IEEE TRANSACTIONS ON COMPUTERS, VOL.66, NO.3, MARCH 2017

Cache Hierarchy-Aware Query Mapping
on Emerging Multicore Architectures

Abstract—One of the important characteristics of emerging multicores/manycores is the existence of “shared on-chip caches,” through
which different threads/processes can share data (help each other) or displace each other’s data (hurt each other). Most of current
commercial multicore systems on the market have on-chip cache hierarchies with multiple layers (typically, in the form of L1, L2 and L3,
the last two being either fully or partially shared). In the context of database workloads, exploiting full potential of these caches can be
critical. Motivated by this observation, our main contribution in this work is to present and experimentally evaluate a cache hierarchy-
aware query mapping scheme targeting workloads that consist of batch queries to be executed on emerging multicores. Our proposed
scheme distributes a given batch of queries across the cores of a target multicore architecture based on the affinity relations among the
queries. The primary goal behind this scheme is to maximize the utilization of the underlying on-chip cache hierarchy while keeping the

403

Ozcan Ozturk, Umut Orhan, Wei Ding, Praveen Yedlapalli, and Mahmut Taylan Kandemir, Fellow, IEEE

load nearly balanced across domain affinities. Each domain affinity in this context corresponds to a cache structure bounded by a
particular level of the cache hierarchy. A graph partitioning-based method is employed to distribute queries across cores, and an
integer linear programming (ILP) formulation is used to address locality and load balancing concerns. We evaluate our scheme using
the TPC-H benchmarks on an Intel Xeon based multicore. Our solution achieves up to 25 percent improvement in individual query
execution times and 15-19 percent improvement in throughput over the default Linux-based process scheduler.

Index Terms—Query, multicore, schedule, cache, architecture

1 INTRODUCTION

ROWING performance gap between processors and

main memory has made it worthwhile to consider off-
chip data accesses in query processing [2], [3], [5], [15]. Espe-
cially in multi-query environments, exploiting data-sharing
opportunities among concurrent queries can be critical for
effective utilization of the underlying shared memory hierar-
chy. Given a set of queries, there may be a common retrieval
operation for several cases to the same data. A query can ben-
efit from the data previously loaded into the shared cache/
memory space by another query. However, if these queries
are scheduled independently, it is very likely that the same
data is brought from off-chip memory to on-chip caches mul-
tiple times, thereby consuming off-chip bandwidth and slow-
ing down overall execution. In addition, resource allocation
and scheduling in multi-query environments are typically
performed by the operating system (OS). For example, Linux
task scheduler is oriented towards load balancing and can
dynamically change the affinity of running processes (task

o O. Ozturk is with Bilkent University, Bilkent, Ankara 06800, Turkey.
E-mail: ozturk@cs.bilkent.edu.tr.

e U. Orhan is with Amazon Inc., Seattle, WA 98109-5210.
E-mail: uorhan@gmail.com.

o W. Ding is with Qualcomm Innovation Center Inc., San Diego, CA 92121.
E-mail: wding109@gmail .com.

o P.Yedlapalli is with VMuware Inc., Palo Alto, CA 94304.
E-mail: praveen.yadlapalli@gmail .com.

o M. T. Kandemir is with Pennsylvania State University, State College, PA
16801. E-mail: kandemir@cse.psu.edu.

Manuscript received 14 July 2015; revised 30 Mar. 2016, accepted 7 Apr.
2016. Date of publication 1 Sept. 2016; date of current version 16 Feb. 2017.
Recommended for acceptance by A. Gordon-Ross.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TC.2016.2605682

migration) to utilize each core at its maximum. As it has no in-
depth understanding of how database queries are processed
individually, an OS scheduler may not exploit potential data
sharing opportunities between two or more different queries
in a shared cache. Even worse, treating database queries as
ordinary processes and, consequently, scheduling them in a
traditional manner may penalize concurrently-executing
queries at runtime and may lead to degradation in overall sys-
tem throughput. In shared-memory multicore architectures,
on-chip cache performance is a major factor as far as workload
performance is considered. In fact, application behavior can
exhibit dramatic variations on different on-chip cache hierar-
chies depending on mapping and scheduling plans [20].
Moreover, cache contention due to hardware resource con-
straints has already been identified as a challenge that must
be addressed in query processing context [23]. Therefore, run-
ning these servers on multicore architectures raises an impor-
tant question from the data-locality perspective: how to
schedule concurrently-running queries across available cores
in order to better utilize the underlying shared cache hierar-
chy and improve the overall throughput of the system?

Our goal in this study is to make concurrent multi-query
execution in conventional relational database systems effec-
tively benefit from chip-level parallelism provided by
emerging multicore architectures in a locality-aware fashion
and, as a result, improve the overall throughput of the sys-
tem. More specifically, we map queries to cores in such a
way that cores can utilize the shared data kept in caches.

We address two main concerns in optimizing multi-
query scheduling: affinity and load balancing.

In arelational database management system (DBMS), there
are multiple ways of executing a given (SQL) query. When a

0018-9340 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

404

query is submitted, query optimizer generates an ordered set
of steps used to access data in an efficient manner. This set of
operations is called a query plan, or an execution plan, or simply
a plan. For example, a join operation among two tables
followed by a selection is a possible plan for a specific query.
Or alternatively, a selection in a table followed by a join with
another table may give the same correct result. Each operator
has different cost in terms of time it takes to complete the task.
Therefore, multiple alternatives for the same query with
widely varying performance may exist. In our approach, we
use the estimated cost (execution time) for each operator and
similarly, the total estimated cost (execution time) for a certain
execution plan, to compare different alternatives.

If we know (i) the execution plan of each query, (ii) an
estimated cost for each operator/plan, and (iii) the target
multicore platform in advance, we can suggest compile-
time assignments of queries to domain affinities. In this
work, we try to solve query-to-core mapping problem on an
underlying cache topology.

These assignments can improve data locality on shared
caches over dynamic, OS based scheduling and lead to sig-
nificantly less cache conflicts as well as reduced number of
off-chip data accesses. On the other hand, a simple compile-
time multi-query scheduling scheme that relies only on data
sharing relations between queries tends to ignore dynamic
modulations across workloads of different processors. At
runtime, core utilizations can be reduced when a static
scheduling scheme is employed and we may even end up
with idle cores when queries have diverse execution times.
Consequently, we also need to better utilize the available
processing units through load balancing.

The techniques that we discuss in this paper identify
common data retrieval operations in multi-query workloads
and build affinity relations between queries that represent
possible data sharing at runtime. Affinity relations are rep-
resented using an undirected weighted graph, where each
node represents a query and an edge between two nodes
indicates possible data sharing among the corresponding
queries. Edge weights are calculated from the query plan
estimations provided by the query optimizer. Using this
graph, we then invoke a hierarchical clustering algorithm to
generate query-to-domain affinity mappings. An domain affinity
in this context refers to a particular cache structure bounded
by a specific level of the cache hierarchy. It can be a private
cache or a cache shared by multiple cores, and each domain
affinity level covers all caches at that level, e.g., domain affin-
ity level 2 includes all L2 caches. According to the generated
mappings, each query is executed only on the cores that are
connected to the corresponding domain affinity.

Our clustering strategy creates partitions starting from
bottom level cache (close to main memory) until it has the
same number of partitions as the number of target domain
affinity levels. More specifically, this strategy tries to create
the exact number of partitions as requested while maximiz-
ing the total edge weight within a partition (i.e., the amount
of data sharing) and minimizing the total weight of cutting-
edges. When moving to upper levels, the strategy takes the
parent partition and divides it into the same number of
available caches in the upper level. We further enhance this
scheme by introducing vertex weights to model runtime
working memory requirements of queries so that we can
balance queries and reduce cache thrashing. Our proposed

IEEE TRANSACTIONS ON COMPUTERS, VOL.66, NO.3, MARCH 2017

clustering strategy works as expected when the number of
queries in the given workload is equal to or less than the
available cores in the target architecture. In such a case, a
particular core can be dedicated to a single query. However,
when we increase the workload size, static domain affinity-
query mappings can result in idle cores at runtime, espe-
cially when the queries in the workload have diverse execu-
tion times. A workload on a domain affinity may be
finished before other domains, and consequently, the over-
all system utilization gets reduced compared to a dynamic
OS-based scheduler since static mapping does not consider
runtime reassignments. Motivated by this observation, we
extend our clustering approach with an integer linear pro-
gramming (ILP) based load balancing step where we try to
balance the loads assigned to different domain affinities.

