CO$_2$ laser polishing of microfluidic channels fabricated by femtosecond laser assisted carving

This content has been downloaded from IOPscience. Please scroll down to see the full text.
2016 J. Micromech. Microeng. 26 115011
(http://iopscience.iop.org/0960-1317/26/11/115011)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 139.179.66.241
This content was downloaded on 17/10/2016 at 08:29

Please note that terms and conditions apply.

You may also be interested in:

Hybrid chemical etching of femtosecond laser irradiated structures for engineered microfluidic devices
S LoTurco, R Osellame, R Ramponi et al.

Crack-free direct-writing on glass using a low-power UV laser
Ji-Yen Cheng, Meng-Hua Yen, Cheng-Wey Wei et al.

Rapid cell-patterning and microfluidic chip fabrication on glass
Meng-Hua Yen, Ji-Yen Cheng, Cheng-Wey Wei et al.

Characterization of deep wet etching of fused silica glass for single cell and optical sensor deposition
Haixin Zhu, Mark Holl, Tathagata Ray et al.

Fabrication of microfluidic systems onsoda-lime glass
Che-Hsin Lin, Gwo-Bin Lee, Yen-Heng Lin et al.

Laser stenciling: a low-cost high-resolution CO2 laser micromachining method
Whitney Longsine-Parker and Arum Han
1. Introduction

In the last two decades there has been increased demand for microfluidic lab-on-a-chip platforms towards rapid bio-analysis, drug development, and delivery while using a smaller sample quantity. Currently, common materials for microfluidic devices include polymers, silicon and glass. While polymers offer cost effective and relatively easier fabrication through soft lithography, injection molding, and hot embossing, they lack the stability for long-term or multi-use applications due to their absorptive nature [1]. Silicon shows better chemical and mechanical stability, and is a good candidate for CMOS integration. However, it suffers from optical absorption in the visible wavelength range, thus is not preferred for optofluidic applications [2]. Glass surfaces are chemically inert, mechanically stable, and optically transparent to a wide spectrum of light. On the other hand, the fabrication of glass-based microfluidic systems with well-known cleanroom fabrication
techniques (photolithography, wet etching, dry etching etc) is costly and requires time consuming processing steps [3–5].

Femtosecond laser micromachining of high band-gap transparent glass structures using ultrashort laser pulses is a well-known fabrication technique which relies on nonlinear multiphoton absorption phenomenon [6]. Different irradiation schemes and high power laser machining techniques are given in the literature for the femtosecond laser micromachining process [7–10]. They mainly require irradiation of the sample with tightly focused femtosecond laser beam followed by etching in hydrofluoric (HF) acid. This technique is also called femtosecond laser irradiation followed by chemical etching (FLICE) [11]. There is also hybrid version of the FLICE technique which requires using HF acid together with potassium hydroxide (KOH), as H-FLICE, which is mainly useful for preserving structural dimensions and avoids the conical shape change in longer etching durations [12].

FLICE enables the fabrication of complex structures in fused silica for microfluidic channels [1, 13, 14], and monolithic integrated devices [15–17]. For rectangular-shaped surfaces and buried structures in glass, FLICE initially scans the full 2.5D volume of the pattern layer by layer. The layers are composed of lines with constant separation. Every layer is separated by a predetermined height [8]. Although traditional FLICE can be used to fabricate complicated geometries, it is a rather slow method due to the irradiation of the entire volume and tedious etching step. Bragheri et al tried to solve this problem by scanning the lateral surface of the buried channel [18]. This technique required additional scanning of smaller geometries inside the channel and depends on a slow and difficult etching process, where initial scan geometry is not preserved.

