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Abstract

Purpose: The scan-efficiency in multiple-acquisition bSSFP imaging can be maintained by ac-

celerating and reconstructing each phase-cycled acquisition individually, but this strategy ignores

correlated structural information among acquisitions. Here an improved acceleration framework is

proposed that jointly processes undersampled data across N phase cycles.

Methods: Phase-cycled imaging is cast as a profile-encoding problem, modeling each image as an

artifact-free image multiplied with a distinct bSSFP profile. A profile-encoding reconstruction (PE-

SSFP) is employed to recover missing data by enforcing joint sparsity and total-variation penalties

across phase cycles. PE-SSFP is compared with individual compressed-sensing (iCS) and parallel-

imaging (ESPIRiT) reconstructions.

Results: In the brain and the knee, PE-SSFP yields improved image quality compared to iCS

and other tested methods particularly for higher N values. On average, PE-SSFP improves peak

SNR by 3.8±3.0 dB (mean±s.e. across N=2-8) and structural similarity by 1.4±1.2% over iCS,

and peak SNR by 5.6±0.7 dB and structural similarity by 7.1±0.5% over ESPIRiT.

Conclusion: PE-SSFP attains improved image quality and preservation of high-spatial-frequency

information at high acceleration factors, compared to conventional reconstructions. PE-SSFP is a

promising technique for scan-efficient bSSFP imaging with improved reliability against field inho-

mogeneity.

Keywords: SSFP, banding artifact, magnetization profile, compressed sensing, encod-

ing, reconstruction
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Introduction

Balanced steady-state free precession (bSSFP) sequences provide relatively high magnetization

levels for repetition times (TR) on the order of several milliseconds (1). As such, they have found use

in rapid imaging involving both dynamic (2–6) and high-spatial-resolution static acquisitions (7–11).

One critical concern, however, is that the bSSFP magnetization profile yields increased sensitivity

to magnetic field inhomogeneities and signal voids at particular off-resonance frequencies (1). In

turn, this profile can lead to excessive banding artifacts at high field strengths, with long TRs, and

in complex tissue geometries.

Several innovative methods were previously proposed to alleviate bSSFP banding artifacts. These

methods include modified pulse sequences that reshape magnetization profiles (12–15), advanced

shimming procedures that limit field inhomogeneity (16), physical signal models to remove fre-

quency sensitivity (17, 18), and the commonly used multiple-acquisition methods that combine

several phase-cycled images with nonoverlapping banding artifacts to improve signal homogene-

ity (19–24). These approaches typically compromise between artifact reduction and scan efficiency.

For instance, residual banding artifacts in multiple-acquisition methods can be reduced by increas-

ing the number of phase cycles (N). However, with higher N, the overall scan time is considerably

prolonged.

To mitigate banding artifacts while maintaining scan efficiency, two recent studies proposed to ac-

celerate phase-cycled bSSFP acquisitions (25, 26). In the first study (25), we leveraged individual

compressed-sensing (CS) reconstructions to recover nonacquired bSSFP data for each phase cycle

separately (27–29). In the second study (26), individual acquisitions were instead accelerated via

simultaneous multi-slice imaging. While high image quality was demonstrated for low acceleration

factors (around 2-4), data from separate phase-cycles were reconstructed independently in both

studies. Because independent reconstructions ignore structural information that is inherently cor-

related across multiple acquisitions (30–32), image quality can be degraded at high acceleration

factors that are critically needed with increasing N.

Here we propose an improved framework for accelerating phase-cycled bSSFP imaging that jointly

reconstructs undersampled data across multiple acquisitions. Analogous to parallel imaging that
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takes each coil image as the product of the tissue image with a respective coil sensitivity (33), this

framework models each phase-cycled bSSFP image as the product of the banding-artifact-free image

with a respective bSSFP spatial profile (34,35). Thus, inspired by recent approaches for multi-coil

imaging (32), the joint reconstruction is cast as a profile-encoding problem (PE-SSFP) where nonac-

quired k-space samples are linearly synthesized from acquired data. To further alleviate aliasing and

noise interference, PE-SSFP leverages joint-sparsity and total-variation penalties. Comprehensive

simulations are presented to demonstrate the reliability of PE-SSFP against variations in sequence

and tissue parameters, noise, and field inhomogeneity. Phantom and in vivo results clearly indicate

that the proposed framework yields improved image quality over conventional reconstructions.
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Methods

The goal of the current study is to implement robust, artifact-free multiple-acquisition bSSFP

imaging within a total scan time equivalent to a single acquisition. Starting with an overview

of phase-cycled bSSFP imaging, the following sections discuss the sampling and reconstruction

strategies proposed towards this goal.

Multiple-Acquisition Phase-Cycled bSSFP Imaging

In multiple-acquisition bSSFP, several images with different phase-cycling are acquired such that

banding artifacts are spatially non-overlapping across acquisitions. Assuming TE=TR/2, the fully-

sampled images at each phase cycle can be expressed as (36):

Sn(r) =M(r)
ei(φ(r)+∆φn)/2

(

1−A(r)e−i(φ(r)+∆φn)
)

1−B(r) cos(φ(r) + ∆φn)
(1)

where r denotes spatial location, φ(r) is phase accrued in a single TR due to field inhomogeneity,

and ∆φn is the phase-cycling value used for the nth acquisition where n ∈ [1 N]. The remaining

terms M , A, B depend on sequence and tissue parameters. Tailored image combination techniques

are then used to minimize the dependence of the bSSFP signal on φ(r) (20, 22). An artifact-free

image (So) could be obtained under the condition that φ(r)+∆φn = π, which in turn would yield:

So(r) = iM(r)
1 +A(r)

1 +B(r)
(2)

Thus, each phase-cycled image Sn can be modeled as the multiplication of So with a respective

bSSFP profile, Cn as illustrated in Fig. 1:

Cn(r) =
Sn(r)

So(r)
=
ei(φ+∆φn−π)/2 (1 +B)

(

1−Ae−i(φ+∆φn)
)

(1 +A)(1−B cos(φ+∆φn))
(3)

Combination techniques for multiple-acquisition bSSFP typically assume that data are either fully-

sampled (20–22) or else adequately reconstructed (25). Estimation of bSSFP profiles has therefore

not been of particular interest, apart from cases where signal-to-noise ratio (SNR) optimization

4
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or fat-water separation is aimed (23, 34). Nonetheless, the bSSFP profiles can be interpreted as

a means to perform spatial encoding (35), similar to that implemented by the coil sensitivities in

parallel imaging (33). With this interpretation, we cast the joint reconstruction of undersampled

phase-cycled acquisitions as a profile-encoding problem:

yn(k) = Fn {Cn(r) · So(r)} (4)

Here k indicates k-space location, yn are the k-space data for the nth acquisition, and F is a

Fourier-transform operator. For simplicity, we did not consider the effects of coil sensitivities on

the joint reconstruction. Thus, assuming that bSSFP spatial profiles can be estimated based on

fully-sampled central k-space data (37, 38), they can be used to solve an inverse problem that

recovers the artifact-free bSSFP image So(r) given a collection of phase-cycled data yn(k).

Undersampling Patterns for Multiple-Acquisition bSSFP Data

Each of N separate phase-cycled acquisitions were undersampled by a factor of R=N. Sampling

patterns for phase-cycled acquisitions can be selected independently. A common pattern for all

acquisitions can better enforce consistency in the sampling matrix across phase-cycles, and re-

duce interpolation errors. On the other hand, disjoint patterns across acquisitions can expand

k-space coverage, and reduce aliasing artifacts (25). To optimize sampling strategy, we compared

reconstructions of data undersampled with common versus disjoint patterns. Patterns were gener-

ated using uniform-density deterministic (33, 35), variable-density random (28), and Poisson-disc

sampling (32). In all cases, isotropic acceleration was performed in two dimensions, and a cen-

tral k-space region spanning up to 10% of the maximum spatial frequency in each axis was fully

sampled. In uniform-density sampling, the full sampling matrix was linearly ordered and then

undersampled by holding every Nth sample (e.g., 1, N+1,...). Disjoint patterns were generated by

incrementing the starting index by 1 sample (35). In variable-density sampling, random patterns

were generated based on a polynomial probability density function (PDF), and sampling patterns

were selected among 2000 candidate patterns to minimize aliasing energy (39). Disjoint patterns

were selected by minimizing both the aliasing energy for each pattern and the pair-wise correlation

among patterns (25). In Poisson sampling, a polynomial PDF was used to generate a random

5
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sampling pattern that maintains locally-uniform inter-sample distances. Disjoint patterns were

generated by using a distinct starting seed for the sampling algorithm (32).

Profile-Encoding Reconstruction

In a recent study, we proposed to alleviate banding artifacts by combining separate CS reconstruc-

tions of individual phase-cycled bSSFP acquisitions (25). The individual-CS reconstruction (iCS)

was implemented via a Lagrangian formulation:

min
mn

‖yn −FPn {mn}‖22 + λ1‖ψ {mn}‖1 + λ2‖∇{mn}‖1 (5)

This formulation comprised a data-consistency term (where yn is the acquired data, FPn is the

partial Fourier operator, and mn is the reconstructed image for the nth phase cycle), a sparsity term

(where ψ is a wavelet-transform operator), and a total-variation term (TV; where ∇ is the finite

difference operator). While iCS was shown to maintain good reconstruction quality for small N,

loss of high-spatial-frequency information became prominent for N≥4 due to increasingly heavier

undersampling factors (25).

To address this limitation, we propose a profile-encoding bSSFP (PE-SSFP) reconstruction that

solves the problem in Eq. 4 by synthesizing missing k-space samples from acquired data. First, an

interpolation operator estimated from calibration data is used to iteratively synthesize nonacquired

data across phase-cycles. Inspired by the SPIRiT model (iterative self-consistent parallel imaging)

(32), the iterative estimation procedure enforces the consistency of reconstructed data with both

the acquired and the calibration data. Lastly, PE-SSFP leverages joint sparsity (30, 31, 40) and

TV penalties (28) to dampen aliasing and noise interference. Here PE-SSFP was implemented as

a constrained optimization problem:

min
m

λ1

∥

∥

∥

∥

∥

∥

√

∑

n

|ψ{mn}|2
∥

∥

∥

∥

∥

∥

1

+ λ2
∑

n

‖∇{mn}‖1 (6)

subj. to ‖(G − I) {m}‖22 = 0
∑

n

‖yn −FPn {mn}‖22 = 0

6
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where m is the aggregate vector containing mn across all phase-cycles. The objective comprises a

joint sparsity term and a cumulative TV term across phase cycles. The first constraint enforces

consistency of reconstructed data with the calibration data (where G is the aggregate interpolation

operator, I is the identity operator). Meanwhile, the second constraint enforces cumulative data-

consistency across phase cycles.

To efficiently solve the constrained optimization formulated in Eq. 6, we leveraged an alternating

projection-onto-sets scheme with the aim to produce a quasi-optimal solution at the intersection of

multiple sets (40). The optimization was split into four projection operators, namely calibration

consistency, joint sparsity, TV, and data consistency projections. These projections were succes-

sively repeated to enforce relevant properties in the reconstructed data (see Fig. 2).

Calibration consistency: Prior to reconstruction, an interpolation kernel for profile encoding (K)

was obtained from aggregate calibration data ycalib (designated as the fully-sampled part of central

k-space). Kernel weights that capture linear relationships among 11×11 neighborhoods of k-space

samples were estimated based on the calibration constraint (K − I).ycalib = 0. A 13×13 kernel

was used at N=2 to leverage the relatively higher sampling density in central k-space. The solu-

tion of this inverse problem was obtained via Tikhonov regularization (with weight α = 0.01) to

enhance noise resilience and conditioning (40). Finally, an image-space operator G equivalent to

the trained k-space kernel K was computed. During reconstruction, calibration-consistency pro-

jections were implemented by applying G on the image reconstructed in the previous iteration,

m(k) = G
{

m(k−1)
}

.

Joint sparsity: Assuming insignificant motion between separate acquisitions, tissue boundaries and

sparsity patterns are expected to appear in identical locations across phase-cycled images. To

leverage this correlated structural information, we utilized a joint-sparsity model that has been

shown to offer benefits in other MR applications (30–32, 41, 42). During PE-SSFP, the joint-

sparsity term in Eq. 6 based on the Daubechies 4 wavelet can offer increased detection sensitivity

for relatively small coefficients shared across phase cycles.

Wavelet-domain sparsity is conventionally enforced via shrinkage methods based on hard- Sh(x) =

x
|x|−λ .max(0, |x|−λ) or soft-thresholding Ss(x) = x

|x| .max(0, |x|−λ), where λ is the threshold (43).

7
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Both functions null wavelet coefficients below λ, potentially reducing detection sensitivity for small

coefficients. To alleviate this issue, here we used a modified Huber function (44) :

Shuber(x) =







x2/(2λ) , |x| < λ

|x| − λ/2 , otherwise
(7)

This function behaves similarly to soft-thresholding above λ, but it applies squared-weighting on

small coefficients to increase detection sensitivity. Note that iterative thresholding based on this

function provides a quasi-proximal mapping for the ℓ1-norm, thus λ was set to λ1 in Eq. 6. During

PE-SSFP, the following joint-sparsity projections were applied: m( 9k) = ψ−1
{

Shuber(ψ{m(k)})
}

.

TV: Total-variation projections were employed to reduce aliasing interference and noise. The

projections were implemented by minimizing the objective J(x) = ‖mn − x‖22 + λ2‖∇x‖1 using a

fast iterative-clipping algorithm:

x(i) = m( 9k)
n −∇tz(i−1)

z(i) = Sclip

(

z(i−1) +∇x(i)/α
)

(8)

where∇t is the adjoint finite-difference operator, z(1) = 0 and the update rate parameter α = 8 (45).

The clipping function was modified to handle complex values:

Sclip(z) =







z , |z| < λ2/2

(λ2/2) · exp(j∠(z)) , otherwise
(9)

where ∠(z) is the phase of z. This algorithm converges rapidly, and the percentage change in the

objective fell to 0.01% within 5 iterations during each TV projection: m(:k) = TVproj

{

m( 9k)
}

.

Data consistency: To ensure consistency of reconstructed and acquired k-space data, reconstructed

data were projected onto the constraint
∑

n
‖yn −FPn {mn}‖22 = 0. This projection was im-

plemented by replacing reconstructed data with the acquired data in sampled locations (40):

m(;k) = F−1
{

(F − FP){m(:k)}+ y
}

.

