Spectroscopic investigation of sulfur-resistant Pt/K2O/ZrO2/TiO2/Al2O3 NSR/LNT catalysts

Z. Say, M. Tohumek en, E. Ozensoy *

Department of Chemistry, Bilkent University, 06800 Ankara, Turkey

ARTICLE INFO

Article history:
Received 6 October 2015
Received in revised form 25 November 2015
Accepted 4 December 2015
Available online 18 January 2016

Keywords:
NSR/LNT
DeNOx, Al2O3/ZrO2/TiO2
FTIR
TPD

ABSTRACT

An alternative ternary support oxide material and its K2O and Pt functionalized counterparts in the form of Pt/K2O/Al2O3/ZrO2/TiO2 with different K2O loadings were synthesized. Structural and morphological properties of the catalysts were characterized via XRD and BET techniques in comparison to a conventional Pt/20Ba/Al benchmark NSR/LNT catalyst. Comprehensive in-situ FTIR and TPD analysis revealed that increasing the K2O loading in the Pt/K2O/AZT system leads to an increase in NOx Storage Capacity (NSC) at the expense of the formation of bulk-like sulfates requiring higher temperature for complete sulfur elimination with H2(g). Observed delicate trade-off between NSC and sulfur poisoning tendencies of the currently investigated family of AZT-based NSR/LNT catalysts implies that Pt/5.4K2O/AZT is a promising catalyst revealing comparable NSC within the temperature range of 473–673 K to that of the conventional Pt/20Ba/Al benchmark catalyst, while exhibiting superior sulfur tolerance and regeneration characteristics.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

NOx emitted from mobile sources have serious destructive effects on the atmosphere, global ecosystem and especially on the human health. About one half of the total NOx emissions results from mobile sources [1]. While the very first regulations for diesel engine emissions were primarily focusing on particle emissions, other hazardous pollutants such as CO, SO2, NOx and unburned hydrocarbons from mobile sources are currently being regulated with increasingly stringent limitations. This leads to a constant pressure on the global automotive industry to develop novel and innovative aftertreatment technologies that can satisfy the continuously evolving environmental legislations and to lower the exhaust emission levels [2–4]. Recently, it was reported that NOx emissions of some of the currently existing diesel-engine passenger cars equipped with modern DeNOx aftertreatment systems on the highway were up to 20–35 times higher than that of the allowed emission limits [5]. Furthermore, a very recent study published by the European Environment Agency (EEA) [6] reported that without any exception, each European Union (EU) member state violates at least one or more of the existing annual emission limitations associated with NOx, SOx, NH3 and non-methane volatile organic compounds (NMVOC). Among these EU member states, particularly Germany, Austria and Ireland were found to fail meeting annual European NOx emission standards in 2014. These striking examples clearly call for the design and development of more efficient, more stable and more affordable heterogeneous catalytic architectures that can be used in modern DeNOx aftertreatment technologies.

For lean-burn engines, a promising aftertreatment method for the catalytic NOx reduction is the so-called NOx storage/reduction (NSR)/Lean NOx Trap (LNT) technology [7,8]. A typical NSR/LNT catalyst is comprised of basic oxides (e.g. BaO, K2O), redox sites (e.g. Pt, Pd and/or Rh) and a high surface area support material (e.g. γ-Al2O3) [2,3,9].

The conventional NSR/LNT catalyst, Pt/BaO/γ-Al2O3, exhibits efficient NOx conversion and storage performance within the operational temperature window of the diesel emission tailpipe (i.e. 473–673 K) [10–18]. However, recent engine applications such as the fuel-efficient gasoline direct injection (GDI) engines require catalytic aftertreatment solutions which should be able to operate at temperatures above 400 °C, where the conventional NSR/LNT catalysts cannot function effectively [19]. Toyota Motor Company
reported that K₂O and BaO are two of the most promising NOₓ storage components to be used in NSR/LNT catalysts [20]. Among these two different types of basic metal oxides, the use of K₂O attracted particular interest due to its superior NOₓ storage capacity (NSC) at elevated temperatures [21]. Other noteworthy advantages of K₂O domains are associated to their stronger basicity and the lack of unfavorable solid–state interactions between K₂O and the γ-Al₂O₃ support material, unlike that of BaO which may lead to the formation of undesired BaAl₂O₄ at high temperatures [22]. Luo et al. investigated the effect of K₂O loading (within 2–20 wt. %) on the NSC of the Pt/K₂O/γ-Al₂O₃ system. It was found out that the catalyst formulation containing 10 wt. % K₂O resulted in the highest NSC values within a wide temperature window of 523–823 K [22].

