to exploit the above definition.

Proposition 3.1. Let ζ ∈ X(M) be a vector field on a pseudo-Riemannian mani-
fold M . Then

(LζLζg)(X, Y ) = g(DζDXζ − D[ζ,X]ζ, Y )

+ g(X, DζDY ζ − D[ζ,Y ]ζ) + 2g(DXζ, DY ζ) (3.2)

for any vector fields X, Y ∈ X(M).

The following result is quite direct and helpful.

Corollary 3.1. A vector field ζ is 2-Killing if and only if

R(ζ, X, ζ, X) = g(DXζ, DXζ) + g(DXDζζ, X) (3.3)

for any vector field X ∈ X(M).

The symmetry of Eq. (3.2) shows that ζ is 2-Killing if and only if

g(DζDXζ − D[ζ,X]ζ, X) + g(DXζ, DXζ) = 0.

Example 3.1. Let M be the two-dimensional Euclidean space, i.e. (R2, ds2) where
ds2 = dx2 + dy2. A vector field ζ = u∂x + v∂y ∈ X(M) is 2-Killing if

(LI
ζLI

ζgI)(X, Y ) = 0

for any vector fields X, Y , where Lζ is the Lie derivative on R
2 with respect to ζ.

Now it is easy to show that ζ is 2-Killing vector field on M if and only if

uuxx + 2u2
x = 0,

vvyy + 2v2
y = 0.

By making use of the above proposition one can get sufficient and necessary
conditions for a vector field ζ = (ζ1, ζ2) ∈ X(M1 ×f M2) to be a 2-Killing on the
pseudo-Riemannian warped product manifold M1 ×f M2. The following theorem
represents a similar such.

Theorem 3.1. Let ζ = (ζ1, ζ2) ∈ X(M1 ×f M2) be a vector field on the warped
product manifold M1 ×f M2. Then

(LζLζg)(X, Y ) = (L1
ζ1
L1

ζ1
g1)(X1, Y1) + f2(L2

ζ2
L2

ζ2
g2)(X2, Y2)

+ 4fζ1(f)(L2
ζ2

g2)(X2, Y2) + 2fζ1(ζ1(f))g2(X2, Y2)

+ 2ζ1(f)ζ1(f)g2(X2, Y2)

for any vector fields X, Y ∈ X(M1 ×f M2).

Proof. See Appendix A.
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The following results are direct consequences of the above theorem.

Corollary 3.2. Let ζ = ζ1 + ζ2 ∈ X(M1 ×f M2) be a vector field on the warped
product manifold of the form M1 ×f M2. If ζ1 + ζ2 is a 2-Killing vector field on
M1 ×f M2, then ζ1 is a 2-Killing vector field on M1.

Corollary 3.3. Let ζ ∈ X(M1 ×f M2) be a vector field on the warped product
manifold of the form M1 ×f M2. Suppose that ζ1 and ζ2 are 2-Killing vector fields
on M1 and M2, respectively. Then ζ1 + ζ2 is a 2-Killing vector field on M1 ×f M2

if and only if

(1) ζ1(f) = 0, or
(2) ζ2 is a homothetic vector field on M2 with homothetic factor c (i.e. L2

ζ2
g2 = cg2)

such that

fζ1(ζ1(f)) + ζ1(f)ζ1(f) = −2cfζ1(f).

Corollary 3.4. Let ζ = ζ1 + ζ2 ∈ X(M1 ×f M2) be a vector field on the warped
product manifold M1 ×f M2. Then ζ is a 2-Killing vector field on M1 ×f M2 if one
of the following conditions holds :

(1) The vector field ζi is a 2-Killing vector field on Mi, i = 1, 2, and ζ1(f) = 0.
(2) ζ = ζ2 and ζ2 is a 2-Killing vector field on M2.

Theorem 3.2. Let ζ ∈ X(M1 ×f M2) be a vector field on the warped product
manifold M1 ×f M2. Then

(1) ζ = ζ1 + ζ2 is parallel if ζi is a 2-Killing vector field, and Rici(ζi, ζi) ≤ 0, i = 1, 2
and also f is constant.

(2) ζ = ζ1 is parallel if ζ1 is a 2-Killing vector field, and Ric1(ζ1, ζ1) ≤ 0, and also
ζ1(f) = 0.

