Alloyed Heterostructures of CdSe$_x$S$_{1-x}$ Nanoplatelets with Highly Tunable Optical Gain Performance

Yusuf Kelestemur,‡§ Didem Dede,‡§ Kivanc Gungor,‡ Can Firat Usanmaz,‡ Onur Erdem,‡ and Hilmi Volkan Demir*,‡§

†Department of Electrical and Electronics Engineering, Department of Physics, UNAM–Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
‡Luminous! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Materials Sciences, School of Materials Science and Nanotechnology, Nanyang Technological University, Singapore 639798, Singapore

Supporting Information

ABSTRACT: Here, we designed and synthesized alloyed heterostructures of CdSe$_x$S$_{1-x}$ nanoplatelets (NPLs) using CdS coherently in the lateral and vertical directions for the achievement of highly tunable optical gain performance. By using homogeneously alloyed CdSe$_x$S$_{1-x}$ core NPLs as a seed, we prepared CdSe$_x$S$_{1-x}$/CdS core/crown NPLs, where CdS crown region is extended only in the lateral direction. With the sidewall passivation around inner CdSe$_x$S$_{1-x}$ cores, we achieved enhanced photoluminescence quantum yield (PL-QY) (reaching 60%), together with increased absorption cross-section and improved stability without changing the emission spectrum of CdSe$_x$S$_{1-x}$ alloyed core NPLs. In addition, we further extended the spectral tunability of these solution-processed NPLs with the synthesis of CdSe$_x$S$_{1-x}$/CdS core/shell NPLs. Depending on the sulfur composition of the CdSe$_x$S$_{1-x}$ core and thickness of the CdS shell, CdSe$_x$S$_{1-x}$/CdS core/shell NPLs possessed highly tunable emission characteristics within the spectral range of 560–650 nm. Finally, we studied the optical gain performances of different heterostructures of CdSe$_x$S$_{1-x}$ alloyed NPLs offering great advantages, including reduced reabsorption and spectrally tunable optical gain range. Despite their decreased PL-QY and reduced absorption cross-section upon increasing the sulfur composition, CdSe$_x$S$_{1-x}$ based NPLs exhibit highly tunable amplified spontaneous emission performance together with low gain thresholds down to \sim53 μJ/cm2.

INTRODUCTION

Atomically flat semiconductor nanoplatelets (NPLs), also known as colloidal quantum wells, are an astonishing class of solution-processed semiconductor nanocrystals for the next-generation optoelectronic devices.1,2 These NPLs with well-defined vertical thicknesses show distinguishable features compared to their counterparts.3 They exhibit narrow emission bandwidth (\sim40 meV),4 giant oscillator strength with ultrafast fluorescence lifetime,5 extremely large linear and nonlinear absorption cross sections,5 and suppressed Auger recombination (AR).6 In addition to these, their higher gain coefficient, broader gain bandwidth, and longer gain lifetime make them highly desirable for practical lasing applications.7 In this respect, optical gain and lasing performances of core-only7–12, core/crown,7,10,11 and core/crown/shell10 NPLs have been studied extensively. Although core-only NPLs generally exhibit relatively higher gain threshold with low photostability, the synthesis of different heterostructures further reduces their gain thresholds to record low levels with enhanced photostability. However, due to the pure vertical quantum confinement observed in NPLs, their optical gain and lasing performances are limited in terms of spectral tunability compared to colloidal quantum dots (CQDs). For example, 4 monolayer (ML) thick CdS and CdSe core NPLs exhibit discrete amplified spontaneous emission (ASE) peaks at \sim432 and \sim534 nm,12 respectively.

To obtain tunable excitonic properties in a wide spectral range, colloidal synthesis of NPLs with different vertical thicknesses, heterostructures, and compositions have been studied. By optimizing the synthesis conditions, core-only NPLs having different thicknesses can be synthesized to tune their optical properties.14 However, owing to pure vertical confinement observed in NPLs, they exhibit discrete emission and absorption behavior regardless of their lateral size. For example, CdSe NPLs having 3, 4, and 5 ML of vertical thicknesses terminated by Cd atoms on both sides always exhibit emission peak at \sim460, 513, and 550 nm, respectively.14 In addition, core/crown15–19 and core/shell20,21 heterostruc-
CdS$_2$ based NPLs have been synthesized to obtain tunable emission performance. By synthesizing CdSe/CdS based NPLs, we achieved highly tunable optical gain performance from the lower photo-luminescence quantum yield (PL-QY) and stability issues.

To achieve further tunable excitonic properties in colloidal NPLs, homogeneous alloying can be used as a highly effective approach, which has not been studied extensively. Previously, several studies have reported the synthesis of homogeneously alloyed CdSe$_x$S$_{1-x}$ core-only NPLs, showing tunable absorption spectra by adjusting the sulfur compositions. However, the synthesized CdSe$_x$S$_{1-x}$ core-only NPLs exhibit low PL-QY (~ 10–20%) with the limited emission tunability in the spectral range of ~ 490–510 nm. Therefore, engineered heterostructures of alloyed NPLs have been greatly required to obtain enhanced excitonic properties, enabling the achievement of highly tunable and low-threshold gain performance.

