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The rapid progress in human-genome sequencing is leading to a high availability of genomic data. This data is
notoriously very sensitive and stable in time. It is also highly correlated among relatives. A growing number
of genomes are becoming accessible online (e.g., because of leakage, or after their posting on genome-sharing
websites). What are then the implications for kin genomic privacy? We formalize the problem and detail efficient
reconstruction attacks based on graphical models and belief propagation. With our approach, an attacker can
infer the genomes of the relatives of an individual whose genome or phenotype(s) are observed, by notably
relying on Mendel’s Laws, statistical relationships between the genomic variants, and between the phenotypes
and the variants. We evaluate the effect of these statistical relationships on privacy with respect to the amount
of observed relatives and variants. We also study how the algorithmic performance evolves when we take these
various relationships into account. Furthermore, to quantify the level of genomic privacy as a result of the
proposed inference attack, we discuss possible definitions of genomic privacy metrics, and compare their values
and evolution. Genomic data reveals Mendelian disorders and the likelihood of developing severe diseases such
as Alzheimer’s. We also introduce the quantification of health privacy, specifically the measure of how well the
predisposition to a disease is concealed from an attacker. We evaluate our approach on actual genomic data from
a pedigree and show the threat extent by combining data gathered from a genome-sharing website and from an
online social network. Finally, we show how additional knowledge of phenotypic information can improve the
inference attack’s success.
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1. INTRODUCTION

With the help of rapidly developing technology, DNA sequencing is becoming less ex-
pensive. As a consequence, the research in genomics has gained speed in paving the
way to personalized (genomic) medicine, and geneticists need large collections of hu-
man genomes to further increase this speed. Furthermore, individuals are using their
genomes to learn about their (genetic) predispositions to diseases, their ancestries, and
even their compatibilities with potential partners. This trend has also caused the launch
of health-related websites and online social networks (OSNs), in which individuals share
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their genomic data (e.g., OpenSNP1 or 23andMe2). Thus, already today, tens of thousands
of genomes are available online.

Even though most of the genomes on the Internet are anonymized, it is possible to
find genomes with the identifiers of their owners (e.g., OpenSNP). Furthermore, it has
been shown that anonymization is not sufficient for protecting the real identities of the
genome donors [Gymrek et al. 2013; Sweeney et al. 2013]. Once the owner of a genome
is identified, he is faced with the risk of discrimination (e.g., by employers or insurance
companies) [Ayday et al. 2015]. Some believe that they have nothing to hide about their
genetic structure, hence they might decide to give full consent for the publication of their
genomes on the Internet to help genomic research. However, our DNA sequences are
highly correlated to our relatives’ sequences. The DNA sequences between two random
human beings are 99.9% similar, and this value is even higher for closely related people.
Consequently, somebody revealing his genome does not only damage his own genomic
privacy, but also puts his relatives’ privacy at risk [Stajano et al. 2008]. Moreover, cur-
rently, a person does not need consent from his relatives to share his genome online. This
is precisely where the interesting part of the story begins: kin genomic privacy.

A New York Times’ article3 reports the controversy about sequencing and publishing,
without the permission of her family, the genome of Henrietta Lacks (who died in 1951).
On the one hand, the family members think that her genome is private family informa-
tion and that it should not be published without the consent of the family. On the other
hand, some scientists argued that the genomes of current family members have changed
so much over time (due to gene mixing during reproduction), that nothing accurate could
be told about the genomes of current family members by using Henrietta Lacks’ genome.
As we will also show in this work, they are wrong. Minutes after Henrietta Lacks’ genome
was uploaded to a public website called SNPedia, researchers produced a report full of
personal information about Henrietta Lacks. Later, the genome was taken offline, but it
had already been downloaded by several people, hence both her and (partially) the Lacks
family’s genomic privacy was already lost.

Unfortunately, the Lacks, even though possibly the most publicized family facing this
problem, are not the only family facing this threat. As we mentioned before, the genomes
of thousands of individuals are available online. Once the identity of a genome donor is
known, an attacker can learn about his relatives (or his family tree) by using an auxiliary
side channel, such as an OSN, and infer significant information about the DNA sequences
of the donor’s relatives. We will show the feasibility of such an attack and evaluate the
privacy risks by using publicly available data on the Web.

Although the researchers took Henrietta Lacks’ genome offline from SNPedia, other
databases continue to publish portions of her genomic data. Publishing only portions of
a genome does not, however, completely hide the unpublished portions; even if a person
reveals only a part of his genome, other parts can be inferred using the statistical rela-
tionships between the nucleotides in his DNA. For example, James Watson, co-discoverer
of DNA, made his whole DNA sequence publicly available, with the exception of one gene
known as Apolipoprotein E (ApoE), one of the strongest predictors for the development
of Alzheimer’s disease. However, later it was shown that the correlation (called linkage
disequilibrium by geneticists) between one or multiple polymorphisms and ApoE could
be used to predict the ApoE status [Nyholt et al. 2009]. Thus, an attacker can also use
these statistical relationships (which are publicly available) to infer the DNA sequences
of a donor’s family members, even if the donor shares only part of his genome. It is im-
portant to note that these privacy threats not only jeopardize kin genomic privacy but, if

1http://opensnp.org/
2https://www.23andme.com/welcome/
3http://www.nytimes.com/2013/03/24/opinion/sunday/the-immortal-life-of-henrietta-lacks-the-
sequel.html?pagewanted=all
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not properly addressed, these issues could also hamper genomic research due to untimely
fear of potential misuse of genomic information.

In this work, we quantify the genomic privacy of an individual threatened by his rela-
tives revealing their genomes. Focusing on the most common variant in human popula-
tion, single nucleotide polymorphism (SNP), and considering the statistical relationships
between the SNPs on the DNA sequence, we quantify the loss in genomic privacy of in-
dividuals when one or more of their family members’ genomes are (either partially or
fully) revealed. To achieve this goal, first, we design a reconstruction attack based on
a Bayesian network model that takes into account the statistical relationships between
relatives’ genomes, and genome and phenotypes. We further extend this model to a factor
graph representation in order to also consider dependencies betweeen SNPs within the
same genome. In order to infer the values of the unknown SNPs in linear complexity, we
make use of the belief propagation algorithm, run either on a junction tree (which is a
transformation of the Bayesian network that removes its loops), or on the factor graph.
In the latter case, as the factor graph contains loops, the algorithm is carried out multiple
times until the probability distributions converge to a stable state. Then, using various
metrics, we quantify the genomic privacy of individuals and show the decrease in their
level of genomic privacy caused by the published genomes of their family members. We
also quantify the health privacy of the individuals by considering their (genetic) predis-
position to certain serious diseases. We evaluate the proposed inference attacks and show
their efficiency and accuracy by using real genomic data of a pedigree. More importantly,
by using genomic and phenotypic data and pedigree information collected from a public
genome-sharing website and an OSN, we show that inference attacks threaten not only
the Lacks family, but also many other families.

In an earlier work, inspired from the Henrietta Lacks story, we proposed an inference
attack and a technique to quantify kin genomic privacy [Humbert et al. 2013] and showed
the extent of the threat. Here, we expand this work in many aspects. Different from our
previous work, in this paper, we have the following contributions:

— We present a new framework for the inference attack that only considers the genomic
correlations between familial members. We show that this new framework enables to
perform exact inference in a single iteration of our belief propagation algorithm. We
also include analytical and empirical evaluations of its computational complexity.

— We add a new layer to this new framework that enables to take additional information
about relatives’ phenotypes into account to improve the inference attack.

— We update the results of the inference attack by conducting several new experiments
under various new settings.

— We thoroughly evaluate the relation between various metrics, also with respect to the
success rate, and draw conclusions about the most appropriate metric in different set-
tings.

— We carry out new experiments by making use of phenotypic information disclosed by
OpenSNP users in combination with their genomic data.

— We include a performance evaluation, and a discussion about the potential improve-
ments of the proposed inference attacks.

2. BACKGROUND

In this section, we briefly introduce the relevant genetic principles, as well as some im-
portant tools for modeling data dependencies and running inference efficiently.

2.1. Genomics 101

DNA is a double-helix structure that consists of two complementary polymer chains. Ge-
netic information is encoded on the DNA as a sequence of nucleotides (A,T,G,C) and
a human DNA includes around 3 billion nucleotide pairs. With the decreasing cost of
DNA sequencing, genomic data is currently being used mainly in the following two ar-
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Fig. 1. Reproduction and single nucleotide polymorphism (SNP). Each parent produces gametes that are de-
rived from his or her genome. The offspring’s genome is the combination of these two gametes. As an example,
the SNP circled on the offspring’s genome is homozygous-minor for the offspring but heterozygous for the par-
ents.

eas: (i) clinical diagnostics, for personalized genomic medicine and genetic research (e.g.,
genome-wide association studies4), and (ii) direct-to-consumer genomics, for genetic risk
estimation of various diseases or for recreational activities such as ancestry search. In
the following, we briefly introduce some concepts, which we use throughout this paper,
about the human genome and reproduction.

2.1.1. Single Nucleotide Polymorphism. As already mentioned, human beings have 99.9%
of their DNA in common. Thus, there is no need to focus on the whole DNA but rather
on the variants. Single nucleotide polymorphism (SNP) is the most common DNA varia-
tion in human population. A SNP occurs when a nucleotide (at a specific position on the
DNA) varies between individuals of a given population (as illustrated in Fig. 1). There
are approximately 50 million SNP positions in human population.5 Recent discoveries
show that the susceptibility of an individual to several diseases can be computed from
his SNPs [Johnson and O’Donnell 2009]. For example, it has been reported that two par-
ticular SNPs (rs7412 and rs429358) on the Apolipoprotein E (ApoE) gene indicate an
(increased) risk for Alzheimer’s disease. SNPs carry privacy-sensitive information about
individuals’ health, hence we will quantify health privacy focusing on individuals’ pub-
lished (or inferred) SNPs and the diseases they reveal.