We implement our scheduling scheme as a middleware
in PostgreSQL 8.4 [30], which takes a batch of queries to be
executed in parallel and the cache topology information of
the target multicore architecture as inputs. As a motivating
point, this kind of batch scheduling schemes can be applied
into real-world scenarios where several database users run
a fixed set of queries for generating daily reports from a
data warehouse. Hence, we evaluate our approach with
workloads consisting of OLAP queries provided by the
TPC-H benchmarks [37]. To summarize, we make two main
contributions in this paper:

e We present a cache topology aware multi-query sched-
uling scheme for multicore architectures. This
approach defines affinity relations between queries
and assigns closely related queries into similar
domain affinities in order to effectively utilize the
on-chip cache hierarchy by exploiting data locality
throughout the cache hierarchy.

e We explain how this scheduling strategy can be
extended to reduce cache thrashing effects of concur-
rent queries sharing the same cache structures as
well as to tolerate load balancing concerns brought
by static domain affinity mappings.

Our experimental results on an Intel IvyBridge-EN multi-
core system indicate that the proposed scheduling algo-
rithm achieves up to 25 percent improvement in query
execution time and 15-19 percent improvement in overall
system throughput. To the best of our knowledge, this is the
first work that recognizes and take advantage of the dispar-
ities between different on-chip cache topologies for schedul-
ing multiple queries in emerging multicore architectures.

In the next section, we give a detailed comparison of our
approach with the prior related efforts. A brief background
on multicore architectures, shared caches and data reuse
can be found in Section 4. In Section 2, we motivate the
cache topology aware multi-query scheduling problem in
the context of emerging multicore platforms. Sections 5 and
6 present the details of our proposed multi-query schedul-
ing scheme. In Section 7, we give an experimental evalua-
tion of this scheme using commercial multicore machines.
The paper is concluded in Section 8 with a summary of our
major observations and possible future research directions.

2 MOTIVATION

This section presents results motivating for a cache hierarchy-
aware multi-query scheduler for multicores. For this

OZTURK ET AL.: CACHE HIERARCHY-AWARE QUERY MAPPING ON EMERGING MULTICORE ARCHITECTURES 405

B Query-1 OQuery-2 OQuery-3 B Query-4

=
= %)

Normalized Query
o
w

Execution Time

o

Mapping-1 Mapping-2 Mapping-3

Fig. 1. Query execution times with different mappings.

experiment, we use four queries from TPC-H [37] and
consider three different mappings to a dual-socket, Intel Ivy-
Bridge-EN based architecture, where the cores in each socket
have private L1 and L2 caches and they share the last-level
(L3) cache, as shown in Fig. 2a. While there are different shar-
ing characteristics among different queries, we observe some
level of sharing in all cases tested. We give details of these
tests with different queries in our experimental analysis sec-
tion. The first mapping maps all queries (Queries 1 through 4)
to one of the sockets; the second mapping maps Queries 1 and
2 to the first socket and Queries 3 and 4 to the second socket;
and the third mapping maps Queries 1 and 3 to the first socket
and Queries 2 and 4 to the second socket. In each experiment,
each query is executed in a single core. The query execution
times with each mapping are plotted in Fig. 1. Each bar is nor-
malized with respect to the case where the corresponding
query is executed in an isolated fashion in a core, without run-
ning any other query in any other core in the socket.

One can make several interesting observations from these
plots. First, although each mapping uses the same number of
cores (same parallelism), the execution time of a given query
exhibits significant variances depending on the mapping
used, indicating that cache performance plays a critical role.
Second, when all queries are executed in the same socket, we
see that the performance of each query suffers to varying
degrees. This is expected and due to contention in the last
level cache. However, when we move to the second mapping,
we see that the performances of Query 1 and Query 2 improve
over isolated executions. This is because of the data (table)
sharing between these two queries. In fact, what happens is
that the data brought to the last-level cache by one query are
reused by the other, which means the former one practically
fulfills a prefetching functionality for the other. As a result,
both the queries benefit from colocation. On the other hand,
Queries 3 and 4 still perform worse compared to their respec-
tive isolated executions, as they do not share much data (their
results are slightly better than the first mapping because the
contention coming from Querys 1 and 2 are eliminated. When
welook at the results with the third mapping, we see that they
are very similar to those of the first mapping. The marginal
improvement (around 1 percent) over the first mapping is
due to reduced contention. Overall, these results suggest that
careful mapping of queries to cores can improve query execu-
tion times. In particular, we would prefer the queries that
share data to share cache as well, and similarly, the queries
that do not share much data should be mapped to cores that
do not share any cache. In the rest of this paper, we present a
multi-query scheduling algorithm driven by these goals.

3 RELATED WORK

Query Processing. Several studies are presented for making
query processing and database operators aware of on-chip

__

(H)®
(HJ©®
G

segmpme

Socket 0 Socket 1

Fig. 2. Different cache topologies with the same number of cores and
sockets.

cache spaces in the context of both single core machines [34]
and multicore architectures [11], [12], [39]. Acker et al. [1]
present an approach that encapsulate parallelism for rela-
tional database query execution, which strives for manxi-
mum resource utilization for both CPU and disk activities.
Liknes [24] investigates database algorithms and methods
for modern multi-core processors in main memory environ-
ments. Stonebraker et al. [35] and Boncz et al. [7] introduce
tuple access and storage optimizations in order to cope with
the memory access bottleneck. Albutiu et al. [4] devise a
suite of new massively parallel sort-merge (MPSM) join
algorithms that are based on partial partition-based sorting.
These MPSM algorithms are NUMA-affine as all the sorting
is carried out on local memory partitions. Duffy and Essey
[13] review the goals of the PLINQ technology, where it fits
into the broader .NET Framework and other concurrency
offerings. Lee et al. [23] specifically target database queries
sharing same on-chip cache structures in multicore architec-
tures. They introduce an OS-level cache partitioning scheme
which is based on data access patterns and working mem-
ory requirements of the given workload queries. As com-
pared to these works, our approach considers a batch of
queries running concurrently (instead of a single query)
and exploits data locality opportunities in a global fashion.
Data Sharing. Harizopoulos et al. [22] present a pipelined
query engine where a single data retrieval operation serves
more than one query in parallel. Petrides et al. [29] propose
different representative data-parallel versions of the origi-
nal database scan and join algorithms to exploit the benefits
of using on-chip clustered many-core architectures, and
study the impact on the performance when on-chip mem-
ory, shared among all cores, is used as a prefetching buffer.

406

In [31], [32], [41], work sharing opportunities through
exploiting common operators across concurrently-running
queries are discussed. The goal of our multi-query schedul-
ing scheme is similar to these work sharing approaches
from the data locality perspective. However, we focus more
on the issues arising due to shared caches and different on-
chip cache topologies. Extending our approach with these
expert work sharing based approaches can further improve
data locality through all levels of the on-chip cache hierar-
chies in multicores.

In addition, batch scheduling and resource allocation
problems have been studied in the scope of parallel data-
base systems [25], [40]. In comparison, our work specifically
targets emerging multicore platforms and focuses on the
problem of optimizing data locality in shared on-chip cache
hierarchies.

