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Abstract

Constitutive Wnt signaling promotes intestinal cell prolifera-
tion, but signals from the tumor microenvironment are also
required to support cancer development. The role that signaling
proteins play to establish a tumor microenvironment has not
been extensively studied. Therefore, we assessed the role of the
proinflammatory Ikk-related kinase Ikke in Wnt-driven tumor
development. We found that Ikke was activated in intestinal
tumors forming upon loss of the tumor suppressor Apc. Genetic
ablation of Ikke in b-catenin-driven models of intestinal cancer
reduced tumor incidence and consequently extended survival.
Mechanistically, we attributed the tumor-promoting effects of
Ikke to limited TNF-dependent apoptosis in transformed intesti-
nal epithelial cells. In addition, Ikke was also required for lipo-

polysaccharide (LPS) and IL17A-induced activation of Akt,
Mek1/2, Erk1/2, and Msk1. Accordingly, genes encoding pro-
inflammatory cytokines, chemokines, and anti-microbial pep-
tides were downregulated in Ikke-deficient tissues, subsequently
affecting the recruitment of tumor-associated macrophages and
IL17A synthesis. Further studies revealed that IL17A synergized
with commensal bacteria to trigger Ikke phosphorylation in
transformed intestinal epithelial cells, establishing a positive
feedback loop to support tumor development. Therefore, TNF,
LPS, and IL17A-dependent signaling pathways converge on Ikke
to promote cell survival and to establish an inflammatory tumor
microenvironment in the intestine upon constitutive Wnt activa-
tion. Cancer Res; 76(9); 2587–99. �2016 AACR.

Introduction
Colorectal cancer results from multiple genetic mutations and

inflammatory processes (1). Somatic mutations associated with
80% of colorectal cancer cases target the adenomatous polyposis
coli (APC) tumor suppressor gene, which leads to b-catenin
activation, followed by additional mutations in K-Ras, PI3K3CA,
and TP53 among others as tumors develop (2, 3).

The majority of colorectal cancer cases have no preexisting
inflammation but nevertheless displays tissue infiltration by
inflammatory cells, which is referred to as "tumor-elicited inflam-
mation" (4, 5). Those infiltrates include CD4þ T-helper 1 (Th1)
and CD8þ cytotoxic T cells (CTL), tumor-associatedmacrophages
(TAM), and T-helper interleukin 17 (IL17)–producing (Th17)
cells. The tumor-promoting functions of TAMs andT lymphocytes
are mediated through the secretion of cytokines. TAMs produce
IL23, which enhances tumor-promoting inflammatory processes
through IL17A synthesis by Th17 cells and also suppresses the
adaptive immune surveillance by reducing CD8þ CTL cell infil-
tration in tumors (4, 6–8). In turn, IL17A triggers MAPKs and NF-
kB activations in intestinal epithelial cells (IEC) to support early
tumor growth (9).

The establishment of a tumor microenvironment relies on
transcription factors such as NF-kB (10, 11). IkB-kinase (Ikk)
b-dependent NF-kB activity in IECs promotes cell survival and
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drives the expression of proinflammatory cytokines in myeloid
cells to link inflammation to cancer (12). In addition, NF-kB
signaling in IECs also cooperates with b-catenin to facilitate the
crypt stem cell expansion (13).

Both NF-kB and Stat3 transcription factors are activated by
cytokines through parallel signaling pathways in solid tumors
(14). Similar to NF-kB, Stat3 controls the expression of genes
involved in cell survival, proliferation, and immunity. IL6, whose
expression relies on NF-kB in lamina propria myeloid cells,
protects premalignant IECs from apoptosis through Stat3 activa-
tion in a model of colitis-associated cancer (15, 16). IL23 signal-
ing also promotes Stat3 phosphorylation in Apc-mutated IECs
through IL17A production by Th17 cells (7).

Constitutive b-catenin activation and/or Apc loss in the
intestinal epithelium cause the loss of epithelial barrier func-
tion, an early event in intestinal tumorigenesis (7). As a result,
commensal bacteria infiltrate the stroma and lead to tumor-
associated inflammation (17). Bacterial products are sensed by
Toll-like receptors (TLR) such as TLR4, which promotes colitis-
associated cancer (18).

TLR signaling triggers IKKb/NF-kB activation, leading to syn-
thesis of proinflammatory cytokines and the phosphorylation of
IKK-related kinases TBK1 and IKKe to induce type I interferons
synthesis through IRF3 (19–21). IKKe is believed to play key roles
in cancer by targeting multiple substrates, many of which act in
NF-kB–dependent pathways (22–25). Both TBK1 and IKKe also
directly phosphorylate AKT/protein kinase B (26, 27). So far, it
remains to be demonstrated that IKKe acts as an oncogenic kinase
in vivo.

