Conceptualizing and operationalizing social rights: towards higher convergent validity in SCIP and CWED

Article in Journal of European Social Policy · January 2017

2 authors, including:

H. Tolga Bolukbasi
Bilkent University

Some of the authors of this publication are also working on these related projects:

Mapping the Turkish Welfare State Through Original Data Generation: A Theoretical and Methodological Contribution to Comparative Welfare State Research View project
Article

Corresponding author
H. Tolga Bolukbasi, Department of Political Science and Public Administration, Bilkent University; Minda de Gunzburg Center for European Studies, Harvard University, 27 Kirkland St., Cambridge, MA 02138, United States
Email: bolukbasi@bilkent.edu.tr

Conceptualizing and operationalizing social rights: towards higher convergent validity in SCIP and CWED

H. Tolga Bolukbasi
Department of Political Science and Public Administration, Bilkent University, Turkey; Minda de Gunzburg Center for European Studies, Harvard University, United States

Kerem Gabriel Öktem
Department of Political Science and Public Administration, Bilkent University, Turkey; Faculty of Sociology, Bielefeld University, Germany

Abstract
There is widespread consensus in the comparative welfare state literature that the welfare state can be best conceptualized in terms of social rights of citizenship. The Social Citizenship Indicators Program (SCIP) and the Comparative Welfare Entitlements Dataset (CWED), which rely on operational definitions of quantified legislated social rights, constitute centerpieces of this thriving research. As leading state-of-the-art tools for capturing welfare stateness, these two datasets are being widely used. Scholars in general have also been treating them as interchangeable measurement tools. Upon closer inspection, however, we discover that the two datasets point to contrasting images of welfare state change for certain countries and time periods. This article aims to contribute to the scholarly exchange on the validity problem in measuring welfare state generosity. The exchange has hitherto been confined to problems of dataset choice with respect to only replacement rates, a set of key indicators included in both datasets. However, there are eleven key non-replacement rate indicators SCIP and CWED have in common, whose convergent validity has yet to be questioned. We thus explore the convergent validity of these non-replacement rate indicators across the two datasets. We then replicate the two leading composite indexes (Decommodification Index [DI] and Benefit Generosity Index [BGI]) constructed on the basis of these indicators. We identify problems of invalidity manifested in
discrepancies in non-replacement rate indicator scores and index values for DI and BGI. We show how these discrepancies could lead to contrasting assessments of welfare state change. We then identify a set of potential sources for these discrepancies most of which are related to different operationalizations of similar concepts. We conclude by calling for more dialogue among developers of SCIP and CWED to further clarify their conceptual and operational points of departure.

Keywords
Social rights, welfare state generosity, Social Citizenship Indicator Program (SCIP), Comparative Welfare Entitlements Dataset (CWED), retrenchment, dependent variable problem, Decommodification Index, Benefit Generosity Index, validity

Introduction
Welfare state generosity research has been a big success story in the comparative welfare state literature. One key source of its success has been its popular conceptual basis centering on T.H. Marshall’s formulation of ‘social rights of citizenship’. Many researchers now assume that ‘social citizenship constitutes the core idea of a welfare state’ (Esping-Andersen, 1990: 21) and that the welfare state is a richly diverse catalogue of legislated social rights. Accordingly, conceptual definitions of the welfare state on the basis of social rights have ‘undoubtedly been the most influential conceptualization of the welfare state’ (Stephens, 2010: 511).

Although the Marshallian conceptualization of social rights dates back to the early postwar years, its widely popular operationalization emerged only in the 1980s. Walter Korpi and Gosta Esping-Andersen developed an operationalization aimed at gauging different dimensions through a set of indicators compiled under the Social Citizenship
Indicators Program (SCIP). In order to replicate these indicators which were not publicly available at the time, Lyle Scruggs constructed, the Comparative Welfare Entitlements Dataset (CWED). These datasets provided researchers with standardized measures enjoying high degrees of reliability when applied across countries and across time. Based on the indicators in the datasets, their creators also developed composite indexes – the Decommodification Index (DI) and the Benefit Generosity Index (BGI) – aimed at capturing the multi-dimensional nature of social rights. In time, the research community came to treat these indicators and the composite indexes with increasingly sophisticated statistical techniques. They were also being used interchangeably in a growing literature. Thus SCIP and CWED indicators as well as DI and BGI have emerged as standard state-of-the-art tools no welfare state specialist can afford to ignore.

Despite their wide popularity and their common points of departure, there have long been suspicions that the two datasets at times paint contrasting images of welfare state generosity (Scruggs and Allan, 2006). In response, the developers of SCIP and CWED have recently started a very fruitful conversation in a symposium titled *The Validity Problem in Measuring Welfare State Generosity* (henceforth, the *Symposium*) where they discussed their respective conceptual and operational definitions.¹ The *Symposium* largely centered on six replacement rates datasets have in common. This exchange
concluded that the two datasets, while departing from similar conceptual bases, pursued different operationalizations for these indicators, and hence, any discrepancy would only be natural.

But the Symposium resolved the validity issues only partially. There are eleven non-replacement rate indicators on coverage, benefit eligibility, benefit duration, waiting days, and sources of financing that SCIP and CWED have in common. Symposium participants, however, did not take up the issue of validity for these indicators. Although creators of CWED had suggested that at least for some countries scores for non-replacement rate indicators were also different (Scruggs and Allan, 2006), Symposium participants assumed that these indicators ‘are likely to be more similar than the replacement rates data, since they come from similar sources and involve simpler coding decisions’. They also suggested that the ‘overall indexes using these additional data’, DI and BGI, ‘would be more similar across the two datasets than replacement rates alone’ (Danforth and Stephens, 2013: 1296).