Two different nucleotides (called alleles) can usually be observed at a given SNP po-
sition: (i) the major allele is the most frequently observed nucleotide, and (ii) the minor
allele is the rare nucleotide.6 For each SNP position, we represent the major allele as B,
and the minor allele as b (where both B and b are in {A, T,G,C}).

Furthermore, each SNP position contains two nucleotides (one inherited from the
mother and one from the father, as we will discuss next). Thus, the content of a SNP
position can be in one of the following states: (i) BB (homozygous-major genotype), if an
individual receives the same major allele from both parents; (ii) Bb (heterozygous geno-
type), if he receives a different allele from each parent (one minor and one major); or (iii)
bb (homozygous-minor genotype), if he inherits the same minor allele from both parents.
For simplicity of presentation, in the rest of the paper, we encode BB with 0, Bb with 1,
and bb with 2. Finally, each SNP gi is assigned a minor allele frequency (MAF), pimaf, which

4Examination of many genetic variants in different individuals to determine if any variant is associated with a
trait.
5http://www.ncbi.nlm.nih.gov/projects/SNP/
6The two alleles for the SNP position highlighted in Fig. 1 are G and A.
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Table I. Mendelian inheritance probabilities
FR(Xi
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represents the frequency at which the minor allele b of the corresponding SNP occurs in
a given population (typically, 0 < pimaf < 0.5).

2.1.2. Reproduction. Mendel’s First Law states that alleles are passed independently
from parents to children for different meioses (the process of cell division necessary for
reproduction). For each SNP position, a child inherits one allele from his mother and one
from his father, as shown in Fig. 1. Each allele of a parent is passed on to a child with
equal probability of 0.5. Let FR(X

i
M ,Xi

F ,X
i
C) be the function modeling the Mendelian

inheritance for a SNP gi, where M , F , and C represent mother, father, and child, respec-
tively. We illustrate the Mendelian inheritance probabilities in Table I.

Based on FR(X
i
M ,Xi

F ,X
i
C), we can say that, given both parents’ genomes, a child’s

genome is conditionally independent of all other ancestors’ genomes.

2.1.3. Linkage Disequilibrium. As we discussed before, DNA sequences are highly corre-
lated between close relatives, but there also exist correlations between different SNPs in
the DNA. Linkage disequilibrium (LD) [Falconer and Mackay 1996] defines a correlation
that appears between any pair of SNP in the whole genome due to the population’s ge-
netic history. Because of LD, the content of a SNP can be inferred from the contents of
other SNPs.

For example, assume that gi and gj are in LD with each other. Let (A1, A2) and (B1, B2)
be the potential alleles for SNP gi and gj , respectively. Further, let (p1, p2) and (q1, q2)
be the allele probabilities of (A1, A2) and (B1, B2), respectively, provided by population
statistics. That is, the probability that an individual in a given population will have allele
A1 at SNP gi is p1, and so on. If there were no LD (i.e., if gi and gj were independent), the
probability that an individual would have both A1 and B1 at gi and gj would be p1q1. How-
ever, due to correlations between gi and gj , this probability is in reality equal to p1q1 +D,
where D represents the discrepancy between the probability computed under indepen-
dence assumption between the two SNPs and the probability in a given population. In
Table II, we illustrate this LD relationship for all possible combinations of (A1, A2) and
(B1, B2). We note that D can be either negative or positive, depending on the LD values.

Table II. Linkage disequilibrium (LD) between two SNPs gi and gj
with potential alleles (A1, A2) and (B1, B2), respectively.

A1, P (A1) = p1 A2, P (A2) = p2
B1,
P (B1) = q1

P (A1B1) = p1q1 +D P (A2B1) = p2q1 −D

B2,
P (B2) = q2

P (A1B2) = p1q2 −D P (A2B2) = p2q2 +D

2.2. Probabilistic Inference

In this subsection, we introduce the mathematical models and algorithms that form the
basis of efficient inference methods.
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2.2.1. Probabilistic Graphical Models. Probabilistic graphical models are very appropriate
models to represent dependencies between random variables [Koller and Friedman
2009]. Such graph-based models can express conditional dependencies (e.g., Bayesian
networks), joint dependencies (e.g., Markov random fields), or both (e.g., chain graphs).
In graphical models, each node represents a random variable and arrows represent the
dependencies between them. Such models are very useful to represent the factorization
of the joint distribution of a large set of random variables, and then dramatically re-
duce the complexity of, e.g., the computation of marginal probabilities. If the graphical
model contains loops or cycles,7 it is possible to eliminate these by clustering variables
into single nodes (called cliques) and build a maximum spanning tree (called junction or
clique tree [Jensen and Jensen 1994]) of cliques. A more generic model that can represent
both directed and undirected graphs is the factor graph. Contrary to the junction tree, it
enables to find approximate solutions in situations where exact inference is computation-
ally intractable. A factor graph is a bipartite graph with one set of vertices representing
the random variables and the other set representing the (local) functions that factor the
(global) joint probability function (based on the dependencies between the variables). A
variable node is connected to a factor node if and only if the variable is an argument of
the local function corresponding to the factor node.

2.2.2. Belief Propagation. Belief propagation [Pearl 1988] is a message-passing algorithm
for performing inference on graphical models. It is also known as the sum-product algo-
rithm [Kschischang et al. 2001]. It is typically used to compute marginal distributions
of unobserved variables conditioned on observed ones. Computing marginal distributions
is hard in general as it might require summing over an exponentially large number of
terms. The belief propagation algorithm applies on various types of graphical models,
such as Bayesian networks or Markov random fields. If the underlying graphical model
contains no (directed or undirected) cycle, the belief propagation algorithm leads to exact
inference, i.e. exact posterior marginal probabilities given the observed variables. If the
graphical model is not a tree or polytree (not cycle-free), we can either transform it into a
junction tree and then run belief propagation on it and get the exact solution, or perform
loopy belief propagation which yields an approximate solution [Murphy et al. 1999]. The
second approach is typically used when the junction tree approach is computationally in-
tractable, and often gives good approximate results. Belief propagation is commonly used
in artificial intelligence and information theory. It has demonstrated empirical success
in numerous applications including LDPC codes [Pishro-Nik and Fekri 2004], reputa-
tion management [Ayday and Fekri 2012a; Ayday and Fekri 2012b], and recommender
systems [Ayday et al. 2012].

As factor graphs are the most generic representation of graphical models, we will ex-
plain the generic belief propagation algorithm on them.8 We assume that the joint distri-
bution g(x1, . . . , xn) factors into a product of several local functions, or factors, fa(xa):

g(x1, . . . , xn) =
∏

a∈A

fa(xa), (1)

where A is a discrete index set, and xa is a subset of {x1, . . . , xn}. The belief propagation
algorithm simply works by passing messages between the |A| factor nodes (representing
the factors f1(x1) to f|A|(x|A|)) and the n variable nodes (representing the random vari-
ables x1 to xn) on the bipartite factor graph. The message ma→i(xi) from the factor node
a to the variable node i can be interpreted as a statement about the relative probabili-

7There exists a cycle between X1 and Xk in a graph if X1 = Xk and, for every i = 1, . . . , k − 1, we have either
a directed or undirected edge between Xi and Xi+1 with, for at least one i, a directed edge. A loop is defined
similarly except that it also allows for reverse-directed edge between Xi and Xi+1 (i.e., directed edge between
Xi+1 and Xi). See Subsection 2.2 of [Koller and Friedman 2009] for further details.
8Interested readers can check [Kschischang et al. 2001] to see how it applies to other graphical models, such as
Bayesian networks.
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ties that i is in its different states based on the function fa. The message ni→a(xi) from
the variable node i to the factor node a can be interpreted as a statement about the rel-
ative probabilities that node i is in different states based on all the information node i
has except for that based on the function fa. The messages are updated according to the
following rules [Pearl 1988; Kschischang et al. 2001]:

ni→a(xi) =
1

Z

∏

c∈N(i)\a

mc→i(xi) (2)

and

ma→i(xi) =
∑

xa\xi

fa(xa)
∏

j∈N(a)\i

nj→a(xj). (3)

Here, N(i)\a denotes all the nodes that are neighbors of node i except for node a. Further,
∑

xa\xi
denotes a sum over all the variables xa that are arguments of fa except xi. And Z

is a normalization factor that is needed so that the resulting messages represent proba-
bility mass functions. At the beginning, messages are initialized as follows: ni→a(xi) = 1
and ma→i(xi) = fa(xi). Then, at the end of the algorithm, after convergence, the (esti-
mated) marginal distribution of xi is given by the product of the messages received by
the variable nodes:

P (xi) =
1

Z

∏

c∈N(i)

mc→i(xi), (4)

where Z is such that
∑

xi
P (xi) = 1. Note that, if the underlying graphical model is a tree,

convergence can be reached after computing each message only once (for every factor and
variable nodes). Otherwise, there is no guarantee of convergence to the true marginal in
the general case, but there exist sufficient conditions for convergence [Mooij and Kappen
2007]. Neither is there any fixed convergence or error rates in general. We describe how
many iterations of message computation for every nodes are needed in our context in
Subsections 3.4 and 6.1. Finally, note that exact and approximate marginalization is NP-
hard in general, but it can be solved in linear time in the number of factor nodes (or
variable nodes) in our genomic setting. We refer the reader to Subsection 3.4 for more
details on the computation complexity in our setting.

3. THE PROPOSED FRAMEWORK

In this section, we formalize our approach and present the different components that will
allow us to quantify kin genomic privacy. Fig. 2 gives an overview of the framework.