4 MULTICORE ARCHITECTURES AND DATA REUSE

Chip multiprocessors paved the way to alternative cache
topologies, which means that cache memories can be con-
nected to on-chip cores in a multi-leveled fashion by exhibit-
ing various different patterns. Intel’s Dunnington [17] and
Harpertown [18] architectures are good examples of this
diversity. Dunnington has six on-chip cores whereas Har-
pertown has four cores. Both architectures have an L1 cache
per core and L2 caches are shared by a pair of cores. How-
ever, Dunnington adds one more level to Harpertown’s
cache hierarchy and introduces L3 cache. On the other hand,
architectures such as Intel Nehalem [19] can have a
completely different topology with private L2 caches. All
these three multicore machines have distinct on-chip cache
hierarchies which are shared across different number of
cores. Today, a server rack can contain more than one of
these chips, resulting in parallel systems with large number
of cores. Representative cache topologies, each with 12 cores
spread over two sockets, are depicted in Fig. 2. A distin-
guishing characteristics these multicore architectures is the
existence of shared on-chip caches. Shared caches are prefera-
ble to their private alternatives especially when we consider
(i) efficient utilization of cache space and (ii) avoiding data
redundancy across caches. In particular, depending on their
data access/sharing patterns, cache sharing among two pro-
cesses/threads can be constructive or destructive [6], [8], [9].
Shared caches can cause co-runner applications running on
different cores to contest for the available space. In other
words, an application, process or thread executing on a par-
ticular core can be slowed down by a co-runner which uses
the same cache space at the same time through a different
core. As a result, one can expect that scheduling decisions
on multicore architectures can dramatically change the over-
all system performance. In order to avoid such contentions,
one must find an appropriate match of processes. This chal-
lenge is often referred to the application-to-core mapping prob-
lem and has become an active research area [9], [14], [36].
Shared caches make use of the property of data reuse in
applications. Data reuse is an access to a memory location
that has already been accessed previously. The ability of a
cache in converting a data reuse into a cache hit depends on
(i) the parameters of the cache (e.g., capacity, associativity
and block size) and (ii) the distance at which the reuse

IEEE TRANSACTIONS ON COMPUTERS, VOL.66, NO.3, MARCH 2017

Cache Topology & Target
Affinity Domain Level

|+

[e— o ~ G
P 22 .
Q2 0 QP2 £a > G AD2
[—2g S5 i =
. g E S © .
= < = [is]
2‘8' 2'® o ®
. b5 . o £ @ :
3 =1 o
e] [eNa) i
[o}— (P — . [Gn [Ao]

Fig. 3. High level sketch of our cache topology-aware query scheduling
approach. @, indicates the specific query, whereas QP; indicates the
query plan generated by the query optimizer. After applying our
approach, we generate the new query execution, Q;, on a specific
domain affinity AD,.

occurs, namely, the reuse distance. Reuse distance is defined
as the number of “unique” memory locations accessed
between two contiguous accesses to the same memory loca-
tion. Smaller a reuse distance is, higher the chances for
catching the reused item in the cache (i.e., converting reuse
into locality). More specifically, converting the reuse into
locality can happen if two queries are accessing the same set
of data (or sharing data) and using the same memory loca-
tion to access this data. Moreover, timing of accesses should
also match for locality. In essence, our target with data reuse
is to achieve reuse of shared data between different queries.
Note that, in our approach, we assume that the queries are
completely independent. Our approach can be converted to
support such cases but this would require additional con-
straints and bring other limitations.

5 PROPOSED SCHEDULER

5.1 Problem Definition and High-Level View

Our goal in this paper is to present and evaluate a schedul-
ing algorithm which assigns queries of a given batch job to
the domain affinities in the target multicore architecture in a
cache conscious manner. This cache hierarchy-aware sched-
uler can reduce potential cache contentions among concur-
rent queries and improve the overall throughput of the
system. We define this query-to-domain affinity mapping
problem more formally as follows. A query (¢;) to domain
affinity (D;) mapping at level L is defined as

where n, denotes the number of queries and n;, denotes the
number of caches at level L of the target cache topology.

Our scheduling algorithm takes two inputs: a set of
query plans to be executed and the underlying cache topol-
ogy of the target multicore architecture where these queries
are processed. The main goal behind the algorithm is to
decide which query should be executed on which domain
affinity. It tries to evenly distribute the queries among avail-
able cores while maximizing possible data sharings through
shared caches.

In Fig. 3, we give the high-level description of our auto-
mated approach to cache topology aware query scheduling.
In the first step, we invoke the PostgreSQL Query Planner
and Optimizer. We then analyze the generated query plans
to extract possible data sharing opportunities across queries
and estimate the amount of memory space to be consumed
by each query. In this step, we build a graph structure

OZTURK ET AL.: CACHE HIERARCHY-AWARE QUERY MAPPING ON EMERGING MULTICORE ARCHITECTURES 407

representing the data sharing relationships among queries
with respect to cache behavior, and then partition this graph
considering the target architecture and the domain affinity
level. Finally, we try to balance the load on each domain
affinity according to the estimated query execution times.
More specifically, we apply a decoupled approach where
we define affinity relations between queries and assign
closely related queries into similar domain affinities stati-
cally. In the second phase, we apply our load balancing
technique to consider dynamic modulations across work-
loads of different processors.

Note that it may not be possible to extract query features
for all platforms and query types. Our goal in this work is to
show that this would be possible in an environment where
the execution plan, estimated cost for each operator/plan,
and target multicore platform information is available.
While target platform information is easier to obtain, cost
for operators and execution plan are harder to estimate. In
our implementation, we use the Query Planner and Opti-
mizer module of PostgreSQL to extract the execution plan.
Similarly, we estimate the cost of each operator by running
experiments with various queries that use the given opera-
tor. For example, we apply Hash Join with different queries
and different data sizes to estimate the unit cost.

5.2 Assumptions

Relational database management systems use various opera-
tors to perform required tasks on data. Data is organized as a
set of tuples (dy,d, ..., dy,), where each element d; is a mem-
ber of D;, a data domain. These set of tuples are called rela-
tions which enable structured collection of data. One of the
major operators used as part of these systems is the join oper-
ator. More specifically, join generates the set of all combina-
tions of tuples in R and S that are equal on their common
attribute names. In mathematical terms, join is a binary oper-
ator expressed as R < S, where R and S are relations. For
this study, we employ hash join as our default join operator.
This is because, instead of using nested loop or sort merge
joins, PostgreSQL mostly prefers hash joins for executing
TPC-H queries when no indices are introduced to the system.
Further, employing hash join allows us to test our approach
in the presence of private data structures generated by
queries at run-time such as hash tables. Each hash table
belongs to a particular query and is not shared with other
queries. These in-memory tables tend to have short reuse dis-
tances during join processing, thus, besides aggregations,
they can easily jeopardize the potential benefits brought by
on-chip caches by causing contention especially when the
cache is used by other hash joins at the same time [23], [31].

A conventional hash join operation consists of two conse-
cutive steps: building and probing. In the building phase, a
hash table is created from the rows of the smaller relation or
from the results of another join. Afterward, the other rela-
tion is scanned and suitable rows are joined with the ones
found in the hash table. The building phase is materialized
in the classical hash join method, i.e., probing step is started
right after finishing the construction of the hash table.

Despite their drawback of extra memory consumption, we
can take advantage of hash join operations for join processing
in exploring data sharing opportunities. Specifically, with a
query optimizer favoring the left-deep query plans, the

orderkey M orderkey N
custkey <] LINEITEM custkey X LINEITEM
nationkey [>q] ORDERS nationkey [>] ORDERS
regionke) > N CUSTOMER regionke/y X CUSTOMER
REGION NATION REGION NATION
(a) TPC-H Q5 (b) TPC-H Q8

Fig. 4. Ordering in hash join chains depends largely on relation cardinali-
ties. In this example, we have |LINEITEM| > |ORDERS| >
|CUSTOMER| > |NATION| > |REGION]|.

materialized nature of a hash join operation can be exploited
to maximize data reuse between concurrent queries that are
working on same relations. In such a case, scan operations
within a query are likely to be executed in the reverse order of
the cardinalities of the relations that they scan. When the selec-
tivities' on shared relations are similar, chances of finding the
data in an on-chip cache, which was once brought in by
another query, can be improved. Using selectivities when per-
forming joins will result in same hash join orders which will
also mean to access the data in a similar order. More specifi-
cally, data accesses will follow similar patterns in different
queries while creating the joins, thereby increasing the chan-
ces of utilizing the data in the cache. As an example, in Fig. 4,
query plans of TPC-H querys 5 and 8, which are generated by
PostgreSQL query optimizer, are given. One can figure out
that these two different query plans have same hash join
ordering decisions for same relations.

In this study, we statically assign queries to domain affin-
ities and do not handle changes that might happen over
time. The proposed technique is dependent on the query
optimizer of the database system. The results can be hin-
dered by the wrong selectivity or execution time estimates.
Especially, in highly concurrent environments, not only the
selectivities but also the execution frequencies of the queries
might change at run-time. As part of our future work, we
are planning to consider the dynamic nature of the query
execution as well.

5.3 Estimating the Amount of Shared Data

Between Two Queries
A query reads the data stored on a database management
system through scan operations. For example, a sequential
scan operation fetches all tuples of a relation starting with
the first tuple. Therefore, we can represent the data that a
query reads during its lifetime as a set of relations R:

R = U r, (2)

where r denotes a scanned relation, and |J denotes “set
union” operation. At this point, one can approximate the
total amount of data shared between two queries as follows

DataSharing = Z |73l (6))
7 €R1,Ro

1. Selectivity in a scan operation is defined as the percentage of the
filtered tuples over the total number tuples in the relation. In other
words, it indicates the percentage of different rows selected as a result
of the scan operation.