In this article, we assess the empirical validity of these assumptions concerning the non-replacement rate indicators and the indexes. Methodologists have developed the term ‘convergent validity’ for examining the degree to which different operationalizations constructed on the basis of identical conceptualizations converge on
one another. We evaluate whether these common indicators that SCIP and CWED share enjoy convergent validity, i.e. whether the two measures developed to gauge the same concepts actually do so.

We find that the scores for some of these indicators are almost as disparate as those for replacement rates. Although we did not detect a systematic difference across different welfare state programs and across time, there are systematic differences across countries. Discrepancies in these indicators are not isolated cases; the indicators are used in constructing DI and BGI. These indexes are not only commonly used as dependent variables in comparative welfare state research but are increasingly used as independent variables in other bodies of literature explaining pressing social problems. Scholars, time and again, use these indicators as well as the indexes more or less interchangeably assuming that they gauge the same concept. Hardly any study uses these indicators at the same time or runs reliability checks against one another.²

In order to understand whether the discrepancies in the eleven indicators translate into differences in the composite indexes, we replicated DI and BGI on the basis of both SCIP and CWED data. In our analysis, we go beyond Scruggs and Allan’s seminal replication in three ways: first, we rely on both SCIP and CWED data (both of which have been revised and updated since Scruggs and Allan’s replication), second, we
include a time-series analysis, and finally, we replicate both DI and an updated version of BGI. We found that the dataset choice in constructing each index does make a difference in overall index values. This is the case especially in time-series (and less so in cross-section) index values. These differences have serious ramifications for adjudicating between contending theoretical claims on welfare state change that are at the very heart of the perennial ‘dependent variable problem’ in the comparative literature (Clasen and Siegel, 2007).

We build our argument through successive stages. Section 2 discusses the rise to prominence of social rights and introduces SCIP and CWED as state-of-the-art tools. Section 3 discusses conceptualization and operationalization procedures in SCIP and CWED for their common indicators. After reviewing the recent debate on replacement rates, this section discusses whether the non-replacement rate indicators do follow similar conceptual and operational definitions. Section 4 compares the non-replacement rate scores across the datasets. Section 5 replicates DI and BGI on the basis of SCIP and CWED data to verify whether differences in dataset scores actually suggest different assessments of welfare state change. Section 6 discusses potential sources for the differences between the two datasets. Section 7 concludes with a plea for a sustained conversation among the creators of both datasets to clarify further conceptual and operational differences.
Social rights: state-of-the-art conceptualization of welfare stateness

In conceptualizing ‘welfare stateness’, earlier studies relied on ‘welfare effort’ measured through social expenditures side by side with detailed narratives relying on comparative historical methods during the 1970s (Amenta, 2003). While ‘welfare effort’ was a natural conceptual and operational definition for the more structural functionalist oriented theories of the time, scholars interested in more political conceptions (such as state redistribution and social citizenship) had been using social spending only as a second-best solution in the absence of ‘direct’ and ‘multidimensional’ measures for their conceptual definitions. The concept of the welfare state was all about power and contestation, and so its operationalization had to reflect the very political nature of expanding the social rights of citizenship.

This new multidimensional conceptualization needed a new operationalization and the search began for new ways of measuring social rights directly (Stephens, 2010: 515). The solution was to construct different quantitative measures of social benefits provided through different welfare state programs for regular workers. The original operationalization was developed for the first time at the Swedish Institute for Social Research (SOFI) (Korpi, 1989, Esping-Andersen, 1990). The flagship of this research
tradition, SCIP, was heavily influenced by the Marshallian notion of social citizenship (Korpi and Palme, 2008b: 2). The Program thus aimed to capture a variety of institutional characteristics of the key social security programs that make up the welfare state: old age pensions, sick pay, unemployment and accident insurance. Based on this conceptualization focusing on entitlements, scholars with the Program operationalized social rights through quantifying essentially qualitative social rights content in welfare state programs. Although sometimes seen as ‘qualitative details’, such information are seen as ‘the institutional features that are the “rules of the game”’ themselves (Scruggs, 2008: 66). The underlying goal was to assign a score to what benefits a regular industrial worker would receive under existing social insurance legislation; the conditions under and the duration for which these benefits would be provided; and the potential and actual number of people who benefited from these programs (Korpi and Palme, 2008b). In the literature that stemmed from this conceptualization and operationalization, much of the emphasis was placed on replacement rate indicators, which assess the degree to which social security programs provide benefits in proportion to wage levels. The use of other SCIP indicators has largely been limited to the construction of the DI.

It was with the aim of replicating this index that Lyle Scruggs created another dataset, CWED, in the early 2000s (Scruggs, 2004). Because Scruggs’ goal was to replicate the
DI, CWED included only those indicators that were used to compute this index. Therefore the first version of CWED contained some, but not all, indicators in SCIP. In time, CWED developed as an increasingly independent dataset, especially after the revision and extension of the data published in CWED 2 (Scruggs et al., 2014a). In recent years a number of new datasets, extended the reach of the operationalizations based on social rights to other welfare state programs, such as social assistance. These datasets include FLOOR (Financial Assistance, Land Policy and Global Social Rights) developed by Lutz Leisering and colleagues (Leisering, 2016) at Bielefeld University, SAMIP (Social Assistance and Minimum Income Protection Interim Data-set) compiled by Kenneth Nelson (Nelson, 2008) at SOFI and EuMIN (Minimum Income Protection in Europe) developed by Thomas Bahle and colleagues (Bahle et al., 2011) at Mannheim University.