3.1. Notations and Definitions

The SNPs of all relatives are represented by the random variable X that takes value
in the set X = {0, 1, 2}n×m, where n is the number of relatives in the targeted family
and m is the number of SNPs in a single DNA sequence. Moreover, the hidden SNPs
are represented by the random variable XH (that takes value in the set XH ), and the
SNPs observed by the adversary by the random variable XO (that takes value in the
set XO). We define R = {r1, r2, . . . , rn} to be the set of relatives in the targeted family
(whose family tree, showing the familial connections between the relatives, is denoted as
T ) and G = {g1, g2, . . . , gm} to be the set of SNPs (i.e., positions on the DNA sequence).
Let Xi

j , respectively xi
j ∈ {0, 1, 2}, represent the random variable representing SNP gi of

individual rj , respectively its value. Furthermore, we let xi =
[

x1
i x2

i · · · x
m
i

]

represent
the values of the SNPs of individual ri, and x ∈ X be the n ×m matrix representing the
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values of the SNPs of all relatives:

x =









x1
1 x2

1 · · · xm
1

x1
2 x2

2 · · · xm
2

...
...

. . .
...

x1
n x2

n · · · xm
n









(5)

FR(X
i
M ,Xi

F ,X
i
C) is the function representing the Mendelian inheritance probabilities

(in Table I), where M , F , C represent mother, father, and child, respectively. The m ×m
matrix L represents the pairwise linkage disequilibrium (LD) values between the SNPs
in G, that can be expressed by r2; lij refers to the matrix entry at row i and column j.
lij > 0 if i and j are in LD, and lij = 0 if these two SNPs are independent (i.e., there
is no LD between them). The m-size vector pmaf =

[

p1maf p
2
maf · · · pmmaf

]

represents the
minor allele probabilities/frequencies (MAFs) of the SNPs in G. Finally, note that, for any
rk ∈ R, gi ∈ G, and gj ∈ G, the joint probability P (Xi

k,X
j
k) can be derived from lij , p

i
maf,

and pjmaf.
The adversary carries out a reconstruction attack to infer the value xH ∈ XH by re-

lying on his background knowledge, FR(X
i
M ,Xi

F ,X
i
C), L, pmaf, and on his observation

xO ∈ XO.9 After carrying out this reconstruction attack, we evaluate genomic and health
privacy of the family members based on the adversary’s success and his certainty about
the targeted SNPs and the predispositions to diseases they reveal. Finally, we discuss
some ideas to preserve the individuals’ genomic and health privacy.

3.2. Adversary Model

An adversary is defined by his objective(s), attack(s), and knowledge. The objective of the
adversary is to compute the values of the targeted SNPs for one or more members of a
targeted family by using (i) the available genomic data of one or more family members,
(ii) the familial relationships between the family members, (iii) the rules of reproduction

9
xo is constructed by replacing hidden SNPs in x by ⊥.
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(in Section 2.1.2), (iv) the minor allele frequencies (MAFs) of the nucleotides, and (v)
the population LD values between the SNPs. We note that (i) and (ii) can be gathered
online from genome-sharing websites and OSNs, and (iii), (iv), and (v) are publicly known
information. Note that, in the future, the increasing possibility to accurately sequence,
and to impute the actual haplotypes carried by an individual in each of the copies of the
diploid genome will allow a more accurate inference of relatives’ genotype than relying
on population LD patterns only.

Various attacks can be launched, depending on the adversary’s interest. The adver-
sary might want to infer one particular SNP of a specific individual (targeted-SNP-
targeted-relative attack) or one particular SNP of multiple relatives in the targeted fam-
ily (targeted-SNP-multiple-relatives attack) by observing one or more other relatives’
SNP at the same position. Furthermore, the adversary might also want to infer mul-
tiple SNPs of the same individual (multiple-SNP-targeted-relative attack) or multiple
SNPs of multiple family members (multiple-SNP-multiple-relatives attack) by observing
SNPs at various positions of different relatives. In this paper, we propose an algorithm
that implements the latter attack, from which any other attacks can be carried out. We
formulate this attack as a statistical inference problem.

3.3. Inference Attack

We formulate the reconstruction attack (on determining the values of the targeted SNPs)
as finding the marginal probability distributions of the random variable xH representing
the hidden SNPs, given the observed values xO, familial relationships T , and the publicly
available statistical information. We represent the marginal distribution of a SNP gi for
an individual rj as P (Xi

j = xi
j |XO = xO).

These marginal probability distributions could traditionally be extracted from P (XH =
xH|XO = xO,FR(X

i
M ,Xi

F ,X
i
C), L, T ,pmaf), which is the joint probability distribution

function of of the hidden SNPs, given the available side information and the observed
SNPs. Then, clearly, each marginal probability distribution could be obtained as follows:

P (Xi
j = xi

j |XO = xO) =
∑

x
H′∈XH\X i

j

P (XH′ = xH′ ,Xi
j = xi

j |XO = xO,FR, L, T ,pmaf), (6)

where XH′ is the random variable representing all hidden SNPs except SNP gi of relative
rj . However, the number of terms in (6) grows exponentially with the number of variables,
making the computation infeasible considering the scale of the human genome (which in-
cludes tens of million of SNPs). In the worst case, the computation of the marginal prob-
abilities has a complexity of O

(

3nm
)

. Thus, we propose to factorize the joint probability
distribution function into products of simpler local functions, each of which depends on
a subset of variables. These local functions represent the dependences (due to LD and
reproduction) between the different SNPs in x. Then, by running the belief propagation
algorithm on graphical models, we can compute the marginal probability distributions in
linear complexity (with respect to both n and m).

We present first the inference attack that takes only the familial correlations into ac-
count, which enables to efficiently perform exact inference, and then present the model
where both familial and LD correlations are considered. The former attack is typically
sufficient if the adversary has access to the full set of SNPs of interest of the target’s
relatives, whereas the latter can improve the attack’s accuracy if the adversary does not
observe all SNPs of interest in the genomes of the target’s family members. For the sec-
ond inference attack, due to the number and type of correlations, and the subsequent
complexity of performing exact inference, we make use of loopy belief propagation that
provides an approximate solution.

3.3.1. Inference Attack Without LD correlations. Under the assumption that there is no LD
correlation between SNPs, the random variables Xi’s representing a column of matrix x
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Fig. 3. Graphical models representing familial dependencies. (a) Bayesian network representing a trio (mother,
father and child), (b) Bayesian network with two parents and two siblings, (c) junction tree (made of two cliques)
corresponding to the Bayesian network in (b).

.

are independent between each other, i.e. Xi ⊥ Xj , ∀gi, gj ∈ G, gi 6= gj . We can then express
the marginal distribution of Xi

j in 6 as

P (Xi
j = xi

j |X
i
O = xi

O) =
∑

xi
H′

∈X i
H′

\X i
j

P (Xi
H′ = xi

H′ ,Xi
j = xi

j |X
i
O = xi

O,FR, T ,pmaf), (7)

where the set X i
H′ is of maximal size 3n−1, which can still be computationally intractable

if we deal with a large family. However, contrary to the general case, we can here compute
the exact marginal distributions in linear time by modeling the various dependencies
with a Bayesian network framework and applying the junction tree algorithm on it. In
general, due to Mendelian inheritance laws, the joint distribution P (Xi) can be factored
as follows:

P (Xi) =
∏

rj∈ founders

P (Xi
j)

∏

rk∈R\founders

P (Xi
k|X

i
m(k),X

i
f(k)), (8)

where the founders are the relatives who have no ancestor in the family tree T , and
m(k), f(k) are the indices of the mother, respectively the father, of rk. P (Xi

j) is given by

the minor allele frequencies pmaf, and P (Xi
k|X

i
m(k),X

i
f(k)) by the Mendelian inheritance

probabilities FR(X
i
M ,Xi

F ,X
i
C) in Table I. Fig. 3 shows an example of a trio (mother, fa-

ther and child), which is also the main basic building block of our Bayesian-network
representation of familial genetic dependencies. In this example, the joint distribution
in (8) can be factored as P (Xi) = P (Xi

1)P (Xi
2)P (Xi

3|X
i
1,X

i
2). As mentioned in Section 2.2,

we can efficiently compute the exact marginal distributions on polytrees by using belief
propagation. However, as soon as sibling relationships appear in the family tree T , the
underlying Bayesian network is not a polytree anymore10 and the belief propagation does
not necessarily converge to the exact marginal probabilities. In this case, in order to per-
form exact inference, we first need to transform the Bayesian network into a junction
tree. Fig. 3(b) and 3(c) show a simple example of a Bayesian network with undirected
cycles and its corresponding junction tree.

The procedure to construct the junction tree is as follows. First, we have to transform
the directed graph into an undirected one, and moralize it, i.e. connect all unconnected
parents (nodes that have outgoing edges connecting the same node in the directed graph).
Second, we triangulate the resulting undirected graph, meaning that we remove all cycles
containing four nodes or more by connecting some of these nodes together. More precisely,
for any given cycle in the undirected graph, this step creates an edge between any two
non-successive nodes in the cycle. This step is not needed in our genetic case because all
cycles are already of length 3. Third, we remove cycles by clustering nodes belonging to

10Its underlying undirected graph is not a tree (it contains a loop made of the siblings and their parents).
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Fig. 4. Bayesian network representing a trio (mother, father and child), and two SNPs gi and gk influencing a
disease l.

the same cycle into cliques. In this process, it is important to build cliques with the small-
est number of variables11 to minimize the inference computational burden. In our case,
all cliques will be of size 3 (representing mother-father-child). Then, all cliques sharing
the same variables are still connected by edges, which usually yields a loopy graph. In
order to remove these cycles, we form a maximum spanning tree of cliques and ensure
that if a variable is in two cliques then it is in every clique along the path connecting
the two cliques. If this property holds, local propagation of information will lead to global
consistency. Finally, we apply the belief propagation algorithm on the resulting junction
tree, first passing messages12 upward, from the leaves to the root, and then downward,
from the root to the leaves, which eventually provides the marginal probabilities of all
cliques. If we are interested in the marginal probability of a given variable in a clique, we
simply sum all other variables in the clique out.