In addition to the promising NSC of K₂O-functionalized materials in high temperature DeNOₓ applications, sulfur-poisoning tolerances as well as the sulfur regeneration characteristics of such systems should be also taken into consideration. It is known that K₂O domains dispersed on a γ-Al₂O₃ support material are highly prone to sulfur poisoning, experiencing rapid and rather irreversible catalytic deactivation. A class of novel Al/Ti/Zr mixed oxides has emerged in recent years with enhanced surface and structural properties as support for K₂O-based NSR/LNT catalysts [23–25]. In recent studies, ZrO₂/Al₂O₃, TiO₂/Al₂O₃ and Al₂O₃/ZrO₂/Al₂O₃-supported NSR/LNT catalysts can reveal superior sulfur regeneration and NOₓ recovery performances as compared to that of γ-Al₂O₃-based systems (i.e. Pt/BaO/Al₂O₃ vs. Pt/K₂O/Al₂O₃) [26–27]. Takashi et al. reported that a ZrO₂–TiO₂ support material with a mass ratio of 70:30 (which also revealed the highest SSA among the investigated materials therein) exhibited the best performance in terms of sulfur resistance, thermal durability and NOₓ abatement [28]. Their studies which also included Pt/Rh/Al₂O₃/AZT catalyst with nano-composite ternary oxide Al₂O₃/ZrO₂/TiO₂ support showed excellent NOₓ storage capacity (NSC) compared to that of γ-Al₂O₃/ZrO₂/TiO₂-support, where γ-Al₂O₃ was physically mixed with ZrO₂/TiO₂ [29–30]. In addition, Zou et al. [27] performed a detailed analysis on the effect of Al₂O₃ doping into the ZrO₂/TiO₂ matrix, suggesting that the Al/ (Ti + Zr) atomic ratio of 3:1 exhibited the highest NSC for fresh and sulfur-regenerated catalyst. In a more recent work, Zou et al. studied the effect of K loading on the NSC and sulfur regeneration performance of Pt/K/Al₂O₃/ZrO₂/TiO₂ catalyst under realistic flow conditions [31].

However, these aforementioned comprehensive studies included a limited number of spectroscopic investigations on the interactions between SOₓ species and the corresponding catalyst surfaces. Thus, in the current work, we focus on the molecular level investigation of the fundamental interactions that take place between SOₓ species and K-based novel NSR/LNT catalyst surfaces in a qualitative and a semi-quantitative manner. Along these lines, we investigate the SOₓ adsorption/uptake as well as the SOₓ reduction/ regeneration/release properties of Al₂O₃/ZrO₂/TiO₂ (AZT) supported Pt/K/AZT catalysts in comparison to a benchmark NSR/LNT catalyst (i.e. Pt/BaO/Al₂O₃) by utilizing in-situ spectroscopic techniques. Generation of S-containing surface functional groups, their thermal evolution, reduction and release functions a function of temperature and K₂O loading are systematically monitored by means of in-situ Fourier Transform Infrared Spectroscopy (in-situ FTIR) and Temperature Programmed Desorption (TPD). Moreover, structural and morphological properties of the synthesized materials are also analyzed via X-ray Diffraction (XRD) and Brunauer, Emmett and Teller (BET) surface area analysis techniques. Current results provide valuable molecular level insight regarding the interaction of SOₓ species with K-based NSR/LNT catalysts supported on novel AZT mixed oxide surfaces and the delicate trade-off between the NSC and sulfur poisoning phenomena.

2. Experimental

2.1. Material synthesis

2.1.1. Synthesis of Pt/Al₂O₃/ZrO₂/TiO₂

Al₂O₃/ZrO₂/TiO₂ (AZT) support material was synthesized as described in one of our former publications where the relative composition of the ternary oxide system (i.e. Al₂O₃/ZrO₂/TiO₂) by mass was 50:35:15 [25]. 1 wt. % platinum-impregnated ternary oxide materials were synthesized by incipient wetness impregnation method using a solution of Pt(NH₃)₂(NO2)₂ (Aldrich, diammine-dinitritoplatinum(II), 3.4 wt.% solution in dilute NH₃(aq)). Prior to the Pt addition, Al₂O₃/ZrO₂/TiO₂ was initially calcined in air at 973 K for 150 min in order to remove the organic functionalities in the precursor. After the Pt-impregnation, Pt/AZT material was subsequently calcined in air at 973 K for 150 min in order to remove nitrite/nitrate originating from the Pt precursor and to structurally stabilize the catalyst surface.

