
472168-2356/17 © 2017 IEEECopublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTCJanuary/February 2018

Digital Object Identifier 10.1109/MDAT.2017.2779742
Date of publication: 4 December 2017; date of current version:
2 February 2018.

Emerging Accelerator
Platforms for Data
Centers
Muhammet Mustafa Ozdal
Bilkent University

 Today’s server architectures are designed
considering the needs of a wide range of applica-
tions. For example, superscalar processors include
complex control logic for out-of-order execution to
extract instruction-level parallelism (ILP) from arbi-
trary programs. However, not all workloads utilize
the features of a superscalar processor effectively.
For example, a workload that exhibits a regular exe-
cution pattern (e.g., a dense linear algebra kernel)
may not require the expensive ILP control logic
for parallelism. Instead, it can be run on a through-
put-oriented architecture with thousands of simple
cores, such as a GPU, which can lead to much better
performance and power efficiency. On the other
hand, only a limited class of data-parallel applica-
tions can utilize the high throughputs provided by
such architectures. As a matter of fact, existing CPU
and GPU platforms may not be the most efficient
choices for the compute patterns of a wide range of
applications.

For big data workloads, access to data is typically
at least as important bottleneck as computation. The
memory subsystems of today’s CPU architectures

are optimized for work-
loads that have reasona-
ble data access locality.
CPU cache hierarchies
include different sizes
of caches, which help
capture different levels
of access localities in
different applications.

However, if an application exhibits very little or no
locality, the data access operations become ineffi-
cient for these architectures.

For example, let us consider graph applica-
tions that run on very large and unstructured data
sets. Typically, the data of a vertex is computed or
updated based on the data of its neighbors. In an
unstructured graph, the neighbors of a vertex are
stored in memory locations that may be far from
each other. Therefore, traversing the neighbors of
a vertex may involve a random memory access
per neighbor. If the graph is large enough so that it
does not fit into the last level cache, each access
to a neighbor’s data may require a random DRAM
access, which is typically hundreds of clock
cycles. However, the existing CPU architectures
are not optimized for frequent random DRAM
accesses. For example, each Intel Haswell Xeon
core has 10 line-fill-buffers, which means that each
core can handle at most 10 L1 cache misses at a
given time. However, an off-chip DRAM latency
of hundreds of cycles requires hundreds of out-
standing memory requests to be able to utilize
the full DRAM bandwidth available in the sys-
tem [1]. It was reported that 10 or more Xeon
cores were needed for various graph applications

Editor’s note:
CPU and GPU platforms may not be the best options for many emerging
compute patterns, which led to a new breed of emerging accelerator
platforms. This article gives a comprehensive overview with a focus on
commercial platforms.

—Jörg Henkel, Karlsruhe Institute of Technology

48 IEEE Design&Test

Survey

to fully utilize the available DRAM bandwidth
[2]. Furthermore, due to the low compute-to-
memory access ratios in graph applications, these
cores are frequently stalled while waiting for data
from off-chip memory. This leads to high power
consumption by 10+ superscalar cores while not
doing useful work. It was shown that custom
architectures that target such communication
patterns have the potential to improve power effi-
ciency by a factor of 50× or more compared to the
general-purpose CPUs [3].

It is possible to design domain-specific hardware
to achieve significant power and performance
improvements for specific workloads. Although cus-
tom hardware accelerators can significantly improve
the power and performance of certain workloads,
they may not always be the best choices in terms
of data center economy. There may be various rea-
sons for this, such as the overhead of managing
heterogeneous resources (each with a potentially
different set of custom accelerators) in a reliable
way, rapid changes in the workloads relative to
the lifetimes of the servers, and the extra cost of
designing and manufacturing custom parts for
different applications. From these perspectives,
FPGAs are good candidates for deployment into
data centers because they allow programmability
and homogeneity while allowing custom hard-
ware acceleration for different workloads. That
is why several vendors have started incorporat-
ing FPGAs into their platforms. In the following,
we provide a summary of the recent industrial
prototypes and the recent research on FPGA and
application-specific integrated circuit (ASIC) hard-
ware accelerators.