3.3.2. Inference Attack With Phenotypic Information. It could also happen that the adversary
gets access to phenotypic data, such as physical traits or diseases. Such data can be
found online, on health-related social networks (such as PatientsLikeMe or OpenSNP) or
traditional online social networks. We show here how the Bayesian network framework
can be easily expanded to take this type of information into account in our inference
attack.

Fig. 4 illustrates how phenotypic nodes can be included in the Bayesian network repre-
senting a single SNP in Fig. 3(a). This updated Bayesian network shows two SNPs, gi and
gk of a trio, and a single phenotype l. Hence, here it is assumed that two SNPs influence
directly the phenotype, but there could be from one to many depending on the phenotype.
The new layer of phenotypic information adds a number of nodes in the Bayesian net-
work equal to n times the total number of phenotypic traits/diseases. Assuming a single
phenotype is observed, influenced by two SNPs, the general joint distribution presented
in (8) is updated as follows:

P (Xi,Xk,Yl) =
∏

rp∈ founders

P (Xi
p)P (Xk

p)
∏

rc∈R\founders

P (Xi
c|X

i
m(c),X

i
f(c))P (Xk

c |X
k
m(c),X

k
f(c))

×
∏

rj∈R

P (Yl
j |X

i
j ,X

k
j )P (Yl

j |X
i
j ,X

k
j ).

(9)

11Note that the size of the largest clique is called the treewidth and determines the complexity of the algorithm
(which is exponential in the treewidth).
12The messages are constructed similarly to rule (3) depicted in Subsection 2.2.2.
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The resulting Bayesian network is not a polytree if it includes sibling relationships or
phenotypes influenced by more than a SNP. In this case, as explained in Subsection 3.3.1,
we have to first transform the Bayesian network into a junction tree. The process is
the same as in the case without phenotypic data. After the moralization step (where
graphical parents are connected together), all cycles are also of length three, including
those induced by the phenotype nodes. We use this framework with OpenSNP data in
Subsection 5.2.

3.3.3. Inference Attack With LD Correlations. Once we take into account correlations within
the same genomic sequence, the Bayesian network representation does not fit well as it
cannot represent undirected dependencies, such as the pairwise joint probabilities given
by LD. Also, constructing a junction tree in a Bayesian containing many cycles because
of new nodes representing LD correlations would be probably untractable. A factor graph
model is better suited as it can take both conditional and joint local probabilities into
account. It is a bipartite graph containing two sets of nodes (corresponding to variables
and factors) and edges connecting these two sets. Following [Kschischang et al. 2001], we
form a factor graph by setting a variable node for each SNP xi

j for each random variable

Xi
j (gi ∈ G and rj ∈ R). We use two types of factor nodes: (i) familial factor node, repre-

senting the familial relationships and reproduction, and (ii) LD factor node, representing
the LD relationships between the SNPs. Note that our factor graph will contain loops
because of LD nodes and sibling relationships (if any). We summarize the connections
between the variable and factor nodes below (Fig. 5):

— Each variable node xi
j has its familial factor node f i

j to which it is connected. Further-

more, xi
k (k 6= j) is also connected to f i

j if k is the mother or father of j (in T ). Thus, the
maximum degree of a familial factor node is 3.

— Variable nodes xj
i and xm

i are connected to a LD factor node hj,m
i if SNP gj is in LD with

SNP gm. Since the LD relationships are pairwise between the SNPs, the degree of a LD
factor node is always 2.

Given the conditional dependences given by reproduction and LD, the global distribu-
tion P (XH = xH|XO = xO,FR(X

i
M ,Xi

F ,X
i
C), L, T ,pmaf) can be factorized into products

of several local functions, each having a subset of variables from x as arguments:

P (XH = xH|XO = xO,FR(X
i
M ,Xi

F ,X
i
C), L, T ,pmaf) =

1

Z

[

∏

gi∈G

∏

rj∈R

f i
j(x

i
j ,x

i
m(j), x

i
f(j),FR(X

i
M ,Xi

F ,X
i
C),pmaf)

]

×
[

∏

ri∈R

∏

(j,m) s.t.
ljm 6=0

hj,m
i (xj

i , x
m
i , ljm)

]

,

(10)

where Z is the normalization constant, and xi
m(j), respectively xi

f(j), are the SNPs gi of

the mother, respectively father, of ri (if they exist in T ).
Next, we introduce the messages between the factor and the variable nodes to compute

the marginal probability distributions using belief propagation. We denote the messages
from the variable nodes to the factor nodes as µ. We also denote the messages from fa-
milial factor nodes to variable nodes as λ, and from LD factor nodes to variable nodes as

β. Let X(ν) = {xi
j

(ν)
: rj ∈ R, gi ∈ G} be the collection of variables representing the values

of the variable nodes at the iteration ν of the algorithm. The message µ
(ν)
i→k(x

i
j

(ν)
) denotes

the probability of xi
j

(ν)
= ℓ (ℓ ∈ {0, 1, 2}), at the νth iteration. Furthermore, λ

(ν)
k→i(x

i
j

(ν)
) de-

notes the probability that xi
j

(ν)
= ℓ, for ℓ ∈ {0, 1, 2}, at the νth iteration given xi

m(j), x
i
f(j),
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Fig. 5. The factor graph representation of a trio (mother, father, child) and 3 SNPs per family member. The
square, circle, and hexagonal nodes represent the familial factor nodes, variable nodes, and LD factor nodes,

respectively. The message passing described in the main text is between the nodes x1
1, f1

3 , and h
1,2
1 highlighted

in the graph.

FR(X
i
M ,Xi

F ,X
i
C), and pmaf. Finally, β

(ν)
k→i(x

i
j

(ν)
) denotes the probability that xi

j

(ν)
= ℓ, for

ℓ ∈ {0, 1, 2}, at the νth iteration given the LD relationships between the SNPs.
For the clarity of presentation, we choose a simple family tree consisting of a trio (i.e.,

mother, father, and child) and 3 SNPs (i.e., |R| = 3 and |G| = 3). In Fig. 5, we show how
the trio and the SNPs are represented on a factor graph, where r1 represents the mother,
r2 represents the father, and r3 represents the child. Furthermore, the 3 SNPs are g1, g2,
and g3. We describe the message exchange between the variable node representing the
first SNP of the mother (x1

1), the familial factor node of the child (f1
3 ), and the LD factor

node h1,2
1 . The belief propagation algorithm iteratively exchanges messages between the

factor and the variable nodes in Fig. 5, updating the beliefs on the values (in xH) of the
targeted SNPs at each iteration, until convergence. We denote the variable and factor
nodes x1

1, f1
3 , and h1,2

1 with the letters i, k, and z, respectively.
The variable nodes generate their messages (µ) and send them to their neighbors. Vari-

able node i forms µ
(ν)
i→k(x

1
1
(ν)

) by multiplying all information it receives from its neighbors
excluding the familial factor node k.13 Hence, the message from variable node i to the
familial factor node k at the νth iteration is given by

µ
(ν)
i→k(x

1
1
(ν)

) =
1

Z
×

∏

w∈(∼k)

λ
(ν−1)
w→i (x1

1
(ν−1)

)×
∏

y∈{z,h1,3
1

}

β
(ν−1)
y→i (x1

1
(ν−1)

), (11)

where Z is a normalization constant, and the notation (∼ k) means all familial factor node
neighbors of the variable node i, except k. This computation is repeated for every neighbor
of each variable node. It is important to note that the message in (11) is valid if the
value of x1

1 is unobserved to the adversary. However, the value of x1
1 can also be observed

by the adversary. In this case, if x1
1 = ρ (ρ ∈ {0, 1, 2}), then µ

(ν)
i→k(x

1
1
(ν)

= ρ) = 1 and

µ
(ν)
i→k(x

1
1
(ν)

) = 0 for other potential values of x1
1 (regardless of the values of the messages

received by the variable node i from its neighbors).
Next, the factor nodes generate their messages. The message from the familial factor

node k to the variable node i at the νth iteration is formed using the principles of belief

13The message µ
(ν)
i→z(x

1
1
(ν)

) from the variable node i to the LD factor node z is constructed similarly.
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propagation as

λ
(ν)
k→i(x

1
1
(ν)

) =
∑

{x1

2
,x1

3
}

f1
3 (x

1
1, x

1
m(1), x

1
f(1),FR(X

i
M ,Xi

F ,X
i
C),pmaf)

∏

y∈{x2

1
,x3

1
}

µ
(ν)
y→k(x

1
1
(ν)

). (12)

Note that f1
3 (x

1
1, x

1
m(1), x

1
f(1),FR(X

i
M ,Xi

F ,X
i
C),pmaf) ∝

P (x1
1|x

1
m(1), x

1
f(1),FR(X

i
M ,Xi

F ,X
i
C)), and this probability is computed using Table I.