2.1.2. Synthesis of Pt/K₂O/Al₂O₃/ZrO₂/TiO₂

K₂O-based catalysts were also prepared via wetness impregnation. Pt/K₂O/Al₂O₃/ZrO₂/TiO₂ catalysts with 2.7, 5.4 and 10.0 wt. % K₂O loading (i.e. Pt/2.7K₂O/Al₂O₃/ZrO₂/TiO₂, Pt/5.4K₂O/Al₂O₃/ZrO₂/TiO₂ and Pt/10K₂O/Al₂O₃/ZrO₂/TiO₂; respectively) were prepared via impregnation of Al₂O₃/ZrO₂/TiO₂ support (initially calcined at 973 K for 150 min) with an aqueous solution of potassium nitrate (KNO₃ 6H₂O, >99.0 %, Fluka, France) followed by calcination at 873 K for 150 min in order to thermally remove the nitrate content present in the precursors. Finally, K₂O/Al₂O₃/ZrO₂/TiO₂ structure was impregnated with the Pt(NH₃)₂(NO2)₂ precursor and calcined at 973 K for 150 min under ambient conditions in order to attain 1 wt. % nominal precious metal loading. Throughout the current text, synthesized Pt/K₂O/Al₂O₃/ZrO₂/TiO₂ catalysts with 2.7, 5.4 and 10.0 wt. % K₂O and 1 wt. % Pt loadings will be abbreviated as Pt/2.7K/AZT, Pt/5.4K/AZT and Pt/10K/AZT, respectively.

2.1.3. Synthesis of Pt/BaO/γ-Al₂O₃

For the synthesis of the Pt/20BaO/Al benchmark catalyst, γ-Al₂O₃ support material (SASOL Puralox, 210 m²/g) was impregnated with an aqueous solution of barium nitrate (Ba(NO₃)₂, ACS Reagent, > 99%, Riedel-de Häen, Germany) which was followed by calcination at 873 K in air for 150 min. Finally, 20BaO/Al₂O₃ was impregnated with the Pt(NH₃)₂(NO2)₂ precursor (Aldrich, diammine-dinitritoplatinum(II), 3.4 wt.% solution in dilute NH₃(aq)) to obtain 1 wt. % nominal precious metal loading, followed by calcination at 973 K for 150 min. This catalyst will be abbreviated as Pt/20Ba/A at throughout the current text.

2.2. Experimental setup

Comprehensive description of the custom-made batch-mode in-situ FTIR and TPD spectroscopic setup used in the current measurements can be found elsewhere [10,14,25,32]. Briefly, an FTIR spectrometer (Bruker Tensor 27) and a quadruple mass spectrometer (QMS, Stanford Research Systems, RGA 200) were simultaneously connected to a batch-type spectroscopic reactor. FTIR experiments were performed in transmission mode. TPD profiles were obtained under vacuum by using a computer-controlled linear temperature ramp of 12 K/min with a maximum sample temperature of 1173 K.
2.3. Experimental procedures

2.3.1. Monitoring SO2 adsorption via in-situ FTIR

Sulfur adsorption/poisoning characteristics of each material was investigated by exposing the catalyst surfaces to a 2.0 Torr SO2 + O2 gas mixture (SO2:O2 = 1:10, v/v) at 323 K (SO2 purity > 99%, Air Products; O2 purity > 99.999%, Linde GmbH). After the introduction of SO2 mixture at 323 K, samples were annealed to 373, 473, 573 and 673 K for 5 min in the presence of the SO2 mixture. FTIR spectra of these sulfated surfaces were acquired after cooling to 323 K in the presence of the gas mixture and subsequent evacuation to < 10⁻³ Torr. It should be noted that the effective concentration of SO2 used in the current poisoning experiments corresponds to ca. 263 ppm (in a balance carrier gas under flow conditions), which translates into extremely severe poisoning conditions considering the typical sulfur content (15 ppm) of Ultra Low Sulfur Diesel (ULSD) fuel. Thus, the current poisoning experiments can be assessed as accelerated and extreme sulfur poisoning experiments, where the novel K-AZT based catalysts were exposed to particularly challenging conditions, where they can demonstrate their ultimate sulfur-regeneration capabilities.

2.3.2. Monitoring SO2 desorption via in-situ FTIR

Prior to SO2 desorption experiments, materials were sulfated as described above by collecting a series of in-situ FTIR spectra in the presence of the SO2 mixture as a function of temperature until 673 K. After the saturation of the surfaces with sulfur at 673 K, the reactor was evacuated to a pressure of < 10⁻³ Torr, followed by the introduction of 15.0 Torr of H2(g) (H2 purity > 99.999%, Linde GmbH) at 323 K. Next, poisoned catalysts were annealed under hydrogen atmosphere at 473, 673, 773, 873 and 973 K for 5 min. In-situ FTIR spectra were obtained after each H2 exposure and by cooling the sample to 323 K in the presence of H2.