When FLICE or H-FLICE is combined with high repetition rate lasers (~1 MHz—short time interval between each pulse about—1 µs cause cumulative heat transfer which allows control the size of machined area), it provides higher scanning speed which is critical for achieving complex patterns and longer channels in a reasonable amount of time due to a combination of pulse number and energy per area requirement [11, 19, 20]. Yet the scanning speed for low repetition rate lasers (~1 kHz—time interval between each pulse, long enough to carry away the heat from the focus point before the other pulse arrives) is in the order of tens of micrometers per second in order to keep tracking enough energy pulse train on substrate, which results in extremely long processing times for long microfluidic channels and complex 2.5D structures to achieve high structured surface quality. Also, solid state femtosecond lasers are sensitive to changes in laboratory conditions such as room temperature, humidity, and thermal and mechanical perturbations which may affect the performance of laser over time.

Femtosecond laser processed glass systems are used for many biochemical analysis systems [21]. Nevertheless, the optical quality of the etched surfaces is not suitable for imaging purposes due to micro-pits, which are byproducts of laser processing. After laser irradiation and HF etching, it is difficult to achieve smooth and flat surfaces similar to non-treated glass. Osellame et al demonstrated a monolithic glass chip for optical trapping and stretching of single cells [15]. Even though the cells are visible under microscope images during stretching, the surface roughness of the channels degrades axial resolution. Similar concerns arise for an imaging flow cytometry system with femtosecond laser-micromachined glass microfluidic channels [1]. The background image is subtracted from the image with cells for better threshold differentiation of the cell boundaries for image processing application.

CO2 laser processing is a powerful technique for local heat treatment and material modification particularly the polishing of rough surfaces on glass-based materials [22]. The high absorption coefficient of CO2 laser radiation in silica is caused by elastic vibration of the oxygen atom in between two silicon atoms (Si–O–Si) which results in local heating [23]. The CO2 laser energy is mainly absorbed in a thin surface layer and does not affect the rest of the material [24]. There are recent studies that use a CO2 laser to reshape the 3D patterns fabricated with femtosecond laser micromachining. For instance, Sohn et al conically micro-machined a fiber tip with femtosecond laser ablation and polished the fiber tip with CO2 laser to demonstrate a bidirectional firing optical fiber [25]. Kim et al (2014) showed a fused silica-based mold for a microlenticular lens array using femtosecond laser ablation, followed with CO2 laser polishing [26]. Bellouard et al showed the controllable CO2 laser application to transform femtosecond laser micromachined cubic box to a spherical shape [27].

Here we report femtosecond laser assisted carving (FLAC) to drastically reduce the scanning time mainly aimed for low repetition rate femtosecond lasers. We investigate the surface roughness of FLAC fabricated surfaces using optical microscope, scanning electron microscope (SEM) and atomic force microscope (AFM) images and we introduce the CO2 laser treatment process for the polishing of such surfaces to reduce roughness. We fabricated microfluidic channels to demonstrate the improvement in optical imaging using poly-styrene microspheres. We finally compare FLAC and FLICE with traditional glass micromachining techniques in terms of machining time, precision, roughness, aspect ratio, minimum feature size, cost, reproducibility, etch rate and parallel processing.

2. Experimental methods

The experimental method for the FLAC fabrication technique is divided into four sub-sections.

2.1. Femtosecond laser assisted carving (FLAC)

A Ti:Sapphire femtosecond laser amplifier, operating at 800 nm wavelength, sub-500 fs pulse duration, 1kHz repetition rate and 3W average power output femtosecond laser is coupled to a custom-made bright field microscopy setup. Microscope setup is combined with high precision linear XYZ translation stage (M406 precision linear stage for X–Y and M501 precision Z-stage from Physik Instrumente) in order to automatically operate the system with DC motor controller (PLC884). The output power of femtosecond laser is tuned with
half wave plate and polarizer. A 50× magnification, 11 mm extra-long working distance, 0.60 numerical aperture, 4 mm focal length, 0.91 µm depth of focus, infinity corrected objective lens is used to tightly focus the laser beam onto the fused silica sample. The 2.5D pattern is designed in AUTOCAD and is transferred to a XYZ stage controller via a command set. 1 mm thick, 25 × 75 mm² JGS1 grade high purity fused silica slides are used as samples. 1 mW average power and 60 µm s⁻¹ translation speed are used for the fabrication of the microwells and microfluidic channels. Microfluidic channel inlets and outlets are drilled with 6 mW average power and 240 µm s⁻¹ helical translation speed to precisely obtain the 1.46 mm diameter for fluidic connections that results in a tight connection with the 1.5 mm diameter tygon tubing for fluidic access.

