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Abstract Spring-loaded inverted pendulum (SLIP)
template (and its various derivatives) could be consid-
ered as the mostly used and widely accepted models
for describing legged locomotion. Despite their sim-
ple nature, as being a simple spring-mass model in
dynamics perspective, the SLIP model and its deriva-
tives are formulated as restricted three-body problem,
whose non-integrability has been proved long before.
Thus, researchers proceed with approximate analyti-
cal solutions or use partial feedback linearization when
numerical integration is not preferred in their analysis.
The key contributions of this paper can be divided into
two parts. First, we propose a dissipative SLIP model,
which we call as multi-actuated dissipative SLIP (MD-
SLIP), with two extended actuators: one linear actu-
ator attached serially to the leg spring and one rotary
actuator attached to hip. The second contribution of
this paper is a partial feedback linearization strategy by
which we can cancel some nonlinear dynamics of the
proposedmodel and obtain exact analytical solution for
the equations of motion. This allows us to investigate
stability characteristics of the hopping gait obtained
from the MD-SLIP model. We illustrate the applica-
bility of our solutions with open-loop and closed-loop
hopping performances on rough terrain simulations.
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1 Introduction

Onecommonobjective of almost all robotics researchers
is to build some useful machines that can serve for
their interest. Actually, the exponential growth and
spread of knowledge made this possible for some kind
of applications such as industrial robots that replace
human workers in factories for decades. However, area
of legged locomotion, which aims to understand ani-
mal movements in nature and tries to build robot plat-
forms inspired by these observations, is not as mature
as the field of wheeled or tracked robotics. However,
there is ample evidence, which both theoretically and
practically indicates that the legged morphologies per-
form better than the wheeled/tracked ones, especially
on rough terrains [1–3]. Therefore, the main research
direction in the field of legged locomotion is to first
analyze and understand legged locomotion [4,5], then
build legged robots with highmaneuverability and con-
trol their locomotion by inspiring from nature [6].
Detailed reviews about legged robots can be found in
[7,8]
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1.1 Models for running with legged robots

There are various approaches that are used to repre-
sent and study legged locomotion such as physics-
based mathematical models [9,10], data-driven mod-
els [11] and central pattern generator-based models
[12–14]. Among these, it would be fair to say that a
vast majority of the current literature exclusively focus
on developing physics-basedmathematical models and
performing parametric fit to the data. Note that such
robot structures may have many legs and depending
on their configurations, the resulting dynamical equa-
tions usually become very complex, which makes both
the analysis and control of such systems extremely
difficult. One way of dealing with the complexities
resulting from dynamics of many-legged systems is to
obtain some reduced order models, also called tem-
plates, which capture some essential features of origi-
nal dynamics; see, e.g., [15]. The key reason behind this
approach is that such templates and their anchors are
easier to analyze and control. Since their behavior cap-
tures some essential features of the original system, the
results obtained from these templates are expected to
be applicable to the analysis and control of the orig-
inal structure. The spring-loaded inverted pendulum
(SLIP) model is one of such templates which attracted
considerable attention and received wide spread accep-
tance in the community of biology [16,17] and robotics
[1,18,19]. It has been observed both theoretically and
experimentally that SLIP template, and their anchors,
can successfully predict the center of mass (COM) tra-
jectories of different animals, regardless of the num-
ber of legs; see, e.g., [2,15,20,21]. Likewise, it has
also been observed that SLIP templates yield accurate
ground reaction force profiles resulting in the actual
motion of such legged animals; see [15,20,22]. Moti-
vated mainly from these observations, in this work we
will focus on some properties of various SLIP tem-
plates as a model to study one-legged locomotion. For
more information on legged locomotion, the resulting
dynamics and related subjects, the reader may resort
to, e.g., [2,7], and the references therein.

Despite its simplicity, COM trajectories of SLIP
model constitute a three-bodyproblemduring the phase
in which the leg is in contact with the ground (stance
phase) [23], and non-integrability of such systems have
been shown before [24]. Having this problem in its
formulation, SLIP model does not have exact analytic
solutions to their stance phase dynamics. The first solu-

tion to overcome this issue is to proceed with numer-
ical integrations, so that non-integrable nature of the
system dynamics will not cause any problem. How-
ever, many robotic platforms which utilize real-time
motion planning and control algorithm require solu-
tions of the equation of motion, especially in stance
phase; see, e.g., [25,26]. In such cases, the utilization
of semi-analytic approximation would be much more
computationally effective than the numerical integra-
tion of stance dynamics, especially in feedback control
of such systems which require high performance.

Once we turn our directions to computationally effi-
cient, analytical solutions, two main directions come
forward to obtain analytic solutions to the equations
of motion of the SLIP-like models. Our first choice is
to utilize approximations to the non-integrable stance
dynamics of the SLIP model. For this purpose, there
are iterative methods in the literature that approximates
the stance dynamics of a 2DOF SLIP model by using
the main principles from mean value theorem [23].
Although the method is analytic by nature, its accu-
racy depends on the number of iterations performed
during each run. Different from this method, simpler
approximate analytic solutions have also been devel-
oped by assuming constant angular momentum, small
angular sweep and low spring compression during the
stance phase [27]. The main problem with this method
comes from constant angular momentum assumption
that yields high prediction performance for symmet-
ric trajectories (see Fig. 3 for visualization of such
a trajectory) that correspond to trajectories where leg
length is even symmetric while leg angle is odd sym-
metric around the time halfway during the stance phase
[1]. However, its accuracy deteriorates when the trajec-
tory is non-symmetric [27]. Arslan et al. [9] proposed
an extension to [27] in order to relieve the constant
angular momentum assumption, so that the approxi-
mation holds also for the non-symmetric trajectories.
The effectiveness and performance of such analytical
approximate solutions have also been validated on a
physical one-legged hopping robot platform [28].

Apart from using analytic approximations, partial
feedback linearization also yields closed-form expres-
sions for originally non-integrable system dynamics by
eliminating some nonlinear components in the equa-
tions of motion with the help of control input. For
instance, Piovan et al. [29] use a linear actuator input,
connected in series with the leg spring, in order to can-
cel the nonlinearities in the SLIP dynamics to obtain
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exact closed-form expressions. The important point
here is to notice that partial feedback linearization also
allows enforcing specific, analytic trajectories to the
stance phase dynamics, while eliminating the nonlin-
earities in the system dynamics [29].

1.2 Anchoring SLIP template to MD-SLIP model

As mentioned earlier, SLIP template consists of a point
mass attached to a massless leg. In order to increase
its practicality, many researchers anchored to SLIP
template to obtain more complex models for running
with legged robots [28,30–32], whose COM trajecto-
ries can be accurately defined with SLIP template; see
Sect. 1.1. This section details our extensions to SLIP
template based on biological observations and engi-
neering requirements.

Our first goal is to present a focused understanding
of stability properties of hopping that are common to a
wide range of legged robots. Therefore, we first extend
the SLIP template with a passive, compliant damping
in the leg, which is inevitable for physical robot plat-
forms. Note that extending the SLIP template with a
damping element has been utilized in the literature and
its effectiveness for modeling losses in a physical robot
has been shown experimentally [28].

On the other hand, existence of damping in the leg
requires energy injection to the system in order to com-
pensate for losses. Therefore, we first consider a sin-
gle linear actuator, which is serial to leg spring, as in
[29,33]. Physical significance of using a linear actuator
in the leg has been validated in [34] by modeling mus-
cle activation in the leg, which injects energy to legged
animals during the stance phase, with a force-free leg
length actuation. Note that addition of a linear actua-
tor serial to the leg spring brings a mass to the robot
leg. Various studies investigating the effect of leg mass
suggest that it affects system dynamics both due to its
inertia and due to the losses during the impact colli-
sions [35]. However, effect of inertia has been found to
have a minor effect on system trajectories as compared
to impact collisions [35]. For the case of impact colli-
sions, note that the linear actuator is placed between the
body mass and the leg spring. Thus, linear actuator can
be modeled as a part of body mass instead of leg mass.
On the other hand, it has been shown that effect of leg
mass during the impact collisions can be modeled with
a simple inelastic collision map after the liftoff event

[28]. Therefore, we neglect the mass due to the linear
actuator and continue our analysis with massless leg
assumption in our simulation studies. When a physical
implementation is required, the inelastic collision map,
whichwill not affect our stance dynamics solutions, can
be used to consider the mass of the robot leg.