2.3.3. SO2 desorption via TPD

Before the SO2-TPD experiments, material surfaces were initially exposed to a 2.0 Torr SO2 + O2 gas mixture (SO2:O2 = 1:10) at 673 K for 30 min. Then the IR spectroscopic reactor was evacuated to a pressure lower than 10⁻³ Torr followed by heating under vacuum to 1173 K with a linear heating rate of 12 K/min. In the TPD experiments, m/z = 32 (corresponding to O2(g) desorption and S(g) formation due to the impact ionization-fragmentation of desorbed SO2(g) species in QMS) and m/z = 64 (corresponding to SO2(g) desorption) channels were monitored via QMS.

3. Results and discussion

3.1. Material characterization

3.1.1. X-ray diffraction analysis (XRD)

Fig. 1 illustrates the XRD patterns of Pt/AZT, Pt/2.7K/AZT, Pt/5.4K/AZT, Pt/10K/AZT and Pt/20Ba/Al. Apart from the presence of structurally well-ordered metallic platinum (JCPDS 001-1190), Pt/AZT and Pt/K/AZT catalysts given in Fig. 1 exhibit highly amorphous characteristics. On the other hand, material with 10.0 wt. % K2O (i.e. Pt/10.0K/AZT) reveals additional poorly discernible diffraction signals at 2θ = 30.48°, 50.50°, 60.91° corresponding to tetragonal ZrO2 (JCPDS 80-2155) together with some suppression of Pt diffraction features. XRD analysis of the benchmark Pt/20Ba/Al NSR/LNT catalyst reveals γ-Al2O3 (JCPDS 001-1303), BaAl2O4 (JCPDS 017-0306) and metallic Pt (JCPDS 001-1190) features. On the Pt/20Ba/AI catalyst, BaO domains interact with the γ-Al2O3 support at elevated temperatures yielding the formation of undesired BaAl2O4 phase as a result of thermal aging [2,3,33].

3.1.2. BET specific surface area (SSA) measurements

Fig. 2 illustrates SSA values for Pt/AZT, Pt/2.7K/AZT, Pt/5.4K/AZT, Pt/10K/AZT and Pt/20Ba/Al. SSA values for Pt/AZT is slightly higher than 2.7 wt. % K2O-modified counterpart (i.e. Pt/2.7K/AZT). However, increase in the K2O loading from 2.7 wt. % to 5.4 and 10.0 wt. % monotonically decreases SSA values form 177 m²/g to 155 and 125 m²/g, respectively. It should be noted that the SSA value of the catalyst with the highest K2O loading was comparable to that of the benchmark Pt/20Ba/AI catalyst (134 m²/g), while SSA values of all of the other catalysts were relatively higher.

3.2. SO2 Uptake/adsorption via in-situ FTIR spectroscopy

Fig. 3 represents temperature-dependent adsorbed SO2 species on Pt/AZT, Pt/2.7K/AZT, Pt/5.4K/AZT and Pt/10K/AZT material surfaces upon exposure to 2.0 Torr of SO2 + O2 gas mixture (SO2:O2 = 1:10). While the black-colored spectra in each panel correspond to the surface SO2 species generated within a temperature range of 323–573 K, the topmost red spectra correspond to sulfur poisoning at 673 K.
Kim et al. reported that an increase in K$_2$O loading from 2 wt. % to 30 wt. % led to a boost in NSC of Pt/K$_2$O/Al$_2$O$_3$ materials within 600–800 K [34]. As will be demonstrated latter, although such extremely high K$_2$O loadings could be beneficial to enhance NSC in the absence of SO$_3$, they may also lead to irreversible sulfur poisoning in the presence of SO$_3$. Therefore, in the current study, we limited the K$_2$O loading of the AZT-based NSR/LNT materials to 10 wt. %.