2.2. Chemical etching

After femtosecond laser radiation of the 2.5D pattern, the sample is dipped into an ultrasonic bath (Branson-2510) with aqueous solution of 10% (for microwells) and 20% (for microfluidic channels on test chip) HF acid in a Teflon beaker. In order to prevent HF splashing out of the beaker, it is carefully capped and enclosed during ultra-sonication of samples.

2.3. CO₂ laser polishing

A CO₂ laser (Epilog Zing 30 W) is used in raster scan mode for polishing the bottom surfaces of etched samples. The laser operates at 10.6 µm wavelength with 5 kHz frequency and the maximum output power is 30 W. We optimized CO₂ laser polishing parameters in order to obtain the best polishing results in terms of surface roughness: 1000 DPI with ~100 µm beam diameter, ~1.8 W laser power, and 6 mm s⁻¹ speed. The CO₂ laser scanning step size of ~25 µm as per the manufacturers information was verified by doing an experiment at 1000 DPI with various power levels.

2.4. Adhesive free fused silica glass bonding

Thermal bonding was used to bond two fused silica samples without using any adhesive layer inbetween. First, the glass samples were thoroughly cleaned with Piranha solution then aligned and strongly pressed together using strong NdFeB magnets while the surfaces were still wet. Fabrication of the microfluidic chip was completed by placing the chip into a high temperature furnace for 7 h at 650 °C. The two surfaces were physically bonded to each other with van der Waals forces after they were dried [22].

3. Results and discussion

Figure 1 reports an illustration of the FLAC technique. Instead of radiating full sample volume, line by line and layer by layer as in FLICE, it only requires irradiation of the frame of the volume.

As shown in figure 1(a) the microwell sidewalls are scanned with a constant separation distance. The bottom layer is raster scanned with a constant separation in the x direction. A total of five surfaces are scanned for a rectangular-shaped microwell pattern on the surface on the sample. The bottom layer forms a buried channel and the sidewalls act as the etching path for the HF acid. After laser exposure, the sample is immersed in HF solution, where HF attacks from the sidewalls of the design and reaches to the bottom surface to completely etch out the irradiated bottom layer. Finally, the 2.5D structure is released from the sample and the carved channel remains with the desired pattern as illustrated in figure 1(b).

It is critical to compare the speed of FLAC and traditional FLICE methods for structures patterned on the surface. For a microfluidic channel with a 200 × 200 µm² cross section and 1 mm length which is irradiated with 5 µm layer and 3 µm line separation, FLAC is ~16 times faster than FLICE, since FLAC only traces the outer surfaces of the 2.5D pattern.

The progress of HF etching on a 500 × 500 × 40 µm³ microwell structure fabricated with FLAC is given in figure 2. After the femtosecond laser fully scans the 2.5D pattern, the sample is dipped into the ultrasonic bath with 10% HF acid in an aqueous solution. The HF acid penetrates and etches selectively through the laser exposed area. The etching time depends on the direction of scanning with respect to the polarization of light, size of the pattern and exposure method. For the microwell reported here, the polarization of laser light is perpendicular for the horizontal sidewalls and parallel in the vertical sidewalls, with respect to the...
writing direction. This leads to the vertical sidewalls being etched slower than the horizontal sidewalls, as also seen in figures 2(b) and (c), which can be corrected by adjusting the polarization during laser scanning. The HF starts to penetrate through the sidewalls in 5 min and etches beneath the full volume through all of the irradiated bottom surface in about 40 min. The time taken for the HF to reach the bottom layer can be controlled by changing the depth of the pattern and adjusting the laser parameters (laser power and polarization). Since HF is in contact with the sidewalls for a longer time before reaching the bottom surface, it results in a slightly expanded microwell width. The same irregularity happens at the bottom surface where the etching solution first attacks from the edges and finally reaches the center of the bottom surface; a dome shape with small curvature is formed. These deteriorations can be corrected by pre-processing the 2.5D scanning pattern prior to femtosecond laser irradiation or using KOH etchant which has very low etching rate for non-treated fused silica [12].