Here we report that LPS and IL17A-dependent signaling path-
ways converge to Ikke to promote Wnt-dependent tumor devel-
opment in IECs in vivo. These pathways drive the expression of
proinflammatory cytokines, anti-microbial peptides, and chemo-
kines, the latter recruiting macrophages to support IL23 and
IL17A synthesis and subsequent Stat3 activation in transformed
IECs. Ikke also promotes cell survival in these cells by limiting
TNF- and caspase-8–dependent apoptosis. The establishment of
an inflammatory tumor-promoting microenvironment by Ikke
thus relies on the activation of signaling pathways distinct from
the NF-kB–dependent cascades.

Materials and Methods
Mouse models

Villin-Cre-ERT2 Ctnnb1þ/lox(ex3) (b-catc.a.) mice were previously
described (28, 29). Villin-Cre-ERT2Ctnnb1þ/lox(ex3)mice were
gavaged 5 consecutive days with 1 mg tamoxifen (Sigma) to
induce b-catenin activation in enterocytes as described previously
(30). Both Apcþ/min and IkkeKO mouse strains were from Jackson
Laboratories (Bar Harbor, ME). For antibiotics treatments, 0.5 g
ciprofloxacin, 1 g ampicillin, and 0.5 g metronidazole per liter
were added in the drinking water 1 week before tamoxifen
administration. Allmice usedwere 8 to 16weeks oldwhen started
with experiments (except for the Apcþ/min survival experiments)
and littermate controls were used. All procedures were approved
by the local Ethical Committee of the University of Liege.

Bone marrow transplantation
Bone marrow transplantation and bone marrow cell isolation

were done as described previously (30). Minor changes are
described in the Supplementary data section.

Ex vivo organoid cultures
Intestinal crypts from Apcþ/min-Ikke�/� and Apcþ/min-Ikkeþ/þ

mice were isolated and cultured as described (31). Stimulations
of ex vivo organoid cultureswith IL17A and LPSwere carried out as
described (9).

Determination of proliferation and apoptosis
Mice were injected intraperitoneal with 100 mg/kg BrdU

(Sigma) 90 minutes before their sacrifice and paraffin sections
of duodenum tissues were stained using anti-BrdU antibody
(RPN201; Amersham Biosciences/GE Healthcare) to quantify
proliferating nuclei. Proliferative rates were determined by the
ratio of average of positive cells in 10 crypts or by the ratio of
positive cells to total cells in three proliferative cryptic area (where
individual crypts could no longer be identified) per sample.
Apoptotic cells in a given tissue section were determined histo-
logically by TUNEL assay using an ApoAlert DNA Fragmentation
Assay Kit (BD Biosciences Clontech).

Cell culture
SW480, HCT116, and HT-29 cells were obtained from ATCC

in 2009. These cells were characterized by ATCC, using a com-
prehensive database of short tendem repeat (STR) DNA profiles.
Frozen aliquots of freshly cultured cells were generated and
experiments were done with resuscitated cells cultured for less
than 6 months. Cell culture reagents, cytokines, and kinase
inhibitors are described in the Supplementary data.

Lentiviral cell infection
Infections of Lenti-X 293T cells (Clontech) using lentiviral

constructs described in the Supplementary data were carried out
as previously described (32).

Protein expression, histological analysis, and
immunoprecipitations

Isolation of enterocytes and Western blot analyses were
performed as described previously (30). Paraffin sections (4 mm)
and Western blots were stained using antibodies described in the
Supplementary data section. For Immunoprecipitations, anti-
TANK, -NAP1 and -IgG (negative control) antibodies were cou-
pled covalently to a mixture of Protein A/G-Sepharose (see the
Supplementary data for details). Immunoprecipitations were
done as previously described (33).

Quantitative real-time PCR and RNA-seq expression analyses
Total RNAs were extracted and subjected to real-time

PCR analyses as described (32). Primer sequences are available
on request. Gene expression profiling of tumor tissues was
carried out by RNA-Seq analysis. Both sample preparations and
sequencing were performed at the GIGA transcriptomic
facility (GIGA, University of Liege, Liege, Belgium). Methods to
check total RNAs integrity, to carry out RNA-Seq expression
analyses and for data analysis are described in the Supplementary
Data.

In situ hybridization
Sample tissues were fixed with the standard procedures using

4% PFA (1 hour) and sucrose (15% 6 hours; 30% o/n) at 4�C and
frozen in OCT freezing medium by the use of supercooled iso-
propanol-dry ice mixture and stored at �80�C up to 6 month.
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Frozen samples were cut 5 to 10 mmwith a cryostat microtome at
�20�C on superfrost slides. In situ hybridization was carried out
using the protocol provided by the manufacturer (RNAscope
Multiplex Assay System; Advanced Cell Diagnostics Inc.).

FACS analyses
Control or IKKe-depleted SW480 cells were pretreated or

not with the pan-caspase inhibitor Z-VAD-FMK (Promega; 20
mmol/L) for 1 hour and subsequently untreated or stimulated
with TNF (100 ng/mL)/cycloheximide (CHX; 50 mg/mL) for up to
8 hours. The quantification of apoptosis was done as previously
described (32).