However, using a single linear actuator as in [29]
limits us to enforce closed-form trajectories to either
radial or angular trajectories (several equations allow
enforcing constrained trajectories to radial and angu-
lar motion simultaneously [29]). Hence, we utilize a
torque actuation at the hip in order to obtain analyt-
ical solutions to both radial and angular trajectory at
the same time. Various studies indicate that torque-
actuated SLIP model yields more accurate predictions
for the ground reaction forces (GRF) as compared to
basic SLIP models and their GRF responses fit bet-
ter to animal locomotion data [20]. We assume fixed
body orientation for torque actuation that allows the
reaction force at the hip to be applied on body mass,
which is assumed to be a point mass in our analysis.
Note that although our assumption for fixed body ori-
entation seems to be impractical, planarizers for legged
robots make this assumption valid for template models
[36]. On the other hand, a humanlike body orientation
without a planarizer will need a properly chosen body
angle for our desired hip torque actuation profile. How-
ever, this approach is left out of the scope of the current
paper.

1.3 Contributions

In a previous work [37], we proposed an actuator
enhanced SLIP model (with linear and hip actuations
but without leg damping) and used a partial feedback
linearization strategy to enforce analytical solutions for
both radial and angular trajectories during the stance
phase. After extensive simulations, our results indi-
cated that the proposed model enlarges the stability
region as compared to the original SLIP template.

The current paper first extends on our previous actu-
ator enhanced model with a viscous damping in the
leg for the sake of modeling physical losses. Although
partial feedback linearization cancels damping in the
equations of motion in order to obtain analytical solu-
tions for the trajectories, we show how to deal with
damping component when designing actuation input
for partial feedback linearization and determining the
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liftoff condition. Similar to our previous work [37], we
utilize partial feedback linearization in order to enforce
closed-form expressions for the radial and angular tra-
jectories. However, different from [37], we show the
applicability of the proposed method by designing a
deadbeat controller based on the analytical trajectories
obtained via partial feedback linearization. In addition,
we investigate open-loop and closed-loop hopping per-
formances of our model with the associated enforced
closed-form solutions on different rough terrain simu-
lations. In order to illustrate the contributions in a com-
parative manner, we give brief information about SLIP,
TD-SLIP, active SLIP models and compare our results
with these models. Finally, current work performs all
the analysis in a non-dimensional coordinate system
framework in order to ensure generality of our results
for models with different system parameters.

1.4 Organization of the paper

This paper is organized as follows. In Section 2, back-
ground about various SLIP models, such as dissipative
SLIP model, active SLIP model and torque-actuated
dissipative SLIP model are reviewed. In Sect. 3, the
proposed multi-actuated dissipative SLIP model and
our partial feedback solution is described to obtain
the closed-form solutions for its stance dynamics. In
Sect. 4, stability of the periodic gaits is investigated and
compared with extensive simulation studies. In Sect. 5,
performance tests of the MD-SLIP model with open-
loop and closed-loop controllers on rough terrain simu-
lations are shown, and the paper is concluded in Sect. 6.

2 SLIP models

2.1 Dissipative SLIP model

Thedissipative spring-loaded invertedpendulummodel
is an extended version of the well-known SLIP model,
where a parallel damping element is added to capture
dissipation behavior of the leg during the stance phase.
The model consists of a body, which is assumed to be
a point mass, attached to a massless leg to preserve
the simplicity of the model. The leg spring has paral-
lel compliance and damping elements as illustrated in
Fig. 1.

The model has hybrid system dynamics by nature,
and there are two switching sub-systems that are trig-
gered one after another during locomotion, as illus-
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Fig. 1 Dissipative SLIP model, coordinate system and model
parameters
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Fig. 2 Phases of locomotion

trated in Fig. 2. First phase is called flight when the toe
of the robot is on the fly and the second phase is called
stance when the toe of the robot is in contact with the
ground.Theperiodic locomotionof the robot is realized
via consecutive activation of these two phases. Actu-
ally, these phases can also be divided into sub-phases of
locomotion to investigate the overall behavior in detail.
The flight phase have two sub-phases as ascent and
descent based on the increase or decrease in the verti-
cal position of the robot. Similarly, stance phase can be
observed in two sub-phases as compression and decom-
pression, which are discriminated as the compression
and decompression behavior of the leg spring as the
name refers to.

The transitions from and to the sub-phases of loco-
motion are describedbyeventswhich are givenby some
predefined boundary conditions for system dynamics
during associated phase of locomotion. Starting from
descent phase, the robot first faces with touchdown
event which triggers the transition from descent phase
to the stance phase, where the foot gains ground con-
tact. In the first sub-phase of stance, body mass starts
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to compress the leg spring until the bottom point where
the bottom event occurs. The bottom event triggers the
transition from compression to decompression phase,
where the body velocity changes its direction during
stance and leg spring starts pushing the body upwards
by using the potential energy stored in the leg spring.
After some point the liftoff event occurs, when the toe
of the robot loses the contact with the ground and robot
starts to fly upwards due to the push of the leg spring.
Finally, the robot reaches a maximum height where
the ascent phase ends. This event is called apex event,
which triggers the transition from ascent to descent,
which will be frequently used in the paper.

In addition to various terms defined above which
are utilized in the paper, at this point, we will clarify
some terminology regarding the locomotion trajectory.
Note that Fig. 2 represents a sample trajectory for the
SLIP model. This trajectory, starting and ending at two
subsequent apexes, is called a stride. By an abuse of
notation, we will also call this motion (stride) as a gait
in this paper. Obviously the concept of gait, albeit con-
taining the motion depicted in Fig. 2, corresponds to
various coordination modes of animal (or robot) legs
in the literature [5,10,13]. However, one-legged tem-
plate structure of the SLIP model does not allow a
multi-legged gait description for one stride. On the
other hand, [16] describes the locomotion performed
by kangaroos as hopping gait that is also one of the
locomotion types performed by using the SLIP model.
Therefore, we focus on hopping gait in our analysis and
we will refer to this type of locomotion as hopping gait
(or simply gait) and the path it follows during the loco-
motion will be called trajectory throughout the paper.
The locomotion of SLIP is then subsequent recursion of
strides depicted in Fig. 2. A periodic motion or simply
a periodic gait is such a motion where initial and final
apex states are equal. The locomotion containing such
periodic gaits is then called as a periodic locomotion.
A periodic gait could be symmetric or asymmetric, as
depicted in Fig. 3. In symmetric gaits, at the bottom
event, the SLIP is vertically upwards and the resul-
tant trajectory has the following properties; leg length
is even symmetric while leg angle is odd symmetric
around the bottom state [1]. Otherwise the trajectory is
called asymmetric.

Our aim in this work is to analyze the existence and
stability of periodic gaits of SLIP dynamics under some
control laws. The main motivation behind such an aim
is that such gaits could be preferred as steady-state tar-
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Fig. 3 A sample illustration of a symmetric gait and b asym-
metric gait

gets in the feedback control of SLIP locomotion. Like-
wise, deviations from such a periodic gait could be uti-
lized as a locomotion performance measure. In fact, if
one can relate various properties of such stable peri-
odic gaits to the control law properties, various other
measures could be considered to improve the locomo-
tion performance. For instance, a periodic locomotion
could be generated by using symmetric or asymmetric
gaits. While symmetric gaits are easier to analyze since
they yield approximate analytical solutions, see [27],
asymmetric gaits may be used to improve the stability
of periodic gaits. They may be utilized to adjust foot
placement, to regulate the energy or to control the hor-
izontal position with better locomotion performance.
Further information about the symmetric and asym-
metric trajectories of the SLIP template can be found
in [1] and the references therein.