IBM’s coherent accelerator
processor interface

IBM implemented a coherent accelerator
processor interface (CAPI) for their Power8 servers
to make it easy to integrate FPGA and custom accel-
erators into server processors. CAPI allows attaching
an accelerator to the I/O interface of a processor
chip without incurring significant device driver and
operating system software latencies. Using this inter-
face, accelerators and the host processors can have
coherent access to a homogeneous virtual address
space, where caching and coherency is managed by
special hardware modules. This interface hides from
the users the complexities of caching and communi-
cations by allowing the user-designed accelerators to
access the system memory by simple load and store
requests [4].

Different workloads have been accelerated by
researchers using CAPI-enabled FPGAs, including
genomics algorithms [5], [6], matrix algebra [7],
and graph processing [8]. Furthermore, several
commercial and special-purpose FPGA and ASIC-
based CAPI accelerators are now being devel-
oped by different companies for the OpenPOWER
platform [9].

Intel’s Xeon + FPGA integrated
platform

Although IBM’s CAPI helps reduce the driver
and operating system latencies, the communication
speed between CPU and FPGA is still limited by the
PCIe-based interconnect. Intel’s prototype Xeon +
FPGA platforms try to address this limitation by
integrating the host CPU and FPGA in a multichip
package and enabling communication through

the faster QuickPath interconnect (QPI)
interface in addition to PCIe.

Figure 1 shows the high-level hardware
and software architecture of the Xeon +
FPGA platform [10], [11]. The in-pack-
age FPGA has coherent access to the host
memory through QPI and PCIe interfaces,
as shown in Figure 1. The communication
between the host application, the acceler-
ator functional units on the FPGA, and the
system memory is facilitated through the
provided software framework (running on
the host CPU) and hardware framework
(running on the integrated FPGA).Figure 1. Intel’s Xeon + FPGA integrated platform [10], [11].

49January/February 2018

The prototype Xeon + FPGA platforms have
recently been made available for academic research,
and workloads have been optimized in different
domains, including genomics [10], machine learning
[10], and databases [12]–[14].

Microsoft’s configurable cloud
As part of the original Catapult project [15],

Microsoft researchers integrated FPGA accelera-
tors into a production data center to accelerate the
search ranking algorithm used by Bing. In this archi-
tecture, a single FPGA card was connected to each
server and the communication between the host
CPU and FPGA was done through PCIe. In addition,
48 FPGA cards within half-a-rack were connected
through a secondary mesh network. This allowed
the FPGAs within the same network to communicate
with each other without going through host CPUs.
This fabric was deployed at a medium-scale data
center of 1632 servers, and 95% throughput improve-
ment was reported for Bing’s web search ranking
algorithm on this fabric compared to the pure soft-
ware implementation.

Despite the good initial results, the original
Catapult architecture was deemed to have severe
limitations for real data centers, due to the extra
cost of the secondary network, ineffective handling
of failures, relatively small number of FPGAs com-
municating directly with each other, and the limited
acceleration opportunities [16].

These limitations were later addressed by a new
architecture, called configurable cloud (CC), which
is reported to have been deployed in most of the
new Microsoft datacenters since 2016. A server con-
figuration is illustrated in Figure 2, for a two-socket
Xeon blade server [16]. Observe that an FPGA accel-
erator card has been placed between the network
interface card (NIC) and the Ethernet network
switch. In addition, the FPGA is connected to one of
the host CPUs through PCIe.

This configuration is reported to be flexible
enough not only for local workload acceleration
but also for acceleration of networking applications
and distributed workloads [16]. For local accelera-
tion, a server CPU can communicate with the FPGA
through the direct PCIe connection, as shown in
Figure 2. A special network bridge mode allows
all network traffic to pass from NIC to the network
switch without interacting with the local workload
running on the FPGA. For network applications,

FPGAs can be treated as “bumps-in-the-wire,” so that
they can accelerate networking flows without incur-
ring additional loads on the host CPUs. It was shown
that host-to-host line-rate encryption or decryption
can be performed on these FPGAs without the
involvement of the host CPUs [16]. This architecture
also allows the acceleration of distributed applica-
tions by enabling low-latency FPGA-to-FPGA com-
munication across the data center without the need
for a secondary network among FPGAs. Each FPGA
can generate and consume network packets without
the interference of the host software.