More than 25 years after their introduction, there has been emerging an implicit consensus on the superiority of conceptualizations and operationalizations on the basis of social rights over those on welfare effort. This view has taken root in the literature such that 'there has been a silent agreement that social rights-based measures are preferable for the comparative analysis of welfare state generosity and change' (Kühner, 2015: 202). This has been due less to the intrinsic pitfalls of social expenditures than the increasing sophistication and availability of quantified social rights data. While these
social rights based summary measures shall not bring an ‘end to long-fought debates about best and second-best measures’ in comparative welfare state research, many researchers believe that they better reflect the ‘multidimensional character of the welfare state’ than any other measure (Kühner, 2015: 200). Moreover, quantified legislated social rights data provided researchers with measures enjoying high(er) validity (that may generally be associated with qualitative program level data) and high(er) reliability (that social expenditure based studies generally possess), hence capitalizing on the best of both possible worlds of measurement. Furthermore, these data lend themselves to making the most of them by using increasingly sophisticated statistical software packages. It is in this sense that these conceptualizations and operationalizations of welfare stateness on the basis of social rights emerge as the state-of-the-art tools in the comparative literature.

From conceptualizing to operationalizing social rights

Shared conceptualizations, diverse operationalizations: the case of replacement rates

The increasing prominence of quantified legislated social rights datasets gave way to a recent debate on the ‘validity problem’ in this body of work. In the introductory article of the *Symposium*, Georg Wenzelburger and his colleagues (2013) claimed that SCIP and CWED datasets do not measure their ‘dependent variable’ in the same way. When
referring to the dependent variable, they confine their discussion only to replacement rates. They argue that the two datasets differ on both the level of, and changes in, replacement rates for many countries. Because of these differences, they warn, ‘not only diagnoses on the occurrence and intensity of welfare cutbacks vary considerably, but also the results on the determinants of welfare state change’ (Wenzelburger et al., 2013: 1229). This led the authors to doubt whether these two leading operationalizations, SCIP and CWED, can overcome the ‘dependent variable problem’ in the literature altogether. Replying to Wenzelburger et al. (2013), the developers of both datasets concurred that the differences were largely rooted in different operationalizations of similar concepts, which reflected different but equally valid ways to measure replacement rates (Ferrarini et al., 2013; Scruggs, 2013). In terms of ‘central decisions and coding principles’, the creators of SCIP added that ‘datasets differ in their underlying theoretical framework for policy analysis and therefore capture different aspects of how welfare states secure the livelihood of citizens’ (Ferrarini et al., 2013: 1251, 1264).

This contention on replacement rates can more easily be followed with the help of Adcock and Collier’s (2001) classic framework on conceptualization, operationalization and measurement. When seen through this framework, social rights constitute what the authors (2001: 530) call the ‘background concept’, which ‘encompasses the
constellations of potentially diverse meanings associated with a given concept’. The two conceptual definitions under CWED and SCIP start from this same constellation of meanings. The conceptualization stage is not completed here, however. Next comes the ‘systematized concept’ which is the ‘specific formulation of a concept adopted by a particular researcher or group of researchers’ (Adcock and Collier, 2001: 530). This is where SCIP and CWED seem to diverge. While SCIP prefers to systematize social rights through the Marshallian concept of ‘social citizenship’ (Korpi and Palme, 2008b: 2), CWED prefers to systematize them through ‘institutional commitments’ (Scruggs, 2008) or ‘institutional features of social insurance programs’ (Scruggs et al., 2014b: 2). Based on these different systematized concepts, SCIP and CWED use ‘replacement rates’ as what Adcock and Collier call ‘indicators’. However, their operationalizations of the seemingly same indicator essentially differ. For instance, the operational definitions of ‘type cases’ in SCIP and CWED are different, in terms of, among others things, age and work history of the ‘notional worker’ (Scruggs, 2013: 1270). Additionally, Adcock and Collier (2001: 530) add that generating indicators involves ‘any systematic scoring procedure from simple measures to complex aggregated indexes’. Accordingly, based on different operational definitions of replacement rates, SCIP research group developed DI and CWED research group constructed BGI. When it came to the ‘scores for cases’ (applying indicators to produce scores), therefore, research groups follow different procedures and arrive at different results.
Shared conceptualizations and operationalizations, but diverse scoring? The case of non-replacement rate indicators

The indicators SCIP and CWED have in common are not confined to replacement rates, however. There are other indicators both datasets cover on the dimensions of coverage, benefit eligibility, benefit duration and waiting days of the unemployment, sick pay and old age pensions programs and on the sources of financing of the old age pensions. On these indicators, however, there exists surprisingly no debate in the Symposium. Despite the fact that Scruggs and Allan (2006) suggested that at least for some countries scores for non-replacement rate indicators were also different, Danforth and Stephens assumed that non-replacement rate indicators in SCIP and CWED are more similar than replacement rate indicators. By implication, they also assume that the widely popular DI and BGI ‘would be more similar across the two datasets than replacement rates alone’ (Danforth and Stephens, 2013: 1296). Unlike the case for replacement rates, therefore, there do not seem any differences in the ‘background concept’, the ‘systematized concept’, and ‘indicators’ themselves. Identical conceptualization and operationalization processes for these indicators as such would suggest identical ‘scores for cases’. On the other hand, differences in operationalization, as in the case of type cases mentioned above, might also lead to differences in these other indicators. Therefore, we believe that the assumed identity of these less often used indicators should be verified – as it
was for the case for replacement rates. This issue is not a technicality. Differences in these other indicators translate into differences in DI and BGI – indexes that shaped our understanding of structure and change in welfare regimes. This article sets out to verify this issue. Are the scores for non-replacement rate indicators SCIP and CWED have in common actually identical, or at least more similar than those for the replacement rates? And accordingly, would DI and BGI report similar values when calculated on the basis of indicator scores of both datasets?