In order to make sure that our analysis are parameter
independent and obtain general forms, all the works in
this paper will be presented with dimensionless formu-
lation. To accomplish dimensionless quantities, time
and lengthwill be scaledwith

√
r0/g and leg rest length

r0, respectively. Conversion from physical quantities
to non-dimensional counterparts can be obtained by
using the equations in Table 1, where variables with
bars are the physical quantities of the corresponding
non-dimensional parameters. Additionally, notations
used for SLIP model throughout the paper are given in
Table 2. Note that all relationships below use the non-
dimensional parameter formulation described above
unless otherwise specified.

System dynamics of the dissipative SLIPmodel dur-
ing the flight phase is fairly simple, since the point
mass follows a ballistic trajectory during its fly, which
is given as

ÿ = 0, z̈ = −1 (1)

in Cartesian coordinates.
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Table 1 Dimensionless counterparts of the physical quantities

Quantity Description

t := t̄/
√
r0/g Time

y := ȳ/r0 Length

ẏ := ¯̇y/√gr0 Velocity

ÿ := ¯̈y/g Acceleration

θ := θ̄ Angle

θ̇ := ¯̇θ√
r0/g Angular velocity

θ̈ := ¯̈θr0/g Angular acceleration

E := Ē/(mgr0) Energy

k := k̄r0/(mg) Leg stiffness

c := c̄
√
r0/g/m Damping constant

τ := τ̄ /(mgr0) Torque

Table 2 Notation for SLIP model used throughout the paper

SLIP parameters

y, z Body horizontal and vertical positions

ẏ, ż Body horizontal and vertical velocities

ÿ, z̈ Body horizontal and vertical accelerations

r, θ Leg length and angle

ṙ , θ̇ Leg compression and swing rates

m, g Body mass and gravitational acceleration

c, k Leg damping constant and stiffness

r0 Leg rest length

rtd, θtd Touchdown leg length and angle

za, ẏa Apex height and horizontal velocity

However, system dynamics during stance is not as
simple as in the flight phase. In order to obtain the equa-
tions of motion during the stance phase, Lagrangian
method is used in this paper. In the non-dimensional
formulation, Lagrangian of the system dynamics can
be obtained as

L = 1

2
(ṙ2 + r2θ̇2) − k

2
(1 − r)2 − r cos θ. (2)

In addition, we have a Rayleigh dissipation function
due to the damping term as

D = 1

2
cṙ2. (3)

By using the classical Lagrange’s equations

d

dt

(
∂L

∂ q̇ j

)
− ∂L

∂q j
+ ∂D

∂ q̇ j
= 0, (4)

with q1 = r and q2 = θ , we obtain the following
equations of motion for the stance phase

r̈ = r θ̇2 + k (1 − r) − cos θ − cṙ , (5)

θ̈ = 1

r

(
sin θ − 2ṙ θ̇

)
. (6)

It has been shown that the equations of the form
given by (5) and (6) are non-integrable [24]. Hence,
exact analytical solution of the stance dynamics given
by (5) and (6) is not available. Although numeric
integration is a first choice to obtain stance trajec-
tories, it is not an efficient solution for online com-
putation when solutions with different parameter sets
are needed to optimize the controller parameters [26].
Some researchers proposed analytical approximate
solutions to the stance dynamics [9,27], somewith iter-
ative solutions [23] and some of these approximations
are validated on physical robot platforms [28]. On the
other hand, some studies in the literature focus on using
partial feedback linearization, which aims at deriving
exact analytical solutions with the utilization of addi-
tional actuators [29].

2.2 Active SLIP model

In this section, we give a brief review of the active
SLIP model proposed in [29]. Note that [29] utilizes
partial feedback linearization to obtain exact analytical
solutions to originally non-integrable system dynam-
ics. More precisely, a linear actuator is attached to the
leg spring serially and the length of the actuator can
be adjusted. By adjusting actuator length, some non-
linear elements are canceled and the resulting system
dynamics may have analytical solutions.

The addition of linear actuator changes the leg length
as

r(t) = ract(t) + rk(t) (7)

where ract(t) represents the linear actuator length and
rk(t) is leg spring length. In the same formulation, the
symbols ract,0 and rk,0 are used to describe the rest
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lengths of the linear actuator and the leg spring, respec-
tively. Therefore, the leg rest length can be represented
as r0 = rk,0 + ract,0.

Actuator displacement is defined as Δract = ract −
ract,0 in [29]. For Δract, the following control law is
proposed in [29]

Δract = m

k

(
r̈ + g cos θ − r θ̇2

)
+ r − r0, (8)

for the actuator displacement to make the point mass
to follow the desired trajectory.

In order to obtain analytically tractable equations of
motion for the stance phase, [29] forces the point mass
to follow some specified symmetric gaits. For instance,
the following equation for the angular velocity is used
to enforce the symmetric gait in [29]

θ̇ (t) = A cos θ(t) + c1, (9)

where A and c1 are determined from the boundary con-
ditions between descent and compression sub-phases at
the touchdown instant. The solutions of A, c1, r(t) and
more details can be found in [29].

One important note is that the quantities given in this
section is not in non-dimensional formulation in order
to book-keep the notation of [29].

2.3 Torque-actuated dissipative SLIP model

In this section, we review the torque-actuated dissi-
pative SLIP (TD-SLIP) model, proposed by Ankarali
and Saranli [20]. One of the main contributions of this
model is that a rotary actuator is attached to the hip to
compensate the damping loss of the dissipative SLIP
model. The aim of this work is to approximate stance
dynamics of the proposed model and to perform limit
cycle identification and characterization.

It has been shown in [20] that TD-SLIP model is
marginally stable without applying an explicit control
but asymptotically stable locomotion can be achieved
for fixed touchdown angles by applying torque inputs
via the hip actuator.

For the hip actuator, the following torque function
is proposed in [20]

τ(t) =
{

τ0(1 − t/t f ) if 0 ≤ t ≤ t f
0 if t > t f

(10)

where τ0 := α/θ̇td . The α parameter is called as con-
stant touchdown parameter. This function is simple and
uses some constants that is determined before touch-
down event. Also, the decreasing nature of this func-
tion avoids the application of negative work during
stance. In order to ensure that torque applied at the
liftoff instant is zero, t f is chosen as the liftoff time.
By this way, the hip torque does not cause early liftoffs
and the stance duration approximation does not become
difficult. More details about this model and derivations
can be found in [20].

3 Multi-actuated dissipative SLIP model

3.1 Model and dynamics

Theproposedmodel differs from theoriginal SLIP tem-
plate by the addition of two actuators as stated earlier.
These actuators help us to use partial feedback lin-
earization methods to obtain analytic solutions to the
stance dynamics. The first actuator is a linear motor
that is attached serially to the leg spring. The second
actuator on the other hand is a rotary actuator that is
attached to the point mass at the hip to apply the rota-
tional torque τ . This model is called as multi-actuated
dissipative SLIP template and is shown in Fig. 4, where
the coordinate system, model parameters and the addi-
tional actuators are also illustrated. Note that although
the SLIP template (and hence our proposed model) can
be used to represent center ofmass trajectories of differ-
ent animals with varying number of legs (see Sect. 1.1),
the SLIP model itself (and hence our proposed model)
corresponds to a one-legged hopping robot when sim-
ulated in computerized environments.

Note that our additional actuators do not violate or
change the assumptions on the original SLIP model
such as point mass and massless leg. Therefore, point
mass still follows a ballistic trajectory during the flight
phase, so the equations ofmotionwill be same as in (1).
However, addition of two new actuators changes the
stance dynamics, since now we are capable of inject-
ing and removing energy from the system. Therefore,
the modified stance dynamics for the multi-actuated
dissipative SLIP (MD-SLIP) model can be given as

r̈ = r θ̇2 + k (1 − r + Δract ) − cos θ − cṙ , (11)

θ̈ = 1

r

(
sin θ − 2ṙ θ̇

) + τ

r2
, (12)
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Fig. 4 Multi-actuated dissipative SLIP model, coordinate sys-
tem and model parameters. The difference of this model with the
dissipative SLIP model (illustrated in Fig. 1) is the addition of
the linear and the rotary actuators

where Δract = ract − ract,0.
We note that all time-dependent functions in Sect. 3

use touchdown time as reference for the sake of sim-
plicity.