The successive projections listed above were repeated until the percentage difference between the

reconstructed images in consecutive iterations fell to 0.001%. Convergence was achieved within 15

8
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iterations for the datasets considered here (see Sup. Fig. S1 for typical changes in joint sparsity,

TV and cumulative cost terms during PE-SSFP). The total reconstruction times are listed in Sup.

Table S1. The penalty weights λ1,2 were varied separately in the range [0 10] × 10−3 with a step

size of 10−3 for phantom data, and in the range [0 15]× 10−3 with a step size of 0.05×10−3 for in

vivo data (39). To minimize potential block artifacts and resolution losses, the smallest set of λ1,2

that yielded satisfactory artifact/noise suppression were selected via visual inspection (see Sup.

Table S2). To obtain a final bSSFP image, reconstructions for each phase-cycle were combined

with the p-norm method (p=4), which was selected for its computational simplicity and favorable

performance in artifact suppression and SNR efficiency (34).

Alternative Reconstructions

To comparatively demonstrate PE-SSFP, zero-filled Fourier (ZF), individual CS (iCS) and ESPIRiT

(46) reconstructions were also implemented. All methods reconstructed individual phase-cycled

images that were then p-norm combined (p=4).

ZF: Nonacquired k-space data were filled with zeros. Data for each phase-cycle were compensated

for the sampling density across k-space. An inverse Fourier transformation was then performed to

reconstruct each phase-cycled image.

iCS: Individual CS reconstructions of phase-cycled acquisitions were implemented as described in

Eq. 5. The sparsifying transform was selected as the Daubechies 4 wavelet. The optimization

was performed using an iterative conjugate-gradient algorithm (28). Iterations were repeated until

the percentage difference between the reconstructed images in consecutive iterations fell to 0.01%.

Convergence was achieved within 30 iterations for the datasets considered here. Further iterations

were avoided because they were observed to cause undesirable blurring in the reconstructions. The

regularization weights were scaled proportionately to those in PE-SSFP. Specifically, λ1 was set to

maintain the same ratio of sparsity to data-consistency terms (
√
N × λ1,PE−SSFP ), λ2 was set to

maintain the same ratio of TV to data-consistency terms (λ2,PE−SSFP ).

ESPIRiT: A soft-SENSE reconstruction (33) based on multiple sets of bSSFP profiles was imple-

mented using the ℓ1-ESPIRiT framework (46). Profile estimates were obtained via eigenvector

9
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decomposition of G in the image domain. Separate sets of profile estimates were obtained for each

phase cycle (Ĉj
n for the jth set, j ∈ [1 J ]), by selecting eigenvalues above a fixed threshold of

0.9 with a null-space cut-off σ2cutoff=0.02. This yielded two sets of bSSFP profiles estimates for

the datasets reported here. Individual phase-cycled images mn were then reconstructed via the

following optimization:

min
m

∑

n

‖yn −FPn {mn}‖22 + λ1

∥

∥

∥

∥

∥

∥

√

∑

n

|ψ{mn}|2
∥

∥

∥

∥

∥

∥

1

(10)

where mn =
∑

j
Ĉj
nm

j
n. Variable splitting with a splitting parameter of 0.4 was implemented to de-

compose the optimization into two subproblems that minimize the profile-encoding cost (first term

in the objective) and the joint-sparsity cost (second term) respectively (47). The profile-encoding

subproblem was solved via a conjugate gradient algorithm with 20 iterations (40). Remaining re-

construction parameters including the number of outer iterations were kept identical to PE-SSFP.

Simulations

Simulations were performed based on a realistic brain phantom at 0.5 mm isotropic resolution

(http://www.bic.mni.mcgill.ca/brainweb). Phase-cycled bSSFP signals for each tissue were calcu-

lated based on Eq. 1, assuming the following T1/T2: 3000/1000 ms for cerebro-spinal fluid (CSF),

1200/250 ms for blood, 1000/80 ms for white matter, 1300/110 ms for gray matter, 1400/30 ms

for muscle, and 370/130 ms for fat. Meanwhile, three-dimensional (3D) acquisitions were simu-

lated using α = 45o (flip angle), TR = 5.0 ms, TE = 2.5 ms, 10 axial cross-sections equispaced to

cover the whole brain in the superior-inferior direction, and ∆φ = 2π [0:1:(N−1)]
N . The simulations

used a realistic field-inhomogeneity distribution corresponding to an off-resonance shift of 0±62 Hz

(mean±std; see Fig. 1).

To demonstrate the auto-calibration approach used in PE-SSFP, we examined how well the acquired

data can be represented via the bSSFP profiles estimated from calibration data. Using the profiles

extracted by the ESPIRiT method (46), each phase-cycled image was projected onto the subspace

spanned by the bSSFP profiles. A difference map was then calculated between each image and

10
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its projection onto this subspace. An aggregate error map was finally formed via sum-of-squares

combination of difference maps across phase cycles. Error maps were generated for varying kernel

sizes (5, 7, 9, 11, 13, 15, 17), calibration area sizes (6%, 8%, 10%, 12%, 14% of the maximum

spatial frequency), and null-space cut-offs (σ2cutoff=2x10−1,−2,−3,−4,−5).

Next, simulated brain images were undersampled by a factor of N in two phase-encode dimensions

using patterns generated for uniform-density, variable-density, and Poisson disc sampling. Separate

acquisitions were obtained for common and disjoint sampling patterns across phase cycles. PE-

SSFP and alternative reconstructions were performed.

Reconstruction quality was assessed by several different metrics measured on combined bSSFP im-

ages. For a given cross-section, a mean-squared error (MSE) was first measured between the image

reconstructed from N undersampled acquisitions and a reference image Fourier reconstructed from

N=8 fully-sampled acquisitions. Because N=8 is typically sufficient for artifact suppression, MSE

assessed the reconstruction performance in reducing banding artifacts in addition to aliasing/noise

interference. The peak signal-to-noise (PSNR) metric was then derived from this MSE measure-

ment to summarize the overall image quality. Lastly, a mean structural similarity index (SSIM) was

measured between the reconstructed image and the reference image for N=8, following histogram

matching to account for large-scale intensity variations (25). SSIM assessed the degree of visual

similarity in tissue structure to the reference image. To assess the reliability of PE-SSFP against

field inhomogeneity, residual banding artifacts were evaluated on combined bSSFP images. CSF,

white matter and gray matter signals were segregated via tissue masks. The level of residual arti-

fact for each tissue was then characterized based on a percentage ripple metric. Ripple was taken

as the ratio of the range of signal intensity to the mean intensity level. All metrics were pooled

across 10 cross-sections in the phantom.

Several variants of PE-SSFP were implemented to assess the relative importance of the individual

projection stages of the proposed method: PEcalib with only calibration and data-consistency projec-

tions; PEhuber with calibration, sparsity (based on Huber thresholding) and data-consistency projec-

tions; PEsoft−TV with calibration, sparsity (based on soft thresholding), TV and data-consistency

projections. Each additional projection included in PE-SSFP significantly improved the PSNR and

SSIM values (p<0.005, signed-rank test; see Sup. Table S3). Furthermore, PE-SSFP outperformed
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that PEsoft−TV for all N>2 (p<0.005). Thus, Huber thresholding was prescribed for all PE-SSFP

reconstructions thereafter.

To examine the effect of tissue and sequence parameters on reconstruction performance, additional

simulations were performed based on varying T1/T2 ratios, flip angles, TRs (with TE = TR/2),

SNR levels, and acceleration factors (R). The following parameters were considered: (-40%, -20%,

0%, 20%, 40%) deviation in T1/T2 ratios, α = (15o, 30o, 45o, 60o, 75o), TR = (5 ms, 10 ms, 15

ms), SNR levels ranging in [10 30] for CSF. To examine performance when R exceeds number of

acquisitions (N), the following cases were simulated (N=2, R=4), (N=4, R=6), (N=4, R=8), and

(N=6, R=8).

To evaluate noise performance, the SNR levels in the reconstructed images were compared against

those in fully-sampled images. For this analysis, 30 separate noise instances with a bivariate

Gaussian distribution were added to phase-cycled bSSFP images to attain acquisition SNR=20 for

CSF. Each dataset was reconstructed to yield 30 separate combined bSSFP images. The SNR of

each voxel was taken as the ratio of the mean to standard deviation of signal intensity across 30

images. A noise amplification map was then computed as the SNR ratio between the fully-sampled

reference and reconstructed images. Significance of differences among reconstruction methods were

assessed with nonparametric Wilcoxon signed-rank tests.

In Vivo Experiments

In vivo phase-cycled bSSFP images of the brain and the knee were collected on a 3 T Siemens Mag-

netom scanner (maximum gradient strength of 45 mT/m and slew rate of 200 T/m/s) with a 3D

Cartesian sequence. The brain imaging protocol comprised a flip angle of 30o, a TR/TE of 5.1/2.65

ms, a field-of-view (FOV) of 218 mm, an isotropic resolution of 0.85 mm, superior/inferior readout

direction, N=8 separate acquisitions with phase-cycling values (∆φ) spanning [0, 2π) in equispaced

intervals, and a 32-channel receive-only head coil. The knee imaging protocol comprised a flip angle

of 30o, a TR/TE of 5.0/2.5 ms, an FOV of 192 mm, an isotropic resolution of 1 mm, left/right read-

out direction, N=8, and a 15-channel receive-only knee coil. Fully-sampled images were combined

across coils to obtain single-channel multiple acquisition datasets. All participants gave written
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informed consent, and the imaging protocols were approved by the local ethics committee.

The brain and knee acquisitions were variable-density undersampled in the phase-encode dimensions

to yield acceleration factors of 2-8, and profile-encoding reconstructions were performed. The

following phase-cycling values were selected for reconstruction: ∆φ = 2π [0:1:(N−1)]
N for N = 2, 4 and

8. The phase cycles for N = 6 were selected as a subset of those for N =8 (0, π/2, 3π/4, π, 5π/4,

7π/4) to reduce overall scan time and minimize potential motion artifacts.

To examine the quality of reconstructed images, PSNR and SSIM metrics were measured across 10

equispaced cross-sections. For brain images, axial cross-sections were used that spanned across the

entire volume in the superior-inferior direction. For knee images, sagittal cross-sections in the left-

right direction were used. The reference image was taken as the combined Fourier reconstruction

of N=8 fully-sampled acquisitions.
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Results

Simulation Analyses

PE-SSFP was first demonstrated on bSSFP images of a numerical brain phantom. Figure 3 shows

the combination bSSFP images reconstructed via ZF, iCS and PE-SSFP. As expected, heavier

undersampling applied at higher N values increases aliasing interference in ZF images. Meanwhile

iCS reconstructions, which process phase cycles independently, suffer from prominent losses in

spatial resolution. In contrast, PE-SSFP successfully reduces aliasing interference while maintaining

detailed tissue depiction even at N = 8.

Several complementary analyses were performed to elucidate factors contributing to reconstruction

performance. To demonstrate the auto-calibration approach in PE-SSFP, errors were examined in

representing acquired data in terms of the bSSFP profiles estimated from calibration data (Sup.

Figs. S2 and S3). For the kernel size, calibration area and null-space cutoff prescribed in PE-SSFP,
R2.1:

Text

revised

residual high-spatial-frequency errors occur near banding artifacts for each phase cycle. When

combined across phase-cycles, the auto-calibration errors appear near tissue boundaries rather

uniformly across the FOV. The average auto-calibration error relative to the maximum signal

intensity is 3.2±0.6% (mean±s.e. across N). The percentage improvement that can be attained by

advancing the kernel size, calibration area or null-space cutoff to their optimal values in the tested

range is merely 1.0±0.3%. Thus, the selected PE-SSFP parameters yield near-optimal results with

relatively low error levels. To determine the effects of individual projection operators in PE-SSFP,

several variant reconstructions and respective squared-error maps relative to a fully-sampled image

were computed (Fig. 4). The inclusion of each projection visibly reduces error across the image. To

examine noise statistics of the reconstructions, noise amplification factors were calculated across

the images (Fig. 5). Although the heavier undersampling at high N increases noise in ZF, penalty

terms in iCS and PE-SSFP help maintain lower noise. In PE-SSFP, relatively higher amplification is

observed near tissue boundaries that are more susceptible to resolution loss due to variable-density

undersampling.

To determine the effect of the sampling strategy on PE-SSFP, uniform-density, variable-density and
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Poisson disc undersampling patterns were tested. Each type of pattern was applied both commonly

and disjointly across phase cycles. While all sampling strategies yield similar PSNR and SSIM values

at N=2 (Sup. Table S4), variable-density (VD) disjoint sampling outperforms all other methods for

N>2 (p<0.005). VD disjoint sampling improves PSNR by 4.0±1.9 dB (mean±s.e. across N) and

SSIM by 0.8±0.5% over VD common sampling, and PSNR by 3.2±1.6 dB and SSIM by 0.4±0.2%

over Poisson-disc disjoint sampling. Thus VD disjoint sampling was used for all reconstructions

reported here.

Finally, PE-SSFP was comparatively evaluated against ZF, iCS and ESPIRiT. Representative im-

ages for N=8 are shown in Fig. 6 along with the squared-error maps in reference to a fully-sampled

image. While ZF shows broadly distributed errors across the field-of-view, iCS reduces noise and

aliasing interference at the expense of losses in high-spatial-frequency information. While ESPIRiT

reconstructions alleviate this loss via joint-sparsity penalties, the respective images still show dis-

tributed errors. In contrast, PE-SSFP using both joint-sparsity and TV regularization effectively

dampens the reconstruction errors in phase-cycled bSSFP images.

The observations regarding PE-SSFP’s superior image quality are supported by the quantitative

assessments listed in Table 1. For each N, PE-SSFP yields significantly higher PSNR and SSIM

values compared to all other reconstructions (p<0.005), with the exception of N=2 where iCS and

PE-SSFP yield similar values. PE-SSFP improves PSNR by 13.1±5.0 dB and SSIM by 4.8±2.5%

over iCS, and PSNR by 14.5±3.2 dB and SSIM by 3.4±0.6% over ESPIRiT. Extended simulations

presented in Sup. Tables S5 and S6 indicate that these results are valid (p<0.005) broadly across

varying flip angles (15o-75o), T1/T2 ratios (-40% to 40%), TRs (5-15 ms), noise levels (SNR=10-30),

and when the acceleration factor exceeds N. The percentage ripple measurements listed in Table 1

indicate that PE-SSFP yields more homogeneous tissue signals compared to alternative methods

for all N (p<0.005). Taken together, these results suggest that PE-SSFP reliably enhances image

quality and artifact suppression compared to conventional reconstructions.
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In Vivo Analyses

PE-SSFP was demonstrated on bSSFP acquisitions of the brain and the knee. Similar to phantom

results, the auto-calibration error was relatively low with 6.1±1.3% error (mean±s.e. across N) in

the brain, and 3.7±0.7% error in the knee. Figure 7 shows the combined PE-SSFP images and the

squared-error maps for N=2-8. As expected, prominent errors due to residual banding are visible

for lower N values. These errors are alleviated towards high N, while maintaining high-quality tissue

depiction. Representative images from ZF, iCS, ESPIRiT and PE-SSFP are displayed in Fig. 8.