Statistical analysis
Data are expressed as mean � SEM. Differences were analyzed

by Student t-test or log-rank test (for Kaplan–Meier survival
graphs of animal models) using Prism5 (GraphPad Software).
The P values � 0.05 (covering 95% confidence intervals) were
considered significant (30).

Results
Wnt-driven tumor development in the intestine relies on Ikk«

We investigated whether Ikke inactivation impacts on tumor
formation in the Apcþ/min mouse model, which spontaneously
develops adenocarcinomas due to constitutive Wnt signaling
(34). Inactivating Ikke in Apcþ/min mice significantly enhanced
survival (226 days vs. 143 days, P < 0.001 in Apcþ/min-Ikke�/� and
Apcþ/min-Ikkeþ/þ mice, respectively) due to a decreased tumor
incidence in distinct parts of the intestine (Fig. 1A–D). As a result,
Apcþ/min-Ikke�/� mice did not suffer from anemia and spleno-
megaly was less dramatic (Fig. 1E and F, respectively). Ikke
deletion slightly impaired cell proliferation in tumors but not in
normal intestinal crypts in Apcþ/min mice (Fig. 1G). Consistently,
pErk1/2 levels and, to some extent, cell proliferation as assessed
by BrdU staining, were decreased in Apcþ/min-Ikke�/� mice (Fig.
1H). Ikke did not control cell proliferation in a cell-autonomous
manner as ex vivo organo€�ds generated with intestinal crypts from
Apcþ/min-Ikke�/� and Apcþ/min-Ikkeþ/þ mice showed similar cell
growth (Supplementary Fig. S1A). Ikkephosphorylationon serine
172 was higher in intestinal tumors than in normal adjacent
tissues from Apcþ/min mice, as were protein levels of Tank, one of
the Ikke scaffold proteins (Supplementary Fig. S1B).

We took advantage of the tamoxifen-inducible b-catc.a. mouse
model, which expresses truncated and stabilized b-catenin pro-
tein in IECs (28). Intestinal crypts rapidly expand because of
constitutive Wnt signaling and loss of differentiated IECs, with
b-catc.a.mice succumbing to disease within 4weeks of age because
of continuous adenoma formation (13). Ikke mRNA expression
was detectedby in situhybridizationboth in transformed IECs and
in inflammatory cells (Fig. 2A). Ikke inactivation in b-catc.a. mice
also extended their survival (37 vs. 30 and28.5days,P¼0.0044 in
b-catc.a.-Ikke�/�, b-catc.a.-Ikkeþ/�, and b-catc.a.-Ikkeþ/þ mice,
respectively; Fig. 2B). Ikke was essential for Akt, Mek1/2,
Erk1/2, and Msk1 activation and for Creb1 (a Msk1 substrate)
and Stat3 phosphorylation but not for Wnt-dependent Pdk1
phosphorylation (Fig. 2C and Supplementary Fig. S2, respective-
ly). Tank expression was also higher upon constitutive Wnt
signaling (Fig. 2C). Enhanced pAkt and pErk1/2 levels in tumors
from b-catc.a.-Ikkeþ/þversus b-catc.a.-Ikke�/� mice were confirmed
by Immunohistochemistry (Fig. 2D). Thus, Ikke promotes the

activation ofmultiple oncogenic pathways in transformed IECs to
support tumor development.

Ikk« protects from TNF-dependent cell apoptosis in
transformed intestinal epithelial cells

As Wnt-driven tumor development was impaired upon Ikke
deficiency, we next explored whether this resulted from enhanced
cell death. Ikke inactivation in Apcþ/min mice enhanced the num-
ber of TUNELþ cells in small intestinal tumors (Fig. 3A). Con-
sistently, IKKe-deficient and p53-mutated colon cancer SW480
cells were sensitized to TNF þ CHX-dependent cell death, as
judged by FACS analysis (Fig. 3B). IKKe-deficient SW480 cells
were dying of apoptosis as the caspase inhibitor
Z-VAD-FMK blocked TNF/CHX-dependent cell death (Fig. 3B).
Consistently, IKKe-deficient SW480 cells subjected to TNF/CHX
stimulation showed increased levels of cleaved forms of caspases
3/8 and RIPK1, a caspase-8 substrate (Fig. 3C). Cell death in IKKe-
deficient SW480 cells did not result fromdecreasedNF-kB activity
as the TNF-dependent IkBa degradation and p65 phosphoryla-
tion were unchanged (Supplementary Fig. S3). The TNF-depen-
dent activation the other IKK-related kinase TBK1was potentiated
upon IKKe deficiency, suggesting a compensatory mechanism
(Supplementary Fig. S3). Enhanced cell apoptosis was also seen
upon TNF/CHX stimulation in other IKKe-deficient colon cancer
cell lines showing constitutive Wnt signaling, namely in p53-
mutated HT29 and in p53-proficient HCT116 cells (Supplemen-
tary Fig. S4A–S4C). Therefore, IKKe protects from TNF-dependent
apoptosis through p53- and NF-kB–independent mechanisms in
transformed IECs.