408

where R; and R represent two set of relations read by dis-
tinct queries, and r; is the relation that scanned by both of
these queries. Note that, we calculate the amount of data
sharing in terms of tuples, instead of using the actual size of
the stored data in bytes.

With an unlimited cache size (capacity), reuse distance of
shared data would not be of any concern. Consequently,
once a tuple is brought into the on-chip cache, it would not
be kicked out due to a miss and, after the very first miss, any
read request for this tuple would be a hit. However, in real-
world settings, we must consider the distance between two
read operations to the same tuple, as cache capacities are lim-
ited. If the distance between two scan operations which read
tuples of the same relation is significantly large, then leading
scan may displace all existing tuples from the cache and
replace them with newer ones before the lagging scan can
access them. As a result, these queries may not benefit from
data sharing. In other words, if the same data is read by two
queries at completely different points in time, then the
amount of data shared between the queries might be zero.

In order to address this timing issue, we enhance our ini-
tial data sharing model by considering the selectivity of
each scan operation. During our experiments, we observed
that the execution time of a scan operation is related to its
selectivity and, in fact, two scan operations having similar
selectivities are more likely to share tuples brought into a
cache. On the other hand, even if we ensure that join order-
ings for the same tables are the same, scan operations may
not necessarily occur at the same level of the associated
query plan trees. For example, one of the queries might
work on a completely different data first, and compute a
join among shared relations as the rest. To consider such
cases, we calculate vertical differences between scan opera-
tions and enable this information for data sharing estima-
tions. More specifically, we capture the level of each scan
operation (n) in the query plan, and use these levels in esti-
mating the data sharing. Accordingly, we change our data
sharing model to:

A(LevelDifference) = 1/(1 — |n; — nal),

DataSharing(revised) = Z (Iril * A (1 — |oy — 02])),
r,€R1,Ra

)

where o and o5 represent the selectivity of two scan opera-
tions, and each 7 gives the order of a scan operation accord-
ing to the post-ordered query plan tree. As can be seen from
this expression, we first capture the amount of data in rela-
tions r; € Ry, Ry read by distinct queries, and scale this
with both A(LevelDifference) and selectivity difference,
that is |0y —o3]. Both of these effect the data sharing
inversely. In our framework, we extract the selectivity infor-
mation by parsing the query execution plan where scan
operations are associated with estimated costs and the num-
ber of the resulting tuples.

5.4 Estimating the Working Memory Sizes

For achieving good shared cache performance, it is critical
to reduce the amount of memory stalls experienced due to
cache misses. Even when several co-runner queries with
data sharing are executed, cache thrashing may offset the

IEEE TRANSACTIONS ON COMPUTERS, VOL.66, NO.3, MARCH 2017

QUERY PLAN
(1) Sort (cost=329380.96..329380.97 rows=1 width=27)
Sort Key: lineitem.l_shipmode

-> HashAggregate (cost=329380.93..329380.95 rows=1 width..
—> Hash Join (cost=68238.00..329179.33 rows=26879 width..

(4 Hash Cond: (lineitem.l_orderkey = orders.o_orderkey)

(5 -> Seqg Scan on lineitem(cost=0.00..252082.75 rows=268..
Filter: ((l_shipmode = ANY (’{MAIL,RAIL}’::bpchar(...

(6) —> Hash (cost=41431.00..41431.00 rows=1500000 width=20)

(7) -> Seq Scan on orders(cost=0.00..41431.00 rows=150...

Fig. 5. A sample query plan for TPC-H Q12.

potential benefits of this data sharing. Cache thrashing
occurs when the data structures required by each query,
such as aggregations and hash tables, overflow the cache.
Thus, any data sharing optimization in concurrent query
execution needs to target at reducing thrashing effects of
non-shared data structures as much as possible.

In order to minimize the cache thrashing effects of the
working memory, we estimate the amount of memory space
needed by a query during its lifetime. We perform this esti-
mation by exploiting query plan definitions produced by
the query optimizer. A node in the PostgreSQL’s query plan
is associated with the estimated execution time, the number
of tuples returned, and the width of a returned tuple in size
of bytes. Hence, we can have a general idea about the size of
working memory allocated for hash table and aggregation
table nodes individually by multiplying the cardinality of
the returned tuple set and the corresponding width value.
Cache thrashing is more likely to occur during the peak
memory consumption periods, and therefore, we estimate
the upper bounds of the working memory.

Since Query Planner and Optimizer gives us the query
plan after the submission, we can estimate the peak working
memory size in the worst case by summing up the esti-
mated working memory sizes of the stages in the query
plan. This query plan only indicates the operations that will
be performed on the database which will not be sufficient to
measure the amount of data or its contents until the actual
stage of the plan is executed. In most of our benchmark
queries, pipeline stages consist of an aggregation and a gen-
eration of the intermediate results that are supplied to this
aggregation. These intermediate results are typically gener-
ated after a hash join. We can therefore estimate the peak
working memory size of a query as

H= ma:z:(U |h|),P = |k;| + |a|, WMS = max(H, P), (5)

where P denotes the sum of aggregation table size (|a|) and
its inputs (k;), H is the size of the largest hash table created
among all other hash tables (iis), and WS is the estimated
working memory capacity demanded by this query.

Consider, as an example, the query plan given in Fig. 5,
produced by PostgreSQL’s query optimizer for TPC-H Q12.
In this query, a hash table on ORDERS relation is built first.
As indicated in the plan node (Hash node at line 6), this table
has 1.5 M rows, each of which is 20 bytes, resulting in a table
size of nearly 28.6 MB. In the pipelined execution, results
fetched in the join operation are provided to the aggregation
operation. The sum of the working memory required in the
pipelined stages is calculated and found to be less than the
size of the hash table generated in the beginning. Conse-
quently, WMS in this case is equal to 28.6 MB.

OZTURK ET AL.: CACHE HIERARCHY-AWARE QUERY MAPPING ON EMERGING MULTICORE ARCHITECTURES 409

QP = {qo; -+, qn }: query plans

T'": cache hierarchy tree

K: number of available cores/domain affinities

G a graph consisting queries as vertices

CS = {cso, ..., csk—1}: cluster set (affinity groups)

Nk N

procedure SCHEDULER(QP, T, K) > Main Routine
G + BuildGraph(QP)
CS + Partitioner(G,T)
CS + LoadBalancer(CS,QP, K)
return C'S

10: end procedure

© ® 3D

> ILP Solver

Fig. 6. Cache topology aware query scheduling.

As mentioned before, we use cache topology as an input
to our query mapping approach. The ability of a memory
hierarchy in converting a query into a cache hit depends on
the data reuse distance and the parameters of the cache
such as capacity, associativity and block size. While our
approach is designed to consider any memory hierarchy
given as a tree representation, we do not include optimiza-
tions which depend on the exact cache configuration in
terms of block size and associativity, i.e., we do not attempt
to answer the question how queries can exploit the associa-
tivity, block size, or other cache parameters. However, as an
extension to our current implementation we are planning to
extend our scheme to include such optimizations using a
cache configuration parameter as a three-element tuple
< capacity, size,line > . In our approach, currently, we are
only using the size of the cache as part of the memory hier-
archy tree configuration.

We also need to mention that, to reduce energy con-
sumption, the proposed approach can be used with some
modifications, at minimizing energy as well (instead of
improving query performance). For example, our query
scheduler applies a load imbalance coefficient to limit the
disparities across the loads of different cores. While this is a
desirable property for performance, it is not always true for
energy consumption since idle cores can save energy if they
are in sleep mode or shut down. However, this option is not
evaluated in this paper.

6 QUERY-TO-DOMAIN AFFINITY MAPPING

In this section, we first describe our cache topology-aware
multi-query scheduling scheme that uses the estimated
amount of data shared among queries. We next enhance
this scheme through minimizing cache conflicts by consid-
ering the working memory sizes of queries and balancing
the loads across different domain affinities. A pseudo-code
for the proposed scheduler is given as Fig. 6.

6.1 Exploiting Data Locality and Avoiding Cache
Conflicts
We start with building an undirected weighted graph where
each query is represented as a vertex. An edge between two
vertices has a weight equal to the estimated amount of data
sharing using the technique presented in Section 5.3.