To overcome these limitations, we synthesized core/crown and core/shell heterostructures of CdSe$_x$S$_{1-x}$ alloyed core NPLs and systematically studied their resulting excitonic properties, including spontaneous emission and stimulated emission performance. By synthesizing CdSe$_x$S$_{1-x}$/CdS core/crown NPLs, we achieved enhanced PL-QY (up to 60%), without changing the emission spectrum of CdSe$_x$S$_{1-x}$/CdS alloyed core NPLs. Furthermore, with the synthesis of CdSe$_x$S$_{1-x}$/CdS core/shell NPLs, we further extended the tunable emission behavior of CdSe$_x$S$_{1-x}$/CdS NPLs. These effective excitonic properties of alloyed core/crown and alloyed core/shell heterostructures with the reduced reabsorption enabled us to achieve highly tunable optical gain performance from CdSe$_x$S$_{1-x}$ based NPLs. Compared to CdSe core based NPLs, these CdSe$_x$S$_{1-x}$ based NPLs with relatively low gain thresholds are highly promising candidates for future lasing applications.

EXPERIMENTAL SECTION

Chemicals. Cadmium nitrate tetrahydrate [Cd(NO$_3$)$_2$-4H$_2$O] (99.999% trace metals basis), cadmium acetate dihydrate [Cd(OAc)$_2$-2H$_2$O] (>98%), sodium myristate (>99%), technical-grade 1-octadecene (ODE) (99.999% trace metals basis), sulfur (S) (99.998% trace metals basis), technical-grade oleic acid (OA) (90%), technical-grade oleylamine (OAm) (70%), N-methylformamide (NMF) (99%), and ammonium sulfide solution (40–48 wt % in H$_2$O) were purchased from Sigma-Aldrich. Hexane, ethanol, methanol, toluene, and acetonitrile were purchased from Merck Millipore and used without any further purification.

Preparation of Cadmium Myristate. For the preparation of cadmium myristate, we followed a previously published recipe in the literature. In a typical synthesis, 1.23 g of cadmium nitrate tetrahydrate was dissolved in 40 mL of methanol and 3.13 g of sodium myristate was dissolved in 250 mL of methanol by continuous stirring. When the complete dissolution was achieved, both solutions were mixed and stirred around 1 h. Then, bulky solutions of cadmium myristate were centrifuged and precipitates dissolved in methanol for further cleaning. For the complete removal of excess precursors and better purification, this procedure was repeated at least three times. At the end, the precipitated part was dried under vacuum overnight.

Preparation of CdS Crown. For the preparation of CdS crown, we modified the commonly used recipe of CdS crown NPLs. 340 mg of cadmium myristate, 20 mg Se, and 30 mL of ODE were added in a 100 mL three-neck flask. The solution was degassed under vacuum at 95 °C around 1 h. Then, the temperature of the solution was set to 240 °C under argon flow. At 100 °C, the desired amount of sulfur precursor (S/ODE, 0.2 M) was injected rapidly to tune the composition of CdSe$_x$S$_{1-x}$/CdS alloyed core NPLs. For example, for the synthesis of CdSe$_x$S$_{1-x}$/CdS having sulfur composition (1–x) of 0.15, 0.25 and 0.30, we injected 0.25, 0.50, and 1.00 mL of sulfur precursors, respectively. When the temperature reached ~195 °C, 70 mg of cadmium acetate dihydrate was added. After 10 min growth at 240 °C, 1 mL of OA was injected and the solution was moderately cooled to room temperature. Below 120 °C, 5 mL of hexane was injected for better dissolution of NPLs. In the purification state, NPLs were precipitated by addition of ethanol and then kept in hexane solution.

Thanks to the formation of alloyed CdSe$_x$S$_{1-x}$/CdS NPLs, the resulting optical properties can be determined with the injected amount of S precursor. Moreover, the temperature at which cadmium acetate dihydrate is added is important to eliminate the formation of other species having different emission properties.

Preparation of Anisotropic Growth Solution for CdS Crown Region. For the lateral growth of CdS crown region, Cd and S precursors were prepared according to the well-known procedure with slight modifications. 480 mg of Cadmium acetate dihydrate, 340 μL of OA, and 2 mL of ODE were loaded in a 50 mL three-neck flask. The solution was heated to 120 °C under ambient atmosphere with rigorous stirring and was also regularly sonicated. Alternating steps of heating and sonication followed until whitish homogeneous gel formed. When the cadmium precursor was ready, it was mixed with a 3 mL of S/ODE (0.1 M) precursor and then used for the coating of CdS crown for the alloyed NPLs.

Synthesis of 4 ML Thick CdSe$_x$S$_{1-x}$/CdS Core/Crown NPLs. For the lateral growth of alloyed CdSe$_x$S$_{1-x}$/CdS core/shell NPLs, the resulting optical properties can be determined with the injected amount of S precursor. Moreover, the temperature at which cadmium acetate dihydrate is added is important to eliminate the formation of other species having different emission properties.

Synthesis of 4 ML Thick CdSe$_x$S$_{1-x}$/CdS Core/Crown NPLs. For the lateral growth of 4 ML thick CdSe$_x$S$_{1-x}$/CdS core/shell NPLs, 3 mL of CdSe$_x$S$_{1-x}$/CdS core/shell NPLs were transferred from nonpolar hexane to highly polar formamide (NMF) and then used for the coating of CdS core/shell NPLs. To obtain the desired amount of S precursor, the solution was heated to 195 °C for 5 min and cooled down to room temperature. For the cleaning of the resulting core/crown NPLs, ethanol was used for precipitation and then the precipitated NPLs were dissolved in hexane.

