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We consider the discretization of Darboux integrable equations. For each of the integrals of a Laine equation
we constructed either a semi-discrete equation which has that integral as an n-integral, or we proved that such
an equation does not exist. It is also shown that all constructed semi-discrete equations are Darboux integrable.
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1. Introduction

When considering hyperbolic type equations

uxy:g(xa)’Maumuy) (11)

one finds an important special subclass, so called Darboux integrable equations, that is described
in terms of x- and y-integrals. Recall that a function W (x,y, u, uy, yy, ...) is called a y—integral of
equation (1.1) if DyW (x,y,u,uy,...)|(1.1) = 0, where Dy represents the total derivative with respect
to y (see [2] and [8]). An x-integral W = W (x,y,u,uy, uyy,...) for equation (1.1) is defined in a
similar way. Equation (1.1) is said to be Darboux integrable if it admits a nontrivial x-integral and a
nontrivial y—integral.

The classification problem for Darboux integrable equations was considered by Goursat, Zhiber
and Sokolov (see [2] and [8]). In his paper Goursat obtained a supposedly complete list of Dar-
boux integrable equations of the form (1.1). A detailed discussion of the subject and corresponding
references can be found in the survey [9].

Later Laine [7] published two Darboux integrable hyperbolic equations, which were absent in
Goursat’s list. The first equation found by Laine is

Uy + Uy u
uxy:ux<\/7 S y). (1.2)

u—y u—x
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It has a second order y-integral

1 1 3 1
Wl—”""—ux< + )+ (1.3)
Uy 2 Uu—y u—x u—x
and a third order x-integral
2 : 3o\
- uy, 1+ Suy + 4u, uy +2uy +u;
W= [y — 2 gy Z R T T
2uy u—y u—y
S a0 S 43 A
2uy +2uy —6u; — 10uy —4u uy+2u5 +u
B y ¥ y y y yy —2 ) y ' . (1.4
(u—y)? u—y
The second equation found by Laine is
Uy + Uy Uy
ey =2 (u+X)> 4y + (u+X u+X2—|—u> Vit Y ) (1.5)
o= 2 (0 )l ) (St
It has a second order y-integral
L u+X . (u+X)?+2u,
2uy (u+X)>+ uy (u+X)2+ uy
_(u—{—X)2+ux+(u+X) (u+X)2+ u, (L6)
u—y )

and a third order x-integral (1.4). For the second equation Laine assumed X to be an arbitrary
function of x. However Kaptsov (see [6]) has shown that X must be a constant function if equation
(1.5) admits the integrals (1.6) and (1.4). Thus it can be assumed, without loss of generality, that
X =0.

One can also consider a semi-discrete analogue of Darboux integrable equations (see [1]). The
notion of Darboux integrability for semi-discrete equations was developed by Habibullin (see [3]).
For a function ¢ = #(n,x) of the continuous variable x and discrete variable n we introduce notations

dm
tr =t(n+k,x), ke, U] = Wt(n,x), m e N.
Then a hyperbolic type semi-discrete equation can be written as
f]x:f(x,l’l,t,t],tx). (17)
A function F of variables x, n, and 7,11, . .., is called an x-integral of equation (1.7) if D,F | 17 =0.
A function I of variables x, n, t,1}),.. ., 1], is called an n-integral of equation (1.7) if DI |(1.7) =1,

where D is a shift operator. Equation (1.7) is said to be Darboux integrable if it admits a nontrivial n-
integral and a nontrivial x-integral. In what follows we consider the equalities D,.F' = 0 and DI =1,
which define x- and n-integrals F' and I, only on solutions of the corresponding equations. For more
information on semi-discrete Darboux integrable equations see [3], [4] and [5].

The interest in the continuous and discrete Darboux integrable models is stimulated by expo-
nential type systems. Such systems are connected with semi-simple and affine Lie algebras which
have applications in Liouville and conformal field theories.
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The discretization of equations from Goursat’s list was considered by Habibullin and Zhel-
tukhina in [5]. In the present paper we find semi-discrete versions of Laine equations (1.2) and
(1.5). In particular we find semi-discrete equations that admit functions (1.3) or (1.6) as n-integrals,
and show that these equations are Darboux integrable. This is the main result of our paper given in

Theorem 1.1 and Theorem 1.2 below.

Theorem 1.1. The semi-discrete chain (1.7), which admits a minimal order n-integral

pote L1 3
T 2 \i—em) Ti=x) Ti=x’

where €(n) is an arbitrary function of n, is

(t1 —x)

mB(n,t,tl) ,

Ny =1y

where B is a function of n, t, t|, satisfying the following equation
(t1 —€)(t1— &) —2(t—€)(t; —&)B+(t—€)(t —&)B*=0.
Moreover, chain (1.9) admits an x-integral of minimal order 3.