To avoid cache thrashing effects of overflowed working
memories on a shared cache as much as possible, one has to
consider the total amount of memory space allocated to the

1: QP = {qo, ..., qn}: query plans

procedure BUILDGRAPH((Q) P)

2:

3 V0

4 E+ 0

5: for all ¢ € QP do

6: |Vy| < Work_Mem(q)

7 VeV +{V}

8 end for

9: for all v; € V do

10: for all v; € V do

11 sharing < Data_Shared(v;,v;)
12: if sharing > 0 then

13: Ej, < AddEdge(v;, v;)
14: |Ex| < sharing

15: E <+ E+ {Ek}

16: end if

17: end for

18: end for

19: G+ {V, E }
return G

20: end procedure

Fig. 7. Building graph structure.

co-runner queries assigned to a particular domain affinity. In
order to model working memory requirements, we slightly
modify our graph structure and introduce vertex weights rep-
resenting the working memory sizes of queries. A pseudo-
code for how we build this graph structure is given as Fig. 7.

After representing queries and the potential data sharing
opportunities as a graph, we next cluster the vertices/
queries based on the cache topology of the underlying mul-
ticore machines. An on-chip cache topology can be modeled
using a tree where the last level on-chip cache is the root
and the first level caches are the leaves. For a two-socket
system with two last level caches such as the ones depicted
in Fig. 2, a virtual root is used. Our clustering algorithm par-
titions queries starting from the root level moving towards
the leaf level caches. At each level, a k-way partitioning takes
place where k is equal to the number of child nodes. In other
words, the number of generated partitions in each level is
equal to the number of child nodes in the cache hierarchy
tree. When the algorithm terminates, we have the same
number of partitions as the number of domains available at
the target affinity level and each query is assigned to a par-
ticular partition. A k-way graph partitioning problem [21]
can be expressed in formal terms as follows:

For a given graph G(V, E), find a set of graphs such as
P ={Gy(Vo, Ev), ., Gr—1(Vi—1, Ej—1) }, where 1871
V, =Vand Vi, ji #j— VinV; = 0.

A k-way graph partitioning problem is typically associated
with a cost function. The goal of this partitioner is to mini-
mize this cost function. One common cost function is the
sum of inter-partition edge weights that span more than
one partitions. In our approach, we try to group queries
which are working on the same data more than the others.
We achieve our goal through representing the amount of
inter-query data sharing as edge weight and minimizing
the cost function.

410

1: T': cache hierarchy tree
2: (G: a graph consisting queries as vertices
3. C'S = {eso, ..., cSp—1}: cluster set (affinity groups)

4: procedure PARTITIONER(G, T')
5 CS « 0

6: if isLeaf(T) then
7: V « Vertices(G)

8 for allv € V do

9 CS + CS+{v,T}

10: end for
11: else
12: k < NumClusters(T)
13: Partitions < MultiLevel Partitioning(G, k)
14: for all p € Partitions do
15: t < LevelUp(T)
16: CS « CS + Partitioner(p, t)
17: end for
18: end if
return C'S

19: end procedure

Fig. 8. Graph partitioning.

For the implementation of k-way partitioning, we employ
a well-known graph library based on the multi-level recur-
sive bisectioning algorithm presented in [26]. In brief, a
multi-level partitioning algorithm can be divided into three
distinct phases. The first phase, called coarsening, groups the
connected vertices of the graph into a bigger vertex to form
a coarser graph which contains a smaller number of vertices
than the original graph. Coarsening is performed iteratively
at multiple levels and the graph is shrunk at each level. At
each level, coarsening is done by finding a maximal match-
ing with the help of a heavy-edge matching algorithm. Coars-
ening is finished when it reaches the smallest graph, called
the top-level graph. In the second phase, a two-way partition-
ing is applied to this top-level graph. Finally, starting from
the top-level, each partition is projected to upper levels.
Coarsening, top-level partitioning, and refinement are all
tunable and can be performed using different strategies
including local optimization of the partition using the avail-
able topological information or similarly using an uncoars-
ening approach as has been done in [10].

After associating weights with vertices in our original
graph along with the edge weights, we then modify our
cost function in order to minimize the cut sizes of the parti-
tions and balance the sum of the vertex weights in each par-
tition. The multi-level recursive bisection algorithm handles
weighted vertices as a balancing constraint in the top-level
partitioning phase. Vertices are ordered according to their
weights and assigned to partitions satisfying the balancing
constraint. Next, the partitioner tries to obtain roughly equal
partitions according to the sum of vertex weights while
minimizing the edge-cut. While it is possible to also con-
sider the shared data sizes within a partition while obtain-
ing the total cost of that partition, we did not explore this as
it also complicates the partitioning algorithm. Based on our
preliminary analysis, we did not see a significant benefit in
applying such an extension. A pseudo-code for the pro-
posed graph partitioning approach is given as Fig. 8.

IEEE TRANSACTIONS ON COMPUTERS, VOL.66, NO.3, MARCH 2017

TABLE 1

The Constant Terms Used in Our ILP Formulation
Constant Definition
M Number of cores
T Number of affinity domain
I Number of queries for affinity domain
Ly, Load for a given affinity domain ¢ and query ¢
Q Load imbalance coefficient

These are either architecture specific or workload specific.

6.2 Load Balancing
Although an k-way partitioning heuristic is able to produce k
nonempty partitions, it cannot guarantee balanced query
workloads. Thus, we need to balance the loads (i.e., the aver-
age number of cycles to process queries assigned to each
partition) explicitly across domain affinities. For this, we
adopt a 0-1 integer linear programming based formulation
to balance the query loads mapped onto domain affinities.

Table 1 gives the constant terms used in our ILP formula-
tion. Note that, the loads given in this table are normalized
using the minimum amount of processing load that can be
allocated to an affinity domain. Load imbalance coefficient
is used as an upper limit for the difference between the
amount of work assigned to two affinity domains. This
value can be obtained through experimentation, query
types, data being accessed, and history of the executions.
Moreover, it is also possible to devise an adaptive technique
where this coefficient gets adjusted according to a function
of current state and history.

For each query, we define 0-1 variables to specify the
assignment of a query to an affinity domain. Specifically,
we define:

o X;,m : to indicate whether affinity domain ¢ and
instance ¢ of that domain is assigned to core m.

We use a variable for each one of the possible assign-
ments. If this 0-1 variable is 1, this indicates that the corre-
sponding query can be assigned to core m. If this size is 0,
then we conclude that this assignment does not exist.

We use another 0-1 variable to indicate (after final assign-
ment) whether two different queries of the same affinity
domain are assigned to the same core or not:

o Sig.q - indicates whether query ¢; and ¢, of affinity
domain ¢ can be assigned to the same core.
We use AL, a non 0-1 variable, to express the total
assigned query load assigned to each core:

e AL, :indicates the amount of load assigned to core m.
After defining the variables in our ILP formulation, now
we explain the necessary constraints to be satisfied.
Each query must be assigned to a particular core, cap-
tured by the constraint:
M
ZXt.q,k =1, Vit q. (6)
k=1

Also, two queries are said to be assigned to the same core
if the following constraint holds:

1, Vt,i1,i9, m, wherei; # is.

(7)

St‘il,iQ >= Xt‘il,m + Xt,i2,7n -

OZTURK ET AL.: CACHE HIERARCHY-AWARE QUERY MAPPING ON EMERGING MULTICORE ARCHITECTURES 411

(a) Initial graph and target architecture.

Fig. 9. Example application of our scheme.

If both 4; and i, queries(affinity domain ¢) are assigned to
the same core (m), then 0-1 variable S ;, ;, will be forced to
have a 1 value.

A necessary constraint is related to the load balancing in
the query mapping between affinity domains which will
prevent overloading of a core-pair with running related
queries. To capture this, we use variable AL,, to indicate
the total assigned query load onto the core m. The estimated
load of a particular query can be extracted from the associ-
ated query plan derived by the query optimizer. As
explained earlier, we use the estimated cost (execution
time) for each operator and generate the total estimated cost
(execution time) for a certain query execution plan

ALm = Z

i=1 j

T 1
Xi,j,m X ij, Vm. (8

=1
This expression essentially sums up all the assigned query
loads to generate the total load of the core. This variable is

then used for limiting the disparities across the loads of dif-
ferent cores. More specifically

ALml - ALmQ < ALmQ X Q,le, m2,where ALml > ALm2~
9)

Note that, the load imbalance coefficient (@) is given as a
percentage in Table 1. Having specified the necessary con-
straints in our ILP formulation, we next give our objective
function

(10)

max

i=1 j

T I 1
Z Si,j,k7 wherej 75 k.
1 =1 k=1

Based on the above expression, our 0-1 ILP problem can
formally be defined as one of “maximizing the objective
function under constraints (6), (7), (8), (9), and (10).”