3.2 Solving stance dynamics

As mentioned before, the stance dynamics of the SLIP
model does not have exact analytical solution due to
its highly nonlinear and non-integrable nature. This
problem may become more complex if Δract and τ in
(11)–(12) are not chosen appropriately. In this part, we
explain howwe can obtain exact analytical solutions to
the stance dynamics of the MD-SLIP model by cancel-
ing some nonlinear terms in the system dynamics. We
show that Eqs. (11) and (12) can be solved when partial
feedback linearization is used to cancel out some non-
linear terms. Besides, partial feedback linearization can
also be used to enforce specific solutions to Eqs. (11)
and (12) such as specifying some desired trajectories
to the point mass during its stance locomotion.

To cancel some of the nonlinear terms in Eq. (11),
linear actuator displacement is chosen as

Δract = 1

k
(cos θ − r θ̇2 + cṙ) − A0 + C0t, (13)

where A0 can be used to adjust the initial value and C0

can be used as an additional control parameter.
At touchdown instant, a force is applied to the point

mass in order to compensate the losses due to leg damp-
ing. To achieve this,Δract is chosen as cṙtd/k at touch-
down instant. Using this idea and evaluating (13) at
touchdown instant, we obtain:

A0 = cos θtd − rtdθ̇2td
k

. (14)

Substituting (13) in (11) results in

r̈ + kr = k(1 − A0 + C0t). (15)

The solution of (15) can be obtained as

r(t) = A1 sin(ωt) + A2 cos(ωt) + 1− A0 +C0t (16)

where w = √
k.

Applying the boundary condition at touchdown
instance, i.e., the leg length should be equal to the leg
rest length, A2 can be found as A2 = A0.

In order to find the A1, the radial velocity

ṙ(t) = A1ω cos(ωt) − A0ω sin(ωt) + C0, (17)

should be equal to its touchdown value at touchdown
instant, which results in

A1 = ṙtd − C0

ω
. (18)

As a result, the leg length during stance phase can
be found as

r(t) = 1− A0 + A0 cos(ωt)+ A1 sin(ωt)+C0t, (19)

where A0 and A1 are given by (14) and (18), respec-
tively.

For the angular velocity equation (12), we propose
an approach similar to the one utilized in [29]. By
adding an additional control parameter C1, similar to
(9), we propose the following desired angular velocity
equation

θ̇ = B0 cos(θ + C1) + B1. (20)

The required torque to enforce (20) can be found
from (12) as

τ = 2rṙ θ̇ − r sin θ − B0r
2 sin(θ + C1)θ̇ . (21)

In order to avoid sudden jumps in torque,we chose to
apply τ = 0 at touchdown instance. Using this decision
in (21), we obtain
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B0 = 2ṙtd θ̇td − sin θtd

sin(θtd + C1)θ̇td
. (22)

Furthermore, by evaluating (20) at touchdown instance
we obtain

B1 = θ̇td − B0 cos(θtd + C1). (23)

Solving the angular velocity equation (20) for the
angular position results in

θ(t) = π

2
−C1+2atan

⎛
⎝ B0 − B2 tanh

(
B2t
2 + B3

)
B1

⎞
⎠ ,

(24)

where B2 and B3 are defined as

B2 :=
√
B2
0 − B2

1 , (25)

B3 := atanh

⎛
⎝ B0 + B1 tan

(
θtd+C1− π

2
2

)
B2

⎞
⎠ . (26)

After some lengthy but straightforward calculations,
we obtain the following equation for the angular posi-
tion
θ(t) = θtd

+ 2acot

⎛
⎝ B2θ̇td coth

(
B2t
2

)
+ 2ṙtd θ̇td − sin θtd

θ̇2td

⎞
⎠ .

(27)
To summarize, if we choose the linear actuator con-

trol law as in (13), the solution of the radial dynamics
given by (11) can be obtained as (19), where A0 and A1

are constants that are obtained as (14) and (18), respec-
tively, and C0 is a free control parameter. Likewise, if
we use the torque control law as in (21), the solution
of the angular dynamics given by (12) can be obtained
as (27), where B0, B1 and B2 are constants as given
by (22), (23) and (25), respectively, and C1 is a free
control parameter.

Note that stance trajectories generated by (19) and
(27) are not arbitrary functions enforced bypartial feed-
back linearization. Actually, these trajectories are well-
fitted locomotion trajectories similar to the ones gen-
erated by the SLIP model. A sample stance trajectory
is shown in Fig. 14.

Remark 1 Wenote that both the solutions given by (19)
and (27) depend on the touchdown positions and veloc-
ities. Since the flight phase dynamics are integrable,
these values can be obtained at the end of the flight
phase, then (19) and (27) could be used as the solu-
tions of stance phase dynamics. Moreover, these for-
mulas contain the free control parameters C0 and C1

explicitly; hence, by choosing these parameters appro-
priately, one may achieve various control objectives.

3.3 Apex-to-apex return map

In order to understand and analyze theMD-SLIPmodel
in detail, its locomotion needs to be divided into sub-
phases that consecutively repeat themselves. In this
paper, we choose the starting phase as the apex instance
and use the apex-to-apex return map to represent the
locomotion. The states at the current apex point are
chosen as the apex height za0 and apex velocity ẏa0.
When the locomotion starts from the apex state, it fol-
lows the ballistic trajectory (1) until the toe touches to
the ground. It means, the touchdown event occurs when
the equation z = cos θtd is satisfied. Hence, the state
variables of the descent sub-phase and their relations
can be written as

(żtd, ẏtd) = F td
a (za0, ẏa0), (28)

where the subscript td indicates the touchdown, F td
a

is the apex to touchdown map, the velocities żtd and
ẏtd are vertical and horizontal velocities in Cartesian
coordinates at touchdown instance, respectively. Note
that the map F td

a depends on θtd which is considered as
a control parameter. The latter approach is utilized in
various control schemes proposed for SLIP dynamics;
see, e.g., [1,25,26].

After the toe touches the ground, the point mass
starts to follow the stance dynamics (11) and (12)which
are solved as (19) and (27). The function for the stance
phase can be written as

(rlo, ṙlo, θlo, θ̇lo) = F lo
td (ṙtd, θ̇td), (29)

where the subscript lo indicates the liftoff and F lo
td is

the touchdown to liftoff map. Note that the map F lo
td

depends on the control parameters θtd , C0 and C1, see
(19) and (27).
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The liftoff event occurs, when the toe loses ground
contact. After this instance the point mass follows the
ballistic trajectory (1) again until its vertical velocity
becomes zero at the apex. The ascent sub-phase can be
represented as

(za1, ẏa1) = Fa
lo(żtd, ẏtd, rlo, θlo), (30)

where Fa
lo is the liftoff to apex map.

After describing the trajectory from current apex
state to the next one, apex-to-apex function can bewrit-
ten as

Fa
a = Fa

lo ◦ Rlo ◦ F lo
td ◦ Rtd ◦ F td

a , (31)

where Fa
a represents apex-to-apex return map. Note

that Rtd and Rlo stands for the coordinate transforma-
tions between Cartesian and polar coordinates. These
transformations are required since we use polar coor-
dinates for our stance phase (radial) solutions while the
actual map (with descent and ascent phases) are repre-
sented in Cartesian coordinates.

Finally, the next apex state can be achieved by using
current apex state as

(za1, ẏa1) = Fa
a (za0, ẏa0), (32)

where za1 and ẏa1 are the height and the velocity at the
next apex point. Note that the map Fa

a depends on the
control parameters θtd , C0 and C1. Our aim is now to
choose these control parameters appropriately to obtain
stable gait patterns.