The CC architecture also offers flexibility in the
data center scale. Since hosts can utilize remote
FPGAs with low latency, FPGAs can be managed
as a global pool of resources orthogonal to the CPU
resources. Services may request different numbers
of CPUs and FPGAs based on the workloads they
run, while failing nodes are removed from the corre-
sponding pools accordingly [16].

Google’s tensor processing unit
Based on a projection that voice-based search

will significantly increase the computational
demands of Google’s datacenters, a custom ASIC
chip—called tensor processing unit (TPU)—was
designed and deployed by Google in 2015 [17].
TPU is aimed at accelerating the inference phase

Figure 2. A two-socket Xeon blade server
configuration for the CC architecture [16].

50 IEEE Design&Test

Survey

of different types of neural network applications,
including multilayer perceptrons, convolutional
neural networks, and recurrent neural networks [18].

TPU has been designed as a coprocessor con-
nected to the host CPU through PCIe, and thus it can
be directly plugged into existing server platforms. The
host CPU simply sends instructions through PCIe to
an instruction buffer, and these instructions are exe-
cuted by the TPU. The main computational block in
the TPU architecture is a matrix multiply unit, which
can perform 64K multiply-and-add operations per
cycle on 8-bit integer operands. In addition, 28 MB
of software-managed on-chip memory is included
to store the intermediate results and the inputs of
the matrix multiply unit. The datapath occupies
67% of the TPU floorplan, while the area occupied
for control is only 2% [17]. This contrasts with the
state-of-the-art server CPUs and GPUs, in which the
control structures occupy a significant chip area and
lead to increased power consumption.

It is reported that the performance of TPU on
neural networks is 15 and 29 times better than a
K80 GPU and an 18-core Haswell CPU, respectively.
In terms of performance per Watt, the correspond-
ing improvements are reported to be 29× and 83×
[17]. The main reason for these improvements is
that CPUs and GPUs have expensive control logic
to extract good performance from different types
of applications, while most of the TPU logic is dedi-
cated to a datapath that is specifically designed for a
single application domain.

Other commercial and research
platforms

There are many other commercial, prototype,
and research accelerator platforms that have not
been covered in detail in this paper. In this section,
we briefly outline some of those platforms.

As the potential benefits of hardware accelera-
tion have become apparent, more and more cloud
service providers are making FPGA resources availa-
ble to their users. For example, Amazon Web Services
has recently announced the general availability of
EC2 F1 compute instances with FPGAs, where each
instance can contain up to eight dedicated FPGA
boards connected with a PCIe fabric [19].

At the platform level, FPGAs have been inte-
grated with host CPUs in different ways. An early
example is the Cray XD1 hybrid system with 12 AMD
Opteron processors and 6 Xilinx Virtex II Pro FPGA
coprocessors in a single chassis, where the FPGAs
can access the host system memory through a
special communications processor [20].

Another early example is the Novo-G supercom-
puter with 24 compute nodes, each containing a
quadcore Xeon CPU and eight FPGAs connected to
each other with a fast interconnect [21]. Although
direct communication between FPGAs within the
same node is possible, communication between
internode FPGAs is done through a centralized
network (with host involvement), which makes it
impractical to accelerate communication-intensive

distributed applications. A new version
of this system—called Novo-G#—has
been developed recently to alleviate the
communication bottleneck by connect-
ing 64 FPGA boards with a dedicated 4
× 4 × 4 torus network [22]. This system
has been targeted for high-performance
computing research.

On the commercial side, Convey’s
hybrid core computers integrate FPGA
coprocessors with commodity proces-
sors in rack-mountable enclosures to
improve the performance and power
efficiency of certain workloads. The high-
level architecture of the Convey HC-2
Computer is shown in Figure 3 [23]. The
coprocessor consists of four Xilinx Virtex
FPGAs and 16-channel word-addressable
scatter–gather DRAM. The communica-
tion with host CPU is realized through the

Figure 3. High-level architecture of Convey HC-2 [23],
where HCMI stands for “hybrid-core memory
interconnect” and HCGSM stands for “hybrid-core
globally shared memory.”