Non-replacement rate indicators and convergent validity of SCIP and CWED

In this section, we begin with a brief discussion on ‘convergent validity’ we borrow from the research design literature. We then provide the operational definitions of non-replacement rate indicators in CWED and SCIP. Finally we evaluate the convergent validity of these indicators by comparing the indicator scores in SCIP and CWED.

Convergent validity is ‘the degree to which [an] operationalization is similar to (converges on) other operationalizations to which it theoretically should be similar’. Thus, two indicators enjoy convergent validity ‘if measures of constructs that theoretically should be related to each other are, in fact, observed to be related to each other’ (Trochim et al., 2015: 132). In more technical terms, convergent validity is high
‘if the correlations of independent measures of the same trait (monotrait-heteromethod correlations) are significantly different from 0 and sufficiently large’ (Eid, 2010: 255).

To this end, we examine whether there are similarities in the scoring for these eleven non-replacement rate indicators across SCIP and CWED, which supposedly share the same conceptualization and operationalization. These data represent eleven indicators that are beyond the replacement rates: coverage, qualification period, benefit duration, waiting days, and sources of financing. Three of the indicators represent the institutional characteristics of the unemployment program and another three represent the sickness insurance program. Two indicators capture characteristics of the pension system. Finally, for each of the three social security branches there is a coverage indicator. These eleven non-replacement rate indicators, together with the eight replacement rate indicators, make up DI and BGI (Scruggs, 2014).

Before comparing the data points for these non-replacement rate indicators, we needed to make sure that they are indeed comparable, i.e. that there are no significant differences in conceptualization and operationalization. Table 1 below provides a list of non-replacement rate indicator descriptions for this purpose. The table shows that at least in one case – pension funding – SCIP and CWED operationalize the same concept in different ways. CWED defines this as an indicator capturing the degree to which the employee finances his pension himself, by dividing employee contributions to the sum
of employee and employer contributions. SCIP, on the other hand, defines it as the share of employee contributions by dividing employee contributions to the sum of the contributions from employees, employers, the state and others. These different operationalizations naturally produce different results and the indicators are therefore not directly comparable. In order to be able to compare these two pension funding indicators, we computed an indicator for SCIP that is equivalent to the CWED’s definition of pension funding.

Table 1: CWED and SCIP non-replacement rate indicators

<table>
<thead>
<tr>
<th>Social rights indicator</th>
<th>CWED Variable Name</th>
<th>SCIP Variable Name</th>
<th>CWED Variable Description</th>
<th>SCIP Variable Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unemployment qualification period</td>
<td>UEQUAL</td>
<td>ucontper</td>
<td>Weeks of insurance needed to qualify for benefit</td>
<td>Amount of weeks of contribution required to qualify for benefit, made in course of reference period</td>
</tr>
<tr>
<td>Unemployment benefit duration</td>
<td>UEDUR</td>
<td>uduratio</td>
<td>Weeks of benefit entitlement excluding times of means-tested assistance</td>
<td>Amount of weeks during which unemployment benefit is payable to single industrial worker with work record as detailed in general information</td>
</tr>
<tr>
<td>Unemployment waiting days</td>
<td>UEWAIT</td>
<td>uwaiting</td>
<td>Days one must wait to start receiving benefit after becoming unemployed</td>
<td>Number of legislated administrative ‘waiting days’ of unemployment at beginning of unemployment spell when no benefits are paid out</td>
</tr>
<tr>
<td>Unemployment coverage</td>
<td>UECOV</td>
<td>ucovratl</td>
<td>Percentage of the labor force insured for unemployment risk</td>
<td>Unemployment insurance coverage ratio as proportion of labor force</td>
</tr>
<tr>
<td>Sickness qualification period</td>
<td>SICKQUAL</td>
<td>scontper</td>
<td>Weeks of insurance needed to qualify for benefit</td>
<td>Amount of weeks of contribution required to qualify for benefit, made in course of reference period</td>
</tr>
<tr>
<td>Sickness benefit duration</td>
<td>SICKDUR</td>
<td>sduratio</td>
<td>Weeks of benefit entitlement excluding times of means-tested assistance or long-term disability /invalidity pensions</td>
<td>Amount of weeks during which sickness benefit is payable to single industrial worker with work record as detailed in general information</td>
</tr>
<tr>
<td>Indicator</td>
<td>Code</td>
<td>Description</td>
<td>Source: Korpi and Palme (2008a, 2008b), Scruggs et al. (2014b)</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>---</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Sickness waiting days</td>
<td>SICKWAT</td>
<td>waiting Days one must wait to start receiving benefit after becoming sick</td>
<td>Number of legislated administrative ‘waiting days’ of sickness at beginning of sickness spell when no benefits are paid out</td>
<td></td>
</tr>
<tr>
<td>Sickness coverage</td>
<td>SICKCOV</td>
<td>scovratl Percentage of the labor force with sickpay insurance</td>
<td>Coverage ratio as proportion of labor force</td>
<td></td>
</tr>
<tr>
<td>Pension funding</td>
<td>PFUND</td>
<td>pfininsr and pfinempr The ratio of employee pension contributions to employer and employee pension contributions</td>
<td>Total proportion of insurance fund receipts derived from contributions by the individuals insured. Total proportion of insurance fund receipts derived from employer contributions</td>
<td></td>
</tr>
<tr>
<td>Pension qualification period</td>
<td>PQUAL</td>
<td>pcontper ‘Standard’ number of years of pension insurance to be considered fully covered</td>
<td>Amount of weeks of contribution required to qualify for benefit, made in course of reference period</td>
<td></td>
</tr>
<tr>
<td>Pension coverage</td>
<td>PENC0V</td>
<td>puratpa Portion of those above official retirement age who are in receipt of a public pension</td>
<td>Share of pensioners in population above normal pension age</td>
<td></td>
</tr>
</tbody>
</table>

