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 Today’s server architectures are designed 
considering the needs of a wide range of applica-
tions. For example, superscalar processors include 
complex control logic for out-of-order execution to 
extract instruction-level parallelism (ILP) from arbi-
trary programs. However, not all workloads utilize 
the features of a superscalar processor effectively. 
For example, a workload that exhibits a regular exe-
cution pattern (e.g., a dense linear algebra kernel) 
may not require the expensive ILP control logic 
for parallelism. Instead, it can be run on a through-
put-oriented architecture with thousands of simple 
cores, such as a GPU, which can lead to much better 
performance and power efficiency. On the other 
hand, only a limited class of data-parallel applica-
tions can utilize the high throughputs provided by 
such architectures. As a matter of fact, existing CPU 
and GPU platforms may not be the most efficient 
choices for the compute patterns of a wide range of 
applications.

For big data workloads, access to data is typically 
at least as important bottleneck as computation. The 
memory subsystems of today’s CPU architectures 

are optimized for work-
loads that have reasona-
ble data access locality. 
CPU cache hierarchies 
include different sizes 
of caches, which help 
capture different levels 
of access localities in 
different applications. 

However, if an application exhibits very little or no 
locality, the data access operations become ineffi-
cient for these architectures.

For example, let us consider graph applica-
tions that run on very large and unstructured data 
sets. Typically, the data of a vertex is computed or 
updated based on the data of its neighbors. In an 
unstructured graph, the neighbors of a vertex are 
stored in memory locations that may be far from 
each other. Therefore, traversing the neighbors of 
a vertex may involve a random memory access 
per neighbor. If the graph is large enough so that it 
does not fit into the last level cache, each access 
to a neighbor’s data may require a random DRAM 
access, which is typically hundreds of clock  
cycles. However, the existing CPU architectures 
are not optimized for frequent random DRAM 
accesses. For example, each Intel Haswell Xeon 
core has 10 line-fill-buffers, which means that each 
core can handle at most 10 L1 cache misses at a 
given time. However, an off-chip DRAM latency  
of hundreds of cycles requires hundreds of out-
standing memory requests to be able to utilize 
the full DRAM bandwidth available in the sys-
tem [1]. It was reported that 10 or more Xeon 
cores were needed for various graph applications 
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to fully utilize the available DRAM bandwidth 
[2]. Furthermore, due to the low compute-to- 
memory access ratios in graph applications, these 
cores are frequently stalled while waiting for data 
from off-chip memory. This leads to high power 
consumption by 10+ superscalar cores while not 
doing useful work. It was shown that custom 
architectures that target such communication 
patterns have the potential to improve power effi-
ciency by a factor of 50× or more compared to the 
general-purpose CPUs [3].

It is possible to design domain-specific hardware 
to achieve significant power and performance 
improvements for specific workloads. Although cus-
tom hardware accelerators can significantly improve 
the power and performance of certain workloads, 
they may not always be the best choices in terms 
of data center economy. There may be various rea-
sons for this, such as the overhead of managing 
heterogeneous resources (each with a potentially 
different set of custom accelerators) in a reliable 
way, rapid changes in the workloads relative to 
the lifetimes of the servers, and the extra cost of 
designing and manufacturing custom parts for 
different applications. From these perspectives, 
FPGAs are good candidates for deployment into 
data centers because they allow programmability 
and homogeneity while allowing custom hard-
ware acceleration for different workloads. That 
is why several vendors have started incorporat-
ing FPGAs into their platforms. In the following, 
we provide a summary of the recent industrial 
prototypes and the recent research on FPGA and 
application-specific integrated circuit (ASIC) hard-
ware accelerators.

IBM’s coherent accelerator  
processor interface

IBM implemented a coherent accelerator 
processor interface (CAPI) for their Power8 servers 
to make it easy to integrate FPGA and custom accel-
erators into server processors. CAPI allows attaching 
an accelerator to the I/O interface of a processor 
chip without incurring significant device driver and 
operating system software latencies. Using this inter-
face, accelerators and the host processors can have 
coherent access to a homogeneous virtual address 
space, where caching and coherency is managed by 
special hardware modules. This interface hides from 
the users the complexities of caching and communi-
cations by allowing the user-designed accelerators to 
access the system memory by simple load and store 
requests [4].