51January/February 2018

hybrid-core memory interconnect. The memory sub-
system of the coprocessor is physically separate from
the host memory subsystem. However, there is a
shared logical memory—called hybrid-core globally
shared memory—that can be accessed by both the
host CPU and the coprocessor through simple load
or store instructions using virtual addresses. The
data movement between different physical memo-
ries is handled by a data mover engine built into the
coprocessor through PCIe interface.

Although most of the previously mentioned
platforms view FPGAs as coprocessors connected
to CPUs through standard interfaces (e.g., PCIe),
it is also possible to decouple FPGAs from CPUs.
Weerasinghe et al. [24] have proposed a hyper-
scale data center platform where FPGAs can be
connected to the network as standalone appli-
ances. In their proposed architecture, a module
contains an FPGA and an optional off-chip mem-
ory, where the FPGA has three main parts: custom
user logic, network service layer to enable com-
munication within the data center, and a manage-
ment layer to enable virtual memory accesses and
remote management of this module. Furthermore,
the authors have proposed a new provisioning ser-
vice for OpenStack so that standalone FPGAs can
be requested by cloud users. In a later work, this
architecture has been implemented as prototype,
and a distributed text analytics application has
been ported onto this multi-FPGA fabric with sig-
nificant performance improvements compared to
PCIe-attached FPGAs [25].

FPGAs allow flexibility by allowing
application-specific hardware to be reprogrammed
as the workloads change over time. However, this
flexibility comes at the expense of area, power, and
performance overheads compared to ASICs. For fre-
quently executed and power- or performance-critical
workloads, it may make economic sense to integrate
domain-specific ASIC accelerators. Google’s TPU
described above is an example that is targeted for
neural network applications. Other workloads of
interest that may justify ASIC accelerators include
cryptography [26], compression [27], machine
learning [28], database [29], and large-scale graph
processing [3], [30], [31].

Even if computational bottlenecks can be alle-
viated through the use of accelerators, memory
access costs can become the limiting factors for
achieving substantial power and performance

improvements, especially for big data workloads.
There have been efforts to bring computation closer
to where the data resides. For example, Minerva is
an FPGA-based solid-state drive (SSD) architecture,
which allows offloading computation code to the
FPGA modules inside SSD [32]. Such an architec-
ture is especially well suited for applications with
poor memory access locality, because it avoids
moving data from disk to CPU across a slow I/O
interface through main memory and multiple levels
of cache hierarchies.

Other near-data processing (NDP) architectures
propose to integrate simple compute units next to
memory controllers to avoid moving data from main
memory to CPU. Vermij et al. [33] have proposed
a system-level architecture for an NDP-enhanced
multicore CPU, and they have studied various
issues such as data placement, coherency, commu-
nication, and virtual memory support. Similarly, Xi
et al. [34] have proposed an NDP accelerator, called
JAFAR, for common database operations.

It is also possible to take NDP one step further
to perform computations inside memory. Although
processing in memory (PIM) computing paradigm
was proposed in the 1990s to overcome the memory
wall problems [35]–[38], it was not deemed practi-
cal in industry due to the high costs of integration.
However, with the advanced 3D integration technol-
ogies available today, the PIM concept has gained
renewed research interest due to the potential of
practical feasibility.

Hybrid memory cube (HMC) architecture
was proposed by Micron Technology as a high-
performance 3D memory [39]. HMC consists of
four to eight layers of stacked DRAM dies with an
additional logic die at the base. Since then, different
research groups have proposed utilizing this logic
die for PIM. For example, Pugsley et al. [40] have
proposed adding general-purpose in-order cores to
the base die of a stacked DRAM to run MapReduce
workloads more efficiently. For throughput-oriented
computing, the TOP-PIM architecture has been pro-
posed to add programmable GPU compute units
inside stacked DRAM to achieve significant energy
efficiency improvements compared with the tradi-
tional GPU architectures [41]. Active memory cube
architecture is another example, which targets sci-
entific exascale computing by adding vector pro-
cessing elements at the base layer of a 3D memory
platform [42]. For large-scale graph processing,

52 IEEE Design&Test

Survey

Ahn et al. [43] have proposed the Tesseract archi-
tecture, where programmable graph accelerators
are integrated into a 3D memory.

