Lyotropic Liquid-Crystalline Mesophase of Lithium Triflate—Nonionic Surfactant as Gel Electrolyte for Graphene Optical Modulator

Fadime M. Balci,† Sinan Balci,*‡ Coskun Kocabas,*§ and Ömer Dag*†‡

†Department of Chemistry and UNAM, Bilkent University, 06800 Ankara, Turkey
‡Department of Astronautical Engineering, University of Turkish Aeronautical Association, 06790 Ankara, Turkey
§Department of Physics and UNAM, Bilkent University, 06800 Ankara, Turkey

ABSTRACT: Lithium salt (noncoordinating anions, such as lithium triflate (Ltf)) gel electrolytes may be key for the practical use of electrochemical devices. We introduce a new lyotropic liquid-crystalline (LLC) mesophase using Ltf, a small amount of water (as low as 1.3 water per Ltf), and nonionic surfactant (C16H33(OC2H5)10OH, C18E10). The LLC phase forms over a broad range of Ltf/C18E10 mole ratios, 2–18. The clear ethanol solution of the ingredients can be either directly spin-coated over a glass substrate to form a gel phase or it can be prepared as a gel by mixing Ltf, water, and C18E10. The mesophase leaches out surfactant molecules at low salt concentrations, but at a salt/surfactant mole ratio of above 8, the phase is homogeneous with a cubic mesostructure, fully transparent in the visible optical region, mechanically flexible, and an effective gel electrolyte. We have observed a large electrostatic doping on graphene with the Fermi energy level of ∼1.0 eV using Ltf-C18E10 gel electrolytes. The Ltf-based gels demonstrate better properties than commonly used ionic liquid electrolyte in graphene optical modulators. The stability of the new gel electrolytes and their superior performance make them suitable electrolytes for use in graphene-based optical modulators.

INTRODUCTION

Lyotropic liquid-crystalline (LLC) mesophases consist of at least two components, such as a solvent and a surfactant. The solvent may be water,1,2 water–oil,3 aqueous solutions,4 ionic liquids,5 acids,6 and salts.7 The salts can be alkali metals (LiX, X is NO3, Cl, Br, I),1,12 alkaline earth metals (CaX2, X is Cl and NO3),1,12 transition metals ([M(H2O)6][NO3]2, where M represents Mn(II), Co(II), Ni(II), Zn(II), and Cd(II)),1,10 or lanthanides (Eu(II) and La(III)).1,15 The common properties of these salts are their low melting point or high solubility.1,1,12 It is also important to note that the melting points of the salts drop10 and their solubility is enhanced12 in confined spaces, such as in the hydrophilic domains of the mesophases, known as soft confinement effect.1,12 Even though most lithium salts have a high melting point, because of their high solubility, they form LLC phases with nonionic surfactants.1,12

The salt–surfactant LLC mesophases are important in the development of gel-electrolytes for practical electrochemical devices,15 such as solar cells,16 batteries,17 supercapacitors,8 and so on. Therefore, it is important to investigate the salt–surfactant mesophases, especially the lithium salt–surfactant mesophases, toward the development of gel-electrolytes for electrochemical systems. Moreover, the lithium salts of noncoordinating anions (such as BF4, PF6, and CF3SO3−) are very important due to their high ionic conductivity.18–20 However, the supersaturated solutions of lithium salts of these ions have not been investigated as a solvent in the salt–surfactant LLC mesophases. For instance, LiCF3SO3 is a very soluble salt in water and can be a good candidate for a stable LLC mesophase, which may be used as the gel-electrolyte in various super capacitors and battery systems.

For example, a phosphoric acid–surfactant mesophase, used as a gel-electrolyte, has been recently tested in a graphene optical modulator, a supercapacitor consisting of two graphene electrodes and a gel-electrolyte, with excellent results.8 Polarizing the electrolyte by an applied electric field between the two graphene electrodes effectively dopes the graphene and significantly shifts its Fermi level to effectively modulate the optical transmittance of graphene.5,21 Major challenges in the device configuration include finding an electrolyte that (i) has a large electrochemical window, (ii) shifts the Fermi level of graphene effectively modulate the optical transmittance of graphene, (iii) reaches very large charge densities on graphene, (iv) is transparent in the visible region, and (v) is mechanically flexible for solid state device applications. For these reasons, ionic liquids have been considered target materials.21 However, gel-electrolytes that perform as well as ionic liquids may be more beneficial for use in practical applications.