While iCS incurs losses at high spatial frequencies and coherent interference at low frequencies,

ESPIRiT suffers from broadly distributed reconstruction errors across the images. In contrast,

PE-SSFP visibly reduces reconstruction errors and preserves high-spatial-frequency information.

Quantitative assessments of in vivo reconstructions are listed in Table 2. In both the brain and

the knee, PE-SSFP yields significantly higher PSNR and SSIM values compared to iCS for N>2

(p<0.05). PE-SSFP also improves PSNR and SSIM compared to all other alternative reconstruc-

tions for all N (p<0.05), with the exception of knee images at N=8 where PE-SSFP and ESPIRiT

yield similar PSNR. In the brain, PE-SSFP improves PSNR by 3.0±2.6 dB and SSIM by 1.4±1.2%

over iCS, and PSNR by 8.5±0.8 dB and SSIM by 7.1±0.5% over ESPIRiT. In the knee, PE-SSFP

improves PSNR by 4.7±3.5 dB and SSIM by 1.8±0.6% over iCS, and PSNR by 2.8±1.2 dB and

SSIM by 8.3±0.4% over ESPIRiT. Taken together, these results strongly suggest that the proposed

method enables scan-efficient suppression of banding artifacts at high N values, while maintaining

detailed tissue structure via the joint reconstruction.
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Discussion

Here we evaluted an improved acceleration framework for multiple-acquisition 3D bSSFP based

on variable-density random undersampling in two phase-encode dimensions. In this framework,

nonacquired data across phase-cycles are simultaneously synthesized using a profile-encoding re-

construction that enforces joint sparsity and TV penalties. A p-norm combination of individual

phase-cycled images yields a final artifact-suppressed bSSFP image.

Several alternative approaches were previously proposed for reducing banding artifacts. One strat-

egy is to increase the tolerable range of field inhomogeneity by modifying the bSSFP magnetization

profile (12–15). Alternatively, advanced shimming procedures can be performed to directly limit

field inhomogeneity (16). While both strategies aim to reduce banding artifacts during acquisition,

they require complex pulse-sequence modifications and prolonged scan times. In contrast, our pro-

posed framework can be implemented via standard bSSFP sequences without separate calibration

procedures.

Improvements in scan efficiency of multiple-acquisition bSSFP have been considered in several pre-

vious reports. Recently, we proposed to undersample and individually reconstruct phase-cycled

acquisitions using CS (25). The CS framework yielded high quality reconstructions up to an accel-

eration factor of N=4. Another study employed simultaneous multislice imaging to accelerate each

acquisition separately, and similarly considered N≤4 (26). While these previous studies disregarded

image features shared across phase-cycles, here we used a joint-sparsity model to enhance recovery

of wavelet coefficients, and TV regularization to reduce aliasing and noise interference. Due to these

advances, PE-SSFP maintains high-quality reconstructions up to N=8. Spatial encoding by coil

arrays was not leveraged in the reconstructions reported here. However, if more effective artifact

suppression is needed (e.g., while imaging at 7T or near air-tissue interfaces), a higher N value

and a respectively higher acceleration factor might be maintained by also leveraging coil sensitivity

information. Note, however, that each phase-cycled acquisition involves a fixed-duration overhead

due to the preparatory RF pulses employed to reach steady state. This overhead will become more

prominent for larger N values, reducing the overall scan efficiency.

With similar motivations to PE-SSFP, one earlier study proposed a SENSE-type reconstruction
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performed jointly across phase-cycled acquisitions, each accelerated via uniform-density undersam-

pling (35). Sensitivity estimates were taken as the ratio of low resolution phase-cycled images to a

maximum-intensity combination of these images. In contrast, here we used variable-density sam-

pling, and we did not assume any combination model while calibrating the interpolation kernel.

Our results clearly indicate that variable-density sampling offers improved performance compared

to uniform sampling.

PE-SSFP can be potentially improved by addressing several limitations. First, if significant mo-

tion occurs in between separate acquisitions, image structure can be displaced across phase-cycles.

These displacements may in turn violate the joint-sparsity model and yield suboptimal reconstruc-

tions. A motion-correction operator could be incorporated to alleviate motion-induced performance

loss. Second, the auto-calibration approach in PE-SSFP relies on the assumption that bSSFP spa-

tial profiles vary gradually. Rapid profile variations near tissue boundaries or bSSFP nulls can

yield suboptimal interpolation operators, increasing reconstruction errors. This issue may be of

particular concern with high field strengths, long TRs, and certain combinations of T1/T2 and flip

angles. In such cases, the k-space calibration area could be expanded and interpolation kernels

of variable widths across k-space could be used to improve accuracy of the interpolation opera-

tor (48,49). Third, while a p-norm combination was observed to yield good artifact suppression in

this study, it could be replaced with sophisticated techniques that leverage analytical signal models

to further improve artifact suppression (17,18). Lastly, optimization with the projection-onto-sets

method does not guarantee convergence onto a fixed solution in the absence of overlap between the

projection sets. While we observed good convergence behavior here, reconstruction stability can

be improved by modern approaches such as the alternating direction method of multipliers (50).

In conclusion, the proposed PE-SSFP framework jointly reconstructs multiple-acquisition bSSFP

data by leveraging shared sparsity patterns across phase-cycles. PE-SSFP was primarily demon-

strated for brain and knee imaging in the current study. Nonetheless, the scan-efficient acquisitions

and high-quality reconstructions enabled by PE-SSFP could improve other multiple-acquisition

bSSFP applications such as peripheral angiography (51), coronary imaging (52), and fat/water

separation (23,53).
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Table 1: Image Assessments for the Brain Phantom

Peak SNR and Structural Similarity

N = 2 N = 4 N = 6 N = 8

ZF
PSNR 51.8±0.1 50.0±0.2 47.2±0.1 45.9±0.1
SSIM 72.8±0.6 65.4±0.8 62.4±0.8 61.2±0.8

iCS
PSNR 57.5±0.5 61.3±0.3 52.3±0.4 49.0±0.3
SSIM 97.9±0.1 97.0±0.0 91.4±0.3 88.2±0.3

ESPIRiT
PSNR 48.0±0.1 56.3±0.1 56.1±0.3 54.1±0.3
SSIM 93.5±0.1 95.8±0.1 95.6±0.1 95.1±0.1

PE-SSFP
PSNR 57.9±0.4 78.2±0.3 71.5±0.4 64.9±0.3
SSIM 98.4±0.1 98.8±0.0 98.4±0.0 98.0±0.0

Percentage Ripple

N=2 N=4 N=6 N=8

ZF

CSF 38.8±2.1 29.7±1.6 31.9±2.1 32.5±2.1
White 72.9±4.0 94.7±6.4 94.0±5.3 97.2±6.5
Gray 53.8±2.1 73.2±5.1 76.3±3.2 77.8±5.5

iCS

CSF 23.2±0.8 8.9±1.1 17.9±1.4 23.9±2.6
White 8.5±1.1 21.4±3.0 40.9±5.9 48.8±4.3
Gray 9.7±1.1 17.7±1.4 30.8±4.6 36.7±6.2

ESPIRiT

CSF 43.9±1.1 17.5±2.1 18.8±1.5 19.7±1.4
White 43.7±5.8 41.3±7.9 47.2±6.3 51.4±8.7
Gray 39.0±3.8 28.7±2.7 34.5±3.8 36.1±5.0

PE-SSFP

CSF 22.5±0.2 2.1±0.2 3.4±0.5 3.1±0.5
White 5.4±0.4 5.9±0.5 6.3±0.7 6.6±0.7
Gray 8.3±0.3 6.9±0.4 6.8±0.4 7.4±1.1

Image assessment metrics measured in reconstructed bSSFP
images of the numerical brain phantom. Metrics are reported
separately for each reconstruction method as mean±std across
10 cross-sections. The top panel lists the peak SNR (PSNR)
and structural similarity (SSIM) measurements obtained for
α = 45o, TR = 5 ms, fixed T1/T2 values, and a realistic off-
resonance frequency map (0±62 Hz). The bottom panel lists
the percentage ripple measurements for CSF, white matter
and gray matter separately.
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Table 2: Image Assessments for In Vivo Datasets

Brain Images

N=2 N=4 N=6 N=8

ZF
PSNR 48.6±0.2 44.1±0.4 41.4±0.4 40.3±0.4
SSIM 73.5±0.6 56.4±0.8 50.6±0.7 48.9±0.8

iCS
PSNR 58.4±1.0 60.7±0.4 56.8±0.9 53.2±0.9
SSIM 93.0±1.0 93.2±0.8 91.2±0.8 88.9±0.9

ESPIRiT
PSNR 49.5±0.5 53.4±0.4 51.8±0.6 52.5±0.5
SSIM 84.2±0.7 87.6±0.8 84.7±0.5 86.7±0.7

PE-SSFP
PSNR 56.0±0.7 62.5±0.5 61.0±0.8 61.5±0.7
SSIM 92.0±0.5 94.0±0.4 92.7±0.4 93.0±0.3

Knee Images

N = 2 N = 4 N = 6 N = 8

ZF
PSNR 59.6±0.3 57.8±0.5 55.7±0.3 54.4±0.4
SSIM 86.2±0.6 77.2±0.9 72.8±1.1 69.2±1.1

iCS
PSNR 65.2±0.7 72.8±0.4 65.3±0.9 63.0±1.2
SSIM 94.7±0.5 95.5±0.4 92.0±0.4 90.5±0.2

ESPIRiT
PSNR 60.5±0.4 68.3±0.4 70.7±0.6 74.6±0.6
SSIM 84.5±1.2 87.2±2.4 87.2±2.4 87.8±2.3

PE-SSFP
PSNR 63.9±0.5 73.3±0.4 73.4±0.7 74.5±0.6
SSIM 93.5±0.4 95.8±0.2 95.2±0.3 95.4±0.3

Image assessment metrics measured in reconstructed bSSFP
images of in vivo brain and knee data. Metrics are reported
separately for each reconstruction method as mean±std across
10 cross-sections. The top panel lists PSNR and SSIM mea-
surements for brain images, and the bottom panel lists the
measurements for knee images.
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List of Figures

1 In the profile-encoding framework, each phase-cycled bSSFP image (Sn) is modeled
as the multiplication of an ideal image free of banding artifacts (So) with a respective
bSSFP sensitivity profile (Cn). The value of the bSSFP profile at each location is a
function of total phase accrual over a single TR due to main field inhomogeneity and
RF phase-cycling increment (∆φ). Locations of near-zero phase shift (modulo 2π)
lead to significantly diminished sensitivity and thereby banding artifacts in bSSFP
images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2 Flowchart of the profile-encoding bSSFP (PE-SSFP) reconstruction that recovers
missing data in undersampled phase-cycled acquisitions. PE-SSFP employs an al-
ternating projection-onto-sets scheme with four projection operators: calibration,
joint-sparsity, TV, and data-consistency projections. In the calibration projection,
an interpolation kernel estimated from calibration data is used to synthesize miss-
ing samples linearly from acquired data across phase-cycles. In the joint-sparsity
projection, wavelet coefficients of phase-cycled bSSFP images are thresholded with
a Huber function. In the TV projection, bSSFP images are denoised with a fast
iterative-clipping algorithm. In the data-consistency projection, reconstructed data
in sampled locations are replaced with their acquired values. These projections are
successively repeated, and the individual phase-cycled images are finally combined
with the p-norm method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Phase-cycled bSSFP images of a numerical phantom were simulated for N=2-8, α =
45o, TR/TE=5.0/2.5 ms, a field map of 0±62 Hz (mean±std). Phantom images were
undersampled by a factor of N via variable-density random sampling, disjointly across
phase cycles. Zero-filled Fourier (ZF, top row), individual compressed sensing (iCS,
middle row), and PE-SSFP (bottom row) reconstructions are shown. White boxes
display a zoomed-in portion of the images. ZF reconstructions suffer from elevated
aliasing/noise interference at high N due to the heavier undersampling factors used.
While iCS reconstructions employ regularization terms that limit this interference,
the heavy undersampling factors at high N cause visible loss of spatial resolution.
In contrast, PE-SSFP successfully alleviates noise and aliasing interference while
maintaining detailed depiction of tissue boundaries. . . . . . . . . . . . . . . . . . . 32

4 Representative bSSFP images of the numerical phantom for N=4 were reconstructed
using ZF and PE-SSFP. Images from three variants of PE-SSFP are shown (top
row). PEcalib only uses calibration and data-consistency projections, PEhuber uses
calibration, joint-sparsity and data-consistency projections, and PE-SSFP addition-
ally uses TV projections. Reconstructions were compared against a combination of
fully-sampled images (for N=8). Squared-error maps are shown in logarithmic scale
(bottom row; see colorbar). Each additional projection in PE-SSFP yields visibly
reduced reconstruction error in bSSFP images. . . . . . . . . . . . . . . . . . . . . . 33
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5 The noise-amplification maps for ZF, iCS and PE-SSFP methods are displayed for
N=2-8. Although the heavier undersampling at high N increases noise amplification
in ZF reconstructions, reconstructions with penalty terms iCS and PE-SSFP main-
tain relatively low noise amplification even at high N. The lower noise amplification
with iCS likely reflects a bias from excessive loss of high-spatial-frequency informa-
tion. In PE-SSFP, relatively higher amplification is observed near tissue boundaries
that are more susceptible to resolution loss due to variable-density undersampling. . 34