In conclusion, we are starting to see a shift in data
center platforms toward more customizable hard-
ware to achieve energy efficiency and performance
improvements. There are open algorithmic research
problems, because existing algorithms targeted at the
traditional von Neumann architectures may not be
optimal for these emerging heterogeneous platforms.
There are also open research problems about how to
choose the best architecture and how to design the
most efficient hardware for a domain of applications.
With the wide-spread availability of FPGA accelera-
tors, there is a need to raise the abstraction layer for
hardware design to enable more application devel-
opers to utilize these systems. We are already see-
ing improvements in high-level design and synthesis
tools to allow C or OpenCL-based application devel-
opment for FPGAs. In summary, these platforms have
brought new research opportunities across multiple
domains, including algorithms, architecture, design
automation, and technology.� 

Acknowledgments
This work was supported by the European

Union’s Horizon 2020 Research and Innovation
Program under the Marie Skłodowska-Curie Grant
704476.

 References
	 [1]	 M. Ozdal, S. Yesil, T. Kim, A. Ayupov, S. Burns, and

O. Ozturk, “Architectural requirements for energy

efficient execution of graph analytics applications,” in

Proc. IEEE/ACM Int. Conf. Comput. Aided Des., 2015.

	 [2]	 S. Beamer, K. Asanovic, and D. Patterson, “Locality

exists in graph processing: Workload characterization

on an ivy bridge server,” in Proc. IEEE Int. Symp.

Workload Characterization, 2015.

	 [3]	 M. Ozdal et al., “Energy efficient architecture for graph

analytics accelerators,” in Proc. ACM/IEEE Int. Symp.

Comput. Architecture, 2016.

	 [4]	 J. Stuecheli, B. Blaner, C. R. Johns, and M. S. Siegel,

“CAPI: A coherent accelerator processor interface,”

IBM J. Res. Dev., vol. 59, no. 1, pp. 1–7, 2015.

	 [5]	 M. Ito and M. Ohara, “Power-efficient FPGA

accelerator: Systolic array with cache-coherent

interface for pair-HMM algorithm,” in Proc. IEEE Symp.

Low-Power and High-Speed Chips (COOL CHIPS

XIX), Yokohama, Japan, 2016.

	 [6]	 M. J. Jaspers, “Acceleration of read alignment with

coherent attached FPGA coprocessors,” M.Sc. thesis,

Dept. Microelectron. Comput. Eng., Delft University of

Technology, Delft, The Netherlands, 2015.

	 [7]	 C.-C. Chung, C.-K. Liu, and D.-H. Lee, “FPGA-based

accelerator platform for big data matrix processing,”

in Proc. IEEE Int. Conf. Electron Devices and

Solid-State Circuits, 2015.

	 [8]	 J. Lee et al., “ExtraV: Boosting graph processing near

storage with a coherent accelerator,” in Proc. VLDB

Endowment, vol. 10, no. 12, pp. 1706–1717, 2017.

	 [9]	 A. Shilov, “Several CAPI-enabled accelerators for

OpenPOWER servers revealed,” April 12, 2016.

Accessed: October 18, 2017. [Online]. Available:

https://www.anandtech.com/show/10240/several-capi-

accelerators-foropenpower-revealed

	[10]	 P. K. Gupta, “Accelerating datacenter workloads.”

Accessed October 18, 2017. [Online]. Available:

http://www.fpl2016.org/slides/Gupta%20--%20

Accelerating%20Datacenter%20Workloads.pdf

	[11]	 D. Sheffield, “IvyTown Xeon + FPGA: The HARP

program,” 2016. [Online]. Available: https://cpufpga.

files.wordpress.com/2016/04/harp_isca_2016_final.pdf

	[12]	 M. Owaida, D. Sidler, K. Kara, and G. Alonso,

“Centaur: A framework for hybrid CPU-FPGA

databases,” in Proc. IEEE Int. Symp. Field-Program.