To show that FLAC can be applied to larger patterns and to eliminate the dome shape on the bottom surface, a partitioning approach is applied where larger patterns are divided into smaller regions. As shown in figure 3, a microfluidic T-junction design was divided into smaller rectangles during the irradiation process. Here, again 40 µm deep, but bigger 1 mm² square reservoirs were divided into five 1 x 0.2 mm² rectangles to observe the FLAC process. Hence, microfluidic wells in the order of millimeters can be rapidly processed using FLAC with a much improved etch rate using the partitioning approach.

In order to see the effect of CO₂ laser polishing, we prepared 40 µm deep and 400 x 400 µm² square microwell structures on fused silica with FLAC, and raster scanned with the CO₂ laser. The examination results for polished and unpolished samples are given in figure 4.

The optical transmission mode inverted microscope images (Zeiss Axio Vert.A1) shown in figures 4(a) and (b) clearly illustrate the effect of CO₂ laser polishing. The roughness on the bottom surface of the non-polished microwell causes less transmission compared to its surroundings. On the other hand, the transmission quality of the surface is equal in all sides of the microwell after CO₂ laser polishing. It is worth noting that the area of CO₂ raster scan is larger than the microwell pattern and this results in periodic surface fluctuations at the outside of the microwell depending on the raster resolution shown in figure 4(b).

For detailed comparison of polished and unpolished surfaces, we used Nova NanoSEM with helix detector in low vacuum mode in order to analyze the fused silica samples without a thin film metal coating. PSIA XE-100 AFM was used to investigate the topographic data of surface roughness from a 20 x 20 µm² area of CO₂ laser treated and untreated samples. SEM and AFM images show organized micro-pits on the surface as a result of micro-explosions due to very high energy laser beam focusing inside the transparent material during the femtosecond laser irradiation in figures 4(c), (e), and (h). The FLAC microwells that are polished with CO₂
laser treatment show significant improvement in figures 4(d), (f), and (h). The average roughness value (Ra) of the bottom surface of microwell decreased from ~200 nm to ~60 nm with CO2 laser polishing process.

In order to further investigate the surface quality of CO2 polished surfaces, we used FLAC to fabricate fused silica-based microfluidic surface channels with dimensions of 12 mm length, 400 μm width, and 40 μm depth. The scanning took approximately 8h and the parameters are 6 μm frame layer separation in z direction, and 3 μm bottom layer separation.
Table 1. Comparison of fabrication techniques for micromachining applications.