6 Phase-cycled bSSFP reconstructions of the numerical phantom (top row), and the
squared-error maps with respect to the fully-sampled combination image (bottom
row) are displayed for N=8. ZF has broadly distributed errors across the field-of-
view due to aliasing and noise interference. iCS reconstructions reduce this interfer-
ence via TV regularization at the expense of elevated errors near tissue boundaries,
due to significant loss of high-spatial-frequency information. While ESPIRiT recon-
structions alleviate this loss via joint-sparsity penalties, the respective images still
show broadly distributed errors. In contrast, PE-SSFP using both joint-sparsity and
TV regularization further dampens the reconstruction errors in phase-cycled bSSFP
images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7 In vivo bSSFP acquisitions of the brain (a) and the knee (b) were reconstructed using
PE-SSFP. Squared-error maps are shown in logarithmic scale (see colorbar). The
error maps clearly suggest that banding artifact suppression improves for higher N,
while PE-SSFP maintains detailed depiction of high-spatial-frequency information. 36

8 In vivo phase-cycled bSSFP reconstructions of the brain (a) and the knee (b) are
displayed for N=8. ZF and ESPIRiT reconstructions suffer from broadly distributed
reconstruction error across the images. Meanwhile, iCS reconstructions show sub-
stantial loss of high-spatial-frequency information and coherent low-frequency inter-
ference. In contrast, PE-SSFP effectively reduces errors due to aliasing and noise
interference, while maintaining detailed tissue depiction. . . . . . . . . . . . . . . . 37
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Figure 3: Phase-cycled bSSFP images of a numerical phantom were simulated for N=2-8, α = 45o,
TR/TE=5.0/2.5 ms, a field map of 0±62 Hz (mean±std). Phantom images were undersampled
by a factor of N via variable-density random sampling, disjointly across phase cycles. Zero-filled
Fourier (ZF, top row), individual compressed sensing (iCS, middle row), and PE-SSFP (bottom
row) reconstructions are shown. White boxes display a zoomed-in portion of the images. ZF
reconstructions suffer from elevated aliasing/noise interference at high N due to the heavier un-
dersampling factors used. While iCS reconstructions employ regularization terms that limit this
interference, the heavy undersampling factors at high N cause visible loss of spatial resolution. In
contrast, PE-SSFP successfully alleviates noise and aliasing interference while maintaining detailed
depiction of tissue boundaries.
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Supporting Table S1: Reconstruction Times
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Supporting Table S2: Regularization Parameters
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Supporting Table S3: Image Quality: Contribution of PE-SSFP projections
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Supporting Table S5: Image Quality: Variations in Tissue and Sequence Parameters
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Supporting Table S6: Image Quality: Acceleration Factor
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S1 Undersampled acquisitions of the numerical brain phantom were reconstructed using
PE-SSFP. The percentage difference between the reconstructed images in consecutive
iterations fell to 0.001% within 15 iterations. The evolution of the PE-SSFP cost
terms (calculated after the data-consistency projection) across these iterations are
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Supporting Figure S1: Undersampled acquisitions of the numerical brain phantom were recon-
structed using PE-SSFP. The percentage difference between the reconstructed images in consec-
utive iterations fell to 0.001% within 15 iterations. The evolution of the PE-SSFP cost terms
(calculated after the data-consistency projection) across these iterations are shown for N=2-8: (a)
joint-sparsity cost, (b) TV cost, (c) combined cost in Eq. 6. The cost at each iteration is displayed
as mean±std across 10 cross sections. The cost terms diminish smoothly across iterations.
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Supporting Figure S2: The auto-calibration approach was demonstrated by examining how well the
acquired data can be represented via the bSSFP profiles estimated from calibration data. A separate
error map was first calculated between the fully-sampled image at each phase cycle and its projection
onto the subspace spanned by the bSSFP profiles. These individual error maps were then sum-of-
squares combined across phase cycles. Representative maps are shown for N=4. (a) Actual bSSFP
profiles for each phase-cycle. (b-d) Individual and combined error maps for varying calibration-
kernel sizes ([5, 8, 11]), calibration-area sizes ([2%, 6%, 10%] of the maximum spatial frequency), and
null-space cut-offs (σcutoff=2x10−1, 9x10−2, 2x10−2). The relatively small calibration area/kernel
size and high σcutoff in b cause prominent low- and high-spatial-frequency errors, whereas the more
optimal parameters in d (those used in PE-SSFP) significantly dampen the low-spatial-frequency
errors. In all cases, relatively higher errors occur in the vicinity of banding artifacts in individual
maps. Because banding artifacts for distinct phase-cycles are in non-overlapping locations, the
combined maps show a rather uniform error distribution.
R2.1: New figure
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Supporting Figure S3: The success of the auto-calibration approach in estimating bSSFP profiles
was analyzed for a broad range of calibration-kernel sizes, calibration-area sizes and null-space cut-
offs. Representative error maps combined across phase-cycles are shown for N=8. (a) Error maps
for different calibration-kernel sizes. (b) Error maps for different calibration-area sizes. (c) Error
maps for different null-space cut-offs. PE-SSFP parameters are emphasized in bold font within each
panel. The errors predominantly occur in regions of sharp signal transition near tissue boundaries.
R2.1: Caption revised
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Abstract

Purpose: The scan-efficiency in multiple-acquisition bSSFP imaging can be maintained by ac-

celerating and reconstructing each phase-cycled acquisition individually, but this strategy ignores

correlated structural information among acquisitions. Here an improved acceleration framework is

proposed that jointly processes undersampled data across N phase cycles.

Methods: Phase-cycled imaging is cast as a profile-encoding problem, modeling each image as an

artifact-free image multiplied with a distinct bSSFP profile. A profile-encoding reconstruction (PE-

SSFP) is employed to recover missing data by enforcing joint sparsity and total-variation penalties

across phase cycles. PE-SSFP is compared with individual compressed-sensing (iCS) and parallel-

imaging (ESPIRiT) reconstructions.

Results: In the brain and the knee, PE-SSFP yields improved image quality compared to iCS

and other tested methods particularly for higher N values. On average, PE-SSFP improves peak

SNR by 3.8±3.0 dB (mean±s.e. across N=2-8) and structural similarity by 1.4±1.2% over iCS,

and peak SNR by 5.6±0.7 dB and structural similarity by 7.1±0.5% over ESPIRiT.

Conclusion: PE-SSFP attains improved image quality and preservation of high-spatial-frequency

information at high acceleration factors, compared to conventional reconstructions. PE-SSFP is a

promising technique for scan-efficient bSSFP imaging with improved reliability against field inho-

mogeneity.

Keywords: SSFP, banding artifact, magnetization profile, compressed sensing, encod-

ing, reconstruction
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Introduction

Balanced steady-state free precession (bSSFP) sequences provide relatively high magnetization

levels for repetition times (TR) on the order of several milliseconds (1). As such, they have found use

in rapid imaging involving both dynamic (2–6) and high-spatial-resolution static acquisitions (7–11).

One critical concern, however, is that the bSSFP magnetization profile yields increased sensitivity

to magnetic field inhomogeneities and signal voids at particular off-resonance frequencies (1). In

turn, this profile can lead to excessive banding artifacts at high field strengths, with long TRs, and

in complex tissue geometries.

Several innovative methods were previously proposed to alleviate bSSFP banding artifacts. These

methods include modified pulse sequences that reshape magnetization profiles (12–15), advanced

shimming procedures that limit field inhomogeneity (16), physical signal models to remove fre-

quency sensitivity (17, 18), and the commonly used multiple-acquisition methods that combine

several phase-cycled images with nonoverlapping banding artifacts to improve signal homogene-

ity (19–24). These approaches typically compromise between artifact reduction and scan efficiency.

For instance, residual banding artifacts in multiple-acquisition methods can be reduced by increas-

ing the number of phase cycles (N). However, with higher N, the overall scan time is considerably

prolonged.

To mitigate banding artifacts while maintaining scan efficiency, two recent studies proposed to ac-

celerate phase-cycled bSSFP acquisitions (25, 26). In the first study (25), we leveraged individual

compressed-sensing (CS) reconstructions to recover nonacquired bSSFP data for each phase cycle

separately (27–29). In the second study (26), individual acquisitions were instead accelerated via

simultaneous multi-slice imaging. While high image quality was demonstrated for low acceleration

factors (around 2-4), data from separate phase-cycles were reconstructed independently in both

studies. Because independent reconstructions ignore structural information that is inherently cor-

related across multiple acquisitions (30–32), image quality can be degraded at high acceleration

factors that are critically needed with increasing N.

Here we propose an improved framework for accelerating phase-cycled bSSFP imaging that jointly

reconstructs undersampled data across multiple acquisitions. Analogous to parallel imaging that
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takes each coil image as the product of the tissue image with a respective coil sensitivity (33), this

framework models each phase-cycled bSSFP image as the product of the banding-artifact-free image

with a respective bSSFP spatial profile (34,35). Thus, inspired by recent approaches for multi-coil

imaging (32), the joint reconstruction is cast as a profile-encoding problem (PE-SSFP) where nonac-

quired k-space samples are linearly synthesized from acquired data. To further alleviate aliasing and

noise interference, PE-SSFP leverages joint-sparsity and total-variation penalties. Comprehensive

simulations are presented to demonstrate the reliability of PE-SSFP against variations in sequence

and tissue parameters, noise, and field inhomogeneity. Phantom and in vivo results clearly indicate

that the proposed framework yields improved image quality over conventional reconstructions.
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Methods

The goal of the current study is to implement robust, artifact-free multiple-acquisition bSSFP

imaging within a total scan time equivalent to a single acquisition. Starting with an overview

of phase-cycled bSSFP imaging, the following sections discuss the sampling and reconstruction

strategies proposed towards this goal.

Multiple-Acquisition Phase-Cycled bSSFP Imaging

In multiple-acquisition bSSFP, several images with different phase-cycling are acquired such that

banding artifacts are spatially non-overlapping across acquisitions. Assuming TE=TR/2, the fully-

sampled images at each phase cycle can be expressed as (36):

Sn(r) =M(r)
ei(ϕ(r)+∆ϕn)/2

(
1−A(r)e−i(ϕ(r)+∆ϕn)

)
1−B(r) cos(ϕ(r) + ∆ϕn)

(1)

where r denotes spatial location, ϕ(r) is phase accrued in a single TR due to field inhomogeneity,

and ∆ϕn is the phase-cycling value used for the nth acquisition where n ∈ [1 N]. The remaining

terms M , A, B depend on sequence and tissue parameters. Tailored image combination techniques

are then used to minimize the dependence of the bSSFP signal on ϕ(r) (20, 22). An artifact-free

image (So) could be obtained under the condition that ϕ(r)+∆ϕn = π, which in turn would yield:

So(r) = iM(r)
1 +A(r)

1 +B(r)
(2)

Thus, each phase-cycled image Sn can be modeled as the multiplication of So with a respective

bSSFP profile, Cn as illustrated in Fig. 1:

Cn(r) =
Sn(r)

So(r)
=
ei(ϕ+∆ϕn−π)/2 (1 +B)

(
1−Ae−i(ϕ+∆ϕn)

)
(1 +A)(1−B cos(ϕ+∆ϕn))

(3)

Combination techniques for multiple-acquisition bSSFP typically assume that data are either fully-

sampled (20–22) or else adequately reconstructed (25). Estimation of bSSFP profiles has therefore

not been of particular interest, apart from cases where signal-to-noise ratio (SNR) optimization

4
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or fat-water separation is aimed (23, 34). Nonetheless, the bSSFP profiles can be interpreted as

a means to perform spatial encoding (35), similar to that implemented by the coil sensitivities in

parallel imaging (33). With this interpretation, we cast the joint reconstruction of undersampled

phase-cycled acquisitions as a profile-encoding problem:

yn(k) = Fn {Cn(r) · So(r)} (4)

Here k indicates k-space location, yn are the k-space data for the nth acquisition, and F is a

Fourier-transform operator. For simplicity, we did not consider the effects of coil sensitivities on

the joint reconstruction. Thus, assuming that bSSFP spatial profiles can be estimated based on

fully-sampled central k-space data (37, 38), they can be used to solve an inverse problem that

recovers the artifact-free bSSFP image So(r) given a collection of phase-cycled data yn(k).

Undersampling Patterns for Multiple-Acquisition bSSFP Data

Each of N separate phase-cycled acquisitions were undersampled by a factor of R=N. Sampling

patterns for phase-cycled acquisitions can be selected independently. A common pattern for all

acquisitions can better enforce consistency in the sampling matrix across phase-cycles, and re-

duce interpolation errors. On the other hand, disjoint patterns across acquisitions can expand

k-space coverage, and reduce aliasing artifacts (25). To optimize sampling strategy, we compared

reconstructions of data undersampled with common versus disjoint patterns. Patterns were gener-

ated using uniform-density deterministic (33, 35), variable-density random (28), and Poisson-disc

sampling (32). In all cases, isotropic acceleration was performed in two dimensions, and a cen-

tral k-space region spanning up to 10% of the maximum spatial frequency in each axis was fully

sampled. In uniform-density sampling, the full sampling matrix was linearly ordered and then

undersampled by holding every Nth sample (e.g., 1, N+1,...). Disjoint patterns were generated by

incrementing the starting index by 1 sample (35). In variable-density sampling, random patterns

were generated based on a polynomial probability density function (PDF), and sampling patterns

were selected among 2000 candidate patterns to minimize aliasing energy (39). Disjoint patterns

were selected by minimizing both the aliasing energy for each pattern and the pair-wise correlation

among patterns (25). In Poisson sampling, a polynomial PDF was used to generate a random

5
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sampling pattern that maintains locally-uniform inter-sample distances. Disjoint patterns were

generated by using a distinct starting seed for the sampling algorithm (32).

Profile-Encoding Reconstruction

In a recent study, we proposed to alleviate banding artifacts by combining separate CS reconstruc-

tions of individual phase-cycled bSSFP acquisitions (25). The individual-CS reconstruction (iCS)

was implemented via a Lagrangian formulation:

min
mn

∥yn −FPn {mn}∥22 + λ1∥ψ {mn}∥1 + λ2∥∇{mn}∥1 (5)

This formulation comprised a data-consistency term (where yn is the acquired data, FPn is the

partial Fourier operator, andmn is the reconstructed image for the nth phase cycle), a sparsity term

(where ψ is a wavelet-transform operator), and a total-variation term (TV; where ∇ is the finite

difference operator). While iCS was shown to maintain good reconstruction quality for small N,

loss of high-spatial-frequency information became prominent for N≥4 due to increasingly heavier

undersampling factors (25).