Fig. 3a shows that SO$_3$ adsorption on Pt/AZT at relatively lower temperatures (i.e., 323 and 373 K) leads to two main vibrational features located at 1027 and 975 cm$^{-1}$ which can be assigned to sulfate (SO$_4^{2-}$) and sulfite (SO$_3^{2-}$) functional groups, respectively [35–39]. Absorbance intensities of these two particular vibrational frequencies are comparable at low temperatures, while the sulfate feature starts to dominate the sulfite feature at higher temperatures. Thermally-triggered catalytic oxidation of sulfite species to sulfates on the Pt/AZT surface can also be followed in Fig. 3a by monitoring the growth of the antisymmetric stretching mode of surface sulfate groups located at 1391 and 1306 cm$^{-1}$ [14,40]. As illustrated in Fig. 3b–d, addition of basic K$_2$O domains onto AZT ternary oxide system results in alteration of the spectral line shapes. Pt/2.7 K/AZT (Fig. 3b) presents five major vibrational features located at 1306, 1178, 1105, 1048 and 1019 cm$^{-1}$. While IR stretchings at 1306, 1105, 1048 and 1019 cm$^{-1}$ can be attributed to the surface sulfate (SO$_4^{2-}$) groups on K$_2$O and/or on the AZT support, vibrational feature located at 1178 cm$^{-1}$ can be attributed to bulk-like sulfate groups on K$_2$O [41,42]. This latter feature becomes more discernible with an increase in the K$_2$O loading (i.e., 5.4 wt. % and 10 wt. %) evident by the increasing relative absorbance intensity of the 1178 cm$^{-1}$ signal in Fig. 3c and d. SO$_3$ adsorption on Pt/5.4 K/AZT and Pt/10 K/AZT materials at 673 K leads to vibrational features at 1281 and 1238 cm$^{-1}$ along with the absence of any significant vibrational bands located at ca. > 1300 cm$^{-1}$ (Fig. 3c and d). The vibrational signals at 1281 and 1238 cm$^{-1}$ can be assigned...
to predominantly sulfates on K$_2$O domains [14,41–43]. It can be argued that with the increasing K$_2$O loading, an increasingly larger portion of the AZT surface is covered by K$_2$O islands/domains, decreasing the extent of exposed/uncovered AZT surface. It is also likely that the increase in the K$_2$O loading also results in the growth of the K$_2$O particle size and formation of 3D agglomerates, enabling the storage of SO$_x$ in the form of bulk-like sulfates in the sub-surface of these 3D nanoparticles. This argument is also in good agreement with the measured SSA values presented in Fig. 2 suggesting that the increase in the K$_2$O loading in the catalyst formulation leads to a monotonic decrease in the SSA as expected by sintering of the K$_2$O domains and particle size growth.

3.3. Sulfur regeneration with H$_2$(g) via in-situ FTIR spectroscopy

As mentioned above, SO$_x$ reduction/regeneration performance has a significant influence on the catalyst lifetime and NO$_x$ storage capacity. Therefore, SO$_x$ reduction characteristics of synthesized materials were also studied as a function of temperature by means of in-situ FTIR spectroscopy. Fig. 4 illustrates the evolution of the S-containing surface functional groups on Pt/AZT, Pt/2.7K/AZT, Pt/5.4K/AZT and Pt/10K/AZT catalyst surfaces as a function of temperature within 323–773 K in the presence of an external reducing agent, H$_2$(g).

In these set of experiments, catalysts were initially saturated with a 2.0 Torr of SO$_2$ + O$_2$ gas mixture (SO$_2$:O$_2$ = 1:10) at 673 K for 5 min and then cooled to 323 K followed by the evacuation of the spectroscopic reactor, introduction of 15.0 Torr H$_2$(g) at 323 K and annealing in H$_2$(g) at the given temperatures within 323–773 K. This particularly chosen initial sulfation/poisoning temperature (i.e. 673 K) is not only relevant to realistic NSR/LNT operational temperatures, but is also high enough to activate SO$_2$ oxidation to sulfites and sulfates in a comprehensive manner. In the series of experiments given in Fig. 4, spectral line shapes do not typi-
spectra, Fig. 1(c).

When Pt/AZT, Pt/2.7K/AZT and Pt/5.4K/AZT. Increasing the temperature to 773 K in the presence of H₂ leads to the almost complete elimination of the SO₃-related vibrational signatures on Pt/AZT, Pt/2.7K/AZT and Pt/5.4K/AZT surfaces (red spectra in Fig. 4a–c). It can be seen in Supporting information Fig. 1 that when Pt/20Ba/Al benchmark NSR/LNT catalyst is exposed to an identical set of sulfation and subsequent reduction treatments, a significantly greater portion of sulfate/sulfite species continue to exist on the Pt/20Ba/Al catalyst even at 773 K in the presence of 15.0 Torr H₂(g). This comparative analysis clearly suggests that Pt/AZT, Pt/2.7K/AZT and Pt/5.4K/AZT catalysts exhibit a superior sulfur regeneration performance than that of the Pt/20Ba/Al catalyst, as this former set of materials can be fully de-sulfated at 773 K in the presence of H₂.