Synthesis of CdSe$_x$S$_{1-x}$/CdS Core/Shell NPLs. By using the colloidal atomic layer deposition (c-ALD) technique, CdSe$_x$S$_{1-x}$/CdS core/shell NPLs were synthesized in accordance with the well-known procedure, 3 mL of N-methylformamide (NMF) and 3 mL of core NPLs dissolved in hexane were mixed. With the addition of 50 μL of sulfur precursor, the solution was sonicated for 5 min. Then, 5 mL of AM was added to the solution and the mixture was stirred for 5 min. The resulting NPLs were washed with NMF and then the precipitated NPLs were dissolved in hexane.
Absorption and Steady-State Photoluminescence. UV−vis absorption and photoluminescence spectra of NPLs together with their photoluminescence excitation spectra were taken by using Cary 100 UV−vis and Cary Eclipse fluorescence spectrophotometer, respectively.

Photoluminescence Quantum Yield (PL-QY) Measurements. The PL-QY measurements of NPLs were performed according to the methodology described by de Mello et al.27 Our PL-QY measurement setup was equipped with an Ocean Optics Maya 2000 spectrometer, an integrating sphere, a xenon lamp and a monochromator. For the PL-QY measurements, freshly prepared dispersion samples of core only, core/crown and core/shell NPLs were used and excited at a wavelength of 400 nm.

Time-Resolved Photoluminescence Spectroscopy. The time-resolved photoluminescence measurements were taken by using Pico Quant FluorTime 200 spectrometer. Dispersion samples of NPLs were excited with a picosecond pulsed laser having a wavelength of 375 nm, and the fluorescence decay curves were recorded with TimeHarp time-correlated single-photon counting (TCSPC) unit. The FluorFit software was used for the reconvolution mode fitting of the decay curves to account for the instrument response function (IRF).

Transmission Electron Microscopy (TEM). TEM images of NPLs were acquired with FEI Tecnai G2 F30 operated at 300 kV in the high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) configuration. For the sample preparation, NPLs were cleaned with ethanol at least two times to remove excess ligands. Then, 5 μL of diluted NPL solution was dropped on a 200 mesh copper grid and kept under vacuum for the complete drying before the imaging.

X-ray Photoelectron Spectroscopy (XPS). To determine the elemental composition of alloyed CdSe$_{1-x}$S$_{x}$ core NPLs, we performed XPS measurements by using the Thermo Scientific K-Alpha X-ray photoelectron spectrometer. The samples for XPS were prepared by spin-coating of NPL solutions on the silicon substrates (~1 × 1 cm2). The acquired high-resolution spectra of CdSe$_{1-x}$S$_{x}$ core NPLs with varying sulfur compositions were analyzed by using the Avantage software.

RESULTS AND DISCUSSION

In this study, we prepared CdSe$_{1-x}$S$_{x}$ alloyed NPLs together with their core/crown and core/shell heterostructures to obtain highly tunable excitonic properties. First, we started with the synthesis of 4 ML thick CdSe$_{1-x}$S$_{x}$ core NPLs, having an additional layer of Cd atoms and used them as a seed for the further synthesis of core/crown and core/shell NPLs. For the synthesis of CdSe$_{1-x}$S$_{x}$ core NPLs, we modified the recipe of 4 ML thick CdSe core NPLs (see the experimental section for details).15 By the addition of a certain amount of sulfur precursor after degassing, we succeeded in the formation of a highly uniform CdSe$_{1-x}$S$_{x}$ alloy, and depending on the amount of injected sulfur precursor, the composition of CdSe$_{1-x}$S$_{x}$ was tuned in a precisely controlled way. The high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images of CdSe$_{1-x}$S$_{x}$ alloyed core NPLs with various compositions feature a rectangular shape and uniform size distribution regardless of the sulfur composition (Figure 1a). While lateral sizes of CdSe$_{1-x}$S$_{x}$ alloyed core NPLs...
were observed to be generally increased with increasing the amount of sulfur, their thicknesses were found to be the same with the 4 ML thick CdSe core only NPLs. Also, the elemental composition of CdSe$_{x}$S$_{1-x}$ alloyed core NPLs is determined by using X-ray photoelectron spectroscopy (XPS) (Figure 1b). It was measured that the elemental composition of sulfur can be increased up to $(1-x) = 0.30$ with a 1 mL of sulfur precursor injection. Further increasing the amount of sulfur resulted in the formation of a mixed population of NPLs with excess amounts of colloidal quantum dots so that it is not easy to achieve pure population of CdSe$_{x}$S$_{1-x}$ alloyed core NPLs with cleaning procedures.

After structural characterization of CdSe$_{x}$S$_{1-x}$ alloyed core NPLs having the same vertical thicknesses, we performed optical characterization including absorption, photoluminescence (PL), and photoluminescence excitation (PLE) spectroscopy. Absorption spectra of CdSe$_{x}$S$_{1-x}$ alloyed core NPLs with excess amounts of colloidal quantum dots so that it is not easy to achieve pure population of CdSe$_{x}$S$_{1-x}$ alloyed core NPLs with cleaning procedures.