Remark 2 The apex-to-apex return map, Fa
a , is impor-

tant in studying the possible running gait patterns of
the SLIP dynamics as well as stability of such gaits.
For example, any periodic gait is a fixed point of Fa

a ,
and any stable gait is a stable fixed point of Fa

a .

3.4 Finding stance duration

Tofind the stance duration, the liftoff condition needs to
bedetermined. In the dissipativeSLIPmodel, leg spring
is constrained such that the maximum length of the leg
spring is its rest length.On the other hand, dissipation in
theSLIPmodel canyield someearly liftoffs. In addition
to these two criteria, we avoid negative work by turning

off the torque control to ensure early liftoff. Hence, the
liftoff condition can be given as

r = 1 + Δract − c

k
ṙ , (33)

where Δract is given by (13). Due to the highly non-
linear expressions of the latter, finding an analytical
expression for the solution of (33) is very difficult.
However, the numeric calculation is still a way to find
the stance duration.

Under the symmetric stance trajectory assumption,
we can find exact solution for the stance duration. To
have symmetric stance trajectory, leg length and leg
angle need to be even and odd symmetric around the
time halfway through the stance phase, respectively [1].
To satisfy these requirements, three conditions need to
be met. First, leg length needs to be even symmetric
around bottom event, which is possible by choosing
C0 = 0. Second, leg angle needs to be odd symmetric,
which requiresC1 = 0. Third, at bottom time leg angle
should be zero. As a result, a symmetric gait is formed
by choosing control parameters C0 and C1 as zero and
adjusting θtd to tune the bottom time

tb = 1

w

⎛
⎝π − acos

⎛
⎝ A0√

A2
0 + A2

1

⎞
⎠

⎞
⎠ (34)

and the time required to make θ zero

tθ0 = 2

B2
acoth

(
sin θtd − θ̇2td cot(

θtd
2 ) − 2ṙtd θ̇td

B2θ̇td

)

(35)

equal. Then, the stance duration can be calculated as

ts = 2tb = 2tθ0. (36)

4 Periodic gaits and their stability in MD-SLIP
model

As stated in Remark 2, the periodic gaits of the pro-
posed MD-SLIP model are the fixed points of the
apex-to-apex map Fa

a given by (31). This fixed point,
(z∗a, ẏ∗

a ), satisfies the following equation

(z∗a, ẏ∗
a ) = Fa

a (z∗a, ẏ∗
a ). (37)
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The stability of such fixed points can be determined by
the eigenvalues of the Jacobian matrix of Fa

a evaluated
at the fixed point. The Jacobian matrix is defined for
the apex-to-apex return map as

J :=
[

∂za1
∂za0

∂za1
∂ ẏa0

∂ ẏa1
∂za0

∂ ẏa1
∂ ẏa0

]
. (38)

However, we do not have exact solution of the stance
duration for all cases, where numeric calculation might
be necessary. In such cases, the Jacobian matrix is
approximated in numerical simulations as

Jn :=
[

za1z−za1
Δza0

za1y−za1
Δẏa0

ẏa1z−ẏa1
Δza0

ẏa1y−ẏa1
Δẏa0

]
, (39)

where the values for Δza0 and Δẏa0 have been chosen
as sufficiently small values to approximate the numer-
ical derivatives. After some extensive simulations, we
experimentally choose this number as 10−5, since fur-
ther decrease apparently does not have a meaningful
change on the eigenvalues of the Jacobian. The other
variables are defined as

(za1, ẏa1) := Fa
a (za0, ẏa0), (40)

(za1z, ẏa1z) := Fa
a (za0 + Δza0, ẏa0), (41)

(za1y, ẏa1y) := Fa
a (za0, ẏa0 + Δẏa0). (42)

During simulations, the non-dimensional parame-
ters and initial conditions are chosen as za ∈ [1 − 2],
ẏa ∈ [0 − 3.2] and k ∈ [15 − 100].

4.1 Zero control parameters C0 and C1

The goal of this section is to investigate the stability of
the periodic motion for the proposed MD-SLIP model
when the gaits are symmetric.

Note that symmetric gaits are obtained by choosing
the control parametersC0 andC1 as zero leaving us the
leg touchdown angle, θtd , as the only control parameter
to regulate the gait. In order to begin stability analysis,
fixed points of the corresponding Poincaré map should
be extracted. To accomplish this, we first find the touch-
down angle, θtd that yields same solutions for (34) and
(35) to obtain the fixed pointmanifold. At this point, we
use numeric calculations to solve tb = tθ0 in order to
find the fixed pointmanifold since obtaining an analytic
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Fig. 5 Touchdown angles that result periodic gaits for the MD-
SLIP model with control parameters C0 and C1 are zero. The
dimensionless spring constant k is chosen as 36

solution is very difficult for these equations; see (34)
and (35). The significance of this fixed pointmanifold is
that any point chosen inside the fixed point manifold as
an initial condition to our MD-SLIP model yields peri-
odic locomotion. The fixed point manifold of the MD-
SLIP model in terms of a function apex height, apex
velocity and touchdown angle is illustrated in Fig. 5.

Another important observation about Fig. 5 is that
the touchdown angle θtd that results in periodic motion
is more or less proportional to the apex horizontal
velocity ẏa . Note that this property is also observed in
the original SLIP template and [1] designed touchdown
angle controllers to regulate apex horizontal velocity
based on this principle. Figure 5 shows that our pro-
posed model also exhibits this property, which would
allow simple touchdown angle controllers as in [1] to
regulate apex horizontal velocity. We note that aver-
age steady-state velocity is utilized as a measure to
determine the locomotion performance in [5]. By com-
bining this idea with the observation given above, we
could state that if we choose apex horizontal velocity
as a measure to evaluate the locomotion performance,
we could utilize the touchdown angle as a parameter
for optimizations. However, since our main aim in this
work is to determine the existence and stability of peri-
odic gaits, we do not elaborate further on this subject
which requires and deserves further investigation.

Having zero control parameters assumption, we
have analytic solutions to the system dynamics and
stance duration, and hence, we can perform an ana-
lytic stability analysis. However, the stance duration is
solved only for the symmetric gaits and this analysis
requires the general solution for the stance duration.
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Since the analysis is performed around the symmetric
stance trajectories, we assume that the stance duration
equation solved for symmetric gaits can be used in this
analysis. Additionally, finding an exact analytic solu-
tion for the leg touchdown angle that results in periodic
locomotion is very challenging. Therefore, we utilize
numeric solution to find leg touchdown angles and plug
in these numeric solution into our equations to form the
Jacobian matrix. Symbolic Toolbox of theMATLAB is
used in all the steps to calculate the eigenvalues for the
Jacobian matrix (38), because of the complexity of the
equations. Since we perform the analysis around the
symmetric gaits, magnitude of one of the eigenvalues
always results as 1. Therefore, we use the magnitude
of the other eigenvalue to determine the stability of the
gaits.

Note that using analytical Jacobian for computing
eigenvalues is only valid for symmetric gaits. How-
ever,most of the natural gaits generated by animals, and
hence our simulation models, correspond to asymmet-
ric trajectories, which requires derivation of numeric
Jacobian matrix as in (39). In order to validate this
approach, we first derived both analytical and numer-
ical Jacobian matrices for the symmetric gait assump-
tion and compared the resulting eigenvalues. Having
noticed that the distance between first eigenvalue pair
was less than 0.1% (the other eigenvalue pair was equal
to 1 in both approaches), we decided to proceed with
(39) to compute eigenvalues for the non-symmetric
gaits.

To compare the stability of the periodic gaits for
the MD-SLIP model and the SLIP model, fixed points
of the corresponding apex-to-apex map should be
obtained. To find the fixed points of the periodic gaits
for the SLIP model, conservation of energy is required.
Therefore, we choose the damping constant as zero to
find the fixed points of the SLIP model and perform a
stability analysis to compare with theMD-SLIPmodel.
In Fig. 6, stability regions of SLIPmodel andMD-SLIP
model is shown. It is obvious that MD-SLIP model
increases the stable region for the interested region of
initial conditions.