Theorem 1.2. The semi-discrete chain (1.7), which admits a minimal order n-integral

R N N N Y e
N t—€(n) ’

t
b ol

t
— S
2tx< \/tz—l—tx)

where €(n) is an arbitrary function of n, is

14

e =2A(1A — 1))/ 12+ 1, + A1, + 2A(tA —11),
where A is a function of n, t, t1, satisfying the following system of equations

A —2t1(t1 — &1)A+ (—€ +2t)(t; — £1)A? — g (t — 2¢)A3
T 2(1—&)(t—¢€)(t; —tA) ’

et — &)+ (t—&)(2t; —&)A —2t(t — 2¢)A?
2(t1— &) (t—€)(t) —tA)

Atl —

Moreover, chain (1.12) admits an x-integral of minimal order 2.

(1.8)

(1.9

(1.10)

(1.11)

(1.12)

(1.13)

The paper is organized as follows. In Sections 2 and 3 we give proofs of Theorems 1.1 and 1.2
respectively. In Section 4 we show that function (1.4) can not be a minimal order n-integral for any

equation (1.7).
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2. Proof of Theorem 1.1

Discretization by n-integral: Let us find f(x,n,t,t;,t,) such that DI} = I, where I; is defined by
(1.8). Equality DI} = I; implies

fx+ﬁtx+fz1f+fzxtxx_f< 1 3 >+ 1

+
Hh—8& H—x

f 2 Hh—x
| 1 3 1
- 2.1
ty 2<t—£+t—x>+t—x’( )
where € = €(n) and gy = g(n+1).
Ju

1
= which implies that f =

X

By comparing the coefficients before ¢, in (2.1), we get

A(x,n,t,t1)t,. We substitute this expression for f in (2.1) and get

Ax+A,tx+A,1Atx_Atx( 1 . 3 >+ 1

A 2 n—€&€ H—x HhH—x

ty 1 3 1
=—= .22
2<t—8+t—x>+t—x 22

The above equation is equivalent to a system of two equations

Ay 1 1

A H—x ft—x’

g ALy
A 2\y—¢g tH-x) 2 \t—e t—-x)°

The first equation of system (2.3) can be written as %(ln |A| —In|t; — x|+ In|r — x|) = 0 which
implies that

(2.3)

Hh—x

A(x,n,t,ty) = B(n,t,1) 2.4)

for some function B of variables n, ¢, #;. Substituting expression (2.4) for A into the second equation
of system (2.3), we get

_L+§+ B +Bt1(t1—x)_B(t1—x)< 1 N 3 >:_1(1+3x>_ 2.5)

t—x B t—x t—x 2(0—x) \th—¢& tH—x 2\t—¢ t
Thus
B, B H—x 1 t—x
t—X)— + (1 —x)B, — = ( 1 =——(1+—=). 2.6
( x)B+(1 x) h 2< +t1—81> 2< +t—8> (2.6)

We compare the coefficients before x and x° in (2.6) and obtain

B, B, & B _ 1
B "2 —g) 20—¢)
2.7)
tB; B nB —1 t
Ay Y L
B +hBy 2 2(I1 —81) 2 2(1‘—8) ’
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which is equivalent to

B — B(e —2t+t —eB+1B)
T 2u—-8)t—-n)

(2.8)
&+ +€&B+tB—21B

e 2(l1—81)(l—11)

The last system is compatible, that is By, = B;,;, if and only if equality (1.10) is satisfied.

B,

Existence of an x-integral: Let us show that equation (1.9) where function B satisfies (1.10) has a
finite dimensional x-ring. We have,

15} 13

—*BBit,, and 1, = >—2BBBot,, (2.9)
X X

where B = B(n,t,t1), Bj = B(n+ 1,t1,t;) and B, = B(n+ 2,t,,13). We are looking for a function
F(x,n,t,t1,tp,t3) such that D.F = 0, that is

Fx+Etx+E|t1x+E2t2x+E3t3x:0- (210)
Thus
Hh—x hh—Xx 3 —Xx
F+Fi+F, ;_7th)€+1«;2;_7)€331&+1§3 :_x BB, Bt, =0, (2.11)

which is equivalent to

F=0, (2.12)
(l —x)F, + (l‘] —X)BF}l + (lz —x)331E2 + (t3 —x)BBleF,3 =0. )

By comparing the coefficients of x” and x in the last equality we get the following system