Different workloads have been accelerated by 
researchers using CAPI-enabled FPGAs, including 
genomics algorithms [5], [6], matrix algebra [7], 
and graph processing [8]. Furthermore, several 
commercial and special-purpose FPGA and ASIC-
based CAPI accelerators are now being devel-
oped by different companies for the OpenPOWER  
platform [9].

Intel’s Xeon + FPGA integrated  
platform

Although IBM’s CAPI helps reduce the driver 
and operating system latencies, the communication 
speed between CPU and FPGA is still limited by the 
PCIe-based interconnect. Intel’s prototype Xeon  + 
FPGA platforms try to address this limitation by 
integrating the host CPU and FPGA in a multichip 
package and enabling communication through 

the faster QuickPath interconnect (QPI) 
interface in addition to PCIe.

Figure 1 shows the high-level hardware 
and software architecture of the Xeon + 
FPGA platform [10], [11]. The in-pack-
age FPGA has coherent access to the host 
memory through QPI and PCIe interfaces, 
as shown in Figure 1. The communication 
between the host application, the acceler-
ator functional units on the FPGA, and the 
system memory is facilitated through the 
provided software framework (running on 
the host CPU) and hardware framework 
(running on the integrated FPGA).Figure 1. Intel’s Xeon + FPGA integrated platform [10], [11].
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The prototype Xeon + FPGA platforms have 
recently been made available for academic research, 
and workloads have been optimized in different 
domains, including genomics [10], machine learning 
[10], and databases [12]–[14].

Microsoft’s configurable cloud
As part of the original Catapult project [15], 

Microsoft researchers integrated FPGA accelera-
tors into a production data center to accelerate the 
search ranking algorithm used by Bing. In this archi-
tecture, a single FPGA card was connected to each 
server and the communication between the host 
CPU and FPGA was done through PCIe. In addition, 
48 FPGA cards within half-a-rack were connected 
through a secondary mesh network. This allowed 
the FPGAs within the same network to communicate 
with each other without going through host CPUs. 
This fabric was deployed at a medium-scale data 
center of 1632 servers, and 95% throughput improve-
ment was reported for Bing’s web search ranking 
algorithm on this fabric compared to the pure soft-
ware implementation.

Despite the good initial results, the original 
Catapult architecture was deemed to have severe 
limitations for real data centers, due to the extra 
cost of the secondary network, ineffective handling 
of failures, relatively small number of FPGAs com-
municating directly with each other, and the limited 
acceleration opportunities [16].

These limitations were later addressed by a new 
architecture, called configurable cloud (CC), which 
is reported to have been deployed in most of the 
new Microsoft datacenters since 2016. A server con-
figuration is illustrated in Figure 2, for a two-socket 
Xeon blade server [16]. Observe that an FPGA accel-
erator card has been placed between the network 
interface card (NIC) and the Ethernet network 
switch. In addition, the FPGA is connected to one of 
the host CPUs through PCIe.

This configuration is reported to be flexible 
enough not only for local workload acceleration 
but also for acceleration of networking applications 
and distributed workloads [16]. For local accelera-
tion, a server CPU can communicate with the FPGA 
through the direct PCIe connection, as shown in 
Figure 2. A special network bridge mode allows 
all network traffic to pass from NIC to the network 
switch without interacting with the local workload 
running on the FPGA. For network applications, 

FPGAs can be treated as “bumps-in-the-wire,” so that 
they can accelerate networking flows without incur-
ring additional loads on the host CPUs. It was shown 
that host-to-host line-rate encryption or decryption 
can be performed on these FPGAs without the 
involvement of the host CPUs [16]. This architecture 
also allows the acceleration of distributed applica-
tions by enabling low-latency FPGA-to-FPGA com-
munication across the data center without the need 
for a secondary network among FPGAs. Each FPGA 
can generate and consume network packets without 
the interference of the host software.

The CC architecture also offers flexibility in the 
data center scale. Since hosts can utilize remote 
FPGAs with low latency, FPGAs can be managed 
as a global pool of resources orthogonal to the CPU 
resources. Services may request different numbers 
of CPUs and FPGAs based on the workloads they 
run, while failing nodes are removed from the corre-
sponding pools accordingly [16].

Google’s tensor processing unit
Based on a projection that voice-based search 

will significantly increase the computational 
demands of Google’s datacenters, a custom ASIC 
chip—called tensor processing unit (TPU)—was 
designed and deployed by Google in 2015 [17]. 
TPU is aimed at accelerating the inference phase 

Figure 2. A two-socket Xeon blade server 
configuration for the CC architecture [16].
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of different types of neural network applications, 
including multilayer perceptrons, convolutional 
neural networks, and recurrent neural networks [18].