Figure 2. (a) HAADF-STEM images of CdSe$_{x}$S$_{1-x}$/CdS alloyed core/crown NPLs having different sulfur compositions, (b) absorbance and photoluminescence spectra of CdSe$_{x}$S$_{1-x}$/CdS core/crown NPLs, and (c) time-resolved fluorescence decay curves of CdSe$_{x}$S$_{1-x}$ alloyed core and CdSe$_{x}$S$_{1-x}$/CdS core/crown NPLs for the case of $x = 0.75$.

were observed to be generally increased with increasing the amount of sulfur, their thicknesses were found to be the same with the 4 ML thick CdSe core only NPLs. Also, the elemental composition of CdSe$_{x}$S$_{1-x}$ alloyed core NPLs is determined by using X-ray photoelectron spectroscopy (XPS) (Figure 1b). It was measured that the elemental composition of sulfur can be increased up to $(1-x) = 0.30$ with a 1 mL of sulfur precursor injection. Further increasing the amount of sulfur resulted in the formation of a mixed population of NPLs with excess amounts of colloidal quantum dots so that it is not easy to achieve pure population of CdSe$_{x}$S$_{1-x}$ alloyed core NPLs with cleaning procedures.

After structural characterization of CdSe$_{x}$S$_{1-x}$ alloyed core NPLs having the same vertical thicknesses, we performed optical characterization including absorption, photoluminescence (PL), and photoluminescence excitation (PLE) spectroscopy. Absorption spectra of CdSe$_{x}$S$_{1-x}$ alloyed core NPLs with excess amounts of colloidal quantum dots so that it is not easy to achieve pure population of CdSe$_{x}$S$_{1-x}$ alloyed core NPLs with cleaning procedures.

Figure 2. (a) HAADF-STEM images of CdSe$_{x}$S$_{1-x}$/CdS alloyed core/crown NPLs having different sulfur compositions, (b) absorbance and photoluminescence spectra of CdSe$_{x}$S$_{1-x}$/CdS core/crown NPLs, and (c) time-resolved fluorescence decay curves of CdSe$_{x}$S$_{1-x}$ alloyed core and CdSe$_{x}$S$_{1-x}$/CdS core/crown NPLs for the case of $x = 0.75$.

were observed to be generally increased with increasing the amount of sulfur, their thicknesses were found to be the same with the 4 ML thick CdSe core only NPLs. Also, the elemental composition of CdSe$_{x}$S$_{1-x}$ alloyed core NPLs is determined by using X-ray photoelectron spectroscopy (XPS) (Figure 1b). It was measured that the elemental composition of sulfur can be increased up to $(1-x) = 0.30$ with a 1 mL of sulfur precursor injection. Further increasing the amount of sulfur resulted in the formation of a mixed population of NPLs with excess amounts of colloidal quantum dots so that it is not easy to achieve pure population of CdSe$_{x}$S$_{1-x}$ alloyed core NPLs with cleaning procedures.

After structural characterization of CdSe$_{x}$S$_{1-x}$ alloyed core NPLs having the same vertical thicknesses, we performed optical characterization including absorption, photoluminescence (PL), and photoluminescence excitation (PLE) spectroscopy. Absorption spectra of CdSe$_{x}$S$_{1-x}$ alloyed core NPLs with excess amounts of colloidal quantum dots so that it is not easy to achieve pure population of CdSe$_{x}$S$_{1-x}$ alloyed core NPLs with cleaning procedures.

Figure 2. (a) HAADF-STEM images of CdSe$_{x}$S$_{1-x}$/CdS alloyed core/crown NPLs having different sulfur compositions, (b) absorbance and photoluminescence spectra of CdSe$_{x}$S$_{1-x}$/CdS core/crown NPLs, and (c) time-resolved fluorescence decay curves of CdSe$_{x}$S$_{1-x}$ alloyed core and CdSe$_{x}$S$_{1-x}$/CdS core/crown NPLs for the case of $x = 0.75$.

were observed to be generally increased with increasing the amount of sulfur, their thicknesses were found to be the same with the 4 ML thick CdSe core only NPLs. Also, the elemental composition of CdSe$_{x}$S$_{1-x}$ alloyed core NPLs is determined by using X-ray photoelectron spectroscopy (XPS) (Figure 1b). It was measured that the elemental composition of sulfur can be increased up to $(1-x) = 0.30$ with a 1 mL of sulfur precursor injection. Further increasing the amount of sulfur resulted in the formation of a mixed population of NPLs with excess amounts of colloidal quantum dots so that it is not easy to achieve pure population of CdSe$_{x}$S$_{1-x}$ alloyed core NPLs with cleaning procedures.

After structural characterization of CdSe$_{x}$S$_{1-x}$ alloyed core NPLs having the same vertical thicknesses, we performed optical characterization including absorption, photoluminescence (PL), and photoluminescence excitation (PLE) spectroscopy. Absorption spectra of CdSe$_{x}$S$_{1-x}$ alloyed core NPLs with excess amounts of colloidal quantum dots so that it is not easy to achieve pure population of CdSe$_{x}$S$_{1-x}$ alloyed core NPLs with cleaning procedures.