Custom Comput. Machines, 2017.

	[13]	 D. Sidler, M. Owaida, X. Istvan, K. Kara, and G. Alonso,

“doppioDB: A hardware accelerated database,” in Proc.

IEEE Int. Conf. Field Program. Logic Appl., 2017.

	[14]	 D. Sidler, Z. Istvan, M. Owaida, and G. Alonso.,

“Accelerating pattern matching queries in

hybrid CPU-FPGA architectures,” in Proc. ACM Int.

Conf. Manage. Data, 2017.

	[15]	 A. Putnam et al., “A reconfigurable fabric for

accelerating large-scale datacenter services,” in Proc.

IEEE Int. Symp. Comput. Architecture, 2014.

	[16]	 A. Caulfield et al., “A cloud-scale acceleration

architecture,” in Proc. IEEE Int. Symp.

Microarchitecture, 2016.

	[17]	 N. Jouppi et al., “In-datacenter performance analysis

of a tensor processing unit,” in Proc. IEEE Int. Symp.

Comput. Architecture, 2017.

	[18]	 Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,”

Nature, vol. 521, no. 7553, pp. 436–444, 2015.

	[19]	 J. Barr, “EC2 F1 instances with FPGAs—Now

generally available,” April 19, 2017. [Online].

53January/February 2018

Available: https://aws.amazon.com/blogs/aws/ec2-f1-

instances-with-fpgas-now-generally-available/

	[20]	 D. Strenski, “The Cray XD1 computer and its

reconfigurable architecture,” July 11, 2005. [Online].

Available: http://www.ncsa.illinois.edu/Conferences/

RSSI/2005/docs/Strenski.ppt

	[21]	 A. George, H. Lam, and G. Stitt, “Novo-G: At the

forefront of scalable reconfigurable supercomputing,”

Comput. Sci. Eng., vol. 13, no. 1, pp. 82–86, 2011.

	[22]	 A. D. George, M. C. Herbordt, H. Lam, A. G. Lawande,

J. Sheng, and C. Yang, “Novo-G#: Large-scale

reconfigurable computing with direct and programmable

interconnects,” in Proc. IEEE High Performance

Extreme Comput. Conf., 2016.

	[23]	 Convey Computer, “The convey HC-2 computer,”

October 29, 2015. [Online]. Available: https://www.

micron.com/resource-details/c803edd0-ff6a-4807-

b08c-b0a2d75e7156

	[24]	 J. Weerasinghe, F. Abel, C. Hagleitner, and

A. Herkersdorf, “Enabling FPGAs in hyperscale data

centers,” in Proc. IEEE 12th Int. Conf. Ubiquitous

Intel. Comput., IEEE 12th Int. Conf. Autonomic

Trusted Comput., IEEE 15th Int. Conf. Scalable

Comput. Commun., Its Associated Workshops

(UIC-ATC-ScalCom), 2015.

	[25]	 J. Weerasinghe, R. Polig, F. Abel, and C. Hagleitner,

“Network-attached FPGAs for data center

applications,” in Proc. IEEE Int. Conf. Field-Program.

Technol., 2016.

	[26]	 L. Bossuet, M. Grand, L. Gaspar, V. Fischer, and

G. Gogniat, “Architectures of flexible symmetric

key crypto engines—a survey: From hardware

coprocessor to multi-crypto-processor system on

chip,” ACM Comput. Surv., vol. 45, no. 4, 2013.

	[27]	 AHA Products Group, “AHA 374/ AHA 378: PCI

express compression and decompression accelerator

card.” Accessed: November 6, 2017. [Online].

Available: http://www.aha.com/Uploads/aha374378_

brief_rev_c1.pdf

	[28]	 Y. Chen, T. Chen, Z. Xu, N. Sun and O. Temam,

“DianNao family: Energy-efficient hardware

accelerators for machine learning,” Commun.

ACM, vol. 59, no. 11, pp. 105–112, 2016.