LPS- and IL17A-dependent pathways converge to IKK« in colon
cancer-derived cell lines

We next characterized the IKKe-dependent pathways in colon
cancer cells. Constitutive phosphorylation of ERK1/2 relied on
IKKe in differentiated HT-29 cells (Supplementary Fig. S5A).
Moreover, Lipopolysaccharide (LPS)-induced phosphorylation
of ERK1/2 was defective in IKKe-depleted SW480 cells (Supple-
mentary Fig. S5B). Thus, our data link IKKe to ERK1/2 activation
in transformed IECs.

IL17A signals in transformed IECs and IKKe is activated by
IL-17A in airway epithelial cells (9, 35, 36). Therefore, we assessed
if IL17A promotes Wnt-dependent tumor development through
IKKe. IL-17A alone or in combination with LPS triggered IKKe
phosphorylation in ex-vivo organoid cultures of transformed IECs
(Supplementary Figs. S6Aand4A, respectively). IKKedeficiency in
ex-vivo organo€�d cultures from Apcþ/min mice as well as in SW480
cells impaired AKT, MEK1, p38 and ERK1/2 activation upon
stimulationwith both LPS and IL17A (Fig. 4A andB, respectively).
IKKe constitutively bound TANK but not with NAP1, another
scaffold protein, in unstimulated or IL17A-treated SW480 cells
(Supplementary Fig. S6B). TANK deficiency also severely
impaired AKT, MEK1/2, ERK1/2 and p38 activation in cells
stimulated with both LPS and IL17A (Supplementary Fig. S7).
Therefore, the IKKe-TANK complex integrates LPS- and IL17A-
dependent cascades to activate multiple kinases.

Ikk« establishes a proinflammatory signature in the intestine
upon constitutive Wnt signaling

To identify target genes induced through Ikke, RNA-Seq
analysis was done using total RNAs from duodenal samples of
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Figure 1.
Loss of Ikke impairs tumor development in Apcþ/min mice. A, extended survival upon Ikke deficiency in the Apcþ/min model. A, Kaplan–Meier survival graph is
shown forApcþ/minIkkeþ/þ (n¼ 34) andApcþ/minIkke�/� (n¼ 15) mice (��� , P <0.001; log-rank test). B, decreased tumor incidence in 4months oldApcþ/min/Ikke�/�

(n ¼ 7) versus Apcþ/min/Ikkeþ/þ (n ¼ 19) mice. Data are mean � SEM (��� , P < 0.001; Student t test). C, representative pictures of duodenum from 4 months
old Apcþ/min/Ikkeþ/þ and Apcþ/min/Ikke�/� mice. D, Ikke deficiency impairs tumor development. Distribution of intestinal tumors in 4 months old mice of the
indicated genotype (D, duodenum; J, jejunum; I, ileum; C, colon). Data are mean � SEM, n � 7 for each genotype (� , P < 0.05 and ��� , P < 0.001; Student t test).
E, Ikke deficiency reduces anemia in Apcþ/min mice. Blood hemoglobin (HGB) levels in 4 months old mice of the indicated genotype were quantified. Data are
mean � SE, n � 5 for each genotype (�� , P < 0.01; Student t test). F, Ikke deficiency limits splenomegaly in Apcþ/min mice. Representative pictures of the
spleen from 4 months old mice of the indicated genotype. G, Ikke deficiency impacts on cell proliferation in tumors but not in normal crypts in the Apcþ/min model.
The BrdU proliferation index in tumors and normal crypts of 4 months old Apcþ/min/Ikkeþ/þ and Apcþ/min/Ikke�/� mouse tumors is shown (left and right,
respectively). Data aremean�SEM, n� 3 for each genotype (� ,P<0.05; Student t test). n.s., nonsignificant. H, Ikkepromotes Erk1/2 activation in theApcþ/minmodel.
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G€oktuna et al.

Cancer Res; 76(9) May 1, 2016 Cancer Research2590



b-catc.a.-Ikkeþ/þ andb-catc.a.-Ikke�/�mice, 0 and 22days following
tamoxifen administration and WebGestalt GSAT enrichment
analysis was carried out. A remarkable number of Ikke-regulated
genes were involved in the immune response (Supplementary
Figs. S8A and S8B). GSEA analysis further highlighted defective
interferon and innate immune responses in b-catc.a.-Ikke�/� mice
22 days after tamoxifen administration (Fig. 5A). Consistently, a
heatmap representation of gene expression demonstrated the lack
of upregulation of immune response genes in duodenal extracts