Figure 2. (a) HAADF-STEM images of CdSe$_{x}$S$_{1-x}$/CdS alloyed core/crown NPLs having different sulfur compositions, (b) absorbance and photoluminescence spectra of CdSe$_{x}$S$_{1-x}$/CdS core/crown NPLs, and (c) time-resolved fluorescence decay curves of CdSe$_{x}$S$_{1-x}$ alloyed core and CdSe$_{x}$S$_{1-x}$/CdS core/crown NPLs for the case of $x = 0.75$.

were observed to be generally increased with increasing the amount of sulfur, their thicknesses were found to be the same with the 4 ML thick CdSe core only NPLs. Also, the elemental composition of CdSe$_{x}$S$_{1-x}$ alloyed core NPLs is determined by using X-ray photoelectron spectroscopy (XPS) (Figure 1b). It was measured that the elemental composition of sulfur can be increased up to $(1-x) = 0.30$ with a 1 mL of sulfur precursor injection. Further increasing the amount of sulfur resulted in the formation of a mixed population of NPLs with excess amounts of colloidal quantum dots so that it is not easy to achieve pure population of CdSe$_{x}$S$_{1-x}$ alloyed core NPLs with cleaning procedures.

After structural characterization of CdSe$_{x}$S$_{1-x}$ alloyed core NPLs having the same vertical thicknesses, we performed optical characterization including absorption, photoluminescence (PL), and photoluminescence excitation (PLE) spectroscopy. Absorption spectra of CdSe$_{x}$S$_{1-x}$ alloyed core NPLs with excess amounts of colloidal quantum dots so that it is not easy to achieve pure population of CdSe$_{x}$S$_{1-x}$ alloyed core NPLs with cleaning procedures.

Figure 2. (a) HAADF-STEM images of CdSe$_{x}$S$_{1-x}$/CdS alloyed core/crown NPLs having different sulfur compositions, (b) absorbance and photoluminescence spectra of CdSe$_{x}$S$_{1-x}$/CdS core/crown NPLs, and (c) time-resolved fluorescence decay curves of CdSe$_{x}$S$_{1-x}$ alloyed core and CdSe$_{x}$S$_{1-x}$/CdS core/crown NPLs for the case of $x = 0.75$.

were observed to be generally increased with increasing the amount of sulfur, their thicknesses were found to be the same with the 4 ML thick CdSe core only NPLs. Also, the elemental composition of CdSe$_{x}$S$_{1-x}$ alloyed core NPLs is determined by using X-ray photoelectron spectroscopy (XPS) (Figure 1b). It was measured that the elemental composition of sulfur can be increased up to $(1-x) = 0.30$ with a 1 mL of sulfur precursor injection. Further increasing the amount of sulfur resulted in the formation of a mixed population of NPLs with excess amounts of colloidal quantum dots so that it is not easy to achieve pure population of CdSe$_{x}$S$_{1-x}$ alloyed core NPLs with cleaning procedures.

After structural characterization of CdSe$_{x}$S$_{1-x}$ alloyed core NPLs having the same vertical thicknesses, we performed optical characterization including absorption, photoluminescence (PL), and photoluminescence excitation (PLE) spectroscopy. Absorption spectra of CdSe$_{x}$S$_{1-x}$ alloyed core NPLs with excess amounts of colloidal quantum dots so that it is not easy to achieve pure population of CdSe$_{x}$S$_{1-x}$ alloyed core NPLs with cleaning procedures.
NPLs. The formation of CdS crown extension only in the lateral direction and passivation of sidewalls can greatly enhance the PL-QY of NPLs without changing the spectral position of the emission.\(^\text{10}\) By using the freshly synthesized CdSe\(_{1-x}\)S\(_x\) alloyed core NPLs as seeds, we prepared core/crown NPLs using a slightly modified recipe (see the experimental section for details). HAADF-STEM images of CdSe\(_{1-x}\)S\(_x\)/CdS core/crown NPLs having different sulfur compositions are shown in Figure 2a. In comparison to CdSe\(_{1-x}\)S\(_x\) core NPLs, lateral sizes of the core/crown NPLs are found to be increased, while the vertical thicknesses remained the same, suggesting the formation of core/crown heterostructures. It is also important to note that, although we used highly uniform and rectangular-shaped CdSe\(_{1-x}\)S\(_x\) alloyed core NPLs as seeds, the formation of the CdS crown region was nonuniform in the lateral direction, which is typically observed for the CdSe/CdS core/crown NPLs in literature.\(^\text{11,15,16}\)

Compared to the CdSe\(_{1-x}\) core NPLs, CdSe\(_{1-x}\)/CdS core/crown NPLs exhibit substantially improved optical properties along with enhanced stability (Figure S2). The absorption spectra of CdSe\(_{1-x}\)/CdS core/crown NPLs were presented in Figure 2b together with that of CdSe\(_{1-x}\) core NPLs for a better comparison. It is clearly seen that the excitonic features of CdSe\(_{1-x}\) core NPLs remained almost in the same spectral position with the formation of the CdS crown region, which can be explained by the unchanged quantum confinement in the core/crown heterostructures due to the growth of the CdS region being only in the lateral direction. Furthermore, regardless of sulfur composition, a new absorption peak emerged at the same wavelength (\(\sim 405 \text{ nm}\)) in the absorption spectra of CdSe\(_{1-x}\)/CdS core/crown NPLs, which corresponds to the bandgap of 4 ML thick CdS NPLs.\(^\text{23}\) These two findings strongly support that the synthesized CdSe\(_{1-x}\) core NPLs have a homogeneously alloyed structure with the same vertical thickness. Otherwise, we would observe a shifting in the excitonic features belonging to both core and crown regions.