—F, —BF,, —BB|F;, —BB1BF;, = 0. '
After diagonalization this system becomes
Fo PR, ERRSE, —o,
(2.14)
E] +Bl[(i;llz)E2 _|_Blfi2_(;—f3)1:}3 —0.
We introduce vector fields
9 , BBi(h—1) 9 BBBy(t3—11) 9
Vi=g+ szzn 1 872+ Itiz: : o
(2.15)

_ 0 | Bit=n) 9 | BiBy(t—t3) 9
Vi=ont Tt T s

and V = [V}, V]. Then, we have

2(1‘—[1)2

J J
7 V=(t—tr+B(t—t+(t—11)B))=— +Ba(ti —t3+B(ts —t+ (t —1;)B1B2)) =— .
1

atz at3
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Direct calculation show that

3e—4r+t e+t —4

ViV = 28 FN o and (v, V] = A
2(e—1)(t—n1) 2(e1—11)(t —1)
Hence vector fields Vi, V, and V form a finite-dimensional ring. By the Jacobi Theorem the system
of three equations V; (F) =0, Vo(F) =0, V(F) = 0 has a nonzero solution F (¢, ,t,,#3). The function

F(t,t,tp,3) is an x-integral of equation (1.9).

(2.16)

3. Proof of Theorem 1.2

Discretization by n-integral: Let us find a function f(x,n,z,t;,t,) such that DI, = I, where I, is
given by (1.11). The equality DI, = I, implies that

2 2
fetfitet fof +fulee [ 1 ﬁ+f+“Vﬁ+f+ﬁ+ﬁ+2f
- - 1

2f 2 f h-é g+ f

[ (1 t )_t2+tx+t\/t2+tx+t+ 12421,

2,

3.1

s t—¢ NET

where € = €(n) and € = €(n+ 1). Comparing the coefficients before . in equality (3.1), we get

fi h 1 t
f 24 f I ( \/tz-i-tx)

This can be written as

K fﬂ _ <tt+t2+l> (3.3)
o, m 4 oty V12—t
Thus
f+i+n=(u+2+1)A(x,n,t,n), (3.4)
where A is some function of variables x, n, t and #;. The last equality is equivalent to
f= (A% —2A0) V1, + 12 + A%t +1(2A% — 2A1). (3.5)
We substitute f given by (3.5) into equality (3.1), use (3.4) and equality
vg+ﬁ_h:ﬂv%;ﬂ—0
to get
: (Alzf T Aot/ 125 Agty + Aun/t H 12+ —|—A5t2) =0, (3.6)
where
A = Q1A+ 0pA; 4+ 03Ay, + g, 1<i<5 3.7
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and

A A3

2
o1 =0,ap=1,0013 =A%, 014 =

t—E& l‘1—€17

—1 +2tA N 21A% — 3tA3

001 =0,00=t— —, 0p3 = —3HA+ 3tA°, 04 =
’ A’ 3 ’ t—E& H—&

+A%—A,

oz =1,03 = l2, 033 = 2t12+5l2A2 — 6111A,

_ —ht+i(r+2e)A N —512A% +411A? —£2A
t—E& nh—&

034 +11 +2tA* — 1A,

I
Gy =1, G = 0, oy3 = 4°A% — 61,12A + 2631,

2er’A+etty  —4PA3 +4An1PA% — 1A
Oy = +
r— € Hh—8&

+21°A% —111A,

as; =1, 05y = 0, otz = 217 +41°A% — 61114,

—tit+2et  —412A3 +4141A7 —PA
Olsqg = lt +8 + :— 18 1 +t1+2tA2—t1A.
- 1 — <l

We can solve the overdetermined system of linear equations A; =0,i=1,2...5, with respect to Ay,
Ay, A;, and obtain

A, =0,

A A N A? Ag €
T or—e 21—-tA)\11—& t—¢)’

A 1 Ag; £
Atl == — - — — - — .
th—g 2t—tA)\t1—€g t—¢

By direct calculations one can check that A, = A;,;, so the above system has a solution.
Existence of an x-integral: We are looking for a function F'(z,1;,t,) such that D,F = 0 that is

(3.8)

Etx+E1tlx+E2t2x = 07 (3.9
where ¢ satisfies equation (1.7) with function f given by (3.5). We use
tie = A%(t,00)t +2A(t,11) (1A (t,11) — 1) (V1o + 12+ 1)

and

I+ =(t+2+1)A—1,
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to get
e = A% (1,1)A% (11,0t + 2(V 1+ 12 +1) (1A (1,11) — 1) A (1,1 ) A% (11, 12) +
2Vt + 12 +1)(nA(t, 1) —0)A(t,0)A(t, 1).