from b-catc.a.-Ikke�/�mice compared to b-catc.a.-Ikkeþ/þmice (Fig.
5A). These candidates included Fcamr (Fc receptor, IgA, IgM, high
affinity), Aicda (Activation-induced cytidine deaminase), Fcrl5
(Fc Receptor-like 5), Reg3b/g (regenerating islet-derived protein
3-beta/gamma), IL23A, and IL17A (Fig. 5A). Among the 236
downregulated transcripts in b-catc.a.-Ikke�/� tissue, many were
proinflammatory genes (Supplementary Fig. S9A). The most
prominent candidates were Ly6a/c, Retnlb, Cxcl9, C3, and Nlrc5
(Supplementary Fig. S9A). In addition, RNA-Seq data revealed
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numerous chemokines whose expression required Ikke upon
constitutive Wnt activation in the intestine. Indeed, mRNA
levels of Cxcl12 (also referred as to SDF-1a), Cxcl5, and Cxcl1
were severely downregulated upon Ikke inactivation (Fig. 5B). A
chemokine/cytokine protein array confirmed the decreased
expression of chemokines, including Cxcl9, Cxcl11, Cxcl12,
G-Csf, and cytokines (IL7 and IL17A) in whole duodenal
extracts from b-catc.a.-Ikke�/� mice (Fig. 5C). In contrast, IL1ra
was upregulated in these conditions (Fig. 5C). Ikke deficiency
impairs Stat3 phosphorylation in transformed IECs (Fig. 2C),
possibly because of an impaired IL17A production rather than
from an intrinsic signaling defect. IL17A controls STAT3 phos-
phorylation through IL6. IKKe was dispensable for IL6-depen-
dent STAT3 activation in SW480 cells, which demonstrates that
Ikke controls Stat3 phosphorylation through a paracrine mech-
anism involving IL17A production in b-catc.a.mice (Supplemen-
tary Fig. S9B).

IL17A synergizes with TNF to induce Cxcl1 expression
through IKKe in airway epithelial cells (36). The combination
of LPS and IL17A failed to induce Cxcl1 expression in both
ex vivo organoid cultures from Apcþ/min-Ikke�/� mice and in
IKKe-depleted SW480 cells, as was the induction of Cxcl1
expression by LPS or IL17A alone (Fig. 5D and Supplementary
Fig. S9C, respectively). Therefore, LPS and IL17 signals converge
to IKKe to induce Cxcl1 expression in transformed IECs. AKT or
ERK1/2 inhibitors (perifosine, GSK690693, and PD98059,
respectively) interfered with the induction of Cxcl1 expression
(Supplementary Fig. S9D). Therefore, IL17A and LPS signal
through both AKT and ERK1/2 to induce Cxcl1 expression in
colon cancer cells.

Cell autonomous Ikk«-dependent expression of inflammatory
markers in IECs triggers the recruitment of macrophages to the
tumor stroma

Consistent with a role of Ikke in chemokines production,
the number of macrophages infiltrating the tumor stroma of
b-catc.a./Ikke�/� mice was significantly decreased, as evidenced by
anti-F4/80 andCD163 immunofluorescence (IF) analysis (Fig. 5E
and F). Reduced expression of both F4/80 and CD163 upon Ikke
deficiency was also revealed through real-time PCR analysis
(Fig. 5G). Yet, Ikke deletion did not impact on macrophages
polarization as both M1 and M2 markers were similarly down-
regulated in duodena of b-catc.a./Ikke�/� mice (Fig. 5H). Cd4,
Cd8a, and Cd68 mRNA levels were also downregulated in these
samples (Fig. 5G). Therefore, Ikke in IECs promotes the recruit-
ment ofmacrophages to the tumor stroma through the expression
of macrophage-attracting chemokines.

To assess whether Ikke expression in hematopoietic cells also
contributed to intestinal tumor development, bone marrow cells
from b-catc.a.-Ikkeþ/þ or b-catc.a.-Ikke�/� mice were isolated
and transplanted intravenously to irradiated b-catc.a.-Ikke�/� or
b-catc.a.-Ikkeþ/þ mice. Mice were kept for a month for the regen-
eration of immune cells before tamoxifen administration (Sup-
plementary Fig. S10). Irradiated b-catc.a.-Ikke�/� mice trans-
planted with bone marrow from Ikke�/� mice survived longer
than b-catc.a.-Ikkeþ/þ mice transplanted with bone marrow from
Ikkeþ/þ mice (33.5 days versus 27 days, respectively), which
confirms the contribution of IKKe in Wnt-driven tumor develop-
ment (Supplementary Fig. S10). b-catc.a.-Ikkeþ/þ mice trans-
plantedwith bonemarrow from Ikke�/�mice also survived longer
(34.6 days), suggesting a contribution of Ikke expression in
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hematopoietic cells in the observed phenotype. Yet, irradiated
b-catc.a.-Ikke�/� mice transplanted with bone marrow from Ikke�/

� or Ikkeþ/þ mice also showed a similar survival advantage (34
and 33.5 days, respectively) compared to irradiated b-catc.a.-Ikkeþ/

þ mice transplanted with bone marrow from Ikkeþ/þmice, which
also highlight the key contribution of Ikke expression in trans-
formed IECs (Supplementary Fig. S10). These data highlight the
contribution of Ikke in both IECs and hematopoietic cells (pos-
sibly through IL17A production through an Ikke-dependent
pathway in Th17 cells) to support Wnt-driven tumor develop-
ment in the intestine.