With the growth of CdS only in the lateral direction, CdSe\(_{1-x}\)/CdS core/crown NPLs exhibit almost similar emission peaks with respect to CdSe\(_{1-x}\) core NPLs. The slightly red-shifted emission (\(\sim 2-3 \text{ nm}\)) can be related to the change in the dielectric constant.\(^\text{15}\) Also, with the passivation of sidewalls of the CdSe\(_{1-x}\) core NPLs, CdSe\(_{1-x}\)/CdS core/crown NPLs exhibit remarkable improvement in PL-QY (up to 60%) regardless of sulfur composition. For a better understanding of the increased PL-QY, we also performed time-resolved fluorescence spectroscopy (TRF) by using in-solution samples. Fluorescence decay curves of the samples were fitted by using four-exponential functions due to the complex decay kinetics observed in the NPLs.\(^\text{29,30}\) The multiexponential decays were convolved with the instrument response function of the excitation laser to account for its pulse width (\(\sim 230 \text{ ps}\)).
The fluorescence decay curves and their analysis results are summarized in Figure S9 and Table S6. As an exemplary case for $x = 0.75$ amplified spontaneous emission (ASE) spectra of (a) CdSe$_{1-x}$ core-only NPLs, (b) CdSe$_{1-x}$/CdS core/crown NPLs, and (c) CdSe$_{1-x}$/CdS core/shell NPLs having 2 ML CdS shell at different excitation fluence. In the insets, the integrated PL intensity are given as a function of the pump fluence. (d) Normalized ASE spectra of CdSe$_{1-x}$/CdS heterostructures showing highly tunable gain performance varying with the incorporated sulfur amount.

Figure 4. Optical gain performances of CdSe$_{1-x}$/CdS core/crown and core/shell NPLs having different sulfur compositions. As an exemplary case for $x = 0.75$ amplified spontaneous emission (ASE) spectra of (a) CdSe$_{1-x}$ core-only NPLs, (b) CdSe$_{1-x}$/CdS core/crown NPLs, and (c) CdSe$_{1-x}$/CdS core/shell NPLs having 2 ML CdS shell at different excitation fluence. In the insets, the integrated PL intensity are given as a function of the pump fluence. (d) Normalized ASE spectra of CdSe$_{1-x}$/CdS heterostructures showing highly tunable gain performance varying with the incorporated sulfur amount.

The fluorescence decay curves and their analysis results are summarized in Figure S9 and Table S6. As an exemplary case, the decay curves of CdSe$_{1-x}$ core and CdSe$_{1-x}$/CdS core/crown NPLs with $x = 0.75$ are given in Figure 2c. The amplitude-averaged fluorescence lifetime of CdSe$_{1-x}$ core NPLs ($x = 0.75$) was measured to be ~ 0.90 ns with the fastest nonradiative decay component (0.15 ns), which is attributed to the hole trapping commonly observed in NPLs. The passivation of sidewalls in the CdSe$_{1-x}$/CdS core/crown NPLs, the amplitude-averaged lifetime of the core/crown NPLs ($x = 0.75$) was increased to ~ 3.78 ns by the suppression of the fastest nonradiative decay component. Thanks to the passivation of sidewalls in the CdSe$_{1-x}$/CdS core/crown NPLs, the amplitude-averaged lifetime of the core/crown NPLs ($x = 0.75$) was increased to ~ 3.78 ns by the suppression of the fastest nonradiative decay component. The similar behavior was also observed for the other CdSe$_{1-x}$/CdS core/crown NPLs having different sulfur compositions, suggesting the enhanced PL-QY of the core/crown NPLs.

With the synthesis of CdSe$_{1-x}$/CdS core/crown NPLs, we obtained improved optical properties, including the absorption cross-section and the increased PL-QY. However, due to the formation of the CdS crown region only in the lateral direction, CdSe$_{1-x}$/CdS core/crown NPLs exhibit emission almost in the same spectral position with CdSe$_{1-x}$ core NPLs. In order to achieve further spectral tunability with CdSe$_{1-x}$ core NPLs, we synthesized CdSe$_{1-x}$/CdS core/shell NPLs by using the colloidal atomic layer deposition (c-ALD) technique. With atomically precise shell thickness control offered by the c-ALD technique, we achieved highly uniform growth of CdS layers. HAADF-STEM images of CdSe$_{1-x}$/CdS core/shell NPLs having 3 ML of CdS shell are presented in Figure 3a. As can be seen from the HAADF-STEM images, the growth of the CdS shell layer is highly uniform and CdSe$_{1-x}$/CdS core/shell NPLs preserve their initial rectangular shape during the shell growth process.