TPU has been designed as a coprocessor con-
nected to the host CPU through PCIe, and thus it can 
be directly plugged into existing server platforms. The 
host CPU simply sends instructions through PCIe to 
an instruction buffer, and these instructions are exe-
cuted by the TPU. The main computational block in 
the TPU architecture is a matrix multiply unit, which 
can perform 64K multiply-and-add operations per 
cycle on 8-bit integer operands. In addition, 28 MB 
of software-managed on-chip memory is included 
to store the intermediate results and the inputs of 
the matrix multiply unit. The datapath occupies 
67% of the TPU floorplan, while the area occupied 
for control is only 2% [17]. This contrasts with the 
state-of-the-art server CPUs and GPUs, in which the 
control structures occupy a significant chip area and 
lead to increased power consumption.

It is reported that the performance of TPU on 
neural networks is 15 and 29 times better than a 
K80 GPU and an 18-core Haswell CPU, respectively. 
In terms of performance per Watt, the correspond-
ing improvements are reported to be 29× and 83× 
[17]. The main reason for these improvements is 
that CPUs and GPUs have expensive control logic 
to extract good performance from different types 
of applications, while most of the TPU logic is dedi-
cated to a datapath that is specifically designed for a 
single application domain.

Other commercial and research  
platforms

There are many other commercial, prototype, 
and research accelerator platforms that have not 
been covered in detail in this paper. In this section, 
we briefly outline some of those platforms.

As the potential benefits of hardware accelera-
tion have become apparent, more and more cloud 
service providers are making FPGA resources availa-
ble to their users. For example, Amazon Web Services 
has recently announced the general availability of 
EC2 F1 compute instances with FPGAs, where each 
instance can contain up to eight dedicated FPGA 
boards connected with a PCIe fabric [19].

At the platform level, FPGAs have been inte-
grated with host CPUs in different ways. An early 
example is the Cray XD1 hybrid system with 12 AMD 
Opteron processors and 6 Xilinx Virtex II Pro FPGA 
coprocessors in a single chassis, where the FPGAs 
can access the host system memory through a  
special communications processor [20].

Another early example is the Novo-G supercom-
puter with 24 compute nodes, each containing a 
quadcore Xeon CPU and eight FPGAs connected to 
each other with a fast interconnect [21]. Although 
direct communication between FPGAs within the 
same node is possible, communication between 
internode FPGAs is done through a centralized 
network (with host involvement), which makes it 
impractical to accelerate communication-intensive 

distributed applications. A new version 
of this system—called Novo-G#—has 
been developed recently to alleviate the 
communication bottleneck by connect-
ing 64 FPGA boards with a dedicated 4 
× 4 × 4 torus network [22]. This system 
has been targeted for high-performance 
computing research.

On the commercial side, Convey’s 
hybrid core computers integrate FPGA 
coprocessors with commodity proces-
sors in rack-mountable enclosures to 
improve the performance and power 
efficiency of certain workloads. The high-
level architecture of the Convey HC-2 
Computer is shown in Figure 3 [23]. The 
coprocessor consists of four Xilinx Virtex 
FPGAs and 16-channel word-addressable  
scatter–gather DRAM. The communica-
tion with host CPU is realized through the 

Figure 3. High-level architecture of Convey HC-2 [23], 
where HCMI stands for “hybrid-core memory  
interconnect” and HCGSM stands for “hybrid-core 
globally shared memory.”



51January/February 2018

hybrid-core memory interconnect. The memory sub-
system of the coprocessor is physically separate from 
the host memory subsystem. However, there is a 
shared logical memory—called hybrid-core globally 
shared memory—that can be accessed by both the 
host CPU and the coprocessor through simple load 
or store instructions using virtual addresses. The 
data movement between different physical memo-
ries is handled by a data mover engine built into the 
coprocessor through PCIe interface.