To address this limitation, we propose a profile-encoding bSSFP (PE-SSFP) reconstruction that

solves the problem in Eq. 4 by synthesizing missing k-space samples from acquired data. First, an

interpolation operator estimated from calibration data is used to iteratively synthesize nonacquired

data across phase-cycles. Inspired by the SPIRiT model (iterative self-consistent parallel imaging)

(32), the iterative estimation procedure enforces the consistency of reconstructed data with both

the acquired and the calibration data. Lastly, PE-SSFP leverages joint sparsity (30, 31, 40) and

TV penalties (28) to dampen aliasing and noise interference. Here PE-SSFP was implemented as

a constrained optimization problem:

min
m

λ1

∥∥∥∥∥∥
√∑

n

|ψ{mn}|2
∥∥∥∥∥∥
1

+ λ2
∑
n

∥∇{mn}∥1 (6)

subj. to ∥(G − I) {m}∥22 = 0∑
n

∥yn −FPn {mn}∥22 = 0
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where m is the aggregate vector containing mn across all phase-cycles. The objective comprises a

joint sparsity term and a cumulative TV term across phase cycles. The first constraint enforces

consistency of reconstructed data with the calibration data (where G is the aggregate interpolation

operator, I is the identity operator). Meanwhile, the second constraint enforces cumulative data-

consistency across phase cycles.

To efficiently solve the constrained optimization formulated in Eq. 6, we leveraged an alternating

projection-onto-sets scheme with the aim to produce a quasi-optimal solution at the intersection of

multiple sets (40). The optimization was split into four projection operators, namely calibration

consistency, joint sparsity, TV, and data consistency projections. These projections were succes-

sively repeated to enforce relevant properties in the reconstructed data (see Fig. 2).

Calibration consistency: Prior to reconstruction, an interpolation kernel for profile encoding (K)

was obtained from aggregate calibration data ycalib (designated as the fully-sampled part of central

k-space). Kernel weights that capture linear relationships among 11×11 neighborhoods of k-space

samples were estimated based on the calibration constraint (K − I).ycalib = 0. A 13×13 kernel

was used at N=2 to leverage the relatively higher sampling density in central k-space. The solu-

tion of this inverse problem was obtained via Tikhonov regularization (with weight α = 0.01) to

enhance noise resilience and conditioning (40). Finally, an image-space operator G equivalent to

the trained k-space kernel K was computed. During reconstruction, calibration-consistency pro-

jections were implemented by applying G on the image reconstructed in the previous iteration,

m(k) = G
{
m(k−1)

}
.

Joint sparsity: Assuming insignificant motion between separate acquisitions, tissue boundaries and

sparsity patterns are expected to appear in identical locations across phase-cycled images. To

leverage this correlated structural information, we utilized a joint-sparsity model that has been

shown to offer benefits in other MR applications (30–32, 41, 42). During PE-SSFP, the joint-

sparsity term in Eq. 6 based on the Daubechies 4 wavelet can offer increased detection sensitivity

for relatively small coefficients shared across phase cycles.

Wavelet-domain sparsity is conventionally enforced via shrinkage methods based on hard- Sh(x) =

x
|x|−λ .max(0, |x|−λ) or soft-thresholding Ss(x) = x

|x| .max(0, |x|−λ), where λ is the threshold (43).
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Both functions null wavelet coefficients below λ, potentially reducing detection sensitivity for small

coefficients. To alleviate this issue, here we used a modified Huber function (44) :

Shuber(x) =

 x2/(2λ) , |x| < λ

|x| − λ/2 , otherwise
(7)

This function behaves similarly to soft-thresholding above λ, but it applies squared-weighting on

small coefficients to increase detection sensitivity. Note that iterative thresholding based on this

function provides a quasi-proximal mapping for the ℓ1-norm, thus λ was set to λ1 in Eq. 6. During

PE-SSFP, the following joint-sparsity projections were applied: m( 9k) = ψ−1
{
Shuber(ψ{m(k)})

}
.

TV: Total-variation projections were employed to reduce aliasing interference and noise. The

projections were implemented by minimizing the objective J(x) = ∥mn − x∥22 + λ2∥∇x∥1 using a

fast iterative-clipping algorithm:

x(i) = m( 9k)
n −∇tz(i−1)

z(i) = Sclip

(
z(i−1) +∇x(i)/α

)
(8)

where∇t is the adjoint finite-difference operator, z(1) = 0 and the update rate parameter α = 8 (45).

The clipping function was modified to handle complex values:

Sclip(z) =

 z , |z| < λ2/2

(λ2/2) · exp(j∠(z)) , otherwise
(9)

where ∠(z) is the phase of z. This algorithm converges rapidly, and the percentage change in the

objective fell to 0.01% within 5 iterations during each TV projection: m(:k) = TVproj

{
m( 9k)

}
.

Data consistency: To ensure consistency of reconstructed and acquired k-space data, reconstructed

data were projected onto the constraint
∑
n
∥yn −FPn {mn}∥22 = 0. This projection was im-

plemented by replacing reconstructed data with the acquired data in sampled locations (40):

m(;k) = F−1
{
(F − FP){m(:k)}+ y

}
.

The successive projections listed above were repeated until the percentage difference between the

reconstructed images in consecutive iterations fell to 0.001%. Convergence was achieved within 15
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iterations for the datasets considered here (see Sup. Fig. S1 for typical changes in joint sparsity,

TV and cumulative cost terms during PE-SSFP). The total reconstruction times are listed in Sup.

Table S1. The penalty weights λ1,2 were varied separately in the range [0 10] × 10−3 with a step

size of 10−3 for phantom data, and in the range [0 15]× 10−3 with a step size of 0.05×10−3 for in

vivo data (39). To minimize potential block artifacts and resolution losses, the smallest set of λ1,2

that yielded satisfactory artifact/noise suppression were selected via visual inspection (see Sup.

Table S2). To obtain a final bSSFP image, reconstructions for each phase-cycle were combined

with the p-norm method (p=4), which was selected for its computational simplicity and favorable

performance in artifact suppression and SNR efficiency (34).

Alternative Reconstructions

To comparatively demonstrate PE-SSFP, zero-filled Fourier (ZF), individual CS (iCS) and ESPIRiT

(46) reconstructions were also implemented. All methods reconstructed individual phase-cycled

images that were then p-norm combined (p=4).

ZF: Nonacquired k-space data were filled with zeros. Data for each phase-cycle were compensated

for the sampling density across k-space. An inverse Fourier transformation was then performed to

reconstruct each phase-cycled image.

iCS: Individual CS reconstructions of phase-cycled acquisitions were implemented as described in

Eq. 5. The sparsifying transform was selected as the Daubechies 4 wavelet. The optimization

was performed using an iterative conjugate-gradient algorithm (28). Iterations were repeated until

the percentage difference between the reconstructed images in consecutive iterations fell to 0.01%.

Convergence was achieved within 30 iterations for the datasets considered here. Further iterations

were avoided because they were observed to cause undesirable blurring in the reconstructions. The

regularization weights were scaled proportionately to those in PE-SSFP. Specifically, λ1 was set to

maintain the same ratio of sparsity to data-consistency terms (
√
N × λ1,PE−SSFP ), λ2 was set to

maintain the same ratio of TV to data-consistency terms (λ2,PE−SSFP ).

ESPIRiT: A soft-SENSE reconstruction (33) based on multiple sets of bSSFP profiles was imple-

mented using the ℓ1-ESPIRiT framework (46). Profile estimates were obtained via eigenvector
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decomposition of G in the image domain. Separate sets of profile estimates were obtained for each

phase cycle (Ĉj
n for the jth set, j ∈ [1 J ]), by selecting eigenvalues above a fixed threshold of

0.9 with a null-space cut-off σ2cutoff=0.02. This yielded two sets of bSSFP profiles estimates for

the datasets reported here. Individual phase-cycled images mn were then reconstructed via the

following optimization:

min
m

∑
n

∥yn −FPn {mn}∥22 + λ1

∥∥∥∥∥∥
√∑

n

|ψ{mn}|2
∥∥∥∥∥∥
1

(10)

where mn =
∑
j
Ĉj
nm

j
n. Variable splitting with a splitting parameter of 0.4 was implemented to de-

compose the optimization into two subproblems that minimize the profile-encoding cost (first term

in the objective) and the joint-sparsity cost (second term) respectively (47). The profile-encoding

subproblem was solved via a conjugate gradient algorithm with 20 iterations (40). Remaining re-

construction parameters including the number of outer iterations were kept identical to PE-SSFP.

Simulations

Simulations were performed based on a realistic brain phantom at 0.5 mm isotropic resolution

(http://www.bic.mni.mcgill.ca/brainweb). Phase-cycled bSSFP signals for each tissue were calcu-

lated based on Eq. 1, assuming the following T1/T2: 3000/1000 ms for cerebro-spinal fluid (CSF),

1200/250 ms for blood, 1000/80 ms for white matter, 1300/110 ms for gray matter, 1400/30 ms

for muscle, and 370/130 ms for fat. Meanwhile, three-dimensional (3D) acquisitions were simu-

lated using α = 45o (flip angle), TR = 5.0 ms, TE = 2.5 ms, 10 axial cross-sections equispaced to

cover the whole brain in the superior-inferior direction, and ∆ϕ = 2π [0:1:(N−1)]
N . The simulations

used a realistic field-inhomogeneity distribution corresponding to an off-resonance shift of 0±62 Hz

(mean±std; see Fig. 1).

To demonstrate the auto-calibration approach used in PE-SSFP, we examined how well the acquired

data can be represented via the bSSFP profiles estimated from calibration data. Using the profiles

extracted by the ESPIRiT method (46), each phase-cycled image was projected onto the subspace

spanned by the bSSFP profiles. A difference map was then calculated between each image and
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its projection onto this subspace. An aggregate error map was finally formed via sum-of-squares

combination of difference maps across phase cycles. Error maps were generated for varying kernel

sizes (5, 7, 9, 11, 13, 15, 17), calibration area sizes (6%, 8%, 10%, 12%, 14% of the maximum

spatial frequency), and null-space cut-offs (σ2cutoff=2x10−1,−2,−3,−4,−5).

Next, simulated brain images were undersampled by a factor of N in two phase-encode dimensions

using patterns generated for uniform-density, variable-density, and Poisson disc sampling. Separate

acquisitions were obtained for common and disjoint sampling patterns across phase cycles. PE-

SSFP and alternative reconstructions were performed.

Reconstruction quality was assessed by several different metrics measured on combined bSSFP im-

ages. For a given cross-section, a mean-squared error (MSE) was first measured between the image

reconstructed from N undersampled acquisitions and a reference image Fourier reconstructed from

N=8 fully-sampled acquisitions. Because N=8 is typically sufficient for artifact suppression, MSE

assessed the reconstruction performance in reducing banding artifacts in addition to aliasing/noise

interference. The peak signal-to-noise (PSNR) metric was then derived from this MSE measure-

ment to summarize the overall image quality. Lastly, a mean structural similarity index (SSIM) was

measured between the reconstructed image and the reference image for N=8, following histogram

matching to account for large-scale intensity variations (25). SSIM assessed the degree of visual

similarity in tissue structure to the reference image. To assess the reliability of PE-SSFP against

field inhomogeneity, residual banding artifacts were evaluated on combined bSSFP images. CSF,

white matter and gray matter signals were segregated via tissue masks. The level of residual arti-

fact for each tissue was then characterized based on a percentage ripple metric. Ripple was taken

as the ratio of the range of signal intensity to the mean intensity level. All metrics were pooled

across 10 cross-sections in the phantom.

Several variants of PE-SSFP were implemented to assess the relative importance of the individual

projection stages of the proposed method: PEcalib with only calibration and data-consistency projec-

tions; PEhuber with calibration, sparsity (based on Huber thresholding) and data-consistency projec-

tions; PEsoft−TV with calibration, sparsity (based on soft thresholding), TV and data-consistency

projections. Each additional projection included in PE-SSFP significantly improved the PSNR and

SSIM values (p<0.005, signed-rank test; see Sup. Table S3). Furthermore, PE-SSFP outperformed
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that PEsoft−TV for all N>2 (p<0.005). Thus, Huber thresholding was prescribed for all PE-SSFP

reconstructions thereafter.

To examine the effect of tissue and sequence parameters on reconstruction performance, additional

simulations were performed based on varying T1/T2 ratios, flip angles, TRs (with TE = TR/2),

SNR levels, and acceleration factors (R). The following parameters were considered: (-40%, -20%,

0%, 20%, 40%) deviation in T1/T2 ratios, α = (15o, 30o, 45o, 60o, 75o), TR = (5 ms, 10 ms, 15

ms), SNR levels ranging in [10 30] for CSF. To examine performance when R exceeds number of

acquisitions (N), the following cases were simulated (N=2, R=4), (N=4, R=6), (N=4, R=8), and

(N=6, R=8).

To evaluate noise performance, the SNR levels in the reconstructed images were compared against

those in fully-sampled images. For this analysis, 30 separate noise instances with a bivariate

Gaussian distribution were added to phase-cycled bSSFP images to attain acquisition SNR=20 for

CSF. Each dataset was reconstructed to yield 30 separate combined bSSFP images. The SNR of

each voxel was taken as the ratio of the mean to standard deviation of signal intensity across 30

images. A noise amplification map was then computed as the SNR ratio between the fully-sampled

reference and reconstructed images. Significance of differences among reconstruction methods were

assessed with nonparametric Wilcoxon signed-rank tests.

In Vivo Experiments

In vivo phase-cycled bSSFP images of the brain and the knee were collected on a 3 T Siemens Mag-

netom scanner (maximum gradient strength of 45 mT/m and slew rate of 200 T/m/s) with a 3D

Cartesian sequence. The brain imaging protocol comprised a flip angle of 30o, a TR/TE of 5.1/2.65

ms, a field-of-view (FOV) of 218 mm, an isotropic resolution of 0.85 mm, superior/inferior readout

direction, N=8 separate acquisitions with phase-cycling values (∆ϕ) spanning [0, 2π) in equispaced

intervals, and a 32-channel receive-only head coil. The knee imaging protocol comprised a flip angle

of 30o, a TR/TE of 5.0/2.5 ms, an FOV of 192 mm, an isotropic resolution of 1 mm, left/right read-

out direction, N=8, and a 15-channel receive-only knee coil. Fully-sampled images were combined

across coils to obtain single-channel multiple acquisition datasets. All participants gave written
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informed consent, and the imaging protocols were approved by the local ethics committee.

The brain and knee acquisitions were variable-density undersampled in the phase-encode dimensions

to yield acceleration factors of 2-8, and profile-encoding reconstructions were performed. The

following phase-cycling values were selected for reconstruction: ∆ϕ = 2π [0:1:(N−1)]
N for N = 2, 4 and

8. The phase cycles for N = 6 were selected as a subset of those for N =8 (0, π/2, 3π/4, π, 5π/4,

7π/4) to reduce overall scan time and minimize potential motion artifacts.