Furthermore, if the degree of the familial factor node is 1 for a particular SNP, then
the local function corresponding to the familial factor node only depends on the MAF
of the corresponding SNP. For example, the degree of f1

1 (in Fig. 5(c)) is 1, hence
f1
1 (x

1
1, x

1
m(1), x

1
f(1),FR(X

i
M ,Xi

F ,X
i
C),pmaf) ∝ P (x1

1|p
1
maf). The above computation must be

performed for every neighbor of each familial factor node.
Similarly, the message from the LD factor node z to the variable node i at the νth

iteration is formed as

β
(ν)
z→i(x

1
1
(ν)

) =
∑

x2

1

g1,21 (x1
1, x

2
1, l12)

∏

y∈{x2

1
}

µ(ν)
y→z(x

1
1
(ν)

). (13)

As before, this computation is performed for every neighbor of each LD factor node. We
further note that h1,2

1 (x1
1, x

2
1, l1,2) ∝ P (x1

1, x
2
1), which is derived from l1,2, p1maf, and p2maf.

The algorithm proceeds to the next iteration in the same way as the νth iteration.
The algorithm starts at the variable nodes. Thus, at the first iteration of the algorithm

(i.e., ν = 1), the variable node i sends messages to its neighboring factor nodes based on

the following rules: (i) If the value of x1
1 is hidden from the adversary, µ

(1)
i→k(x

1
1
(1)

) = 1
for all potential values of x1

1 and, (ii) if the value of x1
1 is observed by the adversary and

x1
1 = ρ (ρ ∈ {0, 1, 2}), µ

(1)
i→k(x

1
1
(1)

= ρ) = 1 and µ
(1)
i→k(x

1
1
(1)

) = 0 for other potential values
of x1

1. The iterations stop when all variable nodes have converged to stable distributions.
The marginal probability of each variable in XH is given by multiplying all the incoming
messages at each variable node representing an unobserved SNP, as in (4). Note that the
factor graph could also embed phenotypic information by adding one factor node and one
variable node per phenotype and individual. We do not present it here for the sake of
clarity and conciseness.

3.4. Computational Complexity

The computational complexity of the inference without LD correlations is linear in the
number of nodes n (i.e., number of family members) in the original Bayesian network,
the number of SNPs m, and exponential in the treewidth, i.e., the maximum number of
variables in cliques. In our case, the treewidth is 2, which is negligible compared to n and
m. We can thus state that the computational complexity is O

(

nm
)

. Note that, in general,
finding an optimal triangulation ordering to construct the junction tree is NP-hard, but,
in our case, all the cycles are already of size 3 after the moralization step, thus there is
no need to triangulate the graph. The same analysis applies for the inference with phe-
notypic information. Therefore, the computational complexity increases linearly with the
number of phenotypes times the number of family members sharing these phenotypes.

The computational complexity of the inference with LD correlations is proportional to
the number of factor nodes. In our setting, there are nm familial factor nodes and a maxi-
mum of nm(m−1)/2 LD factor nodes. Hence, the worst-case computational complexity per
iteration is O

(

nm2
)

. However, as each SNP is in LD with a limited number of other SNPs,
the matrix L is sparse and the number of LD factor nodes grows with m rather than with
m(m − 1)/2, especially if we focus on SNPs in strong LD only. Thus, the average compu-
tational complexity per iteration is O

(

nm
)

. Based on our experiments, we can state that
the number of iterations before convergence is a small constant, between 7 and 15. Note
finally that this complexity can be further reduced by using similar techniques developed
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for message-passing decoding of LDPC codes (e.g., working in log-domain [Chen et al.
2002]). We implement the proposed attack and evaluate its performance in practice in
Subsection 6.1.

3.5. Privacy Metrics

A crucial step towards protecting kin genomic privacy is to quantify the privacy loss
induced by the release of genomic information. Through the inference attack, the adver-
sary infers the targeted SNPs belonging to the members of a targeted family by using
his background knowledge and observed genomic data (of the family members). The in-
ferred information can be expressed as the posterior distribution P (XH = xH|XO =
xO,FR, L, T ,pmaf). Moreover, each posterior marginal probability distribution is repre-
sented as P (Xi

j = x̂i
j |XO = xO), ∀rj ∈ R, gi ∈ G.14 We propose to quantify kin genomic

privacy by measuring the expected estimation error (incorrectness) and the uncertainty
of the adversary.15

Correctness was already proposed in the context of location privacy [Shokri et al. 2011].
In our scenario, correctness quantifies the adversary’s success in inferring the targeted
SNPs. That is, it quantifies the expected distance between the adversary’s estimate on
the value of a SNP, x̂i

j and the true value of the corresponding SNP, xi
j . This distance can

be expressed as the expected estimation error as follows:

Ei
j =

∑

x̂i
j
∈{0,1,2}

P (Xi
j = x̂i

j |XO = xO)
∥

∥xi
j − x̂i

j

∥

∥. (14)

Note that ‖.‖ can be any norm, such as the L1 or L2 (Euclidean) norms. We select
the L1 norm in our evaluation as it is the most intuitive and most representative of the
discrepancy we want to measure. If we rely on the Hamming distance16 instead, the
expected estimation error becomes equal to 1− P (x̂i

j = xi
j), i.e. one minus the probability

of success (or success rate). We discuss this further in Subsection 4.2.
Privacy can also be represented as the adversary’s uncertainty [Diaz et al. 2003; Serjan-

tov and Danezis 2003], that is the ambiguity of P (Xi
j = x̂i

j |XO = xO). This uncertainty is
generally considered to be maximum if the posterior distribution is uniform. This defini-
tion of uncertainty can be quantified as the (normalized) entropy of P (Xi

j = x̂i
j |XO = xO)

as follows:

Hi
j =

−
∑

x̂i
j
∈{0,1,2} P (Xi

j = x̂i
j |XO = xO) logP (Xi

j = x̂i
j |XO = xO)

log(3)
:=

H(Xi
j |XO)

log(3)
. (15)

The higher the entropy is, the higher is the uncertainty.
Finally, we propose another entropy-based metrics that quantifies the mutual depen-

dence between the hidden genomic data that the adversary is trying to reconstruct,
and the observed data. This is quantified by mutual information I(Xi

j ;XO) = H(Xi
j) −

H(Xi
j |XO) [Agrawal and Aggarwal 2001]. As privacy decreases with mutual information,

we propose the following (normalized) privacy metrics:

Iij = 1−
H(Xi

j)−H(Xi
j |XO)

H(Xi
j)

=
H(Xi

j |XO)

H(Xi
j)

. (16)

We can then evaluate the genomic privacy of an individual rj by computing the average
of the per-SNP values over all SNPs gi ∈ G, for any of the three aforementioned metrics.

14We use here x̂i
j to refer to the estimate of xi

j .
15These metrics are not specific to the proposed inference attack; they can be used to quantify genomic privacy
in general.
16
∥

∥

∥
xi
j − x̂i

j

∥

∥

∥
= 0 if x̂i

j = xi
j and

∥

∥

∥
xi
j − x̂i

j

∥

∥

∥
= 1 otherwise.
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manac et al. 2010]. We note in Fig. 6 that we only use 5 (out of 11) children for our evalu-
ation because (i) 11 is much above the average number of children per family, and (ii) we
observe that the strength of adversary’s inference does not increase further (due to the
children’s revealed genomes) when more than 5 children’s genomes are revealed. As the
SNPs related to important diseases, like Alzheimer’s, are not included in this dataset, we
quantify health privacy in Section 5 by using the data collected from a genome-sharing
website.

To quantify the genomic privacy of the individuals in the CEPH family, we focus on
their SNPs on chromosome 1 (which is the largest chromosome). We make use of the
three base metrics introduced in Section 3.5. That is, we compute the personal genomic
privacy of each family member using expression (17) if we choose the expected estimation
error in (14) as the base metric. We rely on the L1 norm to measure the distance between
two SNP values in (14), meaning that the distance for a single SNP can go from 0 to
2. We aggregate the per-SNP entropy-based metrics (15) and (16) by averaging them
in the same way as in (17) for the estimation error. We study the relationship between
these metrics in Subsection 4.2. Note that, for the inference without LD, we made use
of the Matlab implementation of the junction tree algorithm provided in the Bayes Net
Toolbox [Murphy et al. 2001] and, for the inference with LD, we implemented our own
factor graph and loopy belief propagation algorithm in Python.

4.1. Inference Without LD Correlations

First, we assume that the adversary targets one family member and tries to infer his/her
SNPs by using the published SNPs of other family members without considering the LD
between the SNPs. We select an individual from the CEPH family and denote him as the
target individual. We construct G, the set of SNPs that we consider for evaluation, from
all 81, 899 available SNPs on chromosome 1. Thus, the random variable XH represents
the hidden 81, 899 SNPs of the target individual that we want to infer. Furthermore, the
random variable XO) represents the 81, 899 SNPs of each other family members that is
observed. That is, we sequentially reveal all 81, 899 SNPs on chromosome 1 of all family
members (excluding the target individual).The exact sequence of the family members
(whose SNPs are revealed) is indicated on the figure of each evaluation. Note that we
changed the order compared to the conference paper [Humbert et al. 2013] in order to
convey new and complementary messages. In this endeavor, we also included Table III

In Fig. 7 we show the evolution of the genomic privacy of three target individuals from
the CEPH family (in Fig. 6): (i) grandparent (GP1), (ii) parent (P5), and (iii) child (C7).
We note that all entropy-based metrics for each target individual start from the same
values. This is logical as these do not depend on the actual SNP values but only on the
minor allele frequencies given by population statistics. We also observe that the parent’s
genomic privacy decreases to a lower level than the child’s genomic privacy, which itself
degrades more than the grandparent’s (e.g., the adversary’s error for the grandparent’s
genome does not go below 0.3). Compared to the graphs in [Humbert et al. 2013], the
observation of GP3, GP4 and P6’s genomes has an impact on GP1 and P5’s privacy. This
is due to the fact that here we reveal the children’s genomes first, which creates a con-
ditional probabilistic dependence between the genomes on the P5 and P6 sides of the
pedigree tree.