(3) ζ = ζ2 is parallel if ζ2 is a 2-Killing vector field, and Ric2(ζ2, ζ2) ≤ 0, and also
f is constant.

Proof. Suppose that

{e1, e2, . . . , em}
is an orthonormal frame in TpM1 and

{em+1, em+2, . . . , em+n}
is an orthonormal frame in TqM2 for some point (p, q) ∈ M1 × M2. Then

{e1, e2, . . . , em+n}
is an orthonormal frame in T(p.q)(M1 × M2) where

ei =




ei, 1 ≤ i ≤ m,

1
f

ei, m + 1 ≤ i ≤ m + n.

1550065-7

In
t. 

J.
 M

at
h.

 2
01

5.
26

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 B
IL

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 o
n 

01
/0

7/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

August 14, 2015 12:25 WSPC/S0129-167X 133-IJM 1550065

S. Shenawy & B. Ünal

Thus for any vector field ζ ∈ X(M1 ×f M2) we have

Tr(g(Dζ, Dζ)) =
m+n∑
i=1

g(Deiζ, Deiζ)

=
m∑

i=1

g(Deiζ, Deiζ) +
1
f2

m+n∑
i=m+1

g(Deiζ, Deiζ). (3.4)

Using Proposition 2.1, the first term is given by
m∑

i=1

g(Deiζ, Deiζ) =
m∑

i=1

g(D1
ei

ζ1 + ei(ln f)ζ2, D
1
ei

ζ1 + ei(ln f)ζ2)

=
m∑

i=1

g(D1
ei

ζ1, D
1
ei

ζ1) +
m∑

i=1

g(ei(ln f)ζ2, ei(ln f)ζ2)

= Tr(g1(D1ζ1, D
1ζ1)) + ‖ζ2‖2

2

m∑
i=1

(ei(ln f))2

= Tr(g1(D1ζ1, D
1ζ1)) + ‖ζ2‖2

2‖∇f‖2
1 (3.5)

and the second term is given by

1
f2

m+n∑
i=m+1

g(Deiζ, Deiζ) =
1
f2

m+n∑
i=m+1

g(ζ1(ln f)ei + D2
ei

ζ2

− fg2(ei, ζ2)∇f, ζ1(ln f)ei + D2
ei

ζ2 − fg2(ei, ζ2)∇f)

= n(ζ1(ln f))2 +
m+n∑

i=m+1

g2(D2
ei

ζ2, D
2
ei

ζ2)

+ ‖∇f‖2
1

m+n∑
i=m+1

(g2(ei, ζ2))2, (3.6)

1
f2

m+n∑
i=m+1

g(Deiζ, Deiζ) =
n

f2
(ζ1(f))2 + Tr(g2(D2ζ2, D

2ζ2)) + ‖∇f‖2
1‖ζ2‖2

2.

(3.7)

By using Eqs. (3.5) and (3.7), Eq. (3.4) becomes

Tr(g(Dζ, Dζ)) = Tr(g1(D1ζ1, D
1ζ1)) + Tr(g2(D2ζ2, D

2ζ2))

+ 2‖ζ2‖2
2‖∇f‖2

1 +
n

f2
(ζ1(f))2. (3.8)

Now suppose that ζi is a 2-Killing vector field and Rici(ζi, ζi) ≤ 0, then ζi is a
parallel vector field with respect to the metric gi and hence

Tr(g1(D1ζ1, D
1ζ1)) = Tr(g2(D2ζ2, D

2ζ2)) = 0.
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Then for a constant function f, we have

Tr(g(Dζ, Dζ)) = 0.

Thus ζ is a parallel vector field with respect to the metric g. One can easily prove
the last two assertions using Eq. (3.8).

Corollary 3.5. Let ζ ∈ X(M1×fM2) be a vector field on a warped product manifold
of the form M1 ×f M2. Then

Tr(g(Dζ, Dζ)) = Tr(g1(D1ζ1, D
1ζ1)) + Tr(g2(D2ζ2, D

2ζ2))

+ 2‖ζ2‖2
2‖∇f‖2

1 +
n

f2
ζ1(f)ζ1(f).

Theorem 3.3. Assume that ζ ∈ X(M1×f M2) is a nontrivial 2-Killing vector field
on the warped product manifold M1 ×f M2. If Dζζ is parallel along a curve γ, then

K(ζ, γ̇) ≥ 0.