Judging by the descriptions of these indicators in SCIP and CWED codebooks, it appears that the operationalizations for all the indicators (except for the pension funding indicator) are identical. Given this information, one could assume that these indicators are indeed comparable. There is a parameter which may lead to differences in scores for these indicators: the type cases. The notional worker in SCIP is assumed to be 30 years old (with 10 years of work history), whereas in CWED he is 40 years is old (with 20 years of work history) (Scruggs, 2013: 1270).

We now turn to verify whether the scores for indicators in Table 1 are indeed ‘more similar than the replacement rates’ (Danforth and Stephens, 2013: 1296). In order to do
so, first, we compare the data for each of these indicators for all common data points for eighteen countries (Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Ireland, Italy, Japan, Netherlands, New Zealand, Norway, Sweden, Switzerland, United Kingdom, United States). Because CWED reports yearly data from 1970 onwards and SCIP reports data in five-year intervals, we can only compare data points for the following years: 1970, 1975, 1980, 1985, 1990, 1995, 2000 and 2005. This gives us 1341 ([11 indicators x 18 countries x 8 years] – 243 missing data points) common data points in SCIP and CWED. We compared all these common data points across SCIP and CWED and our comparison shows that the degree to which these datasets differ changes from indicator to indicator. In order to show these differences we report the correlation coefficient and the number of data points that are significantly different in SCIP and CWED in Table 2.5

<table>
<thead>
<tr>
<th>Social rights indicator</th>
<th>Correlation coefficient (r)</th>
<th>Number of significant differences</th>
<th>Number of total data points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unemployment qualification period</td>
<td>0.08</td>
<td>40</td>
<td>130</td>
</tr>
<tr>
<td>Unemployment benefit duration</td>
<td>0.93</td>
<td>14</td>
<td>130</td>
</tr>
<tr>
<td>Unemployment waiting days</td>
<td>0.66</td>
<td>13</td>
<td>128</td>
</tr>
<tr>
<td>Unemployment coverage</td>
<td>0.72</td>
<td>48</td>
<td>115</td>
</tr>
<tr>
<td>Sickness qualification period</td>
<td>0.03</td>
<td>20</td>
<td>120</td>
</tr>
<tr>
<td>Sickness benefit duration</td>
<td>0.93</td>
<td>15</td>
<td>120</td>
</tr>
<tr>
<td>Sickness waiting days</td>
<td>0.66</td>
<td>15</td>
<td>120</td>
</tr>
</tbody>
</table>
The largest discrepancies across the datasets in Table 2 are those in the unemployment qualification period (r=0.08) and sickness qualification period (r=0.03). Although these very low correlations point to significant discrepancies, Column 2 shows that they are concentrated in a few data points only for sickness qualification period indicator. For other indicators, the differences, while not as significant, are more widely distributed. Most strikingly, around a third of the data points for unemployment coverage and pension qualification period indicators are significantly different.

When we take a closer inspection at these differences program-by-program, we come across some striking examples. For instance, while the CWED score for sick pay benefit duration in France in 2005 was 3 years, it was just 1 year in SCIP. This difference could stem from differences in operational definitions, inadequately detailed coding instructions, or simply coding mistakes. In any case, it is obvious that this difference would seriously influence any assessment of the extent to which France’s sick pay scheme in fact provided these social rights in 2005. When we examine data country-by-country, we corroborate the findings in previous research that CWED and SCIP data are

<table>
<thead>
<tr>
<th>Sickness coverage</th>
<th>0.96</th>
<th>31</th>
<th>114</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pension funding</td>
<td>0.94</td>
<td>12</td>
<td>122</td>
</tr>
<tr>
<td>Pension qualification period</td>
<td>0.65</td>
<td>46</td>
<td>129</td>
</tr>
<tr>
<td>Pension coverage</td>
<td>0.64</td>
<td>20</td>
<td>113</td>
</tr>
</tbody>
</table>

Source: own calculations based on Korpi and Palme (2008a), Scruggs et al. (2014a)
more similar for some countries than for others (Scruggs and Allan, 2006; Wenzelburger et al., 2013). While CWED and SCIP largely agree on data points for Australia, New Zealand and Norway, the datasets report significantly different scores for Austria, Belgium, Ireland and Switzerland. Strikingly, the differences among programs and countries follow a somewhat systematic pattern when we examine observations year-by-year.