Ikk« controls the expression of intestinal antimicrobial factors
upon constitutive Wnt signaling

GSEA analysis also identified an enrichment of intestinal anti-
microbial factors among Ikke target genes in b-catc.a. mice (Fig.
6A). Indeed, both Reg3b/g and Ang4, whose mRNA levels
increased in transformed IECs from b-catc.a. mice, were down-
regulated upon Ikke inactivation (Fig. 6A and B). The number of
Paneth cells, the major source of antimicrobial factors, was intact
in b-catc.a.-Ikke�/� mice (Supplementary Fig. S11). Yet, the num-
ber of visible antimicrobial factor releasing granules in each
Paneth cell was severely decreased in intestinal crypts from
b-catc.a.-Ikke�/� mice (Supplementary Fig. S11). Therefore, Ikke
deficiency interferes with Paneth cell differentiation. Of note, the
goblet cell marker Muc1, whose expression increased upon con-
stitutive Wnt signaling, was also decreased in Ikke-deficient IECs
from b-catc.a. mice (Fig. 6B). Moreover, mRNA levels of fucosyl-
transferase 2 (Fut2), an enzyme produced by innate lymphoid
cells, which promotes epithelial fucosylation in the intestinal tract
to protect from Salmonella typhirium infection (37), also severely
increased upon Wnt activation but decreased in the absence of
Ikke (Fig. 6B). In addition, Ikke was required for complement C3
expression in transformed IECs (Supplementary Fig. S12A).
Therefore, Ikke provides an inflammatory signature in IECs upon
Wnt-dependent tumorigenesis in a cell-autonomous manner.

As LPS-dependent expressionof complementC3 andactivation
of C/Ebpd in mouse embryonic fibroblasts requires the transcrip-
tional induction of Ikke through NF-kB (38), we assessed C/Ebpd
expression in primary IECs from Ikkeþ/þ or Ikke�/�mice subjected
or not to LPS stimulation. Complement C3 expression was
strongly induced by LPS at the mRNA level and Ikke deletion
impaired its expression, especially after 4 and 8 hours of LPS
stimulation in IECs (Supplementary Fig. S12B). Consistently,
C/Ebpd protein levels were also decreased in Ikke-deficient IECs,

with or without LPS stimulation and in IECs from b-catc.a.-Ikke�/�

mice compared to b-catc.a.-Ikkeþ/þ mice (Supplementary Fig.
S12C and S12D). Thus, Ikke promotes C3 expression, by regu-
lating C/Ebpd levels in normal and transformed IECs.

Commensal bacteria promote Ikk« activation in tumors from
b-catc.a. mice and the expression of inflammatory markers and
antimicrobial factors

Gutmicrobiota promotes tumor development inApcþ/minmice
(39). Moreover, commensal bacteria trigger TLR-dependent sig-
naling pathways that converge on Ikke (19). To assess whether
bacterial products trigger TLRs-dependent Ikke activation to pro-
vide the inflammatory tumor microenvironment, we subjected
b-catc.a./Ikkeþ/þ mice to broad-spectrum antibiotics (Abx) to
deplete commensal bacteria. Bacterial counts from feces of
b-catc.a./Ikkeþ/þ mice validated the efficiency of antibiotics (Sup-
plementary Fig. S13). Abx treatment prolonged mouse survival,
probably by interferingwith Ikke, Akt,Msk1, and Stat3 activations
(Fig. 7A and B). Therefore, bacterial products trigger the Ikke-
dependent activation of oncogenic pathways during Wnt-driven
tumor development. We next assessed mRNA levels of pro-
inflammatory cytokines and chemokines in whole duodenum
from control versus Abx-treated b-catc.a./Ikkeþ/þ mice. Most can-
didate genes whose expression was decreased in b-catc.a./Ikke�/�

mice also showed reduced expression in Abx-treated b-catc.a./
Ikkeþ/þmice (Fig. 7C). Also, similar to Ikke deficiency, the expres-
sion ofmultiple Paneth cellsmarkers significantly decreased upon
Abx treatment in b-catc.a.mice (Fig. 7D). These data identified key
Ikke-dependent oncogenic pathways triggered by bacterial pro-
ducts that provide an inflammatory tumor microenvironment in
the intestine showing constitutive Wnt signaling.

Discussion
Here we define Ikke as a LPS- and IL17A-activated kinase acting

upstreamofmultiple pathways in transformed IECs, leading to the
establishment of a proinflammatory environment in two mouse
modelsofWnt-driven intestinal tumorigenesis. Ikke is alsoactingas
a pro-survival kinase by limiting TNF- and caspase-8–dependent
apoptosis in IECs showing constitutive Wnt signaling.

Ikke counteracts TNF-dependent cell death, similarly to the
prosurvival Ikkb but through NF-kB-independent mechanisms as
IkBa degradation and p65 phosphorylation by TNF remained
intact in IKKe-deficient IECs. It is likely that the phosphorylation
of multiple unknown IKKe substrates will provide prosurvival
signals.