We also studied the highly tunable optical properties of CdSe$_{1-x}$/CdS core/shell NPLs. The absorption spectra of
CdSe$_{1-x}$/CdS core/shell NPLs having different CdS shell thicknesses are presented in Figure 3b. With the formation of CdS shell layers in the vertical direction, we observed red-shifting and broadening in the excitonic features of CdSe$_{1-x}$/CdS core/shell NPLs regardless of their sulfur compositions. While the red-shifting of excitonic features can be explained with the relaxation of the quantum confinement depending on the increased vertical thickness of NPLs, the broadening of excitonic features can be attributed to the enhanced exciton–phonon coupling.

Similarly, we observed the red-shifted emission behavior for CdSe$_{1-x}$/CdS core/shell NPLs and achieved tunable emission within the spectral range of 560–650 nm depending on the shell thickness and sulfur composition of the starting CdSe$_{1-x}$ core NPLs (Figure 3c). However, the PLs of CdSe$_{1-x}$/CdS core/shell NPLs were found to be significantly broadened with respect to that of CdSe$_{1-x}$ core NPLs. For example, CdSe core NPLs exhibit the fwhm values of ~35–40 meV, whereas CdSe/CdS core/shell NPLs having 3 ML CdS shell have the fwhm values of 65–70 meV. In addition, we observed that the broadening of the emission bandwidths is strongly related to sulfur composition. We showed that the emission bandwidths of core/shell NPLs continuously broadened with increasing sulfur composition and reached ~100 meV for CdSeS$_{1-x}$/CdS core/shell NPLs having 3 ML CdS shell and the highest amount of sulfur composition ($x = 0.70$). This finding also supports that the broadening comes from the increased exciton–phonon coupling. Furthermore, by using in-solution samples, the formation core/shell structure was further verified with the TRF measurements. Owing to the partial separation of electron and hole wave functions in CdSe$_{1-x}$/CdS core/shell NPLs, increased radiative fluorescence lifetimes were measured with respect to their CdSe$_{1-x}$ cores (Figure S10). As can be seen from Figure 3d, the amplitude-averaged fluorescence lifetime was increased from ~0.71 to ~2.75 ns for CdSe$_{1-x}$/CdS core/shell NPLs with $x = 0.75$ having 3 ML CdS shell. It is also important to note that when we compared the fluorescence lifetimes of CdSe$_{1-x}$/CdS core/shell NPLs with those of CdSe$_{1-x}$/CdS core/crown NPLs, core/shell NPLs exhibit faster fluorescence lifetimes despite their increased electron and hole wave functions delocalization. This can be attributed to the lower PL-QY of core/shell NPLs, increasing the contribution of the faster nonradiative decay components. Therefore, owing to the competition between the faster nonradiative component originating from the trap sites and the elongated radiative component with the increased electron delocalization, we observed faster fluorescence lifetimes from core/shell NPLs with respect to core/crown NPLs.

After the optical and structural characterization of CdSe$_{1-x}$ alloyed core NPLs and their different heterostructures, we have studied their optical gain performance. For the optical gain measurements, we prepared highly close-packed films by spin coating highly concentrated NPL solutions on fused silica substrates. The samples were excited with the stripe configuration by using femtosecond laser beam (400 nm, 120 fs laser pulses at a 1 kHz repetition rate). Pump-fluence-dependent PL spectra of NPLs were collected via a fiber coupled to the spectrometer. As an exemplary case, pump-fluence-dependent PL spectra of CdSe$_{1-x}$ core, CdSe$_{1-x}$/CdS core/crown and core/shell NPLs ($x = 0.75$) are presented in Figure 4 (panels a–c, respectively). For the CdSe$_{1-x}$ core only NPLs ($x = 0.75$), when the excitation fluence exceeded ~292 μJ/cm2, we observed slightly red-shifted (~6 nm) amplified spontaneous emission (ASE) peak at 508 nm having a narrower bandwidth (6–7 nm) with respect to spontaneous emission (Figure 4a). This red-shifted ASE peak can be attributed to the biexcitonic gain observed in semiconductor nanocrystals having Type-I electronic structure [33,34]. Also, while we observed comparable gain threshold for CdSe$_{1-x}$ core NPLs having different sulfur compositions, we achieved the lowest gain threshold ($\sim 146 \mu J/cm^2$) from the CdSe$_{1-x}$ core NPLs with $x = 0.85$. Although we expected increased gain threshold from the CdSe$_{1-x}$ core NPLs with increasing sulfur compositions owing to their decreased PL-QY and reduced absorption cross-section, CdSe$_{1-x}$ core NPLs exhibit the relatively lower gain thresholds when compared to CdSe core NPLs. The better optical gain performance of CdSe$_{1-x}$ core NPLs can be explained with the reduced amount of reabsorption, which seems to be a major concern of NPLs due to their almost zero Stokes-shifted emission. In addition to that, further studies including ultrafast spectroscopy should be undertaken for a better understanding of the relation between the optical gain performance and sulfur composition.