In sum, there are significant differences between SCIP and CWED scores for all eleven indicators we analyze. Around half of the data points, which the datasets have in common, are coded differently. However, some of these differences are clearly minor. Although the differences affect all countries and all indicators, they are not spread uniformly. Given the number of significantly different data points for these programs across these countries for all these years, it is rather likely that there may be some differences in operationalization that are not clearly visible in the codebook.

Comparing DI and BGI values: Contrasting images of welfare state change

This section analyzes the extent to which the differences in non-replacement rate indicators in SCIP and CWED do in fact lead to different values in DI and BGI. We compute the aggregate scores of DI and BGI based on SCIP and CWED data respectively for eighteen countries for five-year intervals between 1970 and 2005. Due
to the missing data points, we obtained around 100 common data points ([18 countries x 8 years] – missing data points) for each of these indexes.6 We then compare index values for 1980 and 2000 for these countries in order to see whether the two datasets corroborate one another in assessing welfare state change.7 Each of these indexes is constructed on the basis of replacement rate and non-replacement rate data for unemployment, sickness and pension programs. The indexes follow different procedures in standardizing and aggregating these different indicators (Esping-Andersen, 1990; Scruggs, 2014). In order to compare whether the choice of dataset affects DI and BGI values, we compute these indexes both with SCIP and with CWED data. We thus compute DI twice — once with SCIP data and once with CWED data and then compare whether the resulting values are similar. Likewise, we compute BGI twice8 -- once with SCIP data and once with CWED data and compare the scores. In this comparison, we explore three questions: To what extent are the index values similar? To what extent are the country rankings in the indexes similar? And, perhaps most importantly in substantive terms, to what extent is the direction of welfare state change (i.e. expansion or retrenchment) each index shows for each country similar?

We first computed DI on the basis of over 100 common data points in SCIP and CWED. The very high overall correlation between DI constructed on the basis of SCIP and CWED scores (r=0.89) shows that the index values are rather similar. However, this
high correlation of the scores masks significant differences across the two indexes in terms of the cross-section of country rankings and longitudinal welfare state change. We observe that for the year 1980 Austria, Belgium, Finland, France, Netherlands and Switzerland are ranked quite differently in both datasets. In the case of Austria, Finland and Switzerland the differences in ranking continue well into 2000. Despite these differences, the rankings in DI constructed with both SCIP and CWED more or less do reflect the patterns depicted in the comparative literature. For example, while the United States and Australia appear as welfare laggards, the Scandinavians lead the league in social rights.

Now let us turn to the extent to which there has been welfare state retrenchment in the age of ‘permanent austerity’. If we use DI as the yardstick, we find that the answer to this question depends very much on the dataset used to construct the index. Comparing the 1980 and 2000 scores, Figure 1 shows that the direction of change DI reports is different for six (Belgium, Switzerland, Canada, Denmark, Japan and Austria) of the seventeen countries. This means that DI constructed on CWED and SCIP data show contrasting images of welfare state change in a third of all the countries in the datasets. The most striking case in Figure 1 is Belgium, which, according to DI based on CWED data registers the largest expansion among advanced industrialized countries. However, according to the same index, this time based on SCIP data, Belgium seems to
have undergone the largest retrenchment among the same group of countries. It is also striking that whereas DI based on SCIP data shows retrenchment in a majority of eleven cases, the same index based on CWED reports only five cases.10

\textbf{Figure 1: Direction of Welfare State Change in DI: CWED and SCIP Compared}

![Change in Decommodation Score 1980-2000](image)

Source: own calculations based on Esping-Andersen (1990), Korpi and Palme (2008a), Scruggs et al. (2014a)

These differences between DI values computed on the basis of SCIP and CWED may have stemmed from the index formula (Scruggs and Allan, 2006; Bambra, 2006). BGI follows a different formula in treating the same indicators. In order to isolate the effects of the index formula, we computed BGI based on both SCIP and CWED data again. The overall correlation between BGI computed with CWED and SCIP data is again
very high (r=0.89). In the rankings, there are again some notable differences across BGI computed on the basis of the two datasets. When computed on the basis of SCIP and CWED, BGI values for Belgium, Finland and Switzerland are ranked very differently for 1980. For the year 2000, however, these differences in rankings across BGI values are limited to only Austria and Belgium.

It is again the question of welfare state change that gives us the more striking results. As Figure 2 shows, BGI values computed on the basis of SCIP and CWED show contrasting images of welfare state change for six (Belgium, Ireland, Japan, France, Switzerland and the United States) of seventeen countries. Like DI, BGI reports clearly more cases of retrenchment for SCIP data (11 countries) than for CWED data (7 countries).

Figure 2: Direction of Welfare State Change in BGI: CWED and SCIP Compared
When we compare the two sets of findings for DI and BGI values across time presented in Figures 1 and 2, some striking patterns emerge. First, we find that both DI and BGI (based both on SCIP and CWED data) indicate contrasting images of welfare state change in Belgium, Japan and Switzerland. What lies behind these contrasts? In the case of Belgium, this is largely due to differences among SCIP and CWED in coverage and replacement rate indicators for unemployment and pension programs. For Japan, the difference is mainly due to differences in SCIP and CWED on pension coverage and replacement rates. For this country, for example, whereas CWED data points to an increase in pension replacement rates, SCIP data registers a decrease. In the
case of Switzerland, the difference is mainly due to differences in SCIP and CWED in pension replacement rates.