We observe in Fig. 7(a) that the grandparent’s genomic privacy is mostly affected by the
SNPs of the first revealed children (C7, C8), and also by those of his spouse (GP2) and
his child (P5). Table III also shows that the observation of only P5 already decreases the
genomic privacy of GP1 a lot, and the observation of both P5 and GP2 decreases it to its
minimal value. Hence, in some scenarios, it is not necessary to observe many relatives to
threaten an individual’s genomic privacy. We also observe (in Fig. 7(b)) that, by revealing
all family members’ SNPs (expect P5), the adversary can almost reach an estimation
error of 0 about P5’s genome. The target parent’s genomic privacy significantly decreases
ones essentially with the observation of his children’s and spouse’s SNPs. GP1 and GP2
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Fig. 7. Metrics for measuring personal genomic privacy. Evolution of the average genomic privacy measured
with our three base metrics defined in Subsection 3.5 for the (a) grandparent (GP1), (b) parent (P5), and (c)
child (C7) by gradually revealing other relatives’ genomes. We reveal all the 81,899 SNPs on chromosome 1
of other family members while inferring the 81,899 SNPs of the targeted individual (GP1, P5 or C7), per-SNP
metrics being aggregated as in (17). The x-axis represents the cumulative disclosure sequence. The order of
disclosure has been chosen such that the results provide new insights on how relatives affect personal genomic
privacy compared to previous work. We note that x = 0 represents the prior distribution, when no genomic data
is observed by the adversary. (d) Per-SNP comparison of the two entropy-based metrics w.r.t to the expected es-
timation error, with data points taken from the same scenario as Fig. (c). Each point in the two plots represents
the expected estimation error (x-axis) and the normalized entropy (y-axis, top) or 1-mutual information (y-axis,
bottom) at a single SNP of child C7 for different amount of observed kin genomic information (from 0 to 10
relatives, as for Fig. (c)). The closer to the x=y line the points are, the closer two metrics are.

do not have so much influence, also because of the fact that they are observed in the end.
Table III shows that, if we observe only GP1 and GP2, we can reduce the genomic privacy
of P5 by 50%, which is more than with the observation of two children (40%), or one child
and the spouse (35%).

We observe in Fig. 7(c) that C7’s genomic privacy decreases already significantly with
the observation of one parent (P5) and two siblings (C8 and C9). We also notice that, once
P5 is known, the disclosure of GP1 and GP2’s genomes has no impact on C7’s privacy. In
the same way, we observe that once both parents’ genomes are revealed, the knowledge
of an additional child’s genome does not help the attacker. Indeed, as each new offspring
is created independently of another (except in the case of twins), each sibling’s genomic
inheritance is independent of the others given his/her parents’ genetic background. This
is confirmed by Table III, where we see that the observation of C8 in addition of P5 and
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Table III. Absolute and relative levels of genomic privacy of the grandparent
(GP1), parent (P5), and child (C7) given the observation of 0 to 3 of their rela-
tives. We use here the expected estimation error Ej to measure the genomic
privacy of GP1, P5 and C7 (first two rows for each individual) but also the
success rate (third row, denoted with ∗). Here we represent the percentage of
SNPs for which the success rate is higher than 0.9, i.e. P (xi

j = x̂i
j) > 0.9.

H\O ∅ P5 P5, GP2 C7, GP2 C7, C8, GP2

G
P

1

E
j 0.446 0.322 0.309 0.404 0.385

100% 72% 69% 91% 86%
∗ 20% 28% 29% 23% 23%

H\O ∅ GP1,GP2 C7,C8 C7,P6 GP1,GP2,C7

P
5 E
j 0.48 0.242 0.286 0.312 0.203

100% 50% 60% 65% 42%
∗ 20% 57% 38% 29% 57%

H\O ∅ P5 P5, C8 P5, P6 P5, P6, C8

C
7 E
j 0.489 0.344 0.301 0.182 0.182

100% 70% 62% 37% 37%
∗ 20% 28% 40% 64% 64%

in Table III. We notice that, e.g., by observing only the two parents of P5 (GP1 and GP2),
the percentage of SNPs inferred with 0.9 success increases already to 57%.

4.2. Metrics Comparison

First of all, we consider that the expected estimation error is the best metric, in the sense
that it measures the distortion between the adversary’s inferred SNPs’ values and their
actual values. Wagner states that the success rate is more intuitive in [Wagner 2015], but
it is merely the opposite of the expected estimation error. As mentioned in Subsection 3.5,
if we use the Hamming distance between xi

j and xi
j , the expected estimation error is

simply one minus the success rate. Even with the L1 norm, which we rely on because
it is more accurate and appropriate for our quantification aim, we notice by comparing
Fig. 8(a) and 8(b) are really symmetric and opposite. This leads us to conclude that the
expected estimation error is as intuitive as the success rate and that it is the best metric
for privacy measurement as it is increasing monotically with privacy, whereas the success
rate is decreasing with privacy.

Despite being certainly the most appropriate metric to measure genomic privacy, the
expected estimation error has a non-negligible drawback in requiring the knowledge of
the ground truth of the SNP values. As we show in Section 5, this knowledge is not
always available. In such case, entropy-based metrics, which measure the uncertainty
rather than the error of the adversary, are certainly best alternatives. In Fig. 7(d), we
compare both our entropy-based metrics with the estimation error, point by point, over
all 81899 SNPs of chromosome 1 and for all values aggregated in Fig. 7(c) to measure
C7’s privacy evolution.

Apart from the fact that normalized entropy slightly overestimates the expected es-
timation error, it is growing quite similarly than the estimation error, especially in the
estimation error range [0, 0.5], where the majority of the points are located. We also notice
that the third metric, 1- (normalized) mutual information, is worse than the normalized
entropy in approximating the estimation error. This is corroborated by Fig. 8 that shows
that the normalized entropy empirical CDFs are closer to those of the estimation error
than the empirical CDFs of the mutual information-based metric. This motivates us to
rely on the normalized entropy to measure genomic and health privacy in Section 5, when
we do not know the ground truth. Note that Wagner does not directly compare the pri-
vacy metrics on a single graph, contrary to us in Fig. 7(d), neither does she make use of
concrete inference attacks to evaluate her metrics [Wagner 2015].
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Fig. 9. Evaluation of the impact of LD correlations on genomic privacy. (a) Evolution of parent P5’s privacy
with and without considering LD. For each family member, we reveal 250, 500, or 750 randomly picked SNPs
(among the 1000 SNPs in G), following the same order of familial disclosure as in Figure 7(b). Privacy level
in measured using the expected estimation as base metrics, with per-SNP privacy values being aggregated
over the 1000 SNPs in G following expression (17). Note that x = 0 represents the prior distribution, when
no genomic data is revealed. (b) Evolution of the global privacy of a family by gradually revealing 10% of its
SNPs. Global privacy level measured as in expression (18) (same averaging method used for the other two base
metrics shown in the figure).

4.3. Inference With LD Correlations

Next, we include the LD relationships and observe the change in the inference power of
the adversary using the LD values. We construct G from 1000 SNPs on chromosome 1.
Among these 1000 SNPs, each SNP is in LD with 13 other SNPs on average. Further-
more, the strength of the LD (r2 value in Section 2.1.3) uniformly varies between 0.5 and
1 (where r2 = 1 represents the strongest LD relationship, as discussed before). As before,
we define a target individual from the CEPH family, construct the set XH from his/her
SNPs, and sequentially reveal other family members’ SNPs to observe the decrease in
the genomic privacy of the target individual. We observe that individuals sometimes do
not always reveal all their genome, or disclose different parts of their genomes (e.g., dif-
ferent sets of SNPs). Thus, we assume that for each family member (except for the target
individual), the adversary does not observe the full set of 1000 SNPs of the individuals,
but only a fraction of them. We instead assume that people reveal 25%, 50% or 75% of
their genomic data, and that they reveal different subsets of their SNPs. Fig. 9(a), shows
the evolution of genomic privacy (measured by the expected estimation error) of parent
P5 with and without making use of LD correlations. First of all, we observe that LD
clearly improves the inference attack, thus decreases genomic privacy compared to the
case when LD is not used. We also note that the smaller is the percentage of observed
SNPs, the higher is the effect of LD correlations on P5’s privacy. This is due to the fact
that LD correlations help fill the missing SNPs. We also observe that the more relatives
reveal their SNPs, the smaller is the gap between the privacy with and without LD.

Finally, we also evaluate the global inference power of the adversary when inferring
multiple SNPs among all family members, given a subset of SNPs belonging to some fam-
ily members, and also considering the LD correlations between SNPs. That is, we evalu-
ate the inference power of the adversary for different fractions of observed data for the
family members. Using a set of 100 SNPs for every family member, we construct XH from
(κ × 100 × n) SNPs, randomly selected from all family members, where n is the number
of family members in the family tree (n = 11 for this scenario), and κ ∈ {0, 0.1, . . . , 0.9, 1}.
We assume that the SNPs that are not in XH are observed by the adversary (i.e., in XO),
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and we evaluate the inference power of the adversary for the SNPs represented by XH,
for different values of κ. In Fig. 9(b), we observe a very fast decrease in the global ge-
nomic privacy (privacy of all family members), showing that the observation of a small
portion of the family’s SNPs can have a huge impact on genomic privacy. For instance, the
estimation error is decreased by around 3 by observing only the first 10% of the SNPs.

5. EXPLOITING GENOME-SHARING WEBSITES

We present here two concrete attacks that can be carried out using existing genome-
sharing websites and online social networks.

5.1. Cross-Website Attack with Online Social Networks

In order to show that the proposed inference attack threatens not only the Lacks family,
but potentially all families, we collected publicly available data from a genome-sharing
website and familial relationships from an OSN, and evaluated the decrease in genomic
and health privacy of people due to the observation of their relatives’ genomic data.