<table>
<thead>
<tr>
<th>Fabrication parameters</th>
<th>Processing time(^a) (min)</th>
<th>Precision</th>
<th>Roughness (nm)</th>
<th>Aspect ratio</th>
<th>Minimum feature size ((\mu m))</th>
<th>Etch rate ((\mu m \text{ min}^{-1}))</th>
<th>Mask</th>
<th>Cost/Consumable</th>
<th>Batch processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLICE</td>
<td>~220; laser scanning</td>
<td>Good</td>
<td>~250 [8]</td>
<td>High</td>
<td>1–3 with femtosecond laser(^b)</td>
<td>Fused Silica</td>
<td>No</td>
<td>High/Low</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>~40; wet etch 5% HF</td>
<td></td>
<td>~50 [28]</td>
<td></td>
<td></td>
<td>5 [8] longitudinal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>~80 [2]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLAC</td>
<td>~14; laser scanning</td>
<td>Good</td>
<td>~200</td>
<td>High</td>
<td>80–100 with CO(_2) laser(^b)</td>
<td>Fused Silica</td>
<td>No</td>
<td>High/Low</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>~65; wet etch 5% HF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5 longitudinal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLAC with CO(_2) polishing</td>
<td>~FLAC</td>
<td>Fair</td>
<td>60–70</td>
<td>High</td>
<td></td>
<td></td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Wet etching</td>
<td>~45; 50% HF(^d)</td>
<td>Poor</td>
<td>Pyrex: 3 [29]</td>
<td>Low</td>
<td>~0.5(^e)</td>
<td>Pyrex</td>
<td>Yes</td>
<td>Low/Low</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Soda lime: 5 [30]</td>
<td>~0.3(^g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry etching</td>
<td>~660(^f)</td>
<td>Fair</td>
<td>4 [33]</td>
<td>Moderate</td>
<td>~0.033(^e)</td>
<td>Pyrex</td>
<td>Yes</td>
<td>High/High</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7 [34]</td>
<td></td>
<td></td>
<td>0.3 [33]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand blasting</td>
<td>~8(^g)</td>
<td>Fair</td>
<td>~1000 [35]</td>
<td>Low</td>
<td>300 [38]</td>
<td>Pyrex</td>
<td>Yes</td>
<td>Low/Low</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><50 [36](^e)</td>
<td></td>
<td>~85 [39]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100–9000 [37]</td>
<td></td>
<td>~50 [40]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical milling</td>
<td>~1200(^f)</td>
<td>Fair</td>
<td>~200 [41]</td>
<td>Moderate</td>
<td>50–100 [41]</td>
<td>Soda lime 0.4 longitudinal</td>
<td>No</td>
<td>Low/Low</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>~220 [42]</td>
<td></td>
<td></td>
<td>420 lateral [42](^f)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) We defined an example structure as a 200 × 200 \(\mu m^2\) cross sectional, 1 mm long microfluidic channel; calculations based on typical etch rates as given in references. Laser scanning parameters are assumed as 200 \(\mu m \text{s}^{-1}\) stage velocity, 5 \(\mu m\) layer, and 3 \(\mu m\) line separation.

\(^b\) Minimum feature size for laser machining applications is limited with laser power, beam width, laser wavelength, and etching duration.

\(^c\) With very low pressure (0.15 MPa).

\(^d\) Using silica particles with size variation of 5–200 \(\mu m\).

\(^e\) Lithography section, which is a requirement prior to dry-wet etching and sand blasting techniques, must be taken into account for processing time calculation.
in \(\tau \) direction in fused silica sample for given microfluidic channels in figure 5. The two channels shown in figure 5(a) are fabricated using the same FLAC parameters. The top channel shown in figure 5(b) was left unprocessed whereas the bottom channel shown in figure 5(c) went through an additional CO\(_2\) laser polishing step. The untreated channel looks hazy; in comparison, the CO\(_2\) laser polished channels look transparent. Figures 5(b) and (c) report 20\(\times \) magnified optical microscope images in order to compare unpolished and polished microfluidic channels. During the CO\(_2\) laser treatment step, the micro-pits are melted, solidified and expanded to the entire surface.

We have also prepared a microfluidic test chip in order to demonstrate the performance of these two channels for optical imaging. The two channels shown in figure 5 were bonded to a rectangular fused silica substrate. In order to achieve a leak-free and high quality bonding, the contact surfaces must be clean and as smooth as possible. Although FLAC process has high etching selectivity between femtosecond laser radiated and non-radiated areas, keeping fused silica samples in high concentrations of the HF solution for longer increases the surface roughness. Moreover, the CO\(_2\) laser direct radiation to the outside of microwell pattern on glass surface (due to a lack of precision in the CO\(_2\) laser stage) can cause higher surface roughness which prevents glass-to-glass bonding. Therefore, HF acid interaction time, CO\(_2\) laser power, and the CO\(_2\) laser scanning area must be precisely adjusted.

CO\(_2\) laser polished and unpolished FLAC fabricated microfluidic channels were tested with 8 \(\mu \)m diameter polystyrene microspheres under an inverted microscope (Omano OMFL600) in order to examine visual improvement, as shown in figure 6. Uniform transmitted illumination light is projected through the particles in microfluidic channels. Polystyrene microspheres were imaged with forward transmitted and scattered light using a CCD camera. Although all particles were immobile during the course of imaging, non-uniform holographic rings and light scattering distribution are clearly seen in the close-up images in figure 6. The fishscale-like structures on the surface of the non-polished channel disrupts the coherency of background illumination light. Thus, the scattered light from particles causes non-uniform holographic pattern on the CCD camera and leads to errors in determining the size of particles. Such irregularities are important details for digital inline holographic microscopy, which plays an important role in the determination of in situ particle size distribution in an environment which includes a wide range of particles [43].