Proof. Let ζ ∈ X(M1 ×f M2) be a nontrivial 2-Killing vector field, then

0 = g(DζDXζ, Y ) − g(D[ζ,X]ζ, Y ) + 2g(DXζ, DY ζ)

+ g(X, DζDY ζ) − g(X, D[ζ,Y ]ζ)

for any vector fields X, Y ∈ X(M1 ×f M2). Take X = Y = T = γ̇, then

g(DζDT ζ, T ) − g(D[ζ,T ]ζ, T ) + g(DT ζ, DT ζ) = 0,

g(DζDT ζ − D[ζ,T ]ζ, T ) = −g(DT ζ, DT ζ).

Since Dζζ is parallel along a curve γ, DT Dζζ = 0 and hence

g(R(ζ, T )ζ, T ) = −g(DT ζ, DT ζ),

R(ζ, T, T, ζ) = −g(DT ζ, DT ζ),

K(ζ, γ̇) = ‖DT ζ‖2 ∗ A(ζ, γ̇) ≥ 0,

where A(ζ, γ̇) is area of the parallelogram generated by ζ and γ̇.

The above result can be proved by using Corollary 3.1 as follows.
Let ζ ∈ X(M1 ×f M2) be a nontrivial 2-Killing vector field, then

R(ζ, T, ζ, T ) = g(DT ζ, DT ζ) + g(DT Dζζ, T )

= ‖DT ζ‖2 + 0

= ‖DT ζ‖2 ≥ 0.

Moreover, if Dζζ = 0, then K(ζ, X) ≥ 0 for any vector field X ∈ X(M1 ×f M2).
Now, we will state yet another condition for a vector field on warped product

manifolds to be 2-Killing.
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Let (M, g) be an n-dimensional pseudo-Riemannian manifold. Suppose that X

and Y are vector fields on M. Then denote:

F(X, Y ) = g(∇X∇Y X, Y ) + g(∇Y X,∇Y X) − g(∇[X,Y ]X, Y ).

Note that X is a 2-Killing vector field if F(X, Y ) = 0 for any vector field Y on
M . We can prove many of the above results using the following theorem.

Theorem 3.4. Let ζ ∈ X(M1 ×f M2) be a vector field on the warped product
manifold of the form M1 ×f M2. Then

F(ζ1 + ζ2, X1 + X2) = F1(ζ1, X1) + f2F2(ζ2, X2)

+ (fζ1(f) + ζ1(f)ζ1(f))g2(X2, X2)

+ 2fζ1(f)g2(∇X2ζ2, X2).

4. 2-Killing Vector Fields of Warped Product Space-Times

We will apply our main results to some well-known warped product space-time
models to characterize their 2-Killing vector fields.

4.1. 2-Killing vector fields of standard static space-times

We begin by defining standard static space-times.
Let (M, g) be an n-dimensional Riemannian manifold and f : M → (0,∞) be a

smooth function. Then (n+1)-dimensional product manifold I ×M furnished with
the metric tensor

ḡ = −f2dt2 ⊕ g

is called a standard static space-time and is denoted by M̄ = If ×M where I is an
open, connected subinterval of R and dt2 is the Euclidean metric tensor on I.

Note that standard static space-times can be considered as a generalization of
the Einstein static universe [1–3, 8, 13–16].

Theorem 4.1. Let M̄ = If × M be a standard static space-time with the metric
ḡ = −f2dt2 ⊕ g. Suppose that u : I → R is smooth on I. Then ζ̄ = u∂t + ζ with
ζ ∈ X(M) is a 2-Killing vector field on M̄ if one of the following conditions is
satisfied :

(1) ζ is 2-Killing on M, u = a and fζ(f) = b where a, b ∈ R.

(2) ζ is 2-Killing on M, u = (rt + s)
1
3 and ζ(f) = 0 where r, s ∈ R.

Proof. Let X̄ = x∂t + X ∈ X(M̄) and Ȳ = y∂t + Y ∈ X(M̄) be any vector fields
on M̄ where X, Y ∈ X(M) and x, y are smooth real-valued functions on I. Using
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Theorem 3.1, we have

(L̄ζ̄ L̄ζ̄ ḡ)(X̄, Ȳ )

= (LζLζg)(X, Y ) + f2(LI
u∂t

LI
u∂t

gI)(x∂t, y∂t) + 4fζ(f)(L2
ζ2

g2)(x∂t, y∂t)

+ 2fζ(ζ(f))gI(x∂t, y∂t) + 2ζ(f)ζ(f)gI(x∂t, y∂t).