	[29]	 S. Haas et al., “A database accelerator for

energy-efficient query processing and optimization,”

in Proc. IEEE Nordic. Circuits Syst. Conf., 2016.

	[30]	 M. Ozdal et al., “Graph analytics accelerators for

cognitive systems,” IEEE Micro, vol. 37, no. 1,

pp. 42–51, 2017.

	[31]	 T. Ham, L. Wu, N. Sundaram, N. Satish,

and M. Martonosi, “Graphicionado: A high-

performance and energy-efficient accelerator for

graph analytics,” in Proc. IEEE/ACM Int. Symp.

Microarchitecture, 2016.

	[32]	 A. De, M. Gokhale, R. Gupta, and S. Swanson,

“Minerva: Accelerating data analysis in next-generation

SSDs,” in Proc. IEEE 21st Ann. Int. Symp. Field-

Program. Custom Comput. Machines, 2013.

	[33]	 E. Vermij et al., “An architecture for near-data

processing systems,” in Proc. ACM Int. Conf. Comput.

Front., 2016.

	[34]	 S. Xi, O. Babarinsa, M. Athanassoulis, and

S. Idreos, “Beyond the wall: Near-data processing

for databases,” in Proc. ACM Int. Workshop Data

Manage. New Hardware, 2015.

	[35]	 M. Gokhale, B. Holmes, and K. Iobst, “Processing

in memory: The Terasys massively parallel PIM array,”

Computer, vol. 28, no. 4, pp. 23–31, 1995.

	[36]	 M. Hall et al., “Mapping irregular applications to

DIVA, a PIM-based data-intensive architecture,”

in ACM/IEEE Conf. Supercomp., 1999.

	[37]	 P. Kogge, “EXECUBE-a new architecture for

scalable MPPs,” in Proc. IEEE Int. Conf. Parallel

Processing, 1994.

	[38]	 M. Oskin, F. T. Chong, and T. Sherwood, “Active pages:

A computation model for intelligent memory,” in Proc.

IEEE Int. Symp. Comput. Architecture, 1998.

	[39]	 J. T. Pawlowski, “Hybrid memory cube (HMC),” in Proc.

IEEE Hot Chips Symp., 2011.

	[40]	 S. Pugsley et al., “NDC: Analyzing the impact of

3D-stacked memory + logic devices on MapReduce

workloads,” in Proc. IEEE Int. Symp. Performance

Anal. Syst. Software, 2014.

	[41]	 D. Zhang et al., “TOP-PIM: Throughput-oriented

programmable processing in memory,” in Proc.

ACM Int. Symp. High-Performance Parallel Distrib.

Comput., 2014.

	[42]	 R. Nair et al., “Active memory cube: A processing-

in-memory architecture for exascale systems,”

IBM J. Res. Dev., vol. 59, no. 2/3, 2015.

	[43]	 J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi,

“A scalable processing-in-memory accelerator for

parallel graph processing,” in Proc. IEEE Int. Symp.

Comput. Architecture, 2015.

	[44]	 M. C. Popescu, V. E. Balas, L. Perescu-Popescu,

and N. Mastorakis, “Multilayer perceptron and neural

networks,” WSEAS Trans. Circuits Syst., vol. 8, no. 7,

pp. 579–588, 2009.

54 IEEE Design&Test

Survey

	[45]	 Y. Kang et al., “FlexRAM: Toward an advanced

intelligent memory system,” in Proc. IEEE Int. Conf.

Comput. Design, 2012.

Muhammet Mustafa Ozdal is an Assistant
Professor in the Computer Engineering Department,
Bilkent University, Ankara, Turkey. His research
interests include high-performance computing, par-
allel and heterogeneous computing, computer-aided

design algorithms, and hardware/FPGA acceler-
ators for big data applications. He received a PhD
in computer science from the University of Illinois at
Urbana–Champaign, Champaign, IL, USA, in 2005.

 Direct questions and comments about this article
to Muhammet Mustafa Ozdal, Computer Engineering
Department, Bilkent University, Ankara 06800, Turkey;
e-mail: mustafa.ozdal@cs.bilkent.edu.tr.