Remark 3 Note that our stability analysis is based on
the linearization of nonlinear dynamics around a peri-
odic motion (i.e., limit cycle). As a result of lineariza-
tion, all of our results are only local; hence, stable peri-
odic gait here means an asymptotically (and locally)
stable periodicmotion; see [38]. There are variousways
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Fig. 6 A Comparison between stability regions of the SLIP
andMD-SLIPmodels. Blue (vertically dashed) region illustrates
the stable gaits of the MD-SLIP model and green (horizontally
dashed) region illustrates the stable region for both SLIP and
MD-SLIP models. Finally, the red (dotted) region illustrates the
region where both models are unstable. Note that the dimension-
less spring constant is chosen as 36 in this analysis. (Color figure
online)

to measure the stability performance of the periodic
gaits considered in this work. An obvious choice would
be to characterize or estimate the domain of attraction
(DoA) of such a gait (i.e., the set of all initial apex states
fromwhich the starting trajectories asymptotically con-
verge to the apex state of the periodic gait). However,
finding and/or estimating such a DoA is quite diffi-
cult and requires mainly large amount of simulations;
see, e.g., [38,39], which is beyond the scope of present
work. Another measure is the robustness of such sta-
ble gaits against small perturbations, and rough terrain
simulations are frequently utilized in the literature as
a measure of such robustness, [15,22,39]. Indeed, our
stable gaits are found when SLIP motion is on a flat
ground. When the terrain changes, its effect could be
considered as a perturbation of apex state and if the
resulting motion still converges to the periodic gait in
question in rough terrains, this would indicate a suffi-
ciently robust stable gait. Although an exact analytical
relation between this type of robustness measure and
the size of DoA is not available, we may expect that the
better robustness results in rough terrain simulations is
an indicator of larger sizes for DoA. This approach will
be utilized in Sect. 5; see also [39] for similar stability
measures. Another measure for stability performance
might be the magnitude of the maximum eigenvalue;
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see, e.g., [39]. Minimization of this quantity as a sta-
bility measure will be considered in Sect. 4.2. We note
that other measures of stability, as well as estimation
of DoA, are subjects which require and deserve further
investigations.

Since active SLIP model proposed in [29] enforces
a symmetric gait for all initial conditions, the Jacobian
matrix becomes identity matrix. Hence, the eigenval-
ues of the Jacobian matrix becomes 1. Therefore, our
approach which is based on linearization is inconclu-
sive to determine the stability properties of periodic
gaits obtained in [29]. As a result, we cannot com-
pare the stability of the periodic gaits for the MD-SLIP
model and themodel given in [29] by using ourmethod.

On the other hand, we could compare the proper-
ties of stable gaits obtained in our model with the ones
obtained in TD-SLIP model. The fixed points of the
TD-SLIP are calculated and the stability analysis for
TD-SLIP is also performed. In order to make a fair
comparison, non-dimensional spring constant k is cho-
sen as 36 and non-dimensional damping coefficient c is
chosen as 0.96 to satisfy the value 0.08 for the damping
ratio ζ0 as in [20]. The stability regions of the periodic
gaits of TD-SLIPmodel andMD-SLIPmodel are illus-
trated in Fig. 7. When we compare the stability regions
of the gaits generated by the proposed model with the
TD-SLIP model, we notice that the MD-SLIP model
increases the region inwhich stablemotion is observed.
There is only a very small portion in our initial condi-
tion range, where the TD-SLIP model generates stable
gaits but the proposed model gaits are unstable; note
that this region is very small and corresponds to ini-
tial conditions with heights very close to leg length and
very small horizontal velocities. On the other hand, the
proposed model exhibits stable gaits in a wide range of
initial conditions, where TD-SLIP model is unable to
preserve the stability of gaits.

4.2 Optimizing control parameters C0 and C1

In this section, we investigate the stability of periodic
gaits when C0 �= 0 and/or C1 �= 0 case. As we men-
tioned before, the case C0 = C1 = 0 results is sym-
metric gaits, and when C0 �= 0 and/or C1 �= 0, the
resulting gait becomes asymmetric. We also observed
that in this case, the resulting periodicmotion has better
stability characteristics as compared to symmetric peri-
odic gait case. Hence, by choosing C0 and C1 appro-
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Fig. 7 Stability regions for the TD-SLIP and MD-SLIP mod-
els. Green (vertically dashed) and red (dotted) regions illustrate
the stability and instability for both models, respectively. Blue
(horizontally dashed) region corresponds to stability region for
MD-SLIP model, while TD-SLIP is unstable. On the contrary,
black (shaded) region represents stability region for the TD-SLIP
model while theMD-SLIPmodel is unstable. The dimensionless
spring and damping constants k and c are chosen as 36 and 0.96,
respectively. (Color figure online)

priately we may improve some stability measures. As
noted in Remark 3, maximum eigenvalue magnitude
will be used as a stability measure in this section. More
precisely, let λ1 and λ2 be the eigenvalues of the Jaco-
bianmatrix. Then the optimization problem considered
in this section is given as

min
θtd,C0,C1

max{|λ1|, |λ2|}. (43)

For a given w∗ = (z∗a, ẏ∗
a ) pair, if we choose

C0 = C1 = 0, then there is a single touchdown angle
θtd value which makes w∗ a fixed point. However, if
we choose C0 �= 0 and/or C1 �= 0, then there is a
range of touchdown angle θtd values which make w∗
a fixed point for a given w∗ = (z∗a, ẏ∗

a ) pair. The mag-
nitudes of the eigenvalues of the corresponding Jaco-
bian matrix for the changing touchdown angle θtd are
illustrated in Fig. 8. Minimizing the touchdown angle
while keeping the eigenvalues in the unit circle results
in C0 = C1 = 0. Maximum values for the touchdown
angle while keeping the eigenvalues in the unit circle is
illustrated in Fig. 9. It is seen that the range for stable
touchdown angle can go up to 10 degrees by comparing
Fig. 5 and 9. Notice that proportionality between the
touchdown angle θtd that results in periodicmotion and
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Fig. 8 Magnitudes of the eigenvalues with respect to touchdown
angle. The green and blue lines correspond to two eigenvalues
of the system with respect to varying touchdown angles. The red
(dotted) lines represent the stability boundary. In this system, the
touchdown angle is chosen appropriately by adjustingC0 andC1
to make the gaits fixed point. The dimensionless apex height and
velocity are 1.02 and 2.3, respectively. (Color figure online)
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Fig. 9 Touchdown angles that result periodic gaits for the MD-
SLIP model with control parameters C0 and C1 are optimized to
maximize the touchdown angle while keeping magnitudes of the
eigenvalues of the Jacobianmatrix of the apex-to-apexmap in the
unit circle. The dimensionless spring constant k is chosen as 36.
Terrain 1 is the simple flat ground which is used in comparison
with the terrains 2–7

the apex horizontal velocity ẏa is still valid for asym-
metric gaits. Therefore, simple touchdown angle con-
trollers as in [1] can also be used for asymmetric gaits
in the proposed model. As noted in Sect. 4.1, follow-
ing the idea given in [5], if we choose apex horizontal
velocity as a measure for locomotion performance, we
could utilize touchdown angle as a control parameter
for optimization.

To provide some insight about the asymmetry of
the gait, the angle bisector of the touchdown angle θtd
and liftoff angle θlo is chosen as a measure. Notice
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Fig. 10 Angle bisector of touchdown and liftoff angles of
the MD-SLIP model. The control parameters, C0 and C1, are
adjusted to obtain a stable system (eigenvalues are inside the unit
circle) with maximum touchdown angle to compute the angle
bisector. The dimensionless spring constant is chosen as 36 in
this test

that increased angle bisector results in increased asym-
metry. For stable gaits, it is observed that maximum
values for the angle bisector is observed around maxi-
mum touchdown angles. Angle bisector for maximum
touchdown angle case is shown in Fig. 10.