To examine the quality of reconstructed images, PSNR and SSIM metrics were measured across 10

equispaced cross-sections. For brain images, axial cross-sections were used that spanned across the

entire volume in the superior-inferior direction. For knee images, sagittal cross-sections in the left-

right direction were used. The reference image was taken as the combined Fourier reconstruction

of N=8 fully-sampled acquisitions.
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Results

Simulation Analyses

PE-SSFP was first demonstrated on bSSFP images of a numerical brain phantom. Figure 3 shows

the combination bSSFP images reconstructed via ZF, iCS and PE-SSFP. As expected, heavier

undersampling applied at higher N values increases aliasing interference in ZF images. Meanwhile

iCS reconstructions, which process phase cycles independently, suffer from prominent losses in

spatial resolution. In contrast, PE-SSFP successfully reduces aliasing interference while maintaining

detailed tissue depiction even at N = 8.

Several complementary analyses were performed to elucidate factors contributing to reconstruction

performance. To demonstrate the auto-calibration approach in PE-SSFP, errors were examined in

representing acquired data in terms of the bSSFP profiles estimated from calibration data (Sup.

Figs. S2 and S3). For the kernel size, calibration area and null-space cutoff prescribed in PE-SSFP,

residual high-spatial-frequency errors occur near banding artifacts for each phase cycle. When

combined across phase-cycles, the auto-calibration errors appear near tissue boundaries rather

uniformly across the FOV. The average auto-calibration error relative to the maximum signal

intensity is 3.2±0.6% (mean±s.e. across N). The percentage improvement that can be attained by

advancing the kernel size, calibration area or null-space cutoff to their optimal values in the tested

range is merely 1.0±0.3%. Thus, the selected PE-SSFP parameters yield near-optimal results with

relatively low error levels. To determine the effects of individual projection operators in PE-SSFP,

several variant reconstructions and respective squared-error maps relative to a fully-sampled image

were computed (Fig. 4). The inclusion of each projection visibly reduces error across the image. To

examine noise statistics of the reconstructions, noise amplification factors were calculated across

the images (Fig. 5). Although the heavier undersampling at high N increases noise in ZF, penalty

terms in iCS and PE-SSFP help maintain lower noise. In PE-SSFP, relatively higher amplification is

observed near tissue boundaries that are more susceptible to resolution loss due to variable-density

undersampling.

To determine the effect of the sampling strategy on PE-SSFP, uniform-density, variable-density and
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Poisson disc undersampling patterns were tested. Each type of pattern was applied both commonly

and disjointly across phase cycles. While all sampling strategies yield similar PSNR and SSIM values

at N=2 (Sup. Table S4), variable-density (VD) disjoint sampling outperforms all other methods for

N>2 (p<0.005). VD disjoint sampling improves PSNR by 4.0±1.9 dB (mean±s.e. across N) and

SSIM by 0.8±0.5% over VD common sampling, and PSNR by 3.2±1.6 dB and SSIM by 0.4±0.2%

over Poisson-disc disjoint sampling. Thus VD disjoint sampling was used for all reconstructions

reported here.

Finally, PE-SSFP was comparatively evaluated against ZF, iCS and ESPIRiT. Representative im-

ages for N=8 are shown in Fig. 6 along with the squared-error maps in reference to a fully-sampled

image. While ZF shows broadly distributed errors across the field-of-view, iCS reduces noise and

aliasing interference at the expense of losses in high-spatial-frequency information. While ESPIRiT

reconstructions alleviate this loss via joint-sparsity penalties, the respective images still show dis-

tributed errors. In contrast, PE-SSFP using both joint-sparsity and TV regularization effectively

dampens the reconstruction errors in phase-cycled bSSFP images.

The observations regarding PE-SSFP’s superior image quality are supported by the quantitative

assessments listed in Table 1. For each N, PE-SSFP yields significantly higher PSNR and SSIM

values compared to all other reconstructions (p<0.005), with the exception of N=2 where iCS and

PE-SSFP yield similar values. PE-SSFP improves PSNR by 13.1±5.0 dB and SSIM by 4.8±2.5%

over iCS, and PSNR by 14.5±3.2 dB and SSIM by 3.4±0.6% over ESPIRiT. Extended simulations

presented in Sup. Tables S5 and S6 indicate that these results are valid (p<0.005) broadly across

varying flip angles (15o-75o), T1/T2 ratios (-40% to 40%), TRs (5-15 ms), noise levels (SNR=10-30),

and when the acceleration factor exceeds N. The percentage ripple measurements listed in Table 1

indicate that PE-SSFP yields more homogeneous tissue signals compared to alternative methods

for all N (p<0.005). Taken together, these results suggest that PE-SSFP reliably enhances image

quality and artifact suppression compared to conventional reconstructions.
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In Vivo Analyses

PE-SSFP was demonstrated on bSSFP acquisitions of the brain and the knee. Similar to phantom

results, the auto-calibration error was relatively low with 6.1±1.3% error (mean±s.e. across N) in

the brain, and 3.7±0.7% error in the knee. Figure 7 shows the combined PE-SSFP images and the

squared-error maps for N=2-8. As expected, prominent errors due to residual banding are visible

for lower N values. These errors are alleviated towards high N, while maintaining high-quality tissue

depiction. Representative images from ZF, iCS, ESPIRiT and PE-SSFP are displayed in Fig. 8.

While iCS incurs losses at high spatial frequencies and coherent interference at low frequencies,

ESPIRiT suffers from broadly distributed reconstruction errors across the images. In contrast,

PE-SSFP visibly reduces reconstruction errors and preserves high-spatial-frequency information.

Quantitative assessments of in vivo reconstructions are listed in Table 2. In both the brain and

the knee, PE-SSFP yields significantly higher PSNR and SSIM values compared to iCS for N>2

(p<0.05). PE-SSFP also improves PSNR and SSIM compared to all other alternative reconstruc-

tions for all N (p<0.05), with the exception of knee images at N=8 where PE-SSFP and ESPIRiT

yield similar PSNR. In the brain, PE-SSFP improves PSNR by 3.0±2.6 dB and SSIM by 1.4±1.2%

over iCS, and PSNR by 8.5±0.8 dB and SSIM by 7.1±0.5% over ESPIRiT. In the knee, PE-SSFP

improves PSNR by 4.7±3.5 dB and SSIM by 1.8±0.6% over iCS, and PSNR by 2.8±1.2 dB and

SSIM by 8.3±0.4% over ESPIRiT. Taken together, these results strongly suggest that the proposed

method enables scan-efficient suppression of banding artifacts at high N values, while maintaining

detailed tissue structure via the joint reconstruction.
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Discussion

Here we evaluted an improved acceleration framework for multiple-acquisition 3D bSSFP based

on variable-density random undersampling in two phase-encode dimensions. In this framework,

nonacquired data across phase-cycles are simultaneously synthesized using a profile-encoding re-

construction that enforces joint sparsity and TV penalties. A p-norm combination of individual

phase-cycled images yields a final artifact-suppressed bSSFP image.

Several alternative approaches were previously proposed for reducing banding artifacts. One strat-

egy is to increase the tolerable range of field inhomogeneity by modifying the bSSFP magnetization

profile (12–15). Alternatively, advanced shimming procedures can be performed to directly limit

field inhomogeneity (16). While both strategies aim to reduce banding artifacts during acquisition,

they require complex pulse-sequence modifications and prolonged scan times. In contrast, our pro-

posed framework can be implemented via standard bSSFP sequences without separate calibration

procedures.

Improvements in scan efficiency of multiple-acquisition bSSFP have been considered in several pre-

vious reports. Recently, we proposed to undersample and individually reconstruct phase-cycled

acquisitions using CS (25). The CS framework yielded high quality reconstructions up to an accel-

eration factor of N=4. Another study employed simultaneous multislice imaging to accelerate each

acquisition separately, and similarly considered N≤4 (26). While these previous studies disregarded

image features shared across phase-cycles, here we used a joint-sparsity model to enhance recovery

of wavelet coefficients, and TV regularization to reduce aliasing and noise interference. Due to these

advances, PE-SSFP maintains high-quality reconstructions up to N=8. Spatial encoding by coil

arrays was not leveraged in the reconstructions reported here. However, if more effective artifact

suppression is needed (e.g., while imaging at 7T or near air-tissue interfaces), a higher N value

and a respectively higher acceleration factor might be maintained by also leveraging coil sensitivity

information. Note, however, that each phase-cycled acquisition involves a fixed-duration overhead

due to the preparatory RF pulses employed to reach steady state. This overhead will become more

prominent for larger N values, reducing the overall scan efficiency.

With similar motivations to PE-SSFP, one earlier study proposed a SENSE-type reconstruction
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performed jointly across phase-cycled acquisitions, each accelerated via uniform-density undersam-

pling (35). Sensitivity estimates were taken as the ratio of low resolution phase-cycled images to a

maximum-intensity combination of these images. In contrast, here we used variable-density sam-

pling, and we did not assume any combination model while calibrating the interpolation kernel.

Our results clearly indicate that variable-density sampling offers improved performance compared

to uniform sampling.

PE-SSFP can be potentially improved by addressing several limitations. First, if significant mo-

tion occurs in between separate acquisitions, image structure can be displaced across phase-cycles.

These displacements may in turn violate the joint-sparsity model and yield suboptimal reconstruc-

tions. A motion-correction operator could be incorporated to alleviate motion-induced performance

loss. Second, the auto-calibration approach in PE-SSFP relies on the assumption that bSSFP spa-

tial profiles vary gradually. Rapid profile variations near tissue boundaries or bSSFP nulls can

yield suboptimal interpolation operators, increasing reconstruction errors. This issue may be of

particular concern with high field strengths, long TRs, and certain combinations of T1/T2 and flip

angles. In such cases, the k-space calibration area could be expanded and interpolation kernels

of variable widths across k-space could be used to improve accuracy of the interpolation opera-

tor (48,49). Third, while a p-norm combination was observed to yield good artifact suppression in

this study, it could be replaced with sophisticated techniques that leverage analytical signal models

to further improve artifact suppression (17,18). Lastly, optimization with the projection-onto-sets

method does not guarantee convergence onto a fixed solution in the absence of overlap between the

projection sets. While we observed good convergence behavior here, reconstruction stability can

be improved by modern approaches such as the alternating direction method of multipliers (50).

In conclusion, the proposed PE-SSFP framework jointly reconstructs multiple-acquisition bSSFP

data by leveraging shared sparsity patterns across phase-cycles. PE-SSFP was primarily demon-

strated for brain and knee imaging in the current study. Nonetheless, the scan-efficient acquisitions

and high-quality reconstructions enabled by PE-SSFP could improve other multiple-acquisition

bSSFP applications such as peripheral angiography (51), coronary imaging (52), and fat/water

separation (23,53).
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Table 1: Image Assessments for the Brain Phantom

Peak SNR and Structural Similarity

N = 2 N = 4 N = 6 N = 8

ZF
PSNR 51.8±0.1 50.0±0.2 47.2±0.1 45.9±0.1
SSIM 72.8±0.6 65.4±0.8 62.4±0.8 61.2±0.8

iCS
PSNR 57.5±0.5 61.3±0.3 52.3±0.4 49.0±0.3
SSIM 97.9±0.1 97.0±0.0 91.4±0.3 88.2±0.3

ESPIRiT
PSNR 48.0±0.1 56.3±0.1 56.1±0.3 54.1±0.3
SSIM 93.5±0.1 95.8±0.1 95.6±0.1 95.1±0.1

PE-SSFP
PSNR 57.9±0.4 78.2±0.3 71.5±0.4 64.9±0.3
SSIM 98.4±0.1 98.8±0.0 98.4±0.0 98.0±0.0

Percentage Ripple

N=2 N=4 N=6 N=8

ZF
CSF 38.8±2.1 29.7±1.6 31.9±2.1 32.5±2.1
White 72.9±4.0 94.7±6.4 94.0±5.3 97.2±6.5
Gray 53.8±2.1 73.2±5.1 76.3±3.2 77.8±5.5

iCS
CSF 23.2±0.8 8.9±1.1 17.9±1.4 23.9±2.6
White 8.5±1.1 21.4±3.0 40.9±5.9 48.8±4.3
Gray 9.7±1.1 17.7±1.4 30.8±4.6 36.7±6.2

ESPIRiT
CSF 43.9±1.1 17.5±2.1 18.8±1.5 19.7±1.4
White 43.7±5.8 41.3±7.9 47.2±6.3 51.4±8.7
Gray 39.0±3.8 28.7±2.7 34.5±3.8 36.1±5.0

PE-SSFP
CSF 22.5±0.2 2.1±0.2 3.4±0.5 3.1±0.5
White 5.4±0.4 5.9±0.5 6.3±0.7 6.6±0.7
Gray 8.3±0.3 6.9±0.4 6.8±0.4 7.4±1.1

Image assessment metrics measured in reconstructed bSSFP
images of the numerical brain phantom. Metrics are reported
separately for each reconstruction method as mean±std across
10 cross-sections. The top panel lists the peak SNR (PSNR)
and structural similarity (SSIM) measurements obtained for
α = 45o, TR = 5 ms, fixed T1/T2 values, and a realistic off-
resonance frequency map (0±62 Hz). The bottom panel lists
the percentage ripple measurements for CSF, white matter
and gray matter separately.
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Table 2: Image Assessments for In Vivo Datasets

Brain Images

N=2 N=4 N=6 N=8

ZF
PSNR 48.6±0.2 44.1±0.4 41.4±0.4 40.3±0.4
SSIM 73.5±0.6 56.4±0.8 50.6±0.7 48.9±0.8

iCS
PSNR 58.4±1.0 60.7±0.4 56.8±0.9 53.2±0.9
SSIM 93.0±1.0 93.2±0.8 91.2±0.8 88.9±0.9

ESPIRiT
PSNR 49.5±0.5 53.4±0.4 51.8±0.6 52.5±0.5
SSIM 84.2±0.7 87.6±0.8 84.7±0.5 86.7±0.7

PE-SSFP
PSNR 56.0±0.7 62.5±0.5 61.0±0.8 61.5±0.7
SSIM 92.0±0.5 94.0±0.4 92.7±0.4 93.0±0.3

Knee Images

N = 2 N = 4 N = 6 N = 8

ZF
PSNR 59.6±0.3 57.8±0.5 55.7±0.3 54.4±0.4
SSIM 86.2±0.6 77.2±0.9 72.8±1.1 69.2±1.1

iCS
PSNR 65.2±0.7 72.8±0.4 65.3±0.9 63.0±1.2
SSIM 94.7±0.5 95.5±0.4 92.0±0.4 90.5±0.2

ESPIRiT
PSNR 60.5±0.4 68.3±0.4 70.7±0.6 74.6±0.6
SSIM 84.5±1.2 87.2±2.4 87.2±2.4 87.8±2.3

PE-SSFP
PSNR 63.9±0.5 73.3±0.4 73.4±0.7 74.5±0.6
SSIM 93.5±0.4 95.8±0.2 95.2±0.3 95.4±0.3

Image assessment metrics measured in reconstructed bSSFP
images of in vivo brain and knee data. Metrics are reported
separately for each reconstruction method as mean±std across
10 cross-sections. The top panel lists PSNR and SSIM mea-
surements for brain images, and the bottom panel lists the
measurements for knee images.
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List of Figures