Note that for a vector u∂t field on I, we have

LζgI(x∂t, y∂t) = 2u̇gI(x∂t, y∂t),

LζLζgI(x∂t, y∂t) = (2uü + 4u̇2)gI(x∂t, y∂t).

Then

(L̄ζ̄ L̄ζ̄ ḡ)(X̄, Ȳ )

= (LζLζg)(X, Y ) + f2(2uü + 4u̇2)gI(x∂t, y∂t) + 8u̇fζ(f)gI(x∂t, y∂t)

+ 2ζ(fζ(f))gI(x∂t, y∂t). (4.1)

The vector field ζ is 2-Killing on M and the function u in both conditions (1)
and (2) is a solution of

(2uü + 4u̇2) = 0.

Thus Eq. (4.1) becomes

(L̄ζ̄L̄ζ̄ ḡ)(X̄, Ȳ ) = 2[4fζ(f)u̇ + ζ(fζ(f))]gI(x∂t, y∂t). (4.2)

Finally, condition (1) implies that u̇ = ζ(fζ(f)) = 0 and condition (2) implies
that ζ(f) = 0. Consequently, condition (1) or condition (2) implies that

(L̄ζ̄L̄ζ̄ ḡ)(X̄, Ȳ ) = 0

and so ζ̄ is 2-Killing on M̄ .

The converse of the above theorem is considered in the following corollary. The
proof is straightforward.

Corollary 4.1. Assume that M̄ is a standard static space-time of the form If ×M

and ζ̄ = u∂t + ζ is a 2-Killing vector field on M̄ . Then ζ is a 2-Killing vector field
on M . Moreover, the vector field u∂t is a 2-Killing vector field on I if ζ(f) = 0.

Example 4.1. Let ζ = u(t)∂t + v(x)∂x be a vector field on the warped prod-
uct manifold M̄ = If ×R with warping function f and the metric tensor ds2 =
−f2dt2 + dx2. To prove that ζ is a 2-Killing vector field, we can use Eq. (4.1). If
X̄ = x∂t + X and Ȳ = y∂t + Y are two vector fields on M̄, then

(L̄ζ̄ L̄ζ̄ ḡ)(X̄, Ȳ ) = (LζLζg)(X, Y ) + f2(2uü + 4u̇2)gI(x∂t, y∂t)

+ 8u̇fζ(f)gI(x∂t, y∂t) + 2ζ(fζ(f))gI(x∂t, y∂t), (4.3)
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where ζ = v(x)∂x and g = dx2. It is now easy to show that

ζ(f) = vf ′, ζ(fζ(f)) = v2ff ′′ + v2f ′2 + vv′ff ′,

(LζLζg)(∂x, ∂x) = 2vv′′ + 4v′2.

Also, an orthogonal basis of X(M) is {∂t, ∂x}. Thus Eq. (4.3) becomes

(L̄ζ̄L̄ζ̄ ḡ)(∂x, ∂x) = 2vv′′ + 4v′2,

(L̄ζ̄ L̄ζ̄ ḡ)(∂x, ∂t) = 0,(L̄ζ̄L̄ζ̄ ḡ
)
(∂t, ∂x) = 0,(L̄ζ̄L̄ζ̄ ḡ

)
(∂t, ∂t) = −f2(2uü + 4u̇2) − 8u̇vff ′ − 2v2ff ′′ − 2v2f ′2 − 2vv′ff ′.

Now if u∂t and v∂t are 2-Killing vector fields on I and R, respectively, then

2uü + 4u̇2 = 2vv′′ + 4v′2 = 0.

Consequently, ζ is 2-Killing if f ′ = 0. One can obtain the same result by using the
definition of 2-Killing vector fields (see Appendix B).

4.2. 2-Killing vector fields of generalized Robertson–Walker

space-times

We first define generalized Robertson–Walker space-times.
Let (M, g) be an n-dimensional Riemannian manifold and f : I → (0,∞) be a

smooth function. Then (n+1)-dimensional product manifold I ×M furnished with
the metric tensor

ḡ = −dt2 ⊕ f2g

is called a generalized Robertson–Walker space-time and is denoted by M̄ = I × fM

where I is an open, connected subinterval of R and dt2 is the Euclidean metric tensor
on I.