We have also studied the optical gain performance of different heterostructures of CdSe$_{1-x}$ based NPLs. Further decreased gain thresholds are expected from CdSe$_{1-x}$/CdS core/crown NPLs thanks to their enhanced absorption cross-section and sidewall passivation of core NPLs with the CdS crown region. As can be seen from Figure 4b, CdSe$_{1-x}$/CdS core/crown NPLs ($x = 0.75$) exhibit a slightly red-shifted ASE peak (515 nm) with reduced gain threshold of $\sim 120 \mu J/cm^2$ in comparison to CdSe$_{1-x}$ core only NPLs ($x = 0.75$). We also observed decreased gain threshold with the CdSe$_{1-x}$/CdS core/crown NPLs comprising different sulfur compositions, indicating the importance of the crown formation. In addition, to further realize the spectral tunability of ASE with reduced gain threshold, we studied the optical gain performances of CdSe$_{1-x}$/CdS core/shell NPLs having 2 ML of CdS shell. Similarly, with the formation of the CdS shell, we obtained lower gain thresholds with respect to CdSe$_{1-x}$ core only NPLs for all sulfur compositions. From CdSe$_{1-x}$/CdS core/shell NPLs ($x = 0.75$), we achieved a red-shifted ASE peak located at ~610 nm with the lowest gain threshold of 53 μJ/cm2 when compared to core-only, core/crown, and core/shell NPLs used in this study. The improved performance of core/shell NPLs can be explained with the further suppressed Auger recombination owing to partial separation of electron and hole wave functions. Also, reduced amount of reabsorption enable us to achieve decreased gain thresholds with CdSe$_{1-x}$ based heterostructures of NPLs despite their lower PL-QY.

Finally, as it can be seen from Figure 4d, with the synthesis of alloyed heterostructures of CdSe$_{1-x}$ core NPLs, we have achieved extended spectral tunability of the optical gain obtained from colloidal NPLs. In previous studies, low-threshold optical gain has been demonstrated by using colloidal NPLs emitting in the blue, green, yellow, and red spectral regions. However, thanks to pure vertical quantum confinement, they exhibit discrete ASE peaks at ~490 nm for blue-, ~534 nm for green-, 575 nm for yellow-, and ~640 nm for red-emitting NPLs. Here, by using CdSe$_{1-x}$/CdS core/crown and core/shell NPLs, we have accomplished filling in the gaps and shown tunable ASE peaks within the range of 500–535 nm and 590–640 nm. Here it is also possible to further extend the spectral tunability by tailoring the sulfur composition of CdSe$_{1-x}$ core-only NPLs and adjusting the thickness of the CdS shell.
In conclusion, we have reported the synthesis of core/crown and core/shell heterostructures of CdSe$_{1-x}$ core-only NPLs together with their resulting excitonic properties, enabling the achievement of highly tunable and low-threshold gain performance. With the synthesis CdSe$_{1-x}$/CdS core/crown NPLs, we demonstrated improved PL-QY, enhanced absorption cross-section, and increased stability without changing the emission spectra of CdSe$_{1-x}$/CdS core/shell NPLs. On the other hand, with the synthesis of CdSe$_{1-x}$/CdS core/shell NPLs, we realized highly tunable emission for NPLs covering a wide range of the spectrum between 560 and 650 nm, depending on the sulfur composition and shell thickness. Also, we studied the optical gain performances of different heterostructures of CdSe$_{1-x}$ alloyed NPLs, offering great advantages including reduced reabsorption and spectrally tunable optical gain range. Considering the emission of CdSe$_{1-x}$-based NPLs covering a wide spectral range, we demonstrated highly tunable ASE with low gain thresholds (∼53 μJ/cm²). These findings have shown the importance of the colloidal synthesis of engineered heterostructured NPLs for the achievement of superior excitonic properties and the significant potential for the utilization of NPLs for the next-generation optoelectronic devices including lasers and light-emitting-diodes (LEDs), owing to their profoundly tunable excitonic properties.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.chemmater.7b00829.

Photoluminescence quantum yield (PL-QY) of different heterostructures of CdSe$_{1-x}$ NPLs, photoluminescence excitation spectra (PLE) of CdSe$_{1-x}$ NPLs, HAADF-STEM images of CdSe$_{1-x}$ NPLs showing their vertical thicknesses, analysis of high-resolution XPS spectra of CdSe$_{1-x}$ NPLs, EDX spectra of CdSe$_{1-x}$ NPLs, absorption and photoluminescence spectra of different heterostructures of CdSe$_{1-x}$ NPLs, time-resolved fluorescence decay curves of different heterostructures of CdSe$_{1-x}$ NPLs together with their analysis, amplified spontaneous emission (ASE) spectra of different heterostructures of CdSe$_{1-x}$ NPLs (PDF)

AUTHOR INFORMATION

Corresponding Author

E-mail: volkan@bilkent.edu.tr and hvdemir@ntu.edu.sg.

ORCID

Hilmi Volkan Demir: 0000-0003-1793-112X

Author Contributions

§Y.K. and D.D. contributed equally to this work.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial support from Singapore National Research Foundation under the programs of NRF-NRFI2016-08 and NRF-CRP-6-2010-02 and the Science and Engineering Research Council, Agency for Science, Technology and Research (A*STAR) of Singapore; EU-FP7 Nanophotonics+Energy NoE; and TUBITAK EEEAG 114E449 and 114F326. H.V.D. acknowledges support from ESF-EURYP and TUBAGEBIP. Y.K., K.G., and O.E. acknowledge support from TUBITAK BIDEB. Y. Kelestemur and D. Dede contributed equally to this work.

REFERENCES