We gathered individuals’ genomic data from OpenSNP, a website on which people can
publicly share sets of SNPs. Then, we identified the owners of some gathered genomic
profiles by using their names and sometimes profile pictures. Among these identified in-
dividuals, we managed to find family relationships of 6 of them (who publicly reveal the
names of some of their relatives) on other Web resources such as Facebook.18 We expect
this number to increase in the future, as more health-related OSNs (which let people
share their genomic profiles, such as 23andMe) emerge. Furthermore, we anticipate that
the current widely used health-related OSNs (e.g., PatientsLikeMe19) will let users up-
load and share their genomic data. Note that at the time of this study the number of
OpenSNP users were around 500. Today, this number is 2297, which also shows the rapid
increase in the number of users who are susceptible for such attacks. For each of the 6
OpenSNP users sharing their SNPs on OpenSNP, we could retrieve several of their rel-
atives publicly exposed on their OSN profiles. Out of these 6 families, we could identify
in total 29 relatives whose genomic privacy was indirectly threatened by the OpenSNP
users sharing their family ties (with real identities) on online social networks.

We focus on 2 individuals I1 and I2 out of these 6 identified OpenSNP individuals and
evaluate their impact on the genomic and health privacy of their family members. We
observed that both I1 and I2 publicly disclosed around 1 million of their SNPs. Further-
more, we identified the names of (i) 1 mother, 2 sons, 2 daughters, 1 grandchild, 1 aunt,
2 nieces, and 1 nephew of I1, and (ii) 1 sibling, 1 aunt, 1 uncle, and 6 cousins of I2 on
Facebook. We compute the genomic and health privacy of these target individuals using
the (normalized) entropy in (15) as the base metric, and average over all targeted SNPs
for each individual. We cannot use the expected estimation error in (14) here as we do
not have the ground truth for the genomes of the target individuals. Thus, privacy is
quantified as the uncertainty of the adversary in this section.

To quantify the genomic privacy of the target individuals (i.e., family members of I1 and
I2), we first construct G from all SNPs on chromosome 1 (from the observed genomes of I1
and I2). The set of observed SNPs includes the observed SNPs of I1 (respectively I2) for
the inference of family members of I1 (respectively I2). The set of targeted SNPs includes
77k SNPs for I1’s family and 79k for I2’s family (from G) for each evaluation. In Fig. 10,
we show the decrease in the genomic privacy for different family members of I1 (aunt,
niece/nephew, grandchild, mother, child) and I2 (cousin, aunt/uncle, sibling) as a result of
our proposed inference attack, first without considering the LD dependencies (similarly
to previous section). We observe that as expected, the decrease in the genomic privacy of
close family members is significantly higher than that of more distant family members.

18According to [Gundecha et al. 2011], around 12% of Facebook users publicly share at least one family member
on their profiles.
19http://www.patientslikeme.com/
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Fig. 10. Attacker’s uncertainty about all SNP values on chromosome 1 for two different families, without using
LD. A stands for aunt, N for niece/nephew, GC for grandchild, M for mother, C for child, U for uncle. Same
notations are used in Fig. 11 and 12.

.

However, as we have seen in Section 4, the observation of one (or more) additional family
member(s) has often much more impact on the target’s privacy than the observation of
only one relative.
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Fig. 11. Attacker’s uncertainty about values of 100 SNPs on chromosome 1 for two families, by observing (i) all
100 SNPs of the relative that reveals his/her genome, and (ii) only 50 SNPs but using LD.

In Fig. 11, we display the decrease of genomic privacy with respect to 100 SNPs of
chromosome 1.20 We first show the different privacy levels by using all 100 SNPs of the
observed relative (i.e., I1 or I2), and then show the same by using only 50 SNPs of the
observed relative and LD values. We note that the use of LD decreases privacy slightly
more for the first family than for the second family. This is because we randomly picked
50 different SNPs for both families, and those picked in the second family had weaker
LD relationships with other SNPs. We finally observe that the difference between the
two observation cases (50 SNPs with LD and 100 SNPs without LD) is higher for close
relatives (mother, child, or sibling) than for others.

We also evaluate the health privacy of the family members of I1 and I2 considering their
predispositions to various diseases. We first noticed that almost all important SNPs for
privacy-sensitive diseases affected by genomic factors, like Alzheimer’s, ischemic heart
disease, or macular degeneration, were revealed by I1 and I2. Due to lack of space, we fo-
cus on Alzheimer’s as it is one of the most important diseases that are mainly attributable
to genetic factors. Having two ApoE4 alleles (SNP rs7412 being equal to CC and rs429358
equal to CC too) dramatically increases an individual’s probability of having Alzheimer’s
by the age of 80. Thus, the contents of these two SNPs carry privacy-sensitive informa-
tion for individuals. We use the metrics in (19) to quantify the health privacy of family

20We consider only 100 SNPs here for the same reason as in Section 4.
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members for Alzheimer’s disease. We assign equal weights to both associated SNPs (as
their combination determines the predisposition to Alzheimer’s disease). In Fig. 12, we
show the attacker’s uncertainty about the predisposition to Alzheimer’s disease for the
family members of I1 and I2. We notice a decrease of around 0.2 (from 0.5 to 0.3) in un-
certainty between close relatives. Clearly, the knowledge of the SNPs of more relatives
would further worsen the situation.
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Fig. 12. Health privacy regarding Alzheimer’s disease for 2 families, quantified using Dd
i as defined in 19, with

normalized entropy as base metric, i.e. Gk
i = Hk

i .

5.2. Inference Attack with Phenotypic Information

We also rely on publicly available data shared by OpenSNP users to evaluate the impact
of having additional phenotypic information on genomic privacy. In particular, we noticed
that tens of OpenSNP users share both their SNPs and a specific phenotype: “Do you
have a parent who was diagnosed with Alzheimer’s disease?”. Among those, 11 users
answered that either their mother or father was indeed diagnosed with this disease.
Hence, we build a Bayesian network of a trio (child and two parents), two SNPs X1

⋆ and
X2

⋆ per person representing the APOE gene (rs7412 and rs429358), and a phenotypic
node Y AD

i of one of the parents ri representing his/her Alzheimer’s disease status (set as
an evidence, as his child – OpenSNP user – reported his/her status), connected to both
APOE SNPs X1

⋆ and X2
⋆ . We derive the conditional probability table P (Y AD

i |X1
i , X

2
i ) from

the risks presented in the 23andMe technical report on the APOE variants.21

Now we evaluate how this evidence changes the inference of the APOE SNPs of the
child (i.e., of the OpenSNP user). In this case, we can rely on the expected estimation
error, for 7 of the 11 OpenSNP users who also publicly disclose both their APOE SNPs.
Note that among those 7 individuals, all have their rs7412 SNP equal to CC, and 6 have
their rs429358 SNP equal to TT. These values are the most common variants, leading to
normal risk for Alzheimer’s disease. However, having one or two C at rs429358 in combi-
nation with a C at rs7412 substantially increases the risk of getting Alzheimer’s by 85.
Only one out of the 7 OpenSNP users takes CT at rs429358, leading to an increased risk.
As Alzheimer’s disease is linked to the C allele at both SNPs, knowing the Azheimer’s
status of the users’ parents increases the posterior probabilities of these users carrying
the C allele. For rs7412, knowing the phenotype leads to a decrease of privacy (estimation
error) from 0.15 to 0.13 for all 7 users (sharing all the CC value at this SNP). However,
for rs429358, observing the phenotype increases the genomic privacy from 0.3 to 0.47 for
the 6 users who have non-risky SNP values (TT). This is due to the fact that observing

21It can be found here: https://www.23andme.com/en-ca/health/i alzheimers/techreport/
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that parents have been diagnosed Alzheimer’s disease misleads the adversary who be-
lieves that it is more likely a posteriori that the OpenSNP user carries at least one risky
allele (i.e., SNP being either CT or CC). On the contrary, for the single OpenSNP user
taking SNP value CT at rs429358, the genomic privacy of this SNP after observing the
phenotype value of the parent decreases from 0.75 to 0.63.

Note that the relationship between the APOE SNPs and Alzheimer’s disease is highly
probabilistic and it could also well be that the parent who was diagnosed had normal
alleles at these SNPs. If the observed phenotype is more deterministically linked to the
genotype, such as blood type, the observation of such phenotype will surely help improve
the inference on the genotype. We take SNP rs7853989 as an example. If there is at least
one minor allele C at this SNP, the blood type of his owner contains most likely a B (thus
is either B or AB). By collecting data of OpenSNP users publicly sharing this SNP and
their blood types, we could compute the expected estimation error prior and posterior to
the observation of their blood types. The prior error was equal to 0.76 for all of those
having a B in their blood type, and the posterior error (i.e., genomic privacy) was equal
to 0.1. For those not having a B in their blood type, the prior error was equal to 0.28
(because the SNP then takes the two major alleles GG, thus is easier to infer only with
the allele frequencies), and the posterior error became 0 (because oberving the phenotype
tells us that it is impossible that the user carries the C allele).

6. DISCUSSION

In this section, we study the performance of the proposed attack, and discuss potential
improvements of the investigated attack.

6.1. Performance

We implemented the proposed attack and evaluated its real-time computational perfor-
mance for both the inference without and with LD correlations. All experiments were
carried out on machines with Intel Xeon processors E3-1270 v3 of 3.5 Ghz and 32GB
of RAM. For case without LD, the average time to run the junction algorithm is 2023
seconds ≈ 34 minutes for one observation scenario and the inference of all family mem-
bers’ targeted SNPs. The average time is computed over all scenarios plotted in Fig. 7.
The standard deviation is equal to 117 seconds. As we were dealing with around 82,000
SNPs, we can derive that the inference time for one SNP is equal to around 0.025 second.
Note that what takes most of the computational times here is the belief propagation step
and not the construction of the junction tree that is quite straightforward with a fam-
ily tree. In this scenario, we can easily parallelize the inference algorithm as SNPs are
considered to be independent.