1 In the profile-encoding framework, each phase-cycled bSSFP image (Sn) is modeled
as the multiplication of an ideal image free of banding artifacts (So) with a respective
bSSFP sensitivity profile (Cn). The value of the bSSFP profile at each location is a
function of total phase accrual over a single TR due to main field inhomogeneity and
RF phase-cycling increment (∆ϕ). Locations of near-zero phase shift (modulo 2π)
lead to significantly diminished sensitivity and thereby banding artifacts in bSSFP
images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2 Flowchart of the profile-encoding bSSFP (PE-SSFP) reconstruction that recovers
missing data in undersampled phase-cycled acquisitions. PE-SSFP employs an al-
ternating projection-onto-sets scheme with four projection operators: calibration,
joint-sparsity, TV, and data-consistency projections. In the calibration projection,
an interpolation kernel estimated from calibration data is used to synthesize miss-
ing samples linearly from acquired data across phase-cycles. In the joint-sparsity
projection, wavelet coefficients of phase-cycled bSSFP images are thresholded with
a Huber function. In the TV projection, bSSFP images are denoised with a fast
iterative-clipping algorithm. In the data-consistency projection, reconstructed data
in sampled locations are replaced with their acquired values. These projections are
successively repeated, and the individual phase-cycled images are finally combined
with the p-norm method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Phase-cycled bSSFP images of a numerical phantom were simulated for N=2-8, α =
45o, TR/TE=5.0/2.5 ms, a field map of 0±62 Hz (mean±std). Phantom images were
undersampled by a factor of N via variable-density random sampling, disjointly across
phase cycles. Zero-filled Fourier (ZF, top row), individual compressed sensing (iCS,
middle row), and PE-SSFP (bottom row) reconstructions are shown. White boxes
display a zoomed-in portion of the images. ZF reconstructions suffer from elevated
aliasing/noise interference at high N due to the heavier undersampling factors used.
While iCS reconstructions employ regularization terms that limit this interference,
the heavy undersampling factors at high N cause visible loss of spatial resolution.
In contrast, PE-SSFP successfully alleviates noise and aliasing interference while
maintaining detailed depiction of tissue boundaries. . . . . . . . . . . . . . . . . . . 32

4 Representative bSSFP images of the numerical phantom for N=4 were reconstructed
using ZF and PE-SSFP. Images from three variants of PE-SSFP are shown (top
row). PEcalib only uses calibration and data-consistency projections, PEhuber uses
calibration, joint-sparsity and data-consistency projections, and PE-SSFP addition-
ally uses TV projections. Reconstructions were compared against a combination of
fully-sampled images (for N=8). Squared-error maps are shown in logarithmic scale
(bottom row; see colorbar). Each additional projection in PE-SSFP yields visibly
reduced reconstruction error in bSSFP images. . . . . . . . . . . . . . . . . . . . . . 33
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5 The noise-amplification maps for ZF, iCS and PE-SSFP methods are displayed for
N=2-8. Although the heavier undersampling at high N increases noise amplification
in ZF reconstructions, reconstructions with penalty terms iCS and PE-SSFP main-
tain relatively low noise amplification even at high N. The lower noise amplification
with iCS likely reflects a bias from excessive loss of high-spatial-frequency informa-
tion. In PE-SSFP, relatively higher amplification is observed near tissue boundaries
that are more susceptible to resolution loss due to variable-density undersampling. . 34

6 Phase-cycled bSSFP reconstructions of the numerical phantom (top row), and the
squared-error maps with respect to the fully-sampled combination image (bottom
row) are displayed for N=8. ZF has broadly distributed errors across the field-of-
view due to aliasing and noise interference. iCS reconstructions reduce this interfer-
ence via TV regularization at the expense of elevated errors near tissue boundaries,
due to significant loss of high-spatial-frequency information. While ESPIRiT recon-
structions alleviate this loss via joint-sparsity penalties, the respective images still
show broadly distributed errors. In contrast, PE-SSFP using both joint-sparsity and
TV regularization further dampens the reconstruction errors in phase-cycled bSSFP
images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7 In vivo bSSFP acquisitions of the brain (a) and the knee (b) were reconstructed using
PE-SSFP. Squared-error maps are shown in logarithmic scale (see colorbar). The
error maps clearly suggest that banding artifact suppression improves for higher N,
while PE-SSFP maintains detailed depiction of high-spatial-frequency information. 36

8 In vivo phase-cycled bSSFP reconstructions of the brain (a) and the knee (b) are
displayed for N=8. ZF and ESPIRiT reconstructions suffer from broadly distributed
reconstruction error across the images. Meanwhile, iCS reconstructions show sub-
stantial loss of high-spatial-frequency information and coherent low-frequency inter-
ference. In contrast, PE-SSFP effectively reduces errors due to aliasing and noise
interference, while maintaining detailed tissue depiction. . . . . . . . . . . . . . . . 37
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Figure 1: In the profile-encoding framework, each phase-cycled bSSFP image (Sn) is modeled as the
multiplication of an ideal image free of banding artifacts (So) with a respective bSSFP sensitivity
profile (Cn). The value of the bSSFP profile at each location is a function of total phase accrual over
a single TR due to main field inhomogeneity and RF phase-cycling increment (∆ϕ). Locations of
near-zero phase shift (modulo 2π) lead to significantly diminished sensitivity and thereby banding
artifacts in bSSFP images.
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Figure 2: Flowchart of the profile-encoding bSSFP (PE-SSFP) reconstruction that recovers missing
data in undersampled phase-cycled acquisitions. PE-SSFP employs an alternating projection-onto-
sets scheme with four projection operators: calibration, joint-sparsity, TV, and data-consistency
projections. In the calibration projection, an interpolation kernel estimated from calibration data
is used to synthesize missing samples linearly from acquired data across phase-cycles. In the
joint-sparsity projection, wavelet coefficients of phase-cycled bSSFP images are thresholded with
a Huber function. In the TV projection, bSSFP images are denoised with a fast iterative-clipping
algorithm. In the data-consistency projection, reconstructed data in sampled locations are replaced
with their acquired values. These projections are successively repeated, and the individual phase-
cycled images are finally combined with the p-norm method.
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Figure 3: Phase-cycled bSSFP images of a numerical phantom were simulated for N=2-8, α = 45o,
TR/TE=5.0/2.5 ms, a field map of 0±62 Hz (mean±std). Phantom images were undersampled
by a factor of N via variable-density random sampling, disjointly across phase cycles. Zero-filled
Fourier (ZF, top row), individual compressed sensing (iCS, middle row), and PE-SSFP (bottom
row) reconstructions are shown. White boxes display a zoomed-in portion of the images. ZF
reconstructions suffer from elevated aliasing/noise interference at high N due to the heavier un-
dersampling factors used. While iCS reconstructions employ regularization terms that limit this
interference, the heavy undersampling factors at high N cause visible loss of spatial resolution. In
contrast, PE-SSFP successfully alleviates noise and aliasing interference while maintaining detailed
depiction of tissue boundaries.
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Figure 4: Representative bSSFP images of the numerical phantom for N=4 were reconstructed
using ZF and PE-SSFP. Images from three variants of PE-SSFP are shown (top row). PEcalib

only uses calibration and data-consistency projections, PEhuber uses calibration, joint-sparsity and
data-consistency projections, and PE-SSFP additionally uses TV projections. Reconstructions were
compared against a combination of fully-sampled images (for N=8). Squared-error maps are shown
in logarithmic scale (bottom row; see colorbar). Each additional projection in PE-SSFP yields
visibly reduced reconstruction error in bSSFP images.
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Figure 5: The noise-amplification maps for ZF, iCS and PE-SSFP methods are displayed for N=2-8.
Although the heavier undersampling at high N increases noise amplification in ZF reconstructions,
reconstructions with penalty terms iCS and PE-SSFP maintain relatively low noise amplification
even at high N. The lower noise amplification with iCS likely reflects a bias from excessive loss of
high-spatial-frequency information. In PE-SSFP, relatively higher amplification is observed near
tissue boundaries that are more susceptible to resolution loss due to variable-density undersampling.
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-15 dB-40 dB

Figure 6: Phase-cycled bSSFP reconstructions of the numerical phantom (top row), and the
squared-error maps with respect to the fully-sampled combination image (bottom row) are dis-
played for N=8. ZF has broadly distributed errors across the field-of-view due to aliasing and noise
interference. iCS reconstructions reduce this interference via TV regularization at the expense of
elevated errors near tissue boundaries, due to significant loss of high-spatial-frequency information.
While ESPIRiT reconstructions alleviate this loss via joint-sparsity penalties, the respective im-
ages still show broadly distributed errors. In contrast, PE-SSFP using both joint-sparsity and TV
regularization further dampens the reconstruction errors in phase-cycled bSSFP images.
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Figure 7: In vivo bSSFP acquisitions of the brain (a) and the knee (b) were reconstructed using
PE-SSFP. Squared-error maps are shown in logarithmic scale (see colorbar). The error maps clearly
suggest that banding artifact suppression improves for higher N, while PE-SSFP maintains detailed
depiction of high-spatial-frequency information.
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Figure 8: In vivo phase-cycled bSSFP reconstructions of the brain (a) and the knee (b) are
displayed for N=8. ZF and ESPIRiT reconstructions suffer from broadly distributed reconstruction
error across the images. Meanwhile, iCS reconstructions show substantial loss of high-spatial-
frequency information and coherent low-frequency interference. In contrast, PE-SSFP effectively
reduces errors due to aliasing and noise interference, while maintaining detailed tissue depiction.
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Supporting Table S1: Reconstruction Times
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Supporting Table S2: Regularization Parameters
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Supporting Table S3: Image Quality: Contribution of PE-SSFP projections
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Supporting Table S4: Image Quality: Sampling Patterns
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Supporting Table S5: Image Quality: Variations in Tissue and Sequence Parameters
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Supporting Table S6: Image Quality: Acceleration Factor
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S1 Undersampled acquisitions of the numerical brain phantom were reconstructed using
PE-SSFP. The percentage difference between the reconstructed images in consecutive
iterations fell to 0.001% within 15 iterations. The evolution of the PE-SSFP cost
terms (calculated after the data-consistency projection) across these iterations are
shown for N=2-8: (a) joint-sparsity cost, (b) TV cost, (c) combined cost in Eq. 6.
The cost at each iteration is displayed as mean±std across 10 cross sections. The
cost terms diminish smoothly across iterations. . . . . . . . . . . . . . . . . . . . . . 46

S2 The auto-calibration approach was demonstrated by examining how well the acquired
data can be represented via the bSSFP profiles estimated from calibration data. A
separate error map was first calculated between the fully-sampled image at each
phase cycle and its projection onto the subspace spanned by the bSSFP profiles.
These individual error maps were then sum-of-squares combined across phase cycles.
Representative maps are shown for N=4. (a) Actual bSSFP profiles for each phase-
cycle. (b-d) Individual and combined error maps for varying calibration-kernel
sizes ([5, 8, 11]), calibration-area sizes ([2%, 6%, 10%] of the maximum spatial
frequency), and null-space cut-offs (σcutoff=2x10−1, 9x10−2, 2x10−2). The relatively
small calibration area/kernel size and high σcutoff in b cause prominent low- and
high-spatial-frequency errors, whereas the more optimal parameters in d (those used
in PE-SSFP) significantly dampen the low-spatial-frequency errors. In all cases,
relatively higher errors occur in the vicinity of banding artifacts in individual maps.
Because banding artifacts for distinct phase-cycles are in non-overlapping locations,
the combined maps show a rather uniform error distribution. . . . . . . . . . . . . . 47

S3 The success of the auto-calibration approach in estimating bSSFP profiles was an-
alyzed for a broad range of calibration-kernel sizes, calibration-area sizes and null-
space cut-offs. Representative error maps combined across phase-cycles are shown
for N=8. (a) Error maps for different calibration-kernel sizes. (b) Error maps
for different calibration-area sizes. (c) Error maps for different null-space cut-offs.
PE-SSFP parameters are emphasized in bold font within each panel. The errors
predominantly occur in regions of sharp signal transition near tissue boundaries. . . 48
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Supporting Figure S1: Undersampled acquisitions of the numerical brain phantom were recon-
structed using PE-SSFP. The percentage difference between the reconstructed images in consec-
utive iterations fell to 0.001% within 15 iterations. The evolution of the PE-SSFP cost terms
(calculated after the data-consistency projection) across these iterations are shown for N=2-8: (a)
joint-sparsity cost, (b) TV cost, (c) combined cost in Eq. 6. The cost at each iteration is displayed
as mean±std across 10 cross sections. The cost terms diminish smoothly across iterations.
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Supporting Figure S2: The auto-calibration approach was demonstrated by examining how well the
acquired data can be represented via the bSSFP profiles estimated from calibration data. A separate
error map was first calculated between the fully-sampled image at each phase cycle and its projection
onto the subspace spanned by the bSSFP profiles. These individual error maps were then sum-of-
squares combined across phase cycles. Representative maps are shown for N=4. (a) Actual bSSFP
profiles for each phase-cycle. (b-d) Individual and combined error maps for varying calibration-
kernel sizes ([5, 8, 11]), calibration-area sizes ([2%, 6%, 10%] of the maximum spatial frequency), and
null-space cut-offs (σcutoff=2x10−1, 9x10−2, 2x10−2). The relatively small calibration area/kernel
size and high σcutoff in b cause prominent low- and high-spatial-frequency errors, whereas the more
optimal parameters in d (those used in PE-SSFP) significantly dampen the low-spatial-frequency
errors. In all cases, relatively higher errors occur in the vicinity of banding artifacts in individual
maps. Because banding artifacts for distinct phase-cycles are in non-overlapping locations, the
combined maps show a rather uniform error distribution.
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Supporting Figure S3: The success of the auto-calibration approach in estimating bSSFP profiles
was analyzed for a broad range of calibration-kernel sizes, calibration-area sizes and null-space cut-
offs. Representative error maps combined across phase-cycles are shown for N=8. (a) Error maps
for different calibration-kernel sizes. (b) Error maps for different calibration-area sizes. (c) Error
maps for different null-space cut-offs. PE-SSFP parameters are emphasized in bold font within each
panel. The errors predominantly occur in regions of sharp signal transition near tissue boundaries.
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N = 2 N = 4 N = 6 N = 8

Brain (phantom) 19.6 s 28.4 s 37.8 s 60.0 s

Brain (in vivo) 6.6 s 9.6 s 13.0 s 16.2 s

Knee (in vivo) 6.1 s 8.6 s 11.8 s 16.3 s

PE-SSFP reconstruction times for a single cross-section are
listed for phantom and in vivo data. Reconstructions were
implemented in MATLAB (Mathworks, MA), on a work-
station equipped with a 3.2 GHz Intel E5 processor (Intel
Corporation, CA).