Another important distinction between polished and non-polished surfaces is that the non-polished channel includes more background noise, which may lead to data loss during background subtraction for image processing applications. The CO\(_2\) laser polished channel in figure 6(b) gives uniform light scattering through particles for holographic imaging due to the smoothened surface and better visual performance for image processing.

We further compared the metrics of traditional and laser glass micromachining approaches in table 1. There are three main approaches to make glass-based micro- and nano-fluidic devices: surface micromachining, buried channel technologies, and bulk micromachining [44]. In table 1, we focused on bulk micromachining techniques. The main advantage of maskless laser micromachining methods is the processing time and minimum feature size. Laser micromachining is especially good to produce a high aspect ratio with much shorter processing time compared to other fabrication methods. However, the high initial cost of femtosecond laser systems is a big drawback. Although the composition of the glass is an important factor affecting the surface quality [29], wet-dry etching delivers better surface roughness values with smaller feature size. Batch processing is also only achievable with wet-dry etching yet a reliable clean-room recipe should be developed ahead of time. On the other hand, mechanical milling is the preferable choice for mold fabrication in polymer-based microfluidic applications. It provides clean-room and mask-free process as an advantage but generally requires an operator since parameters such as drill bit (size, material), feed rate, spindle rate and axial depth must be carefully selected. Even though it is possible to reach high removal rates in lateral directions, due to the risk of breaking the drill bit, flank wear and high surface quality machining requirements, axial depth must be selected as small as possible, and this leads to extremely long processing times. Sand blasting has the fastest processing time and etching rate among the given technologies, but lacks surface quality and feature size. Surface quality may be improved by using smaller blasting particles, and changing the blasting angle and pressure. Nevertheless these adjustments drastically drop the etch rate [36].

FLAC offers similar surface quality and minimum feature size and much faster processing time compared to the FLICE technique for low repetition rate lasers. CO\(_2\) laser polishing is a quick extra step that offers improved surface for micro-fluidic applications. The processing times of FLAC can be further considerably improved using a high repetition rate (\(\sim \)MHz) laser.

4. Conclusion

HF acid assisted femtosecond laser microfabrication techniques enable rapid prototyping for micromachining in fused silica. In this work, we showed that the femtosecond laser assisted carving (FLAC) technique with only peripheral scanning of a surface 2.5D pattern and HF etching enable faster processing which is especially useful for low repetition rate lasers. Subsequently, we showed the effect of CO\(_2\) laser polishing on fused silica microwells and microfluidic channels fabricated by FLAC. We found that CO\(_2\) laser polishing results in 3–4 times smoother surfaces and provides higher quality optical images. We tested our microfluidic channels with and without CO\(_2\) laser polishing using 8 \(\mu \)m diameter polystyrene microspheres. Coherent and homogenous illumination through the spheres were only possible after CO\(_2\) laser polishing of channels, which increases the visualization performance for holographic digital microscopy and image processing applications.

M Serhatlioglu et al

J. Micromech. Microeng. 26 (2016) 115011
We further compared FLAC and FLAC followed by CO₂ poling to other traditional bulk micromachining methods to show each method’s strength and weaknesses.

Future work may include application of FLAC for the fabrication of 3D structures such as square pyramids, conical and cylindrical structures.

Acknowledgments

This work is supported by The Scientific and Technological Research Council of Turkey (TUBITAK) under grant no. 113E321. M E Solmaz acknowledges the action MP1205. B Ortac acknowledges the program.

References

[37] Slikkerveer P J, Bouten P C P and De Haas F C M 2000 High quality mechanical etching of brittle materials by powder blasting Sensors Actuators A 85 296–303