This structure was introduced to the literature to extend Robertson–Walker
space-times [18, 30, 29]

Due to Corollary 3.2, we need to determine 2-Killing vector fields on I. Suppose
that ζ1 = h∂t is a vector field on I where h is a smooth function on I. Then

(LI
h∂t

LI
h∂t

gI)(∂t, ∂t) = −2hh′′ − 4(h′)2

= −2(hh′′ + 2(h′)2).

Therefore, ζ1 = h∂t is a 2-Killing vector field on I if and only if hh′′ = −2(h′)2.
In this case, one can solve the last differential equation and obtain that h(t) =

(at − b)
1
3 for some a, b ∈ R where t ∈ I and t �= b

a .
Thus to characterize 2-Killing vector fields on the generalized Robertson–Walker

space-time of the form M̄ = I ×f M , one can focus on vector fields of the form
(at − b)

1
3 ∂t + V .

An easy application of Corollary 3.3 leads us to the following result.
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Proposition 4.1. Let M̄ = I ×f M be a generalized Robertson–Walker space-time
with the metric tensor ḡ = −dt2 ⊕ f2g. Suppose that V is a 2-Killing vector field
on (M, g). Then a vector field (at − b)

1
3 ∂t + V is a 2-Killing vector field on (M̄, ḡ)

if V is a homothetic vector field on (M, g) with c satisfying
a

3
fḟ + (ff̈ + ḟ2)(at − b) = −2cfḟ(at − b)

2
3 .

Remark 4.1. At this point, we want to emphasize that we prefer not to apply
Corollary 3.4 since condition (1) implies that the warping function f of a generalized
Robertson–Walker space-time of the form M̄ = I ×f M is constant and hence the
underlying warped product turns out to be just a trivial product.

Appendix A. Proof of Theorem 3.1

Using Propositions 2.1 and 3.1, we get

(LζLζg)(X, Y ) = g(DζDXζ, Y ) + g(X, DζDY ζ) − g(D[ζ,X]ζ, Y ) − g(X, D[ζ,Y ]ζ)

+ 2g(DXζ, DY ζ).

The first term T1 is given by

T1 = g(DζDXζ, Y )

= g

(
Dζ

(
D1

X1
ζ1 +

1
f

ζ1(f)X2 +
1
f

X1(f)ζ2 + D2
X2

ζ2 − fg2(X2, ζ2)�f

)
, Y

)

= g

(
D1

ζ1
D1

X1
ζ1 +

1
f

ζ1(ζ1(f))X2 +
1
f

ζ1(X1(f))ζ2 +
1
f

ζ1(f)D2
X2

ζ2

− ζ1(f)g2(X2, ζ2)�f − fg2(X2, ζ2)D1
ζ1
�f +

1
f

(D1
X1

ζ1)(f)ζ2

+
1
f

ζ1(f)D2
ζ2

X2 − ζ1(f)g2(X2, ζ2)�f +
1
f

X1(f)D2
ζ2

ζ2

−X1(f)g2(ζ2, ζ2)�f + D2
ζ2

D2
X2

ζ2 − fg2(D2
X2

ζ2, ζ2)�f

− fg2(D2
ζ2

X2, ζ2)�f − fg2(X2, D
2
ζ2

ζ2)�f − g2(X2, ζ2)(�f)(f)ζ2, Y

)

and so

T1 = g1(D1
ζ1

D1
X1

ζ1, Y1) + fζ1(ζ1(f))g2(X2, Y2) + fζ1(X1(f))g2(ζ2, Y2)

+ fζ1(f)g2(D2
X2

ζ2, Y2) − ζ1(f)Y1(f)g2(X2, ζ2) − fg2(X2, ζ2)g1(D1
ζ1
�f, Y1)

+ f(D1
X1

ζ1)(f)g2(ζ2, Y2) + fζ1(f)g2(D2
ζ2

X2, Y2) − ζ1(f)Y1(f)g2(X2, ζ2)

+ fX1(f)g2(D2
ζ2

ζ2, Y2) − X1(f)Y1(f)g2(ζ2, ζ2) + f2g2(D2
ζ2

D2
X2

ζ2, Y2)