After the clustering phase, we analyze the query-to-
domain affinity mappings and check whether there is an
overloaded domain affinity or not. Overload simply refers to
the case when the difference between the amount of loads
assigned to two domain affinities are greater than the fixed
load balance threshold. To calculate the load on a domain
affinity, we use the sum of query execution time estimations
extracted from the corresponding query plans. When we
detect an overloaded domain affinity, we try to group it with
the domain affinity that has the minimum amount of load in
order to exchange queries between domains. If these grouped
domain affinities are not overloaded after query transfers/
exchanges, then load balancing is considered to be successful

(c) Second level partitioning.

and we update query-to-domain affinity mappings accord-
ing to these new assignments. Otherwise, we leave the over-
loaded domain affinity as it is, and move to the next
overloaded domain affinity to try to apply the same logic. A
pseudo-code for the load balancer is provided as Fig. 10.

Note that, our approach can potentially degrade the per-
formance of the system if load balancing is applied aggres-
sively. This will cause higher number of context switches
increasing the overheads. Moreover, certain load imbalance
coefficients may lead to idle cores under-utilizing the sys-
tem. This may even cause higher energy consumption.

Apart from actual query execution times, query planner
and optimizer will be more sophisticated in order to analyze
queries and execute them accordingly. But the overhead
associated with the analysis phase is orders of magnitude
less than the actual execution time. This is due to the fact
that query planner and optimizer timing mostly depend on
the depth of the hash-join chains, which usually is very lim-
ited. Moreover, there is no additional hardware overhead
associated with our approach.

6.3 Example

Consider the query graph shown in Fig. 9a. For clarity pur-
poses, we take only affinities into consideration and have no
weights assigned to the vertices. Edges are weighted accord-
ing to the amount of data sharing between queries. If two
queries, such as 2 and 4, do not work on common records,

1: QP = {qo, ..., qn}: query plans
2: K: number of available cores/domain affinities
3. CS = {eso, ..., cSk—1 }: cluster set (affinity groups)

4: procedure LOADBALANCER(C'S, QP, K)

5 results < runl LPSolver(C'S,QP, K)

6: CS + update Assignments(CS, results)
7 for all cs; € C'S do

8 if isOverloaded(cs;, K) > 0 then

9 CSmin — getMinimum(CS)

10: grouped < group(cs;, CSmin)
11: trial < runlLPSolver(grouped, QP, K)
12: if hasSolution(grouped, QP, K) > 0 then
13: CS « updateAssignments(CS, trial)
14: end if
15: end if
16: end for

return CS

17: end procedure

Fig. 10. Load balancer.

412

TABLE 2
Important Features of Our Target Multicore System

IEEE TRANSACTIONS ON COMPUTERS, VOL.66, NO.3, MARCH 2017

TABLE 4
Performance Evaluation Parameters of the Benchmark Queries

Number of Cores 6 cores (per socket)
Number of Sockets 2
Socket Type lga-1,356
Cache Parameters L1: 32 KB, core private, 3 cycles
L2: 256 KB, core private, 14 cycles
L3: 10 MB per socket (shared by
6 cores), 36-44 cycles

Off-Chip Latency ~330 cycles

we have no edge between them. It is to be noted that, in this
example, our target affinity level corresponds to L1 caches;
consequently, we need to carry out a two-level partitioning.

We now go over our hierarchical query clustering
scheme. Since the L3 cache is shared by all cores and is the
root of the cache hierarchy tree, the first step is to cluster the
query groups for the L2 cache. The graph and the assign-
ment after the first level of clustering and query mapping
are shown in Fig. 9b. Next, the query distribution is applied
to each of the two clusters formed in the previous step. After
this second and final level of clustering and load balancing,
the query clusters are assigned to the target domain affini-
ties, as illustrated in Fig. 9c.

7 EXPERIMENTAL EVALUATION

7.1 Setup

We tested our querying scheduler using an Intel IvyBridge-
EN multicore system. The important characteristics of this
system are given in Table 2. To perform our experiments,
we prepared two query workloads listed in Table 3. The
benchmarks in these workloads are compiled from the TPC-
H suite [33], which is an industry standard to simulate a
decision support system. While TPC-H specifies the tables,
relationships, and characteristics of the database, it does not
enforce a specific DBMS. More specifically, TPC-H requires
and industry-level DBMS to implement a database that con-
sists of eight separate and individual tables. The relation-
ships between columns of these tables are explicitly defined
as well. There are 22 queries defined as part of TPC-H to
stress the database in different ways. Similarly, TPC-H
enforces the data populating the database to examine large
volumes of data. Single-core performance statistics of these
queries are given in Table 4, where distinct workload char-
acteristics have been explored [33]. We ran these workloads
on a data set size of ~1 GB with various numbers of clients.
All experiments are repeated five times and the presented
results represent the average values of these multiple runs.
In our experimental setting, each client fires only one query
from the corresponding workload. Workloads are provided
to the system in batches. In a closed-queuing network, sys-
tem requests a new workload after each job in the previous
batch is terminated.

TABLE 3
Our Workloads (Query Mixes)
ID Queries (TPC-H) Description
WL-1 2,34,5,7,89,10,11,12,13,14 Join bound

WL-2 1,2,3,4,5,6,7,89,10,11,12 Scan - Join Mixed

Query #of2Misses #ofL3Misses Query Exec. Time
Q1 705,303,888 1,512,924 61.0 sec
Q2 1,934,521,657 82,781,055 497.2 sec
Q3 76,269,478 5,203,913 11.8 sec
Q4 64,830,065 4,282,042 16.9 sec
Q5 112,732,882 9,448,113 26.3 sec
Q6 37,888,791 437,269 31.4 sec
Q7 92,209,962 4,882,086 28.4 sec
Q8 146,264,841 22,806,660 9.6 sec
Q9 236,333,814 13,392,932 24.5 sec
Q10 98,513,105 5,249,866 32.0 sec
Q11 21,355,776 571,485 59.4 sec
Q12 46,423,994 2,413,886 24.2 sec
Q13 89,780,792 1,180,228 14.5 sec
Q14 29,125,660 425,294 4.9 sec

Each column gives the absolute values collected when the query is executed on
a single core of our IvyBridge based system using the default Linux scheduler.

We used PostgreSQL 8.4 installed in Linux 2.6 kernel
with its default configuration. PostgreSQL handles each cli-
ent as a separate process, and heavily relies both on its
buffer pool and the underlying operating system'’s file I/O
cache. Therefore, we warmed up these buffers before start-
ing to collect our results. In our experiments, the load imbal-
ance coefficient mentioned in the given ILP formulation is
set to 10 percent. A commercial tool, XpressMP [38], is used
to formulate and test the ILP-based approach. Xpress-MP
takes the problem as a Mosel description which is a plain
text file with descriptions of binary variables, constraints,
and objective function. The results are collected using perf-
mon2 [28] from the hardware counters. Since we use a data-
base system running a process per query, query mappings
onto affinity domains are forced through taskset() system
call on particular processes. Results presented in this section
are all normalized with respect to the results obtained by
using the standard Linux-based scheduler on each multi-
core architecture. Absolute performance counter values
with the Linux scheduler are given in Table 4.

7.2 Results
Fig. 11a gives the improvements in query execution times of
the WL-1 workload, brought by our approach over the
default Linux scheduler. We observe that, with this work-
load, the average performance improvement per query is
about 11.4 percent. This is due to the fact that our proposed
mapping scheme reduces L2 and L3 cache misses on average
by 5 and 13 percent, respectively (see Figs. 11b and 11c for
improvements in the L2 and L3 miss rates). We repeated sim-
ilar performance analysis experiments with the WL-2 work-
load as well. Recall from Table 3 that, as opposed to WL-1,
this workload includes both join and scan bound queries. One
can see that, with this workload, the execution time improve-
ments our approach brings range between 4 and 20 percent,
averaging on 10.1 percent. The coresponding L2 and L3 miss
rate reductions for this workload are plotted in Figs. 12b and
12c. these improvements clearly underline the success of our
strategy in exploiting the underlying cache hierarchy.