(Continued.) Candidate genes up- or downregulated are illustrated in red or green, respectively. Experimental conditions are: 1 and 2, duodenal samples from
b-catc.a.-Ikkeþ/þ mice at day 0 or 22 days after tamoxifen injection, respectively; 3 and 4, duodenal samples from b-catc.a.-Ikke�/� mice at day 0 or 22 days after
tamoxifen injection, respectively.n¼ 3 for eachgenotype. B, defective chemokine production in Ikke-deficientb-catc.a.mice. Real-timePCRanalyseswere carried out
with total RNAs isolated from whole mucosa of b-catc.a./Ikkeþ/þ and b-catc.a./Ikke�/� mice, 22 days after the first tamoxifen injection. Data represent fold
difference of Ct values from b-catc.a./Ikke�/� versus b-catc.a./Ikkeþ/þ mice. Data are mean � SEM, n � 4 for each genotype. C, decreased protein levels of pro-
inflammatory cytokines in Ikke-deficient b-catc.a. mice. A chemokine protein array was conducted with protein extracts from duodenal tissues of the indicated
mice, 22 days after the first tamoxifen injection. The graph shows relative fold expression. D, Ikke promotes Cxcl1 expression upon stimulation by both LPS and
IL17A in transformed IECs. Total RNAs extracted from ex vivo organoid cultures from Apcþ/minIkkeþ/þ and Apcþ/minIkke�/� mice were treated or not with the
indicated ligand(s) for up to 5 hours. The abundance of Cxcl1 mRNA levels in untreated Apcþ/minIkkeþ/þ mice was set to 1 and its level in other experimental
conditionswere relative to that after normalizationwithGapdh. Data from triplicates (means� standarddeviations) are shown (��� ,P<0.001; �� ,P<0.01; � ,P<0.05).
E and F, Ikke promoted the infiltration of F4/80þ (E) and CD163þ (F) myeloid cells to highly proliferating crypts in b-catc.a. mice 22 days after the first
tamoxifen injection. Below, infiltrated F4/80þ (E) and CD163þ (F) myeloid cells were quantified as number of cells per field (per mm2). Data are mean� SEM, n¼ 3.
G and H, decreased expression of inflammatory cell (G) and M1/M2 markers (H) in Ikke-deficient b-catc.a. mice. Real-time PCR analysis was carried out with
total RNAs isolated from whole mucosa of b-catc.a./Ikkeþ/þ and b-catc.a./Ikke�/� mice, 22 days after the first tamoxifen injection. Data shown represents fold
difference of Ct values from b-catc.a./Ikke�/� versus b-catc.a./Ikkeþ/þ mice. Data are mean � SEM, n � 4 for each genotype.
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In addition to a prosurvival role, Ikke acts as an oncogenic
kinase by stimulating the recruitment of proinflammatory cells to
support Wnt-driven tumorigenesis. Our bone marrow transplan-
tation experiments highlight a dual function for Ikke expression in
both IECs and bone marrow-derived cells. This dual role is
required to sustain a proinflammatory loop that supports tumor
development, a loop initiated by Ikke expression in transformed
IECs (Supplementary Fig. S14). Th17 cells known to produce
IL17Amay critically rely on Ikke tomaintain this loop. Indeed, the
key role of Ikke in IL1b-driven Th17 maintenance supports this
hypothesis (40). Removing Ikke in transformed IECs or in bone
marrow-derived cells disrupt this proinflammatory loop and
tumor development is consequently delayed. Whether IKKe
expression in cancer-associated fibroblasts also provide oncogen-

ic signals deserves further investigation using conditional knock-
out mouse models.