5 Performance of MD-SLIP model on rough
terrain

5.1 Open-loop control with fixed control parameters

As stated in Remark 3, one way of evaluating the sta-
bility of periodic gaits is to utilize rough terrain simula-
tions,which gives us ameasure of robustness of the cor-
responding periodic motion. In this section, we present
various rough terrain simulations to test the robustness
of the periodic gaits of three models introduced before,
namely SLIP, TD-SLIP and MD-SLIP models. We uti-
lize successful running (i.e., running without falling)
rates as a robustness measure and show that the results
obtained in Sect. 4 actually yield sufficiently robust,
hence stable, periodic gaits.

Section 4 investigates the stability performance of
the gaits for the three models, SLIP, TD-SLIP and
MD-SLIP, by checking the eigenvalues of the Jacobian
matrix around a periodic trajectory. This corresponds
to linearizing the dynamics around a periodic function.
In order to have an insight about the region of attrac-
tion (validity region for our stability analysis), this sec-
tion presents the results for stability performance of the
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Fig. 11 Terrains 1–7 used during the simulations. Terrain 1 is the
simple flat ground which is used in comparison with the terrains
2–7

threemodels on rough terrain running experiments.We
show that the results obtained in Sect. 4 do not simply
yield a local stability but they correspond to gaits that
are robust to different rough terrains.

The proposed model, MD-SLIP model, is compared
with the TD-SLIP model and the original SLIP model
on different terrains, which are depicted in Fig. 11.
Mean, variance and average power of the terrains are
given in Table 3. Average powers of the terrains are
obtained via simple computations (square of the ter-
rain signal integrated over a period normalized by the
length of the period) due to the periodicity of the ter-
rains. Additionally, power spectral density of the ter-
rains is illustrated in Fig. 12 that are computed by the
Welch’s method [40]. Hence, the intuitive difference
between the terrains depicted in Fig. 11 can be quanti-
tatively observed from Table 3 and Fig. 12.

In order to generalize our results, we performed our
tests with various initial conditions, where the dimen-
sionless spring and damping constant were chosen as
k = 36 and c = 0.96, respectively, in order to reach
optimum performance of the TD-SLIP model for a fair
comparison. For the initial conditions, we chose 100
linearly spaced values for za ∈ [1.01− 2] and 100 lin-

Table 3 Properties of the Terrains

Terrain Mean Variance Average Power

1 0.00000 0.00000 0.00000

2 −0.01719 0.00552 0.00581

3 −0.03438 0.02207 0.02322

4 0.06568 0.00228 0.00659

5 0.13136 0.00911 0.02636

6 −0.07099 0.00112 0.00616

7 −0.14199 0.00449 0.02465
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Fig. 12 Power spectral density for the terrains 2–7

early spaced values for ẏa ∈ [0.032 − 3.2] that yields
a total number of 10,000 initial condition points.

In order to perform our analysis in steady state, we
first simulate the models for 1000 steps on the seven
terrain models that are depicted in Fig. 11 and count
the successful runs. The step number, 1000, is cho-
sen experimentally to make sure that further increasing
the step number does not affect our performance crite-
ria. We note that we also performed the same simula-
tions for 100 steps. Although the success/failure rates
given in Tables 4, 5 and 6 change slightly, the general
tendency which indicates that MD-SLIP model outper-
forms the other SLIP templates remained the same. Fur-
ther increasing the step size apparently does not change
this conclusion. Following these observations, we fixed
the step size to 1000 for this section. Also as noted in
Remark 3, rough terrain simulations are expected to
give an indication on the robustness of stability of peri-
odic gaits; hence, from this perspective, we could con-
sider the success/failure rates given in Tables 4, 5 and
6 as a measure for stability performance. Table 4 lists
the percentage failures for the threemodels on different
terrains (Here, a successful run corresponds to a case
where the SLIP model completes 1000 steps without
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Table 4 Percentage of the data points that failed to achieve 1000
steps on the given terrains

Terrain Model

SLIP TD-SLIP MD-SLIP

1 77.67 35.29 2.74

2 83.35 64.40 21.20

3 90.58 71.20 37.50

4 90.99 56.67 20.50

5 95.81 68.37 36.21

6 65.44 40.15 10.95

7 77.24 48.19 20.03

Table 5 Percentage of the data points that cannot stand for addi-
tional 1000 steps on the flat ground in addition to the 1000 steps
in the given terrains

Terrain Model

SLIP TD-SLIP MD-SLIP

1 78.38 35.37 2.79

2 85.96 64.54 21.26

3 91.70 71.28 37.58

4 90.99 56.67 20.50

5 95.81 68.41 36.21

6 70.78 41.76 15.84

7 82.69 50.11 26.00

falling). As can be seen, MD-SLIP model outperforms
the other models with a mean failure error of 21.30%
on seven terrains.

Having identified the successful runs on rough ter-
rain, we continue to simulate the models for another
1000 steps on flat ground to investigate the robustness
of the resulting periodic gaits. Our aim in these simula-
tions is to observe whether the runs which successfully
finish 1000 steps in a rough terrain (without falling)
would continue to run successfully on a flat ground for
another 1000 steps; hence, the resulting periodic gait
is robust in this sense. Table 5 lists the percentage of
failure for the three models which could not stand for
another 1000 steps on. As can be seen, the MD-SLIP
model outperforms the other models in this test.

The final step in our performance observation is to
determinewhether the initial and final apex states in our
simulations for the three models in flat ground follow-
ing these rough terrains are sufficiently close. If wi =
(z∗a, ẏ∗

a ) is the initial apex state and w f = (zaf , ẏaf ) is

Table 6 Percentage of the data points that are accepted as fixed
point periodic gaits

Terrain Model

SLIP TD-SLIP MD-SLIP

1 22.08 17.80 95.18

2 14.52 16.69 78.74

3 8.86 15.16 62.42

4 9.07 17.16 79.50

5 4.20 16.21 63.79

6 15.85 17.09 84.16

7 10.21 16.16 74.00

the final apex state (after 2000 steps in above simula-
tions), we consider wi and w f to be sufficiently close
if ‖wi − w f ‖ < 0.0001 and we consider the resulting
periodic gait as a successful test in this evaluation. The
threshold, 0.0001, is also chosen experimentally based
on data histogram to consider two states identical at
steady state, since obtaining true identical results (cor-
responds to threshold value of 0) would not be possible
in numeric analysis. Table 6 illustrates the performance
of three models on rough terrains, giving the percent-
age of successful runs in the sense mentioned above.
As seen in Table 6, the MD-SLIP model has a better
performance in converging to the initial apex state as
compared to SLIP and TD-SLIP models.

As can be seen from these simulations given in
Tables 4, 5 and 6, theMD-SLIP model outperforms the
other models in these tests, which allows us to observe
that the periodic gait behavior of our model is suffi-
ciently robust.

5.2 Closed-loop control with a deadbeat control
strategy

This section investigates the performances of the three
models for apex trajectory tracking under closed-loop
control.We show that our proposedmodel yields better
tracking performances with a deadbeat controller as
compared to other two models.

In order to investigate our statement, we use numeric
inverse of the apex return map as the controller in three
models. The block diagram of the proposed deadbeat
controller scheme is illustrated in Fig. 13. The inverse
map controller takes desired apex state wd = (zda , ẏ

d
a )

and current apex state wi = (zai , ẏai ) as input and cal-
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Deadbeat Controller

Plant Model

zai, ẏai

zda, ẏd
a

(zao, ẏao) = F a
a (zai, ẏai)

u = (F a
a )

−1(zda, ẏd
a, zai, ẏai)

u

zao, ẏao

Fig. 13 Block diagram of the simple deadbeat controller used
to compare the closed-loop performance of the models. Here u
represents the generic controller output, which is different for
different models. (Fa

a )−1 is the inverse of the apex map and zao,
ẏao are the apex height and apex horizontal velocity outputs,
respectively

culates the control parameter u to achieve the desired
apex state. Note that to have a fair comparison, we
apply the same deadbeat controller for all threemodels.
Here u represents the generic controller output, which
is different for different models. For instance, in SLIP
model, u refers to touchdown angle, θtd , since it is the
only control parameter. However, for TD-SLIP model,
u represents both the touchdown angle, θtd , and the
constant touchdown parameter,α, that is used for deter-
mining torque applied to the hip. Finally, in MD-SLIP
model, u refers to touchdown angle, θtd , and constant
control parameters C0 and C1.