− fY1(f)g2(D2
X2

ζ2, ζ2) − fY1(f)g2(D2
ζ2

X2, ζ2) − fY1(f)g2(X2, D
2
ζ2

ζ2)

− f2g2(X2, ζ2)(�f)(f)g2(ζ2, Y2)
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= g1(D1
ζ1

D1
X1

ζ1, Y1) + f2g2(D2
ζ2

D2
X2

ζ2, Y2)

+ fζ1(ζ1(f))g2(X2, Y2) + fζ1(X1(f))g2(ζ2, Y2) + fζ1(f)g2(D2
X2

ζ2, Y2)

− fζ1(Y1(f))g2(X2, ζ2) + fg2(X2, ζ2)(D1
ζ1

Y1)(f)

+ fg2(ζ2, Y2)(D1
X1

ζ1)(f) + fζ1(f)g2(D2
ζ2

X2, Y2) − 2ζ1(f)Y1(f)g2(X2, ζ2)

+ fX1(f)g2(D2
ζ2

ζ2, Y2) − X1(f)Y1(f)g2(ζ2, ζ2)

− fY1(f)g2(D2
X2

ζ2, ζ2) − fY1(f)g2(D2
ζ2

X2, ζ2) − fY1(f)g2(X2, D
2
ζ2

ζ2)

− f2g2(X2, ζ2)g2(ζ2, Y2)(�f)(f).

Exchanging X and Y we get the second term T2 and so

T1 + T2 = g(DζDXζ, Y ) + g(DζDY ζ, X)

= g1(D1
ζ1

D1
X1

ζ1, Y1) + f2g2(D2
ζ2

D2
X2

ζ2, Y2) + g1(D1
ζ1

D1
Y1

ζ1, X1)

+ f2g2(D2
ζ2

D2
Y2

ζ2, X2) + 2fζ1(ζ1(f))g2(X2, Y2)

− 2X1(f)Y1(f)g2(ζ2, ζ2) − 2f2g2(X2, ζ2)g2(ζ2, Y2)(�f)(f)

+ fζ1(f)g2(D2
X2

ζ2, Y2) + fg2(X2, ζ2)(D1
ζ1

Y1)(f)

+ fg2(ζ2, X2)(D1
Y1

ζ1)(f) + fζ1(f)g2(D2
Y2

ζ2, X2)

+ fg2(Y2, ζ2)(D1
ζ1

X1)(f) + fg2(ζ2, Y2)(D1
X1

ζ1)(f)

+ fζ1(f)g2(D2
ζ2

X2, Y2) − 2ζ1(f)Y1(f)g2(X2, ζ2) − fY1(f)g2(D2
X2

ζ2, ζ2)

+ fζ1(f)g2(D2
ζ2

Y2, X2) − 2ζ1(f)X1(f)g2(Y2, ζ2) − fX1(f)g2(D2
Y2

ζ2, ζ2)

− fY1(f)g2(D2
ζ2

X2, ζ2) − fX1(f)g2(D2
ζ2

Y2, ζ2).

The third term is given by

T3 = g(D[ζ,X]ζ, Y )

= g(D[ζ1,X1]ζ1 + D[ζ2,X2]ζ1 + D[ζ1,X1]ζ2 + D[ζ2,X2]ζ2, Y )

= g

(
D1

[ζ1,X1]
ζ1 +

1
f

ζ1(f)[ζ2, X2] +
1
f

[ζ1, X1](f)ζ2 + D2
[ζ2,X2]ζ2

− fg2([ζ2, X2], ζ2)�f, Y
)

= g1(D1
[ζ1,X1]ζ1, Y1) + fζ1(f)g2([ζ2, X2], Y2) + f [ζ1, X1](f)g2(ζ2, Y2)

+ f2g2(D2
[ζ2,X2]

ζ2, Y2) − fg2([ζ2, X2], ζ2)Y1(f)

= g1(D1
[ζ1,X1]ζ1, Y1) + f2g2(D2

[ζ2,X2]
ζ2, Y2) + fζ1(f)g2([ζ2, X2], Y2)

+ fg2(ζ2, Y2)[ζ1, X1](f) − fg2([ζ2, X2], ζ2)Y1(f).
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Exchanging X and Y we get the fourth term T4 and so

T3 + T4 = g1(D1
[ζ1,X1]ζ1, Y1) + g1(D1

[ζ1,Y1]ζ1, X1) + f2g2(D2
[ζ2,X2]

ζ2, Y2)

+ f2g2(D2
[ζ2,Y2]

ζ2, X2) + fζ1(f)g2([ζ2, X2], Y2) + fg2(ζ2, Y2)[ζ1, X1](f)

− fY1(f)g2([ζ2, X2], ζ2) + fζ1(f)g2([ζ2, Y2], X2) + fg2(ζ2, X2)[ζ1, Y1](f)

− fX1(f)g2([ζ2, Y2], ζ2).