Ikkb is another proinflammatory molecule but mechanisms by
which Ikkb drivesWnt-dependent tumor initiation in the intestine
arepartiallydistinct. Ikke is anAkt-activatingkinase inApc-mutated
IECs whereas Ikkb is not. Similarly, Erk1/2 is regulated by Ikke but
not by Ikkb. Therefore, Ikke provides a proinflammatory signature
in transformed IECs, at least through some specific pathways
distinct from those controlled by Ikkb. Previous in vitro studies
showed that Ikke targets several substrates acting in NF-kB–acti-
vating cascades (23, 41). We show here that the oncogenic poten-
tial of Ikke in transformed IECs mainly results from its capacity to
provide a tumor microenvironment rather than from enhancing
pro-proliferative cascades in a cell-autonomous manner.
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Figure 6.
Ikke controls the expression of antimicrobial factors in transformed IECs. A, the secretion of antimicrobial factors by Paneth cells relies on Ikke in b-catc.a. mice.
A, GSEA of RNA-Seq expression data obtained with total RNAs from duodenal samples of b-catc.a.-Ikkeþ/þ versus b-catc.a.-Ikke�/� mice is illustrated. Middle,
Heatmap expression analysis from RNAseq data. Experimental conditions are: 1 and 2, duodenal samples from b-catc.a.-Ikkeþ/þ mice at day 0 or 22 days after
tamoxifen injection, respectively; 3 and 4, b-catc.a.-Ikke�/� mice at day 0 or 22 days after tamoxifen injection, respectively. n ¼ 3 for each genotype. Right,
decreased expression of antimicrobial factors upon Ikke deficiency in b-catc.a.mice. Real-time PCR analysis was carried out with total RNAs isolated from IECs of the
indicated mice, 22 days after the first tamoxifen injection. Data from three independent experiments (means � standard deviations) were plotted as in Fig. 4D
(n � 4 for each genotype). B, deregulated expression of Paneth or goblet cell mRNAs (Reg3b/g , Ang4, and Muc-1, respectively) upon constitutive Wnt
signaling in duodenal samples from b-catc.a.-Ikke�/� mice. Real-time PCR analysis was carried out with total RNAs isolated from IECs of the indicated mice, 0 or 22
days after the first tamoxifen injection. The abundance of each transcript in untreated b-catc.a./Ikkeþ/þ mice was set to 1 and their level in other experimental
conditions were relative to that after normalization with Gapdh. Data from three independent experiments (means � standard deviations) are shown (n � 4 for
each genotype. � , P < 0.05; �� , P < 0.01; n.s., nonsignificant.
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Our data provide an in vivo demonstration that Ikke promotes
Akt activation in transformed IECs. The transcriptional program
induced through the Ikke–Akt pathway in Apc-mutated IECs
remains unclear. One candidate could be Retn1b, which is upre-
gulated in colon cancer, and protects against parasitic helminth
infections by maintaining the colonic barrier function (42–44).
Retn1b expression is induced through IL23 and Akt in intestinal
goblet cells (45). Because Akt activation is Ikke dependent in Apc-
mutated IECs, Retn1b expression may be induced through this
pathway. It is likely that CREB1, whose phosphorylation occurs
through Akt and Msk1 (46), contributes to the induction of
numerous Ikke target genes. Similarly, C/Ebpd is another tran-

scription factor acting downstream of Ikke that drives the expres-
sion of proinflammatory molecules such as complement C3.

Constitutive Stat3 activation cooperates with NF-kB to pro-
mote cell survival and proliferation in the intestine (14). The
defective Stat3 phosphorylation profile seen upon Ikke inacti-
vation results from an impaired recruitment of macrophages in
the tumor stroma rather than an epithelial cell-autonomous
effect of Ikke on Stat3. This defect causes decreased levels of
Stat3-activating cytokines such as IL6 in whole duodenum from
b-catc.a./Ikke�/� mice.

Multiple cytokines and chemokines show an Ikke-dependent
expression in our model of Wnt-driven tumor initiation. One of
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Figure 7.
Gut microbiome promotes Ikke activation and the expression of inflammatory markers and Paneth cell antimicrobial factors in tumors from b-catc.a. mice. A,
antibiotics (Abx) treatment of b-catc.a. mice extends survival. A, Kaplan–Meier survival graph for b-catc.a./Ikkeþ/þ, b-catc.a./Ikke�/�, or b-catc.a./Ikkeþ/þ mice
treated with Abx [ciproflaxin (0.5 g/L), ampicillin (1 g/L), andmetronidazole (0.5 g/L)] after induction of tumorigenesis via 5 days tamoxifen injections is illustrated.
Data are mean � SEM, n � 6 for each genotype. B, microbiota promotes Ikke, Akt, Msk1, and Stat3 phosphorylations in b-catc.a. mice. Extracts from duodenal
tissue of the indicatedmice after induction of tumorigenesiswere subjected toWestern blotting. C andD, proinflammatorymarkers and antimicrobial factors whose
expression is Ikke dependent in duodenal tissues of b-catc.a. mice also show lower levels of expression in Abx-treated Ikke-sufficient animals. Real-time PCR analysis
was carried out with total RNAs isolated from whole mucosa (C) or IECs (D) of the indicated mice 22 days after the first tamoxifen injection. Data from three
independent experiments (means � standard deviations) were plotted as in Fig. 5B (n � 4 for each genotype).
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them is IL17A whose production was decreased upon Ikke defi-
ciency. Once synthesized, IL17A can establish a positive loop by
re-activating Ikke in transformed IECs. Consistently, IL17Aor Ikke
deficiency in Apcþ/min mice similarly delays tumor development
and also corrects splenomegaly (47). Therefore, signals from two
distinct families of receptors, IL17RAandTLRs, converge to Ikke to
promote Wnt-dependent tumor development in the intestine.
Few candidates such as IL1ra were upregulated in duodenum of
b-catc.a./Ikke�/� mice, as similarly showed in a model of arthritis
(48). As IL1ra antagonizes the function of IL1b, Ikkemay poten-
tiate IL1b signaling by limiting IL1ra expression.

The recruitment ofmacrophages in the intestinal tumor stroma,
but not their polarization, requires Ikke. This is in sharp contrast
with Ikka whose kinase activity is required for Wnt-driven intes-
tinal tumor development by negatively regulating the recruitment
of Interferon g (IFNg)-producing M1-like myeloid cells (30).
Therefore, Ikke establishes an inflammatory signature to promote
Wnt-driven tumor development through mechanisms distinct
from those implying Ikka and Ikkb.
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