Second, in eight of the seventeen cases (Finland, Norway, Netherlands, Australia, New Zealand, Germany, United Kingdom and Sweden), both indexes based on both SCIP and CWED point to the same direction of welfare state change. For some of these cases, however, the magnitudes of change are reported to be different. For instance, DI and BGI based on SCIP data report deeper retrenchment in the case of New Zealand than DI and BGI based on CWED data. A significant reason for this is that whereas SCIP reports that unemployment and sick pay waiting days increased from one to three weeks, CWED reports no change.

Third, in the remaining six cases (Ireland, Canada, Denmark, France, Austria, United States) the direction of welfare state change is similar in one index, but different in the other index. This contrast between DI and BGI is likely to be related to the particular ways in which DI and BGI standardize indicator scores. The standardization method employed in DI produces ‘discontinuities in scoring’ and potentially magnifies small changes, while underemphasizing larger changes in relative terms (Scruggs and Allan 2006; Scruggs 2007). BGI’s standardization method, however, does not result in similar effects.
In this section, we showed that for both DI and BGI, correlation coefficients are rather high across SCIP and CWED data. This means that the overall summary statistics for both indexes point to more similar distributions than those for individual indicators alone. Moreover, in terms of country rankings, our analysis shows that only some countries are ranked in significantly different ways by SCIP and CWED. This implies that the main findings of comparative welfare state research on welfare laggards and welfare leaders are corroborated in our analysis regardless of the dataset we use in replicating DI and BGI.

In sum, aside from these two pieces of good news, this section showed that the ‘dependent variable problem’ in welfare state change still persists. Our analysis points to two systematic findings in this regard. First, regardless of the index we employ, SCIP data reports categorically more cases of retrenchment than CWED data. Second, both DI and BGI report contrasting images of welfare state change for three countries depending on the dataset used. Given how central these indexes are in portaying welfare state change in the literature, these findings suggest that we need to explore ways for improving convergent validity. As a first stab at this we now explore below a set of potential sources of discrepancies among the datasets.
Potential sources of discrepancies among the two datasets

Based on our close reading of the codebooks of SCIP and CWED, we identify five potential sources of discrepancies. First, in defining the ‘notional worker’, the type case differences among the datasets (as mentioned in Section 4) may translate into differences in indicator scores (Scruggs, 2013). For example, in the case of Austria, unemployment benefit duration is 30 weeks for the notional worker at age 30; but this parameter is 39 weeks if the worker is aged 40 or older. For this case, therefore, CWED codes 39 weeks and SCIP codes 30 weeks (SSA, 2004: 37). Second, the coding decision for some of the programs in some countries may simply be too difficult to make given the inevitable inability of any codebook to reflect the overwhelmingly complex nature of the programs. In some cases, it may be too difficult to decide on which of the existing programs to use for coding an indicator. Switzerland’s sick pay insurance is an example of these: Whereas SCIP uses the nationally legislated minimum as the basis for coding the indicators, CWED relies on a non-mandatory program (Ferrarini et al., 2013: 1259). In fact, in their replication of the DI, Scruggs and Allan (2006: 66-67) explained that they consciously chose to code some programs they assumed were not coded in SCIP.

While these first two issues had been discussed in the literature, we identified a third one related particularly to the operationalization of the eleven indicators we analyze.
One example of the different operationalization of an indicator is pension funding where both datasets operationalize the share of employee contributions differently. Even when we re-constructed an indicator with SCIP data to be able to compare it with the CWED indicator, we still found that some scores for this indicator are different. Another example is the case of qualification period indicators in sickness and unemployment programs. Although the codebook descriptions for qualification period indicators appear to be similar, the scores for many data points are not. Having rolled these scores, we have come to the conclusion that SCIP and CWED mean different things when they speak of qualification periods. SCIP appears to measure the period one has to contribute in order to be eligible for any kind of benefit stipulated in the legislation concerned. CWED, however, appears to measure the period one has to contribute in order to be eligible for the kind of benefits that the notional worker receives.

A fourth potential reason for different indicator values may be using different sources for coding. In fact, Scruggs and Allan (2006: 66) suggested this long ago as an explanation for different coverage rates appearing for Ireland. The same issue may also explain other differences in indicator scores. However, since it is not always clear which source had been used for coding which data point, we cannot conclude how prevalent this problem is. Even if SCIP and CWED had used the same source, the actual score
may differ if the same indicator is coded on the basis of different interpretations of the same source. For example, both SCIP and CWED rely on *Social Security Programs Throughout the World (SSPTW)*, which summarize social security legislation, at times, in inadequate detail. Therefore, when coding a particular indicator, a high level of inter-coder reliability may not always be achieved. Moreover, since *SSPTW* is published biannually coders may code the values of years where data is unavailable differently. Finally, another potential source may always be random coding errors in the scoring stage that inflicts any large-scale dataset (Wenzelburger and Zohlnhöfer, 2014: 314).