Although most of the previously mentioned 
platforms view FPGAs as coprocessors connected 
to CPUs through standard interfaces (e.g., PCIe), 
it is also possible to decouple FPGAs from CPUs. 
Weerasinghe et al. [24] have proposed a hyper-
scale data center platform where FPGAs can be 
connected to the network as standalone appli-
ances. In their proposed architecture, a module 
contains an FPGA and an optional off-chip mem-
ory, where the FPGA has three main parts: custom 
user logic, network service layer to enable com-
munication within the data center, and a manage-
ment layer to enable virtual memory accesses and 
remote management of this module. Furthermore, 
the authors have proposed a new provisioning ser-
vice for OpenStack so that standalone FPGAs can 
be requested by cloud users. In a later work, this 
architecture has been implemented as prototype, 
and a distributed text analytics application has 
been ported onto this multi-FPGA fabric with sig-
nificant performance improvements compared to 
PCIe-attached FPGAs [25].

FPGAs allow flexibility by allowing 
application-specific hardware to be reprogrammed 
as the workloads change over time. However, this 
flexibility comes at the expense of area, power, and 
performance overheads compared to ASICs. For fre-
quently executed and power- or performance-critical 
workloads, it may make economic sense to integrate 
domain-specific ASIC accelerators. Google’s TPU 
described above is an example that is targeted for 
neural network applications. Other workloads of 
interest that may justify ASIC accelerators include 
cryptography [26], compression [27], machine 
learning [28], database [29], and large-scale graph 
processing [3], [30], [31].

Even if computational bottlenecks can be alle-
viated through the use of accelerators, memory 
access costs can become the limiting factors for 
achieving substantial power and performance 

improvements, especially for big data workloads. 
There have been efforts to bring computation closer 
to where the data resides. For example, Minerva is 
an FPGA-based solid-state drive (SSD) architecture, 
which allows offloading computation code to the 
FPGA modules inside SSD [32]. Such an architec-
ture is especially well suited for applications with 
poor memory access locality, because it avoids 
moving data from disk to CPU across a slow I/O 
interface through main memory and multiple levels 
of cache hierarchies.

Other near-data processing (NDP) architectures 
propose to integrate simple compute units next to 
memory controllers to avoid moving data from main 
memory to CPU. Vermij et al. [33] have proposed 
a system-level architecture for an NDP-enhanced 
multicore CPU, and they have studied various 
issues such as data placement, coherency, commu-
nication, and virtual memory support. Similarly, Xi  
et al. [34] have proposed an NDP accelerator, called 
JAFAR, for common database operations.

It is also possible to take NDP one step further 
to perform computations inside memory. Although  
processing in memory (PIM) computing paradigm 
was proposed in the 1990s to overcome the memory 
wall problems [35]–[38], it was not deemed practi-
cal in industry due to the high costs of integration. 
However, with the advanced 3D integration technol-
ogies available today, the PIM concept has gained 
renewed research interest due to the potential of 
practical feasibility.

Hybrid memory cube (HMC) architecture  
was proposed by Micron Technology as a high- 
performance 3D memory [39]. HMC consists of 
four to eight layers of stacked DRAM dies with an 
additional logic die at the base. Since then, different 
research groups have proposed utilizing this logic 
die for PIM. For example, Pugsley et al. [40] have 
proposed adding general-purpose in-order cores to 
the base die of a stacked DRAM to run MapReduce 
workloads more efficiently. For throughput-oriented 
computing, the TOP-PIM architecture has been pro-
posed to add programmable GPU compute units 
inside stacked DRAM to achieve significant energy 
efficiency improvements compared with the tradi-
tional GPU architectures [41]. Active memory cube 
architecture is another example, which targets sci-
entific exascale computing by adding vector pro-
cessing elements at the base layer of a 3D memory 
platform [42]. For large-scale graph processing, 
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Ahn et al. [43] have proposed the Tesseract archi-
tecture, where programmable graph accelerators 
are integrated into a 3D memory.

In conclusion, we are starting to see a shift in data 
center platforms toward more customizable hard-
ware to achieve energy efficiency and performance 
improvements. There are open algorithmic research 
problems, because existing algorithms targeted at the 
traditional von Neumann architectures may not be 
optimal for these emerging heterogeneous platforms. 
There are also open research problems about how to 
choose the best architecture and how to design the 
most efficient hardware for a domain of applications. 
With the wide-spread availability of FPGA accelera-
tors, there is a need to raise the abstraction layer for 
hardware design to enable more application devel-
opers to utilize these systems. We are already see-
ing improvements in high-level design and synthesis 
tools to allow C or OpenCL-based application devel-
opment for FPGAs. In summary, these platforms have 
brought new research opportunities across multiple 
domains, including algorithms, architecture, design 
automation, and technology.� 
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