Received: April 18, 2017
Revised: May 11, 2017
Published: May 12, 2017
In this contribution, we have developed a new LLC mesophase of LiCF$_3$SO$_3$–C$_{18}$H$_{37}$OCH$_2$CH$_2$OH (denoted as Ltf–C$_{18}$E$_{10}$) that can be used as a gel electrolyte in graphene optical modulators. The mesophase is very stable over a broad range of Ltf/C$_{18}$E$_{10}$ mole ratios, characterized using various techniques (such as XRD, POM, FTIR, and conductivity measurements). Its performance, as LLC gel electrolytes, has been demonstrated in an optical modulation of graphene in the visible region. The new electrolyte developed here, applicable in graphene optical modulators, has many advantages such as ease of device fabrication, minimal electrolyte leakage, excellent electrochemical properties, high charge density on graphene, mechanical flexibility, produced under ambient conditions, transparent in the visible region, stable over long periods (more than 3 months as measured in this study), and so on.

EXPERIMENTAL PART

Preparation of Ltf–C$_{18}$E$_{10}$ Solutions. In a typical preparation, the required amount of Ltf was first dissolved in ethanol, and following that the required amount of C$_{18}$E$_{10}$ was added and stirred overnight at RT to obtain a clear solution. For example, the sample with 2Ltf/C$_{18}$E$_{10}$ was prepared as follows. First, 2 mmol (312 mg) of Ltf was dissolved in 5 mL EtOH. Subsequently, 1 mmol (711 mg) of C$_{18}$E$_{10}$ was added to the above solution and stirred overnight to obtain a homogenized solution. The clear solutions were then coated on glass slides via spin coating at 1000 rpm for 15 s to obtain LLC mesophases.

Preparation of Ltf–C$_{18}$E$_{10}$ LLC Mesophases. The required amounts of Ltf, water, and C$_{18}$E$_{10}$ were placed in a vial. Subsequently, 1 mmol (711 mg) of C$_{18}$E$_{10}$ was added to the above solution and stirred overnight to obtain a homogenized solution. The clear solutions were then coated on glass slides via spin coating at 1000 rpm for 15 s to obtain LLC mesophases.

Synthesis of Graphene. Graphene layers on ultrasmooth copper foil substrates (Mitsui Mining and Smelting Company, B1-SBS) were synthesized using chemical vapor deposition (CVD), as described in our previous publications. We are able to synthesize single and multilayer graphene in a large area (several cm2). During the annealing step, the copper oxide on the copper substrate was removed by sending H$_2$ gas with a flow rate of 100 sccm. The graphene layer on the copper substrate was synthesized at 1035 °C and 5 Torr under a CH$_4$ flow rate of 10 sccm. After 30 s of growth, the growth was stopped and cooled to room temperature.

AC Conductivity Measurements. AC conductivity measurements were taken using a Gamry G750 potentiostat/galvanostat operating at an AC voltage of 10 mV and 100 kHz. The FTO glass electrodes were prepared as described in our previous publications. The cell constant was determined using standard KCl solutions with a known conductivity, each time before the measurement of the gels. The solutions were dropped over the prestretched line over FTO glass. Upon evaporation of the solvent (~24 h), the counter and reference electrodes were attached to one side and working electrode was attached to the other side for the conductivity measurements.

XRD Measurements. Small-angle XRD patterns were collected using a Miniflex diffractometer, equipped with high-power Cu K$_\alpha$ source operating at 30 kV/15 mA and wavelength of 1.5405 Å. Film samples that were spin-coated over glass slides were used for the XRD measurements.

Results and Discussion

The LLC mesophases of lithium triflate (LiCF$_3$SO$_3$, Ltf) and brij 76 (C$_{18}$H$_{37}$OCH$_2$CH$_2$OH, C$_{18}$E$_{10}$) form over a broad range of salt/surfactant mole ratios (2–18, denoted as #Ltf–C$_{18}$E$_{10}$, where # represents Ltf/C$_{18}$E$_{10}$ mole ratio), corresponding to a ratio as high as 82% (w/w). This indicates that a major component of the mesophase could be the salt species. The mesophases can be prepared as a solution in excess ethanol, which can be completely evaporated upon spin coating over any substrate to obtain the gel LLC phase or prepared as a gel starting from salt, surfactant, and small amount of water. In general, when using the second method, it is more difficult to produce a homogeneous mixture of the LLC phase; however, it is more practical to use as a gel electrolyte in electrochemical applications.
Both mesophases, prepared as gels and solutions, were characterized using POM, XRD, and FTIR techniques to elucidate the structural details as well as AC conductivity measurements for the electrical characterization. Figure 1 shows a series of small-angle XRD patterns of samples with different concentration of Ltf. Notice that both films, prepared by spin coating or spreading over a substrate, diffract at small angles with no diffraction at high angles. In fact, both preparation methods provide the same LLC phase upon aging.