However, AZT-based catalysts with the highest K₂O loading used in the current study (i.e. Pt/10K/AZT) not only showed unique sulfur uptake characteristics as presented in Fig. 3d which is dominated by bulk-like sulfates, but also revealed a fairly different SO₃-reduction profile in the presence of H₂ (Fig. 4d). As can be seen in Fig. 4, at relatively low temperatures (i.e. T ≤ 673 K), a significant portion of the SO₃ species can already be eliminated from Pt/AZT, Pt/2.7K/AZT and Pt/5.4K/AZT surfaces. However, at T ≥ 673 K, almost all of the S-related surface functional groups remain intact on Pt/10K/AZT. Even at a reduction temperature of 773 K, although Pt/AZT, Pt/2.7K/AZT surfaces can be fully regenerated (Fig. 4a–c), Pt/10K/AZT surface still remains partially blocked/poisoned by sulfur-containing functional groups and completely eliminated at only at ≥ 873 K (Fig. 4d).
3.4. Sulfur regeneration under vacuum via TPD analysis

TPD experiments were also carried out in vacuum in order to investigate the thermal regeneration ability of the synthesized catalysts after sulfur poisoning in the absence of a reducing agent, as well as to compare the relative adsorption strengths of SO₃ species residing on the poisoned catalyst surfaces. Prior to TPD experiments, each catalyst was exposed to 2.0 Torr SO₂ + O₂ gas mixture (SO₂/O₂ = 1:10) at 673 K for 30 min. Fig. 5 shows the TPD spectra corresponding to the thermal decomposition of sulfates and sulfites on Pt/AZT, Pt/2.7K/AZT, Pt/5.4K/AZT and Pt/10K/AZT catalyst surfaces. In these TPD experiments, only O₂ and SO₂ desorption channels (corresponding to mass to charge ratios of m/z = 32 and 64; respectively) revealed significant signals and other SO₃ or H₂S species were not detectable. As in the case of the BaO-based conventional NSR/LNT catalyst (Supporting information Fig. 2), SO₃-related species adsorbed on Pt/AZT and its K₂O-incorporated counterparts reveal high thermal stability which is evident by the appearance of SO₃ desorption signals at T > 700 K. Analysis of the general TPD line shapes given in Fig. 5a–c suggests that at least two different SO₃ desorption signals exist for Pt/AZT, Pt/2.7K/AZT and Pt/5.4K/AZT catalysts at T < 1050 K, revealling desorption maxima located at ca. 800–820 K and at 900–975 K. Furthermore, SO₂ desorption on these surfaces within 700–1050 K is accompanied by O₂ desorption, suggesting that sulfate/sulfite decomposition occurs in the form of simultaneous SO₂ + O₂ release. It should be noted that the contribution of the SO₂ gas to the m/z = 32 signal due to electron-impact induced fragmentation of SO₃ in the QMS ionizer chamber is less than 10 % suggesting that m/z = 32 signal can be almost exclusively attributed to the evolution of O₂(g) from the catalyst surfaces.

It is visible in Fig. 5a–c that the TPD desorption maxima tend to shift towards higher temperatures with increasing K₂O loading in the catalyst formulation. It can also be noticed that with increasing K₂O loading to 5.4 wt. % (see Fig. 5c), relative intensity of the 820 K desorption feature which can be mostly associated with SO₃ species on AZT surface is suppressed, along with the generation of a high-temperature desorption shoulder at 975 K. This is in perfect agreement with the in-situ FTIR results presented in Fig. 3 suggesting that with increasing K₂O surface coverage, extent of exposed (uncovered) AZT surface decreases along with an increase in the K₂O particle size, facilitating the formation of bulk-like sulfates that are also thermally more stable than that of the sulfates on AZT.

It is also important to note that the SO₃ desorption is not complete in Fig. 5b–d even at 1050 K (i.e. the highest experimentally attainable temperature in the current TPD setup) as evident by the presence of a desorption tail at T = 1050 K which is presumably extending well-beyond this temperature (as supported by the in-situ FTIR results that will be provided later in the text). This observation implies that while surface sulfates/sulfites present on AZT support and K₂O domains fully decompose at temperatures below 920 K, bulk-like potassium sulfate species require higher desorption temperatures for complete thermal decomposition and desorption. In other words, presence of basic K₂O domains yields strong binding sites for SO₂, leading to the formation of thermally stable surface and bulk-like SO₃ species.