The inference with LD correlations is more computationally expensive: 3210 seconds ≈

53 minutes on average (with a standard deviation equal to 144 seconds) for one observa-
tion scenario and the inference of all family members’ targeted SNPs. The average time
is computed over all scenarios plotted in Fig. 9(a). As we are in this case inferring 1,000
SNP/family member, the inference time per SNP is equal to around 3.2 seconds. This
is approximately two orders of magnitude more computationally expensive than the sce-
nario without LD correlations. This overhead can be explained by two factors: the number
of iterations, and the number of LD factor nodes. First, as mentioned in 3.4, we have to
run 7 to 15 iterations before reaching a stable state of posterior distributions. Second,
we derive that the asymptotic complexity is equal to O

(

nm
)

, but the constant number of
factor nodes per SNP is equal to 13 in our practical case, which explains the second order
of magnitude. Note also that, as we already mentioned, the junction tree algorithm was
implemented by using the Bayes Net Toolbox [Murphy et al. 2001], which is certainly
more optimized than the algorithm we implemented for the case with LD correlations.
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6.2. Potential Improvements

One thing that we do not consider in the proposed inference attack is genetic imputation
via identity by descent (IBD) [Burdick et al. 2006; Li et al. 2009], which can make the
inference more powerful. IBD is a case in which a DNA segment (of around hundreds
of thousands base pairs) is directly transferred from the ancestors to the descendants
(e.g., from the grandfather to the father, and then from the father to the son). For in-
stance, consider two relatives grandparent (GP) and child (C), both of whom share some
of their SNPs in public platforms (e.g., OpenSNP). Assume GP and C both release all
SNPs in a 1Mb (megabase) region X. Additionally GP releases a SNP at locus L which
is about 100kb (kilobase) away from X, but C does not. Using the proposed algorithm (in
Section 3), knowledge of SNPs in region X reveals nothing about L since linkage disequi-
librium is typically not observed at distances of 100Kb (which is roughly 30 SNPs away
from region X). However, suppose GP and C have an IBD relationship in the region X.
Then, with probability close to 1, this shared segment extends to region L as well (IBD
segments are typically tens of megabases). This means the adversary can impute one of
C’s alleles at L with near-certainty. Note that IBD could be integrated to the proposed
algorithm in an ad-hoc manner. That is, the IBD occurrence in the observed genomes (in
XO) can be first determined and an initial inference can be made only based on the IBD.
Then, the inference method discussed above can be applied on top of this initial inference.
We note that in this work, we did not observe any occurrence of IBD in the dataset we
used to evaluate the proposed method (in Section 4).

Furthermore, in the proposed framework, we considered pairwise correlations (LD)
between the SNPs, because, to the best of our knowledge, public LD data is always pro-
vided pairwise. However, higher-order correlations between the SNPs can make the infer-
ence more powerful. Such higher-order correlations can be obtained by analyzing a large
genome dataset (of a particular population) and used in the proposed inference attack.
Note that when such higher-order correlations are considered, the degree of each LD fac-
tor node in the proposed framework will also increase and the messages from LD factor
nodes will be modified accordingly.

7. RELATED WORK

Stajano et al. [Stajano et al. 2008] were among the first to raise the issue of kin pri-
vacy in genomics. Cassa et al. [Cassa et al. 2008] provide a framework for measuring the
risks to siblings of someone who reveals his SNPs. They show that the inference error
is substantially reduced when the sibling’s SNPs are known, compared to when only the
population frequencies are used. We push this work further, by considering any kind of
family members, and LD relationship between SNPs, by proposing and evaluating dif-
ferent privacy metrics, and by presenting a real attack scenario using publicly available
data. Our generic framework considers any observation of a family’s genomic data, and
the adversary’s background knowledge.

Several algorithms for inference on graphical models have been proposed in the con-
text of pedigree analysis. Exact inference techniques on Bayesian networks are used in
order to map disease genes and construct genetic maps [Fishelson and Geiger 2002; Lau-
ritzen and Sheehan 2003; Jordan 2004]. Monte Carlo methods (Gibbs sampling) were
also proved to be efficient for genetic analyses in the case of complex pedigrees [Jensen
et al. 1995; Thomas et al. 2000; Sheehan 2000]. All these methods aim to infer specific
genotypes given phenotypes (like diseases). Another paper relies on Gibbs sampling in
order to infer haplotypes (used in association studies) from genotype data [Kirkpatrick
et al. 2010]. Genotype imputation [Li et al. 2009] is another technique used by geneti-
cists to complete missing SNPs based upon given genotyped data. A similar approach
has recently been used to infer high-density genotypes in pedigrees, by relying notably
on low-resolution genotypes and identity-by-descent regions of the genome [Burdick et al.
2006]. Neither these contributions address privacy, nor have they been applied to large
pedigrees (such as our Utah family).

ACM Transactions on Information and System Security, Vol. 9, No. 4, Article 39, Publication date: March 2010.



Quantifying Interdependent Risks in Genomic Privacy 39:27

We also briefly summarize the research on the privacy of genomic data in the follow-
ing. Homer et al. [Homer et al. 2008] prove that de-identification is an ineffective way
to protect the privacy of genomic data, which is also supported by other works [Wang
et al. 2009; Gitschier 2009; Zhou et al. 2011]. Most recently, Gymrek et al. [Gymrek et al.
2013] show how they identified DNAs of several individuals who participated in scien-
tific studies. Fienberg et al. [Fienberg et al. 2011] propose using differential privacy to
protect the identities of scientific study participants releasing statistics such as minor al-
lele frequencies, p-values, and the top-k most relevant SNPs for a particular phonotype.
Yu et al. [Yu et al. 2014] extended this work to compute differentially private statistics
for arbitrary number of cases and controls. Johnson and Shmatikov propose an exponen-
tial mechanism called a distance-score mechanism to add noise to the output [Johnson
and Shmatikov 2013]. Three papers related to differential privacy have been published
in the framework of the iDASH genomic privacy workshop 2014 [Jiang et al. 2014]. In
order to retain data utility, Wang et al. propose an algorithm that splits raw genome se-
quences into blocks before adding Laplace noise to them [Wang et al. 2014]. Yu and Ji
adapt the methods of [Yu et al. 2014] and show new results about the Hamming distance
score, notably its sensitivity [Yu and Ji 2014]. However, a major drawback of these ap-
proaches is that they reduce the accuracy of the research results. Fredrikson et al. have
recently confirmed this finding in their study of privacy in pharmacogenetics [Fredrik-
son et al. 2013]. They show that given the model and some demographic information and
drug dosage about a patient, an attacker can predict the patient’s genetic markers. They
also show that differentially private mechanisms can only improve genomic privacy at
the cost of increased risk of stroke, bleeding events, and mortality.

Some pieces of work also focus on protecting the privacy of genomic data and on pre-
serving utility in medical tests such as (i) search of a particular pattern in the DNA
sequence [Troncoso-Pastoriza et al. 2007; Blanton and Aliasgari 2010], (ii) comparing the
similarity of DNA sequences [Jha et al. 2008; Bruekers et al. 2008; Baldi et al. 2011], (iii)
performing statistical analysis on several DNA sequences [Kantarcioglu et al. 2008; Xie
et al. 2014], and (iv) using genomic data in clinical settings for healthcare [Ayday et al.
2013b; Danezis and De Cristofaro 2014; Djatmiko et al. 2014]. Furthermore, Ayday et al.
propose privacy-preserving schemes for medical tests and personalized medicine meth-
ods that use patients’ genomic data [Ayday et al. 2013c]. For privacy-preserving clinical
genomics, a group of researchers proposes to outsource some costly computations to a
public cloud or semi-trusted service provider [Wang et al. 2009; Chen et al. 2012]. Ay-
day et al. propose techniques for privacy-preserving management of raw genomes [Ayday
et al. 2013a]. Karvelas et al. present a flexible framework based on oblivious RAM that
allows for the private processing of whole-genome sequences, that supports any query
and that also hides the access patterns [Karvelas et al. 2014]. Other similar privacy-
preserving mechanisms for GWAS based on homomorphic encryption [Lu et al. 2015;
Kim and Lauter 2015; Zhang et al. 2015b] or secure multi-party computation [Constable
et al. 2015; Zhang et al. 2015a] have recently been proposed in the context of the iDASH
challenge 2015.

In contrast with these contributions, in this paper, we propose an original and effi-
cient inference attack in order to reconstruct genomic data of individuals given observed
genomic and phenotypic data of their family members and special characteristics of ge-
nomic data. Furthermore, we quantify the genomic and health privacy of individuals as
a result of this attack using different metrics, and show the real threat by using the data
collected from genome-sharing website and OSNs.

8. CONCLUSION

In this article, we have proposed and studied a novel reconstruction attack for inferring
the genomic data of individuals from the observed genomes and phenotypes of their rel-
atives. We have studied its computational complexity both theoretically and practically,
have compared several metrics to quantify genomic and health privacy, and have car-
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ried out a real-world cross-website attack by notably making use of a popular online
social network. From our performance evaluation, we notice a trade-off between time ef-
ficiency and inference power. If the attacker is interested only in a subset of targeted
SNPs or if he cannot observe the full set of SNPs of the target’s relatives, he could use
the inference method that includes LD correlations without having to incur too much
computational cost. From a policy maker’s viewpoint, the inference method without LD
correlations gives essentially an upperbound on the actual level of genomic privacy of the
family members.
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