The samples, prepared using ethanol solution, have been monitored by recording their XRD patterns over 5 weeks to ensure homogeneous LLC phase through complete ethanol evaporation. Figure 1a,b shows the aging process of two samples, namely, 2 and 8 Ltf and 1 C18E10. The diffraction lines observed immediately after spin coating undergo some changes, while keeping the line position relatively constant. At low Ltf concentrations, there are two sets of diffraction lines at small angles, which eventually become a single set at higher concentrations; see Figure 1. The small-angle XRD pattern of 2-Ltf-C18E10 displays lines at 1.48, 1.77, 2.99, and 4.54°, 2θ values. The diffraction line at 1.77° likely corresponds to a free surfactant, which gradually disappears at higher Ltf concentrations. The free surfactant line appears upon coating a clear solution of the salt-surfactant, gradually increases after 1 h, and then gradually decreases over time with further aging the gel films. It is likely that the mesophase leaches out crystalline
surfactants, which gradually become disordered or molten over time due to the thermal energy (melting point of free surfactant is \(\sim 38^\circ C\)). Note also that the XRD pattern of the free surfactant, spin-coated from its clear ethanol solution, diffracts at \(\sim 1.77^\circ\), which also gradually disappears over time, similar to our samples. Besides, the surfactant leach from the LLC media is metastable and undergoes phase separation into salt-rich LLC and salt-free surfactant domains over time. Therefore, the salt concentration in the LLC domains is much higher than 2Ltf/C18E10 mole ratio. The free surfactant line gradually disappears with an increasing Ltf/C18E10 mole ratio in the samples, and at a mole ratio above 8Ltf/C18E10, all diffraction lines can be indexed to a cubic mesophase. Also, this behavior correlates with the POM images that appear dark between the two crossed polarizers. Note that the diffraction lines gradually shift to lower angles with an increasing Ltf/C18E10 mole ratio. If we consider the line at \(\sim 1.34^\circ\), \(2\theta\), originating from the (200) plane of the cubic phase, the unit-cell parameter increases from 120 to 142 Å by increasing Ltf/C18E10 ratio from 2 to 18, respectively; see Figure 1c. However, the changes of the unit-cell parameters, at low Ltf/C18E10 ratio, are negligibly small and gradual at higher ratios. It is likely that the Ltf/C18E10 ratio in the LLC mesophase is constant to a mole ratio around 8 and then gradually increases at higher salt concentrations, where the extra surfactant molecules in the low Ltf concentrations are leached out from the media to compensate for a constant salt/surfactant ratio.

Furthermore, the salt–surfactant mixtures display mesophases in the following order \(V_1\) (bicontinuous cubic), \(H_2\) (normal hexagonal), and \(I_1\) (micellar cubic), with a dominating hexagonal phase, with an increasing salt/surfactant mole ratio. Therefore, it is reasonable to conclude that the hexagonal phase of the Ltf/C18E10 system is metastable and undergoes a phase separation into micellar cubic phase and free surfactant at low Ltf/C18E10 mole ratios. Besides, the diffraction patterns in Figure 1c show some variations during the aging process; however, all diffraction lines are indexed to a micellar cubic phase, where the lines at 1.39, 1.70, 2.77, and 4.16, \(2\theta\), correspond to (200), (211), (400), and (600) planes, respectively. The line, corresponding to the (200) plane, remains in all of the samples but gradually loses its intensity and shifts to smaller angles due to increase in unit-cell size in the mesophase to accommodate the excess salt species. Interestingly, the mesophase in the Ltf/C18E10 is cubic in all compositions, which is quite unusual for salt surfactant mesophases.