On the other hand, a further increase in the K₂O loading to 10 wt.% illustrates rather different SO₃ desorption characteristics (Fig. 5d). It is evident that the SO₃ desorption features at T > 1050 K are suppressed to a great extent, leading to a relatively minor desorption feature located at 910 K with a shoulder at ca. 810 K. Considering the significant SO₃ uptake of the Pt/10K/AZT catalyst surface demonstrated by the in-situ FTIR data given in Fig. 3d, it is clear that most of the sulfate/sulfite species on Pt/10K/AZT remain intact even after vacuum annealing up to 1050 K. This is also quantitatively presented in Fig. 6, which presents the integrated SO₂ TPD desorption signals for the investigated AZT-based catalysts within 323–1050 K. Fig. 6 illustrates that the integrated SO₂ desorption signal of Pt/AZT is roughly twice greater than that of Pt/2.7K/AZT and Pt/5.4K/AZT and also about four times greater than that of Pt/10K/AZT.

Figs. 3, 5 and 6, suggest that after the sulfation of the AZT-based catalysts at 673 K and a subsequent vacuum annealing up to 1050 K during the TPD experiments, a significant fraction of the sulfate and sulfite species remain intact on the K-containing sample surfaces. Thus, it is crucial to investigate the residual SOₓ species remaining on the K-containing AZT systems after the TPD runs. Fig. 7 shows such in-situ FTIR experiments corresponding to all of the investigated sulfur poisoned AZT-based catalysts before (black spectra) and after (red spectra) TPD experiments. Fig. 7a clearly indicates that in the absence of K₂O, sulfur-poisoned Pt/AZT catalyst can be almost fully regenerated via vacuum annealing up to 1050 K during the TPD experiments. On the other hand, Pt/2.7K/AZT catalyst which releases about 50 % lesser amount of SOₓ species during TPD (Fig. 6), still reveals a minor, yet readily detectable quantity of SOₓ (Fig. 7b). On the other hand, Pt/5.4K/AZT catalyst which has a comparable integrated SOₓ desorption signal to that of Pt/2.7K/AZT (Fig. 6), reveals a stronger residual SOₓ signal in the FTIR spectrum obtained after the TPD run given in Fig. 7c. This observation is in line with the fact that Pt/5.4K/AZT surface stores a significantly greater amount of SOₓ species (which are also thermally more stable) as compared to that of Pt/2.7K/AZT. Finally, residual sulfur analysis of the Pt/10K/AZT surface (Fig. 7d) indicates that almost all of the SOₓ species generated during initial poisoning process remain intact after the TPD run and vacuum annealing at 1050 K. Thus, it is apparent that the minor amount of SOₓ release during the TPD experiment for Pt/10K/AZT (Fig. 6) corresponds to a tiny fraction of the overall sulfur that is stored on this surface. This latter result has some resemblance to the TPD data corresponding to that of the Pt/20BaAl benchmark catalyst given in Supporting information Figs. 2 and 3 and also in Fig. 6 which also reveal an incomplete thermal regeneration upon vacuum annealing up to 1050 K during the TPD run.

We also performed a comprehensive investigation of the NOₓ storage, release and reduction characteristics of Pt/K/AZT systems via in-situ FTIR, TPD as well as quantitative flow-reactor experiments [44]. A detailed account of these additional experiments will
be discussed thoroughly in a forthcoming report. Nevertheless, it is instructive to present relative integrated TPD NO\textsubscript{x} desorption signals obtained after saturation of the freshly prepared AZT-based catalysts with NO\textsubscript{2} (5.0 Torr NO\textsubscript{2} at 323 K for 10 min) in the absence of sulfur as compared to that of the Pt/20Ba/Al benchmark catalyst (Fig. 8). As can be seen in Fig. 8, relative NO\textsubscript{x} storage amounts of the AZT-based catalysts increase monotonically with increasing K\textsubscript{2}O loading until 5.4 wt. % K\textsubscript{2}O, after which it converges to a value that is comparable to that of the Pt/20Ba/Al benchmark catalyst. It is worth mentioning that NSC of the synthesized materials were investigated in a flow-mode tubular reactor where the inlet gas feed was composed of 500 ppm NO, v.\% 5 O\textsubscript{2}, v.\% 5 CO\textsubscript{2} and v.\% 5 H\textsubscript{2}O balanced with Ar(g), revealing similar NSC values for Pt/5.4K/AZT (0.165 mmol/g\textsubscript{cat}) and conventional Pt/20Ba/Al (0.171 mmol/g\textsubscript{cat}) at 573 K [44].