Supporting Table S1: Reconstruction Times
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N = 2 N = 4 N = 6 N = 8

Brain (phantom) 8.0, 2.0 8.0, 2.0 8.0, 2.0 8.0, 2.0

Brain (in vivo) 1.5, 15 1.5, 15 0.75, 7.5 0.75, 7.5

Knee (in vivo) 0.15, 1.5 0.15, 1.5 0.075, 0.75 0.075, 0.75

Regularization parameters λ1,2(×10−3) prescribed for PE-SSFP reconstruc-
tions are listed for each dataset and each N.

Supporting Table S2: Regularization Parameters
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N = 2 N = 4 N = 6 N = 8

ZF
PSNR 51.8±0.1 50.0±0.2 47.2±0.1 45.9±0.1
SSIM 72.8±0.6 65.4±0.8 62.4±0.8 61.2±0.8

PEcalib
PSNR 57.3±0.2 63.4±0.2 59.7±0.2 56.8±0.2
SSIM 96.1±0.1 94.4±0.1 92.4±0.1 92.1±0.1

PEhuber
PSNR 57.7±0.3 69.8±0.3 64.6±0.4 59.6±0.3
SSIM 97.9±0.1 98.1±0.0 97.3±0.0 96.6±0.0

PEsoft−TV
PSNR 57.8±0.4 73.1±0.3 67.7±0.3 62.5±0.3
SSIM 98.0±0.1 98.2±0.0 97.8±0.0 97.4±0.0

PE-SSFP
PSNR 57.9±0.4 78.2±0.3 71.5±0.4 64.9±0.3
SSIM 98.4±0.1 98.8±0.0 98.4±0.0 98.0±0.0

Undersampled phantom images were reconstructed with sev-
eral variants of PE-SSFP. The variants included PEcalib (cal-
ibration and data-consistency projections), PEhuber (cali-
bration, sparsity -based on Huber thresholding- and data-
consistency projections), PEsoft−TV (calibration, sparsity -
based on soft thresholding- TV and data-consistency projec-
tions). Peak SNR (PSNR) and structural similarity (SSIM)
measurements are reported as mean±std across 10 cross sec-
tions.

Supporting Table S3: Image Quality: Contribution of PE-SSFP projections
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Peak SNR

N=2 N=4 N=6 N=8

Uniform
Common 57.9±0.3 58.9±0.5 48.7±0.5 44.8±0.4
Disjoint 57.9±0.3 66.6±0.4 58.1±0.7 52.3±0.3

Poisson
Common 57.9±0.3 74.1±0.3 62.5±0.3 57.1±0.3
Disjoint 57.9±0.3 76.2±0.3 65.5±0.3 60.2±0.2

VD
Common 57.9±0.4 75.6±0.4 64.7±0.4 58.2±0.4
Disjoint 57.9±0.4 78.2±0.3 71.5±0.4 64.9±0.3

Structural Similarity

N = 2 N = 4 N = 6 N = 8

Uniform
Common 99.2±0.1 95.7±0.4 86.5±0.5 82.0±0.5
Disjoint 99.2±0.1 98.3±0.2 95.5±0.3 91.7±0.2

Poisson
Common 99.2±0.1 99.2±0.1 97.9±0.1 96.5±0.1
Disjoint 99.2±0.2 99.3±0.1 98.5±0.1 97.6±0.2

VD
Common 99.3±0.1 99.2±0.1 98.1±0.1 96.3±0.2
Disjoint 99.3±0.1 99.4±0.1 99.0±0.2 98.4±0.1

Phantom acquisitions were undersampled by a factor of N us-
ing either common or disjoint patterns across N phase cycles.
Separate patterns were designed based on uniform-density
(Uniform) sampling, Poisson-disc (Poisson) sampling, and
variable-density (VD) sampling patterns. PSNR and SSIM
measurements for PE-SSFP reconstructions are reported as
mean±std across 10 cross sections.

Supporting Table S4: Image Quality: Sampling Patterns
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α = (15o, 30o, 45o, 60o, 75o)

N = 2 N = 4 N = 6 N = 8

ZF
PSNR 52.5±4.8 49.2±2.4 47.2±1.3 46.4±0.8
SSIM 89.3±1.8 77.6±4.4 73.0±5.1 70.4±5.1

iCS
PSNR 59.7±9.6 58.3±4.7 52.1±1.9 49.7±0.5
SSIM 97.7±2.6 97.1±1.6 93.7±0.3 91.4±0.8

ESPIRiT
PSNR 49.3±3.1 54.6±4.1 55.2±2.5 54.0±1.2
SSIM 93.5±2.9 95.1±3.0 95.3±1.1 95.0±0.5

PE-SSFP
PSNR 61.4±11.6 70.6±11.4 69.0±7.4 65.0±1.7
SSIM 98.1±2.5 98.9±1.5 98.8±0.9 98.4±0.2

TR = (5 ms, 10 ms, 15 ms)

N=2 N=4 N=6 N=8

ZF
PSNR 50.5±1.1 49.2±0.9 46.6±0.7 45.3±0.8
SSIM 88.7±2.2 73.7±2.4 68.3±2.3 65.7±2.0

iCS
PSNR 55.7±1.4 61.7±0.2 52.7±0.1 49.3±0.1
SSIM 99.2±0.2 97.8±0.1 93.7±0.0 91.1±0.1

ESPIRiT
PSNR 46.0±1.8 55.8±0.5 55.7±0.7 53.8±0.6
SSIM 93.5±1.2 96.2±0.4 95.5±0.5 94.7±0.5

PE-SSFP
PSNR 56.0±1.6 76.3±2.2 69.7±2.2 63.8±1.4
SSIM 99.3±0.2 99.3±0.2 98.9±0.3 98.0±0.2

T1/T2 deviation (-40%, -20%, 0%, 20%, 40%)

N = 2 N = 4 N = 6 N = 8

ZF
PSNR 51.9±1.3 50.0±0.4 47.3±0.3 46.0±0.3
SSIM 90.9±0.8 76.7±1.4 71.0±1.2 68.0±0.7

iCS
PSNR 57.4±2.0 61.1±0.7 52.6±0.3 49.4±0.2
SSIM 99.1±0.3 97.8±0.1 93.8±0.2 91.2±0.3

ESPIRiT
PSNR 48.2±0.4 55.9±0.7 56.6±1.0 54.6±0.9
SSIM 94.7±0.4 96.6±0.6 96.1±0.7 95.3±0.7

PE-SSFP
PSNR 58.1±2.0 77.0±2.2 71.7±0.2 65.1±0.2
SSIM 99.4±0.3 99.5±0.1 99.1±0.2 98.4±0.2

SNR = (10, 15, 20, 25, 30)

N=2 N=4 N=6 N=8

ZF
PSNR 48.9±3.4 46.8±3.5 45.6±2.7 44.4±2.6
SSIM 72.8±10.2 66.0±9.0 63.8±7.9 62.8±6.7

iCS
PSNR 55.7±3.2 56.3±3.4 51.0±1.8 48.6±1.1
SSIM 85.1±9.6 85.9±8.2 83.3±7.3 81.8±5.4

ESPIRiT
PSNR 49.2±1.1 55.2±2.9 54.6±2.8 53.4±2.0
SSIM 85.6±8.3 86.7±7.8 86.4±7.6 87.1±6.0

PE-SSFP
PSNR 55.1±3.9 61.4±6.1 59.9±5.3 58.3±3.7
SSIM 83.8±10.0 86.2±8.8 86.7±8.2 89.0±6.0

Separate phantom images were simulated for varying α, TR,
T1/T2 parameters, and SNR values (for CSF). Each panel
lists PSNR and SSIM measurements reported as mean±std
across the varied parameter.

Supporting Table S5: Image Quality: Variations in Tissue and Sequence Parameters
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N = 2 N = 4 N = 4 N = 6

R = 4 R = 6 R = 8 R = 8

ZF
PSNR 44.8±0.1 45.5±0.1 43.0±0.1 44.7±0.1
SSIM 60.0±0.9 59.0±0.8 55.6±0.9 58.9±0.9

iCS
PSNR 54.1±0.4 53.5±0.4 50.0±0.3 49.4±0.3
SSIM 96.4±0.1 91.8±0.3 88.4±0.3 88.4±0.4

ESPIRiT
PSNR 45.9±0.1 52.9±0.1 50.3±0.2 52.8±0.3
SSIM 91.7±0.1 94.3±0.1 93.0±0.1 94.4±0.1

PE-SSFP
PSNR 56.4±0.3 69.1±0.3 61.4±0.3 63.4±0.3
SSIM 97.0±0.1 97.6±0.0 96.6±0.0 97.5±0.0

Separate phantom images were simulated for varying under-
sampling factors (R) that are greater than the number of
phase cycles (N). Each panel lists PSNR and SSIM measure-
ments reported as mean±std across 10 cross sections.

Supporting Table S6: Image Quality: Acceleration Factor
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List of Supporting Figures

S1 Undersampled acquisitions of the numerical brain phantom were reconstructed using
PE-SSFP. The percentage difference between the reconstructed images in consecutive
iterations fell to 0.001% within 15 iterations. The evolution of the PE-SSFP cost
terms (calculated after the data-consistency projection) across these iterations are
shown for N=2-8: (a) joint-sparsity cost, (b) TV cost, (c) combined cost in Eq. 6.
The cost at each iteration is displayed as mean±std across 10 cross sections. The
cost terms diminish smoothly across iterations. . . . . . . . . . . . . . . . . . . . . . 9

S2 The auto-calibration approach was demonstrated by examining how well the acquired
data can be represented via the bSSFP profiles estimated from calibration data. A
separate error map was first calculated between the fully-sampled image at each
phase cycle and its projection onto the subspace spanned by the bSSFP profiles.
These individual error maps were then sum-of-squares combined across phase cycles.
Representative maps are shown for N=4. (a) Actual bSSFP profiles for each phase-
cycle. (b-d) Individual and combined error maps for varying calibration-kernel
sizes ([5, 8, 11]), calibration-area sizes ([2%, 6%, 10%] of the maximum spatial
frequency), and null-space cut-offs (σcutoff=2x10−1, 9x10−2, 2x10−2). The relatively
small calibration area/kernel size and high σcutoff in b cause prominent low- and
high-spatial-frequency errors, whereas the more optimal parameters in d (those used
in PE-SSFP) significantly dampen the low-spatial-frequency errors. In all cases,
relatively higher errors occur in the vicinity of banding artifacts in individual maps.
Because banding artifacts for distinct phase-cycles are in non-overlapping locations,
the combined maps show a rather uniform error distribution. . . . . . . . . . . . . . 10

S3 The success of the auto-calibration approach in estimating bSSFP profiles was an-
alyzed for a broad range of calibration-kernel sizes, calibration-area sizes and null-
space cut-offs. Representative error maps combined across phase-cycles are shown
for N=8. (a) Error maps for different calibration-kernel sizes. (b) Error maps
for different calibration-area sizes. (c) Error maps for different null-space cut-offs.
PE-SSFP parameters are emphasized in bold font within each panel. The errors
predominantly occur in regions of sharp signal transition near tissue boundaries. . . 11
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Supporting Figure S1: Undersampled acquisitions of the numerical brain phantom were recon-
structed using PE-SSFP. The percentage difference between the reconstructed images in consec-
utive iterations fell to 0.001% within 15 iterations. The evolution of the PE-SSFP cost terms
(calculated after the data-consistency projection) across these iterations are shown for N=2-8: (a)
joint-sparsity cost, (b) TV cost, (c) combined cost in Eq. 6. The cost at each iteration is displayed
as mean±std across 10 cross sections. The cost terms diminish smoothly across iterations.
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Supporting Figure S2: The auto-calibration approach was demonstrated by examining how well the
acquired data can be represented via the bSSFP profiles estimated from calibration data. A separate
error map was first calculated between the fully-sampled image at each phase cycle and its projection
onto the subspace spanned by the bSSFP profiles. These individual error maps were then sum-of-
squares combined across phase cycles. Representative maps are shown for N=4. (a) Actual bSSFP
profiles for each phase-cycle. (b-d) Individual and combined error maps for varying calibration-
kernel sizes ([5, 8, 11]), calibration-area sizes ([2%, 6%, 10%] of the maximum spatial frequency), and
null-space cut-offs (σcutoff=2x10−1, 9x10−2, 2x10−2). The relatively small calibration area/kernel
size and high σcutoff in b cause prominent low- and high-spatial-frequency errors, whereas the more
optimal parameters in d (those used in PE-SSFP) significantly dampen the low-spatial-frequency
errors. In all cases, relatively higher errors occur in the vicinity of banding artifacts in individual
maps. Because banding artifacts for distinct phase-cycles are in non-overlapping locations, the
combined maps show a rather uniform error distribution.
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Supporting Figure S3: The success of the auto-calibration approach in estimating bSSFP profiles
was analyzed for a broad range of calibration-kernel sizes, calibration-area sizes and null-space cut-
offs. Representative error maps combined across phase-cycles are shown for N=8. (a) Error maps
for different calibration-kernel sizes. (b) Error maps for different calibration-area sizes. (c) Error
maps for different null-space cut-offs. PE-SSFP parameters are emphasized in bold font within each
panel. The errors predominantly occur in regions of sharp signal transition near tissue boundaries.
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