Then the system uses this control parameter and
achieves an apex state zao, ẏao. This apex state is used
as an input for the next cycle to compute the controller
input for the next step.

We define different metrics to evaluate the tracking
performance of the proposed closed-loop controller.
The apex height tracking performance can be defined
as

Pz = 100

√√√√1

n

n∑
i=1

(
zai − zda

zda

)2

, (44)

where n is the total number of apexes, i is the apex
index, zai is apex hight at i th index and zda is the desired
apex height. Similarly, apex horizontal velocity track-
ing performance can be defined as

Pẏ = 100

√√√√1

n

n∑
i=1

(
ẏai − ẏda

ẏda

)2

, (45)
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Fig. 14 During simulation terrain 3 is used and 5 steps are per-
formed. Desired apex height 1.5 and desired apex speed 3.2
are simulated. Black solid line represents the ground. Black
dashed line represents the desired apex height. Blue (diamond),
magenta (star) and red (cross) points are the apex positions for
SLIP, TD-SLIP and MD-SLIP models, respectively. Blue (dot
dashed),magenta (dotted) and red (solid) lines are the trajectories
that SLIP, TD-SLIP and MD-SLIP models follow, respectively.
(Color figure online)

where ẏai is horizontal velocity at i th apex and ẏda is
the desired apex horizontal velocity.
Likewise, apex state tracking performance is defined
as

Pa = 100

√√√√1

n

n∑
i=1

(
zai − zda

zda

)2

+
(
ẏai − ẏda

ẏda

)2

.

(46)

Figure 14 illustrates a sample run of the three mod-
els running at terrain 3 with desired apex height 1.5 and
desired apex speed 3.2. It can be clearly observed that
MD-SLIP model and the associated closed-loop dead-
beat controller preserves the desired apex states with a
negligible error when compared to TD-SLIP and SLIP
models. In order to generalize our results, we repeated
this closed-loop control test for all 10000 initial condi-
tions and computed the mean and standard deviations
of the percentage tracking errors in (44), (45) and (46)
for terrains 2–7. The results are listed in Table 7. Our
results show thatMD-SLIPmodel also outperforms the
TD-SLIP and SLIP models when a basic closed-loop
controller is used.

The quantities given by (44)–(46) obviously could
be considered as measures to determine the locomo-
tion performance. Indeed they indicate the deviations
between the actual trajectory and the (desired) peri-

123



1254 H. Hamzaçebi, Ö. Morgül

Table 7 Percentage tracking error of apex states in closed-loop system

Model and metric Terrain

2 3 4 5 6 7

SLIP Pz 0.694 ± 0.923 1.21 ± 1.58 0.724 ± 0.932 1.27 ± 1.58 0.409 ± 0.551 0.722 ± 0.965

Pẏ 0.229 ± 0.125 0.437 ± 0.224 0.267 ± 0.135 0.508 ± 0.246 0.138 ± 0.0719 0.256 ± 0.127

Pa 0.771 ± 0.899 1.37 ± 1.53 0.826 ± 0.894 1.47 ± 1.51 0.460 ± 0.533 0.820 ± 0.928

TD-SLIP Pz 1.31 ± 0.948 2.42 ± 1.60 1.40 ± 0.921 2.54 ± 1.53 0.779 ± 0.551 1.48 ± 0.967

Pẏ 1.36 ± 1.36 2.88 ± 2.75 1.72 ± 2.13 3.49 ± 4.23 0.870 ± 1.04 1.82 ± 2.11

Pa 2.24 ± 1.12 4.41 ± 2.20 2.64 ± 1.82 5.08 ± 3.63 1.40 ± 0.894 2.76 ± 1.80

MD-SLIP Pz 0.107 ± 0.115 0.200 ± 0.166 0.122 ± 0.154 0.193 ± 0.204 0.0699 ± 0.0874 0.132 ± 0.142

Pẏ 0.171 ± 0.0861 0.350 ± 0.168 0.178 ± 0.0886 0.361 ± 0.151 0.0925 ± 0.0484 0.187 ± 0.0838

Pa 0.215 ± 0.122 0.414 ± 0.217 0.241 ± 0.143 0.438 ± 0.200 0.128 ± 0.0835 0.246 ± 0.139

odic gait during the locomotion over the rough ter-
rains. Table 7 indicates that the MD-SLIP model with
the proposed controller achieves better locomotion per-
formance over rough terrains. Moreover, as indicated
in [39], such mean–variance deviations could also be
utilized as a measure for stability performance, or sim-
ilarly for the robustness performance of the proposed
controller. Hence, from this perspective, results given
in Tables 4, 5, 6 and Table 7 are both supporting the
conclusion that the MD-SLIP model not only yields
better locomotion performance, but also has better sta-
bility robustness as compared to the other two SLIP
templates.

6 Conclusion

In this paper, we considered a modification of well-
known SLIP model, which is widely used for captur-
ing and studying the running behavior in legged robots.
Our modified model, which is called MD-SLIP, con-
tains a linear (force) and a rotational (torque) actuator.
By using partial feedback linearization technique, we
propose control laws for the proposed actuators which
are utilized in the stance phase. We show that with the
proposed control laws, theMD-SLIPdynamics become
integrable and we presented the analytical solutions to
the controlled dynamics. By utilizing these solutions,
we show that the controlled system possess stable peri-
odic gaits for a large number of initial conditions. Then,
through extensive simulations, we showed that the per-
formance of MD-SLIP model with the proposed con-
trollers is quite satisfactory and robust in rough terrains.

The following points maybe considered as the main
contributions of the paper.Wefirst introduced two actu-
ators for the SLIP model. Then by using feedback lin-
earization we proposed suitable control laws for these
actuators. The resulting controlled dynamics become
integrable, and the analytical solutions to these dynam-
ics are given. These solutions are not arbitrary but are
sufficiently similar to the actual locomotion trajectories
generated by SLIP model. Moreover, by using these
analytical solutions, at least theoretically, it is possi-
ble to obtain apex-to-apex mapping analytically. This
mapping is important in determining the periodic gaits
as well as their stability properties. We utilized this
approach for symmetric gaits which indicates that the
analytical results we obtained are sufficiently close to
the ones obtained by simulation. By using our control
parameters, it is possible to obtain asymmetrical and
stable gaits. But investigating their stability properties
analytically, although theoretically possible, is rather
difficult due to highly nonlinear nature of the resulting
expressions. For most of the cases, we resort to numer-
ical solutions. Finally, we propose a feedback deadbeat
controllerwhich utilizes the inverse of the apex-to-apex
map to determine and update the controller parameters
to regulate the locomotion on different terrain profiles.
We tested the performance of the proposed controller
on several rough terrain profiles and our simulation
results indicate that the proposed control law is quite
satisfactory and yields a robust periodic gait behavior
on rough terrains.

The results presented in this paper couldbe improved
in various directions. Different control laws for linear
and rotational actuators which yield integrable stance
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dynamics could be developed and the performances of
such control laws could be analyzed. The proposed con-
trol law could be utilized for motion planning due to
its computational advantages (as a result of its analytic
nature) as well as additional actuator in the proposed
model supports adjusting leg placement for optimiz-
ing stability and energy efficiency for different terrains
[25]. Finally, different feedback controllers could be
pursued to regulate the running gaits on different ter-
rains.
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