The last term T5 is given by

(1/2)T5 = g(DXζ, DY ζ)

= g

(
D1

X1
ζ1 +

1
f

ζ1(f)X2 +
1
f

X1(f)ζ2 + D2
X2

ζ2 − fg2(X2, ζ2)�f,

×D1
Y1

ζ1 +
1
f

ζ1(f)Y2 +
1
f

Y1(f)ζ2 + D2
Y2

ζ2 − fg2(Y2, ζ2)�f

)

= g1(D1
X1

ζ1, D
1
Y1

ζ1) − fg2(Y2, ζ2)(D1
X1

ζ1)(f) + ζ1(f)ζ1(f)g2(X2, Y2)

+ ζ1(f)Y1(f)g2(X2, ζ2) + fζ1(f)g2(X2, D
2
Y2

ζ2)

+ ζ1(f)X1(f)g2(ζ2, Y2) + X1(f)Y1(f)g2(ζ2, ζ2) + fX1(f)g2(ζ2, D
2
Y2

ζ2)

+ fζ1(f)g2(D2
X2

ζ2, Y2) + fY1(f)g2(D2
X2

ζ2, ζ2) + f2g2(D2
X2

ζ2, D
2
Y2

ζ2)

− fg2(X2, ζ2)(D1
Y1

ζ1)(f) + f2g2(X2, ζ2)g2(Y2, ζ2)g1(�f,�f).

Then

(LζLζg)(X, Y ) = (L1
ζ1
L1

ζ1
g1)(X1, Y1) + f2(L2

ζ2
L2

ζ2
g2)(X2, Y2)

+ 4fζ1(f)(L2
ζ2

g2)(X2, Y2) + 2fζ1(ζ1(f))g2(X2, Y2)

+ 2ζ1(f)ζ1(f)g2(X2, Y2).

Appendix B. Space-Time Example

In this section we deal with a standard static space-time of the form If ×R. Using
Proposition 2.1, one can establish the following

(1) ∇∂x∂x = 0,
(2) ∇∂t∂x = ∇∂x∂t = ∂x(ln f)∂t = f ′

f ∂t and
(3) ∇∂t∂t = ff ′∂x

on the warped product manifold If × R. It is clear that

[ζ̄, ∂t] = −u̇∂t, [ζ̄, ∂x] = −v′∂x.

Also, we have

∇∂t ζ̄ = uff ′∂x +
1
f

(u̇f + vf ′)∂t, ∇∂x ζ̄ = v′∂x +
1
f

(uf ′)∂t
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and

∇ζ̄∇∂t ζ̄ = [uvff ′′ + 2uvf ′2 + 2uu̇ff ′]∂x

+
1
f

[v2f ′′ + vv′f ′ + vu̇f ′ − u2ff ′2 + uüf ]∂t,

∇ζ̄∇∂x ζ̄ = (vv′′ + u2f ′2)∂x +
1
f

(uu̇f ′ + uv′f ′ + uvf ′′)∂t.

Finally,

∇[ζ̄,∂t]ζ̄ = −uu̇ff ′∂x − 1
f

(u̇vf ′ + u̇2f)∂t,

∇[ζ̄,∂x]ζ̄ = −v′2∂x − 1
f

(uv′f ′)∂t.

Now we can evaluate 2-Killing forms on If × R as follows

(L̄ζ̄ L̄ζ̄g)(∂x, ∂x) = 2[vv′′ + 2v′2],

(Lζ̄Lζ̄g)(∂t, ∂x) = 0,

(Lζ̄Lζ̄g)(∂x, ∂t) = 0,

(Lζ̄Lζ̄g)(∂t, ∂t) = −2f2[uü + 2u̇2] − 2[v2ff ′′ + vv′ff ′] − 8u̇vff ′ − 2v2f ′2.

which is what we have done before.
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