Conclusions

In the comparative welfare state literature a consensus emerged that quantified social rights indicators provided by SCIP and CWED are ‘best’ measures for capturing the multidimensional character of welfare states. This consensus remains solid despite concerns over validity in the most widely used indicators, replacement rates. A recent debate revealed that these discrepancies in the six replacement rate indicators analyzed are natural as they are constructed on the basis of different operational definitions. However, there is much more to social rights data than replacement rates. Eleven other non-replacement rate indicators appear in both SCIP and CWED. Together with replacement rates, these indicators constitute the backbone of the widely used DI and BGI. The *Symposium* we drew heavily on suggested that scores for these common
indicators (as well as DI and BGI constructed on their basis) should be far more similar than those for replacement rates. In this article we explored the empirical validity of this suggestion. By comparing the 1341 common data points for eleven indicators we found that in a majority of cases SCIP and CWED data are very similar. However, significant differences existed in a substantial number of data points across these datasets.

The differences in operationalization and measurement concern not only the eleven indicators; they are directly consequential for DI and BGI values. The good news from our analysis is that the overall correlations between the scores computed with SCIP and CWED for these indexes are very high. Moreover, country rankings also show similarities across the datasets and they largely corroborate the findings of the comparative literature. When it comes to measuring welfare state change, however, SCIP and CWED data often point to different directions. These differences are consequential not only for our debates on how much retrenchment we had; they also directly affect our contending stories on what drives these changes.

These validity problems bring us back full circle to the ‘dependent variable problem’ in the comparative literature. The analysis of welfare state retrenchment appears to depend much, alas, on dataset choice, yet again.11 Sustaining the very informative conversation among developers of SCIP and CWED that began on replacement rates,
we submit, ought to continue for non-replacement rate indicators. We believe such conversation would help us verify whether the sources of differences we explored above are in fact consequential, and if so, what they mean in measuring social rights. We also believe this would also help us interpret the often-contradictory findings on retrenchment in more nuanced ways.

Acknowledgements

The authors would like to thank Kenneth Nelson, Kati Kuitto, Carsten Jensen, Traute Meyer and two anonymous referees for very valuable comments and suggestions.

Funding

This research is supported by the Scientific and Technological Research Council of Turkey (TUBITAK) [Project No: 114K121, Mapping the Turkish Welfare State Through Original Data Generation: A Theoretical and Methodological Contribution to Comparative Welfare State Research] and European Commission FP7 [Grant Agreement No: 312691, InGRID - Inclusive Growth Research Infrastructure Diffusion].

Notes

1. Some of these issues were followed up upon in an InGrid workshop on ‘Development and dissemination of social policy indicators’ in Stockholm in November 2014.
2. An exception is Wincott (2013).

3. In terms of data sources, we use the most recent CWED data (Scruggs et al. 2014a) and the most recent SCIP files released before the re-launching of the data under the new Social Insurance Entitlements Dataset (SIED) (Korpi and Palme 2008a).

4. A second difference between SCIP and CWED concerns sickness and unemployment benefit duration indicators. Cases of unlimited benefit duration are coded differently in both datasets. To make the respective indicators comparable we re-coded unlimited benefit duration in CWED the way it is coded in SCIP (260 weeks).

5. We defined ‘significant’ differences in data points as differences of at least 10 percentage points for coverage, and funding indicators, at least 10 years for pension qualification period, at least 7 days for unemployment and sickness waiting days, and at least 52 weeks for unemployment and sickness benefit duration and qualification periods. The numbers exclude the well-known coverage differences for Australia and New Zealand (Bambra 2006). All coverage data points above 100 per cent are capped at 100 per cent. The data includes the coding of United States sick pay coverage as 0 per cent. The correlation coefficient for the pension funding indicator is r=0.89 if the actual pension funding indicator in SCIP is used.

6. For missing data in CWED we applied the formula described in Scruggs (2014) to increase the number of data points.
7. We analyzed the time period 1980 – 2000 for mainly two reasons: (1) at the time of analysis there were more missing data points for 1970, 1975 and 2005, so the comparison would be based on less number of countries had we analyzed different years (1970, 1975 and 2005), and perhaps more importantly for substantive reasons, (2) the retrenchment debate mainly focuses on the period from 1980 onwards. In our analysis we used the previous or following year’s data whenever data for 1980 or 2000 was unavailable.

8. We computed both the original BGI and the revised BGI II (Scruggs 2014). We had to calculate BGI II without the index component on expected benefit duration for old age pension since this component is not available in SCIP. Since we believe BGI II calculated on the basis of SCIP is potentially misleading we only present data for the original BGI (Nota bene, that BGI II results are similar to those for the original BGI with a very high overall correlation (r=0.91)).

9. We arbitrarily define ‘significant difference’ in rank as a difference between a country’s rank in SCIP and CWED by at least 4 ranks.

10. An important question is what drives the differences in index values across datasets. Is it differences in replacement rates or differences in the other indicators? To explore this issue, we computed DI and BGI values using SCIP data for replacement rates and CWED data for the other indicators, and compared these values with the index values computed with SCIP data. In other words, we kept replacement rate
data constant to control for differences in replacement rates. The correlation coefficient increased ($r=0.93$ for DI, $r=0.96$ for BGI) and the number of countries for which welfare state change was assessed radically different decreased. However, significant discrepancies remained. This indicates that the discrepancies in index values are partly driven by differences in replacement rates and partly driven by differences in non-replacement rate indicators.

11. Readers may wonder which dataset they should choose, given the differences in indicator scores. At this point, we cannot decisively conclude which dataset is ‘better’ (cf. Wenzelburger and Zohlnhöfer, 2014: 326). In some cases, there might be conceptual reasons for using one of these datasets. In other cases, a conservative advice would be to check whether findings obtained with one dataset also hold true for the other.

References

Leisering, L (2016) FLOORCASH Database, Bielefeld University.