We next double the number of queries per core in each of
our multicore machines. In doubling the number of queries,
we replicated the original workload. The goal behind these

OZTURK ET AL.: CACHE HIERARCHY-AWARE QUERY MAPPING ON EMERGING MULTICORE ARCHITECTURES

30 ——

413

L3 Miss Improv. (%)

R T e S A E

S —
e Ot e 4o
g =
g 15+-B--8B @R 12
g =%
(ST) O L O L I 1 DUUURN) »—E~
E 2
& s NN RN - - -
8 D o
= -
[a) 0 p— Fo—— n T

Query No.

(a) Execution time improvement.

Fig. 11. WL-1 results with 12 clients.

20
18 |

Exec. Time Improv. (%)
L2 Miss Improv. (%)

16
14
12
10
8
6
4
2
0

L3 Miss Improv. (%)

(a) Execution time improvement.

Fig. 12. WL-2 results with 12 clients.

experiments is to measure the performance of our load bal-
ancing algorithm (see Algorithm 10). When we double the
number of clients (i.e., we move from 12 clients to 24 cli-
ents), the corresponding average execution time improve-
ments per query is 17.8 percent, as presented in Fig. 13 for
the case of WL-1.

In order to compare the throughput of our approach with
the default scheduler, we devised a closed-queuing network
where the system requests a new batch of queries whenever
all queries from the previous batch are finished. Each new
batch is randomly composed of queries from WL-1 and
WL-2 with different number of clients. As can be observed
from Fig. 14a, when we cumulatively process 60, 84, 108
and 132 clients, the overall throughput improves 15-19 per-
cent over the default OS scheduler.

45
40
35
30

T

d HH H

PR A S AR
<

«S N_O_O_O_D—D_Q—Q_D_D.Q.Q.O :
‘_‘ mﬁ-m[\occ\o-—m _‘ d)

Exec. Time Improv. (%)

Query No.

35

T

T

Exec. Time Improv. (%)

i}

L

TITT T T T C T T,
SEIRESESE SRR REREEENE

inl

o
L

v—<v—40

Query No.
Fig. 13. WL-1 and WL-2 results with 24 clients.

(b) L2 miss rate improvement.

— N

Query No.

[S2I BTSN e e Cle N« e I =]
—1—1—1%

Query No.

(c) L3 miss rate improvement.

When we look at the performance improvement values
per query basis, we see that, except in very few cases, our
approach improved the individual query execution time.
We see some performance degradations with Query 8 of

1.2

= = = Dunnington

-
o
©

= Harpertown

-
e
[oe]

Normalized Throughput

60 80

100 120 140

Number of Clients

(a) Throughput with different number of clients.

1.4 i y
= %10 load imbalance

+— 1.3[| = = =%15 load imbalance
2 [%20 load imbalance
<12
=)
=]
O 1Aps;
£
© 1 L Semmmm==- -
@ Seel
Nog Tres
g |
508 L
z |

O.7p

60 80 100 120 140
Number of Clients

(b) Regression analysis on load imbalance coefficient.

Fig. 14. (a) Throughput with different number of clients. (b) Regression
analysis on load imbalance coefficient.

414

WL-1 with 12 clients and Query 2 of the same workload
with 24 clients. These results are mostly due to other pro-
cesses which are spawned by the Linux kernel. They inter-
fere with affinity domains without our control and bring
unshared data into affinity domains along with additional
load to be processed, causing extra context-switches, and
ultimately resulting in performance degradation.

One can also see that all queries have the same data
access pattern or interactions with other, co-runner queries.
This is because, query plans can exhibit different character-
istics at run-time. In particular, when it is not possible to
build appropriate neighborhood (i.e,, tandems) among
queries, then mutual benefits between these queries become
limited. To address this issue, instead of scheduling each
query plan as a whole, it may be more beneficial to split
query plans into fine-grained stages and schedule these
stages individually [16].

7.3 Regression Analysis

In this experiment, we run our throughput analysis under var-
ious different load imbalance coefficients. The load imbalance
coefficient is used in ILP formulation and provides an upper
limit for the difference between the amount of work assigned
to two affinity domains. Results are provided in Fig. 14b. We
figure out that increasing load imbalance coefficient can lead
to haveidle cores at runtimei.e., a core connected to an affinity
domain can finish its jobs and become idle while other cores
are still processing. Typically, in such a case, OS-based sched-
ulers can identify this core as idle at runtime and can assign a
new task to the idle core if there is a task waiting in another
core’s task queue. Thus, our mapping strategy can be sup-
pressed by dynamic OS scheduler if the load imbalance
between query-to-affinity domain assignments cannot be
compensated by the achieved data locality optimizations.

8 CONCLUSION

In this paper, we address one of the problems of multi-query
scheduling on emerging multicore architectures. We show that
singularities across on-chip cache topologies designed for
different multicore architectures further complicate sched-
uling decisions beyond the traditional resource allocation
and load balancing concerns. Eventually, how a scheduler
utilizes on-chip cache topology becomes an important factor
of runtime performance. In order to manage and exploit
hardware design differences, we propose an architecture
aware multi-query scheduling scheme. Our implementation
of this scheme provides up to 25 percent improvement in
individual query execution times and 15-19 percent
improvement in throughput as demonstrated by our experi-
ments on an Intel IvyBridge based multicore. Our future
work includes developing intra-query, shared cache-aware
parallelization strategies, and investigating interactions
between query parallelization and locality optimization.

ACKNOWLEDGMENTS

A preliminary 2-page version of this paper appears in the
Proceedings of 2014 IEEE International Symposium on
Workload Characterization (IISWC) [27]. This work has
been done when U. Orhan, W. Ding, and P. Yedlapalli were
at Pennsylvania State University.

IEEE TRANSACTIONS ON COMPUTERS, VOL.66, NO.3, MARCH 2017

REFERENCES

[1]1 R. Acker, C. Roth, and R. Bayer, “Parallel query processing in
databases on multicore architectures,” in Proc. 8th Int. Conf. Algo-
rithms Archit. Parallel Process., 2008, pp 2-13.

[2] R. Agrawal, et al., “The Claremont report on database research,”
Commun. ACM, vol. 52, pp. 56-65, Jun. 2009.

[3] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood, “DBMSs on
a modern processor: Where does time go?” in Proc. 25th Int. Conf.
Very Large Data Bases, 1999, pp. 266-277.

[4] M.-C. Albutiu, A. Kemper, and T. Neumann, “Massively parallel
sort-merge joins in main memory multi-core database systems,”
Proc. VLDB Endowment, vol. 5, no. 10, pp. 1064-1075, Jun. 2012.

[5] A. Anastasia, “Embarrassingly scalable database systems,” in
Proc. Int. Conf. Data Eng., 2011, pp. 1-1.

[6] R. Bitirgen, E. Ipek, and J. F. Martinez, “Coordinated management
of multiple interacting resources in chip multiprocessors: A
machine learning approach,” in Proc. 41st Annu. IEEEJACM Int.
Symp. Microarchitecture, 2008, pp. 318-329.

[7]1 P. A. Boncz, M. L. Kersten, and S. Manegold, “Breaking the
memory wall in MonetDB,” Commun. ACM, vol. 51, pp. 77-85,
Dec. 2008.

[8] J.Changand G.S. Sohi, “Cooperative caching for chip multiproc-
essors,” ACM SIGARCH Comput. Archit. News, vol. 34, pp. 264—
276, May2006.

[9] S. Chen, et al.,, “Scheduling threads for constructive cache sharing
on CMPs,” in Proc. 19th Annu. ACM Symp. Parallel Algorithms
Archit., 2007, pp. 105-115.

[10] C. Chevalier and I. Safro, Learning and Intelligent Optimization,
T. Stiitzle, Ed. Berlin, Germany: Springer, 2009, pp. 191-205.

[11]]. Cieslewicz, W. Mee, and K. A. Ross, “Cache-conscious buffering
for database operators with state,” in Proc. 5th Int. Workshop Data
Manage. New Hardware, 2009, pp. 43-51.

[12] J. Cieslewicz and K. A. Ross, “Adaptive aggregation on chip mul-
tiprocessors,” in Proc. 33rd Int. Conf. Very large data bases, 2007,
pp. 339-350.