In addition, we recorded the ATR-FTIR spectra of a series of samples during solvent evaporation with different Ltf/C18E10 mole ratios. Figure 2a,b shows a series of spectra after aging the samples for 24 h, where the mesophase no longer undergoes changes. The peaks due to the Ltf species increase with an increasing salt concentration in the media. However, it is difficult to spectroscopically quantify the free surfactant in the media because the spectrum of the surfactant changes to the final spectrum upon the addition of as little as 0.1 salt/surfactant to the media. This means that the initial conformation of the ethylene oxide units changes in the presence of a 0.1 salt per surfactant, and the rest is an assembly of the surfactant with the help of LiCF3SO3.H2O. Notably, the Ltf peaks dominate the spectra. For instance, the sharp peak at 1035 cm\(^{-1}\) is known to originate from the \(\nu_3\) mode of the free triflate ion, and the tail on the high-energy side of this peak corresponds to the same mode in an ion pair. Figure 2b clearly shows that the triflate species are predominantly free ions. This is important for the ionic conductivity of the gel phase; see the latter. The intense peaks at 640, 1176, 1232, and 1255 cm\(^{-1}\), due to \(\delta(SO_3)^-, \nu(CF_3)^-, \nu(CF_3)^-,\) and \(\nu(SO_3)^-,\) respectively, and a tail on the high-energy side of 1255 cm\(^{-1}\), broken into two components at \(\sim 1272\) and \(\sim 1300\) cm\(^{-1}\), originate from the asymmetric stretching mode of the SO3 unit of the free and coordinated triflate ion, respectively.

Figure 2c–f shows the surfactant \(\nu CH\) stretching and water-bending and -stretching regions of three samples in two different stages of the aging process. The fresh samples display weak water bending at \(\sim 1649\) cm\(^{-1}\) and a broad water-stretching feature at 3440 cm\(^{-1}\) with a shoulder around 3200 cm\(^{-1}\), characteristic of the bulk water (hydrogen-bonded network of water). The \(\nu CH\) stretching region displays peaks related to the surfactant molecules and ethanol. However, upon complete evaporation of ethanol, both the bending and stretching modes of the water display drastic changes; compare the spectra in Figure 2c–e. The bending mode gradually red shifts and becomes more intense and sharper, while stretching modes are blue-shifting, from 1649 to 1635 cm\(^{-1}\) and 3440 to 3510 cm\(^{-1}\), respectively, indicating that the water is becoming free or hydration-only water; compare the spectra in Figure 2f. The bending mode also becomes sharper with an increasing Ltf in the media. The stretching to bending intensity ratio also displays drastic changes, from 2.5 to 1.0 increasing from 2 to 18Ltf/C18E10 mole ratio, likely indicating the change in the bulk/hydration water ratio in the media. To support this observation and also to determine the water content of the samples, we monitored the weight change over a four-digit balance during ethanol evaporation of the solutions. Owing to the very fast evaporation of ethanol, the mass of the solution decays exponentially; see Figure 3a. After mesophase formation, the mass of the solution becomes constant. Indeed, the LLC mesophase stabilizes at around 2H2O/Ltf for both 2-Ltf-C18E10 2-Ltf-C18E10
and 4-Ltf-C18E10 and at around 1.3H2O/Ltf for both 8-Ltf-C18E10 and 18-Ltf-C18E10.

Remarkably, the water/Ltf mole ratio decreases to almost 1.3 around 8 Ltf/C18E10 and remains constant above a mole ratio of 8. These observations are consistent with the behaviors observed in the XRD patterns as well as the discussions in the XRD Measurements section. Therefore, it is reasonable to conclude that the Ltf-C18E10 system is metastable up to an 8 Ltf/C18E10 mole ratio and leaches out surfactant with some bulk-like water.

Additionally, we recorded the AC conductivity of a set of #1-Ltf-C18E10 during aging using an FTO substrate that was designed for this purpose.16 The AC ionic conductivity increases slowly in samples with a low Lft concentration and increases gradually after a mole ratio of 6; see Figure 3b. Notably, the Ltf-C18E10 mesophase displays the highest AC ionic conductivity among all lithium salt–surfactant systems investigated in the literature.12,22 The highest conductivity was reported for the 18-Ltf-C18E10 to be 2.6 mS/cm. Notice that there is a factor of 3 compared with the polyelectrolytes of Lft using poly(ethylene oxide)s.26 There, the Lft has a limited solubility and also a stronger ion–ethylene oxide interaction that likely reduces the mobility of lithium ion in the media. However, in the lithium salt–surfactant systems, the salt is in the molten phase in the presence of a small amount of water with better ionic conductivity. It is likely that the lithium ion mobility is also enhanced in the confined space due to thermodynamic effects that need to be further investigated.29,30