By substituting these expressions for ¢, and #,, into equality (3.9) and comparing the coefficients
of \/t, + 2, 1, and 10, we obtain the following system of equations

2A(1,11) (tA(t, 1) — 1) B, +2A(1,10)A(t1, 1) (tA(,1)A(t1, 1) — 1) F, =0,
F +A2(t,11)F, +A2(1,1)A%(11,12)F, =0,
2tA(t, 1) (tA(t,t1) — 1) By +2tA(8,1)A(,02) (tA (L, 1)A (1) — ) F, = 0.

To check for the existence of a solution we transform the above system to its row reduced form

A2(t,1)A(t, 1) (t, — hA(1,12))

F F, =0
! 1A(t,1) —1 CE
(3.10)
A(ty,10)(ta —tA(t,11)A(t1,12))
F =0.
nt —1A(t,1) +11 &

The corresponding vector fields

0 A%(t,1)A(t,0)(t, —t1A(t1,12)) 0

=gt 1At 1) —1) oty
v _i+A(t1,t2)(t2—tA(t,tl)A(tl,tz))i
SPTS —tA(t,t) +1 ot

commute, that is [V}, V,2] = 0, provided A satisfies system (3.8). Thus by the Jacobi theorem, system
(3.10) has a solution. To solve the system define a function E(¢,1;,t,) by

A2 1 th —tAA; 1

E=—_E=——_E E
! l‘A—Z‘17 e Al(tlAl—l‘z)7 h (tA—tl)(tlAl—t2)+t1—81

where A :A(l‘,ll) and A; :A(tl,tz).
One can check that E;, = E;; and Ey;, = Ey,,, so such a function E exists. Function E is a first
integral of the first equation of system (3.10). We write system (3.10) using new variables

f=tfi=t,hb=E(tt,n)
and obtain
F=0
L5 G.11)
P}l + 51—81 Ez = 0

Therefore one of the x-integrals is F(¢,t;,t;) = E(t,t1,12)/(t; — €(n+ 1)) where function E defined
above.
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4. Nonexistence of a chain (1.7) admitting the minimal order n-integral (1.4)

Let us find a function f(x,n,?,t,t,) such that equation (1.7) has the n-integral

oo 2 : 145 G4t 220/l —612— 1062 /1,— 4t}
I— XXX 2ty XX f—x (t—x)2
o 2,4t /1212
txx -

t—x

‘We have,

tix = f(x,n,t,1,t,),
te = fut fite + fu f + foles
e = (fer + fate + fu f + fantee) F1c(fa + futce + fi f + futer) + fitee
+f(fa, + fintx + fon [+ funte) + fo (e + fite + fio f + fruter)

+txx(fxzx + ﬁtxtx + ﬁltxf + ﬁxtxtxx) + ﬁxtxxx ‘
Equality DI = I is equivalent to J := L(DL)(DI —I) = 0, where L = v/2t,(t — x){tec(t — x) —
2t, (/% +1)?}. We have,
J= Altxxx + AZt)?x + A3t§x + A4txx + AS )

where Ay, 1 <k <5, are some functions of variables x, n, t, 1, .. In particular,

A
2(l —X)(tl —X)txf = Z(I_x)f(l + \/]7)2 _2(t1 _x)txﬁx(l +\/t;>2 - ([1 _x)(t_x)(fx+ﬁtx+ﬁ1f) ,

A2 = (t _x)z(tl _x)z{fftx - txfzf + thfftxtx}7

<r—x>A<3n—x> = (=) f A 4274 (1) fet F@ 4 (= 10) i)+ 10— 1),

1 [10(2 — ) f32 o 4 2(2 = x) (11— x) fi o+ 40— %) 22 + (x—11) for,)]
+t.f 20t —t1) fi, + (t —x)(x—1t1) (3 fi +4fu,))
=2(ty —X)[2f (2fy, — for + (t —X) fir) + £, (s + (x =) £3)]

—A4(f2 =21 i) (01 = 0)E = 2(f2 = 2 foa ) (11 = )2}
Equality A, = 0 implies that ff; —t.f? +2t.f f.., =0, thus

2o |uff 0
fuon | f [
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flx_i
VI Vi

2
Ixf; . .
Hence, . Az(x7 n,t,t1) for some function A depending on x, n, ¢, #; only. Therefore,

and hence ;t{\/f—A\/f = 0}. We have,

Vf=AVi,+B

where A = A(x,n,t,t;) and B = B(x,n,t,t;). We substitute f = At, +2AB,/f, +B? into A} = 0 and
get

3/2
112 + ot + ot + o /iy + o5 = 0.