[13]]. Duffy and E. Essey, “Running queries on multi-core process-
ors,” 2007. [Online]. Available: http://msdn.microsoft.com/en-
us/magazine/cc163329.aspx

[14] A. Fedorova, M. Seltzer, C. Small, and D. Nussbaum,
“Performance of multithreaded chip multiprocessors and implica-
tions for operating system design,” in Proc. Annu. Conf. USENIX
Annu. Tech. Conf., 2005, Art. no. 26.

[15] N. Hardavellas, I. Pandis, R. Johnson, N. G. Mancheril, A. Aila-
maki, and B. Falsafi, “Database servers on chip multiprocessors:
Limitations and opportunities,” in Proc. Conf. Innovative Data Syst.
Res., 2007, pp. 79-87.

[16] S. Harizopoulos and A. Anastassia, “StagedDB: Designing data-
base servers for modern hardware,” in Proc. IEEE Data Eng. Bulle-
tin, vol. 28, 2005, pp. 11-16.

[17] Intel-Dunnington, 2010. [Online]. Available: http://ark.intel.
com/Product.aspx?id=36941

[18] Intel-Harpertown, 2010. [Online]. Available: http://ark.intel.
com/Product.aspx?id=33085

[19] Intel-Nehalem, 2010, [Online]. Available: http://ark.intel.com/
Product.aspx?spec=slbf5

[20] M. Kandemir, T. Yemliha, S. Muralidhara, S. Srikantaiah,
M. J. Irwin, and Y. Zhnag, “Cache topology aware computation
mapping for multicores,” in Proc. 31st ACM SIGPLAN Conf. Pro-
gram. Language Des. Implementation, 2010, pp. 74-85.

[21] G. Karypis and V. Kumar, “Multilevel algorithms for multi-
constraint graph partitioning,” in Proc. ACM/IEEE Conf. Supercom-
puting, 1998, pp. 1-13.

[22] G. Kun, S. Harizopoulos, I. Pandis, V. Shkapenyuk, and A. Aila-
maki, “Simultaneous pipelining in QPipe: Exploiting work shar-
ing opportunities across queries,” in Proc. 22nd Int. Conf. Data
Eng., 2006, Art. no. 162.

[23] R. Lee, X. Ding, F. Chen, Q. Lu, and X. Zhang, “MCC-DB: Mini-
mizing cache conflicts in multi-core processors for databases,”
Proc. VLDB Endowment, vol. 2, pp. 373-384, Aug. 2009.

[24] S. Liknes, “Database operations on multi-core processors,” M.S.
thesis, Dept. Comput. Inf. Sci.,, Norwegian Univ. Sci. Technol.,
Trondheim, Norway, 2013.

[25] M. Mehta, V. Soloviev, and D.]. DeWitt, “Batch scheduling in par-
allel database systems,” in Proc. 9th Int. Conf. Data Eng., 1993,
pp- 400-410.

[26] METIS, 2010. [Online]. Available: http://glaros.dtc.umn.edu/
gkhome/views/metis

OZTURK ET AL.: CACHE HIERARCHY-AWARE QUERY MAPPING ON EMERGING MULTICORE ARCHITECTURES 415

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[371
[38]

[39]

[40]

[41]

U. Orhan, W. Ding, P. Yedlapalli, M. Kandemir, and O. Ozturk,
“A cache topology-aware multi-query scheduler for multicore
architectures,” in Proc. IEEE Int. Symp. Workload Characterization,
Oct. 2014, pp. 86-87.

Perfmon2, 2010. [Online]. Available: http://perfmon2.source-
forge.net/

P. Petrides, A. Diavastos, C. Christofi, and P. Trancoso,
“Scalability and efficiency of database queries on future many-
core systems,” in Proc. 21st Euromicro Int. Conf. Parallel Distrib.
Netw.-Based Process., 2013, pp. 24-28.

PostgreSQL, 2010. [Online]. Available: http://www.postgresql.
org/

L. Qiao, V. Raman, F. Reiss, P. J. Haas, and G. M. Lohman, “Main-
memory scan sharing for multi-core CPUs,” Proc. VLDB Endow-
ment, vol. 1, pp. 610621, Aug. 2008.

K. A. Ross, “Optimizing read convoys in main-memory query
processing,” in Proc. 6th Int. Workshop Data Manage. New Hardware,
2010, pp. 27-33.

M. Shao, A. Ailamaki, and B. Falsafi, “DBmbench: Fast and accu-
rate database workload representation on modern micro-
architecture,” in Proc. Conf. Centre Adv. Stud. Collaborative Res.,
2005, pp. 254-267.

A. Shatdal, C. Kant, and]. F. Naughton, “Cache conscious algo-
rithms for relational query processing,” in Proc. 20th Int. Conf.
Very Large Data Bases, 1994, pp. 510-521.

M. Stonebraker, et al., “C-store: A column-oriented DBMS,” in
Proc. 31st Int. Conf. Very large data bases, 2005, pp. 553-564.

D. Tam, R. Azimi, and M. Stumm, “Thread clustering: Sharing-
aware scheduling on SMP-CMP-SMT multiprocessors,” in Proc.
2nd ACM SIGOPS/EuroSys Eur. Conf. Comput. Syst., 2007, pp. 47—
58.

TPC-H, 2010. [Online]. Available: http:/ /www.tpc.org/tpch/
XPress-MP, 2015. [Online]. Available: http://www fico.com/en/
products/fico-xpress-optimization-suite

D. Yadan, J. Ning, X. Wei, C. Luo, and C. Hongsheng, “Hash join
optimization based on shared cache chip multi-processor,” in
Proc. 14th Int. Conf. Database Syst. Adv. Appl., 2009, pp. 293-307.

P. S. Yu, D. W. Cornell, D. M. Dias, and B. R. Iyer, “On affinity
based routing in multi-system data sharing,” in Proc. 12th Int.
Conf. Very Large Data Bases, 1986, pp. 249-256.

M. Zukowski, S. Héman, N. Nes, and P. Boncz, “Cooperative
scans: Dynamic bandwidth sharing in a DBMS,” in Proc. 33rd Int.
Conf. Very large data bases, 2007, pp. 723-734.

Ozcan Ozturk is an associate professor in the
Department of Computer Engineering, Bilkent
University. His research interests include many-
core architectures, parallel computing, and com-
puter architecture. Prior to joining Bilkent, he
worked in Cellular and Handheld Group, Intel and
Marvell. He also held positions in NEC Labs and
Arizona State University. His research has been
recognized by Fulbright, Turk Telekom, IBM, Intel,
HIPEAC, Tubitak, and European Commission.

Umut Orhan received the BS and MS degrees in
computer engineering from Middle East Techni-
cal University, in 2006 and 2009, respectively. He
received another MS degree in computer science
and engineering from Pennsylvania State Univer-
sity, in 2011. Right now, he is working with
Amazon Seller Services. He is designing and
developing scalable web services to provide
Amazon customers with the largest, highest qual-
ity and most up to date retail selection in the
world. His current research interests include com-
puter architectures, optimizing compilers, data-
bases, and distributed systems.

Wei Ding received the PhD degree in computer
science from Pennsylvania State University,
in 2014. He is currently a senior software
engineer with Qualcomm Innovation Center Inc.,
California. His research interests include compila-
tion optimization, data locality optimization, and
high performance computing on multi-cores and
mobile devices.

Praveen Yedlapalli received the PhD degree
from Pennsylvania State University under the
guidance of Dr. Mahmut Kandemir. His PhD the-
sis titled “A Study of Parallelism-Locality Trade-
offs Across Memory Heirarchy”, does an in-depth
analysis of processor-memory bottlenecks in
modern CMPs. He is working in VMware specifi-
cally in the CPU and Memory performance team
for ESX hypervisor. His research interests
include computer architecture, operating sys-
tems, and distributed systems.

Mahmut Taylan Kandemir is a full professor in
the Computer Science and Engineering Depart-
ment, Pennsylvania State University. He is the
author of more than 80 journal publications and
more than 350 conference/workshop papers in
optimizing compilers, manycore architectures,
and storage systems. He served in the program
committees of more than 50 conferences and
workshops. His research is/was funded by US
National Science Foundation, DOE, DARPA,
SRC, Intel, and Microsoft. He received the US
National Science Foundation Career Award and the Penn State Engi-
neering Society Outstanding Research Award. He is a fellow of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