We employed the Ltf-C18E10 LLC mesophase as a gel electrolyte in a graphene optical modulator to evaluate the electro-optical performance of the LLC gels. For this purpose, five compositions were chosen with an Ltf/C18E10 mole ratio of 4, 6, 8, 10, and 12. Figure 4a displays the schematic representation of the graphene-based supercapacitor structure used as an optical modulator. A gold film on a glass surface and graphene layer on another glass surface form the capacitor structure (Figure S1). The electrodes are separated by an insulating spacer layer. The gel electrolyte was placed between the capacitor plates by heating to a temperature higher than gel electrolyte’s melting point (~75 °C) and then placing the liquid electrolyte on preheated graphene capacitor device; see Figure S1. It should be noted that the graphene–gold supercapacitor works by ion gating. Owing to the electric double-layer (EDL) formation, the electric field is screened very close to the graphene surface (only a few nanometers) by the mobile ions in the medium. The fractional variation of the transmission of the incident light through the device as a function of the applied gate voltages is shown in Figure 4b and Figure S2.

Figure 4. Application of Ltf based LLCs gel electrolytes for graphene optical modulators. (a) Schematic representation of a graphene-gold supercapacitor filled with Ltf salt-based liquid-crystalline gel electrolyte. The LLC system has Ltf/C18E10 mole ratio of 8. (b) Variation of normalized transmission of the graphene supercapacitor filled with Ltf salt-based liquid-crystalline gel electrolyte versus the wavelength of the incident light for various applied bias voltages. (c) Variation of Fermi energy level of graphene as a function of applied bias voltages for varying Ltf/C18E10 mole ratio in LLC gel electrolytes and typical ionic liquid used in graphene optical modulators.
CONCLUSIONS

A new LLC mesophase of Ltf-C_{18}E_{10} has been prepared, characterized, and employed as a gel electrolyte in graphene-based optical modulators. A new LLC system consists of Ltf with a very small amount of water (as low as 1.3 water molecules per Ltf) and a nonionic surfactant (C_{18}E_{10}). The LLC mesophase forms over a broad range of Ltf/C_{18}E_{10} mole ratios (2–18). The first step in the preparation is to obtain a clear ethanol solution of Ltf and C_{18}E_{10}. After obtaining the solution, the solvent, ethanol, is evaporated by spin coating over a glass substrate, and the gel phase is immediately formed. The resulting glass substrate, and the gel phase is immediately formed. The solution, the solvent, ethanol, is evaporated by spin coating over a glass substrate, and the gel phase is immediately formed. The solution, the solvent, ethanol, is evaporated by spin coating over a glass substrate, and the gel phase is immediately formed.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.7b03622.

Schematic representation and photographs of the electrodes. More electrical and optical characterization data of the electrodes with gel electrolytes and ionic liquid. (PDF)

AUTHOR INFORMATION

Corresponding Authors

S.B.: E-mail: sbalci@thk.edu.tr.

C.K.: E-mail: dokocabas@fen.bilkent.edu.tr.

O.D.: E-mail: dag@fen.bilkent.edu.tr.

ORCID

Coskun Kocabas: 0000-0001-0831-5552

Ömer Dag: 0000-0002-1129-3246

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the Scientific and Technological Research Council of Turkey (TUBİTAK) under project numbers 13F278 and 215Z193 for the financial support and Dr. Osman Balci (Bilkent University) for his fruitful discussions. O.D. is a member of the Science Academy, Istanbul, Turkey.

REFERENCES

(3) Alexandris, P.; Olsson, U.; Lindman, B. A Record Nine Different Phases (Four Cubic, Two Hexagonal, and One Lamellar Lyotropic Liquid Crystalline and Two Micellar Solutions) in a Ternary Isotothermal System of an Amphiliphic Block Copolymer and Selective Solvents (Water and Oil). Langmuir 1998, 14, 2627–2638.

(22) Barim, G.; Albayrak, C.; Yilmaz, E.; Dag, Ö. Highly Conducting Lyotropic Liquid Crystalline Mesophases of Pluronics (P65, P85, P103, and P123) and Hydrated Lithium Salts (LiCl and LiNO_{3}). Langmuir 2014, 30, 6938–6945.