A combined analysis of the structural characterization results as well as the spectroscopic probe molecule adsorption experiments given in the current study allows us to shed light on sulfur poisoning, regeneration and NO\textsubscript{x} storage characteristics of AZT-based NSR/LNT catalysts functionalized with K\textsubscript{2}O. In the absence of the K\textsubscript{2}O, Pt/AZT system reveals high SSA (191 m2/g) and relatively weakly bound sulfates/sulfites which can readily be removed from the surface in a complete fashion either by reduction with H\textsubscript{2}(g) at 773 K or simply by thermal regeneration in vacuum at ca. 950 K. However, due to lack of basic K\textsubscript{2}O domains, Pt/AZT suffers from relatively low NSC. Increasing the K\textsubscript{2}O loading to 2.7, 5.4 and 10.0 wt.% leads to a progressively increasing NO\textsubscript{x} adsorption where NSC seems to be converging to a value similar to that of Pt/20Ba/Al benchmark catalyst for Pt/5.4K/AZT and Pt/10K/AZT. Furthermore, Pt/5.4K/AZT sample allows complete removal of SO\textsubscript{x} via H\textsubscript{2}(g) at 773 K unlike the conventional Pt/20Ba/Al benchmark catalyst.

Fig. 7. FTIR spectra corresponding to SO\textsubscript{x} content of (a) Pt/AZT, (b) Pt/2.7K/AZT, (c) Pt/5.4K/AZT and (d) Pt/10K/AZT catalysts before (black) and after (red) SO\textsubscript{x}-TPD runs. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
catalyst whose complete regeneration requires much higher temperatures (i.e. 973 K) under identical reducing conditions. Although increasing the K₂O loading from 5.4 to 10.0 wt. % does not seem to have a tremendous enhancement in NO₃ adsorption properties of the Pt/K/AZT system, it does result in unfavorable SO₃ uptake, release and regeneration characteristics. TPD and FTIR data suggest that K₂O domains tend to agglomerate with increasing K₂O loading and form 3D clusters with growing K₂O particle sizes. These phenomena also expedite the formation of bulk-like sulfate functionalities in the subsurface of K₂O domains with much higher thermal stability and much stronger resistance against thermal decomposition and reduction with hydrogen. Consequently, Pt/K/AZT system appears as a promising alternative which can also be used in conjunction with conventional Pt/20Ba/Al NSR/LNT catalysts.

4. Conclusion

In the current study, advanced ternary and quaternary mixed oxide materials in the form of Pt/K₂O/Al₂O₃/ZrO₂/TiO₂ were synthesized with different K₂O loadings. Synthesized materials were structurally characterized via XRD and BET in comparison to a conventional Pt/20Ba/Al benchmark NSR/LNT catalyst. Interaction of these catalyst surfaces with SO₃ (i.e. SO₂ + O₂) mixture were monitored spectroscopically using in-situ FTIR and TPD. Our findings can be summarized as follows:

- Besides the presence of ordered metallic Pt, Pt/AZT, Pt/2.7K/AZT and Pt/5.4K/AZT materials revealed reordered structures. On the other hand, Pt/10K/AZT exhibited additional diffraction signals corresponding to tetragonal ZrO₂ domains. Unlike the AZT-supported materials, conventional Pt/20Ba/Al benchmark catalyst was composed of ordered phases including γ-Al₂O₃ and BaAl₂O₄.
- Increase in K₂O loading from 2.7 to 5.4 and 10.0 wt. % monotonically decreases the SSA values from 177 m²/g to 155 and 125 m²/g, respectively. Apart from the Pt/10K/AZT catalyst, SSA values of the corresponding Pt/K/AZT catalysts are higher than that of the benchmark Pt/20Ba/Al catalyst (134 m²/g).
- Increasing the K₂O loading in the Pt/K/AZT system leads to the growth of the K₂O domain size (i.e. sintering), covering of the AZT surface with K₂O and an increase in the bulk-like sulfate functional groups requiring higher temperatures for complete sulfur elimination via thermal decomposition or via reduction with H₂(g).
- Increase in K₂O loading in the Pt/K/AZT formulation increases the NO₃ adsorption up to 5.4 wt. % of K₂O. However K₂O loadings higher than this value do not have a significant positive influence on NO₃ adsorption.
- There is a delicate trade-off between NSC and sulfur adsorption/release/regeneration characteristics. NSC and SO₃ tolerance of AZT based NSR/LNT catalysts can be optimized simultaneously by carefully fine-tuning the K₂O loading.
- Among the investigated catalysts, Pt/5.4K/AZT was found to reveal superior sulfur regeneration performance than that of the conventional Pt/20Ba/Al benchmark catalyst along with a comparable NSC (0.165 vs. 0.171 mmol/gcat, respectively).

Acknowledgements

Authors acknowledge the financial support from the Scientific and Technological Research Council of Turkey (TUBITAK) (Project Code: 111M780). Authors also acknowledge Prof. Louise Olsson and Oana Mihai (Chalmers University of Technology) for quantitative flow-mode NSC measurements.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.cattod.2015.12.013.

References