We solve the system of equations o =0, 1 < k <5, and obtain B = 0, that is

( B 3 2(ti —x)B+A{2(t —t1) +6(t —x)B+3(t —x)B*}
A= —B;,— -ABB
£ gl AP 2(t—x)(x—1) ’
A Ap +A3B +A{2(t1fx)A+2(x7t1)Bf(tfx)A2(2+B)}
t = A~pPrT 550 — — y
2B 2B 2(t—x)(x—11)B @.1)
A = —LB A 2(x—11)+ (t —x)A(2+3B)
" 24B" 2B 2(t —x)(x—1,)B
B(1+B)?
B,= —BB, — 22
We substitute f = A%, +2AB,/f; + B into A3 = 0 and get
Bt} + Bor* + Bar? + Batd + Bt + Po/x + B7 = 0.
We solve the system of equations y =0, 1 < k <7, and obtain B =0, or
3B 23 21(t; —x)B+A{16(t —t;) +51(t —x)B+23(t — x)B*}
A= —B;— —ABB
© T ga T gt 24(1 —x)(x—11) ’
A A +3A3B +A{7(t1—x)A+8(x—t1)B—(t—x)A2(7+3B)}
t— 5Pt T 55 Pn _ — )
8B 8B 8(t—x)(x—11)B 42)
4o 3 3A Tr—n)+(—xA(T+11B)
"7 8AB' 8B 8(t—x)(x—1,)B ’
B(1+B)?
B, = —B’B, — 220
We equate expressions for A, and A; from (4.1) and (4.2) and find
B — _A{2(ti —x)B+A((t—t) + (1 —x)B)}
! 2(t—x)(x—1)B ’
4.3)
B — t—t1+3(t —x)B+2(t —x)B?
n -

2(t—x)(x—t—1)B
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Then, it follows from (4.1) that

A= (t1 —x+(t—x)A)B
2t —x)(x—1)
A A((t; —x)A+ (x—1)A’> +2(x—11)B)
t — )
2(t — —1)B
A X0 + (t—x)A(1+2B)
" 2(t—x)(x—n)B
B. — B(t+t) —2x+(t—x)B)
X = T 20— (1)
) 1 —x)*— (t —x)%A3
Equality A;;, — A = 0 becomes ( 1(t —))c)z(tf —x))ZB =0, thus
1 —x)2
Ad = ( . 4.5
2 2 2
) —(t1—x)*+(t—x)’A(1+B
Equality Ay, —A;,x = 0 becomes (1 (t)— x)g o —)x) 2; ) =0, thus
1 —x)2
A(1+B) = . 4.6
(1+8) = =5 (4.6)
. t1 —x)%(A—B)*—(t —x)%A3 .
Equality A,; — A;x = 0 becomes (o ()t (—x)2 (l)l —x()ZB ) = 0. It implies that
A3 _\2
_ (=% 4.7)

(A=B)?  (1—x)?

or A = B, that leads to A = B =0 and f = 0. It follows from (4.5) and (4.7) that A—B =1 or
A — B = —1. It follows from (4.5) and (4.6) that 1 + B =A or 1 + B = —A. This gives rise to four

possibilities:

HDA—-B=1;

2)A—B=1and A+ B = —1 which gives A = 0, B = —1 and therefore f = 1;
3) A—B = —1and A — B =1 which is an inconsistent system;

4)A—B = —1and A+ B = —1 which gives A = —1, B =0 and therefore f =1,.
We have to study case 1) only. In this case we get B=A — | and equation +/f1, = A\/f, + B
becomes +/f1, + 1 = A(y/fx + 1), that can be written as well as

(Vi + 1) = A (Vi +1)°. (4.8)

Due to (4.5), our equation (4.8) becomes

(Wit _ (a+1)

(n—x)*  (1—x)?
o+ 1)3
The last equation admits an n-integral I = (\(/t;+)2) of order one.
—Xx
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Let us consider case B = 0. We write DI — I = 0 for the chain 71, = C(x,n,1,1;)t, and get

Aty + AZt,\%x + A3t +A4=0

where Ay = Ag(x,n,t,11,t,), 1 <k <4.Equation A; = 0 implies

Oty + 0o/t +03=0

where o = o (x,n,t,11), 1 <k < 3. In particular, oty = 4C(—(t; —x) + (t — x)+/C). Since ap = 0,
we have C = (t; — x)?(¢ — x) 2. The chain becomes 1, = (t; — x)?(t — x) ~2t,. It admits the n-integral
I = (t —x)~2t, of order one.

Therefore, if equation (1.7) admits n-integral (1.4) then (1.4) is not a minimal order integral.
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