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Abstract— Autonomous driving has been the subject of incre-
ased interest in recent years both in industry and in academia.
Serious efforts are being pursued to address legal, technical, and
logistical problems and make autonomous cars a viable option for
everyday transportation. One significant challenge is the time and
effort required for the verification and validation of the decision
and control algorithms employed in these vehicles to ensure a
safe and comfortable driving experience. Hundreds of thousands
of miles of driving tests are required to achieve a well calibrated
control system that is capable of operating an autonomous vehicle
in an uncertain traffic environment where interactions among
multiple drivers and vehicles occur simultaneously. Traffic simu-
lators where these interactions can be modeled and represented
with reasonable fidelity can help to decrease the time and effort
necessary for the development of the autonomous driving control
algorithms by providing a venue where acceptable initial control
calibrations can be achieved quickly and safely before actual road
tests. In this paper, we present a game theoretic traffic model that
can be used to: 1) test and compare various autonomous vehicle
decision and control systems and 2) calibrate the parameters
of an existing control system. We demonstrate two example
case studies, where, in the first case, we test and quantitatively
compare two autonomous vehicle control systems in terms of their
safety and performance, and, in the second case, we optimize the
parameters of an autonomous vehicle control system, utilizing
the proposed traffic model and simulation environment.

Index Terms— Autonomous vehicles, game theory, rein-
forcement learning (RL), traffic modeling, verification and
validation (V&V).

I. INTRODUCTION

ONE of the most significant challenges that must be
addressed before autonomous cars can be deployed in

mass production is the verification and validation of their
control systems in terms of safety and performance [1], [2].
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Fig. 1. Control hierarchy of a car.

It has been estimated that autonomous vehicles need to be
driven 275 million miles without fatality to assure the same
rate of reliability as existing human-driven cars [3]. Hence,
testing and calibration of decision and control systems of
autonomous vehicles in simulation becomes necessary to com-
plement the on-the-road tests, and the formal method-based
and reachability analysis-based procedures (see [4]–[7]).

One common approach to the design of control systems for
autonomous vehicles is to utilize a hierarchical control struc-
ture (see Fig. 1), wherein a higher level outer-loop controller
generates reference trajectories for the lower level inner-loop
controller, which, in turn, determines the steering angle and
acceleration/deceleration inputs required to track the reference
trajectory [8].

Designing these control systems is a challenging task as
they need to provide a safe ride together with acceptable
performance and comfort in an uncertain traffic environment.
Uncertainties generally emanate from uncertain behaviors of
other drivers, pedestrians, unexpected obstacles, and chang-
ing road and weather conditions. Several control approaches
have been proposed for autonomous vehicles, including deci-
sion trees [9], [10], partially observable Markov decision
processes (POMDPs) [11], and methods based on multipolicy
decision-making [12], that are mainly employed as outer-loop
controllers. For the inner loop, one of the most common
approaches is based on model predictive control [13], [14].

Note that advanced driver behavioral models may also be
used in the outer loop [15], [16], with the motivation that an
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autonomous vehicle should be able to drive at least as well
as a human driver. In fact, some experts have suggested that
autonomous vehicles should be permitted on public roads only
after it is proven that they are superior to human drivers [2].

Simulators can facilitate the development and testing of
autonomous vehicle control algorithms, complementing the
road tests. Because autonomous vehicles will be interacting
with human-driven vehicles in traffic, high-fidelity simulators
need to reflect driver and vehicle interactions. Several methods
have been proposed in the literature to address this problem.
In [17] and [18], a hidden Markov model-based driver model is
proposed based on real driving data. In [19] and [20], k-means
clustering is used to determine the driving mode and define an
approach to predicting and overbounding future vehicle trajec-
tories. It is shown that the performance of an assisted driving
algorithm can be improved through the prediction of driver
inputs. In [21], a “cognitive architecture” approach, which is
“a computational framework that incorporates built-in, well-
tested parameters and constraints on cognitive and perceptual-
motor processes,” is utilized for driver modeling. Built-in
logical rules (if-then-else) are used to represent the human
decision-making process. In [22], lane change behavior of
drivers is modeled using a multiagent simulation system called
“simulation of intelligent transport systems.” Several logical
algorithms are used to model the decision-making during lane
changes. The resulting actions of the drivers are, therefore,
predefined with strict rules even though driver aggressiveness
can be incorporated into the model by tuning certain parame-
ters. In [23], the interactions between autonomous and human-
driven vehicles are studied. It is shown by some experimental
results that autonomous cars’ actions also have effects on what
human drivers do. This result further suggests the necessity to
reflect the driver-to-driver and vehicle-to-vehicle interactions
in a high-fidelity simulator.

With respect to the existing approaches, this paper is dis-
tinguished by the advanced modeling of driver and vehicle
interactions in traffic using a specific game theoretic formula-
tion that is scalable to multiple vehicles. The proposed method
has the following advantages: 1) actions of drivers and vehicles
are determined by utilizing a decision-making process, instead
of assuming that these actions are prescribed in advance as
functions of time or as functions of the state of the system;
2) interactions among multiple human-driven vehicles and
autonomous vehicles can be modeled simultaneously and in
a computationally tractable way; and 3) all the vehicles in
medium-scale traffic scenarios are simultaneously modeled as
decision makers as opposed to predicting the decisions of one
vehicle while assuming that the rest of the vehicles move based
on certain kinematic and dynamic constraints.

In [23], the authors formulate a model that can also
reflect the interactions between a human-driven car and an
autonomous car, in which both the human-driven car and the
autonomous car are modeled as intelligent decision makers.
It appears that our work and [23] focus on different aspects
and use different approaches. For instance, [23] investigates
the interactions between two agents—one human-driven car
and one autonomous car—while our work focuses on the
interactions among multiple vehicles in traffic in medium-

scale scenarios. Furthermore, a simplifying assumption was
made in [23] to facilitate solving the formulated two-player
game; specifically, the human-driven vehicle model assumes
knowledge of the autonomous car control over a short time
horizon to compute the best response. In our work, unlike [23],
each agent makes decisions separately and simultaneously at
each time step, and will not know the decisions of others until
their decisions/actions are taken. Finally, the application of a
hierarchical reasoning-based game theory is pursued in this
paper but not in [23].

Our approach uniquely combines a specific game theoretic
formalism—hierarchical reasoning game theory (also referred
to as “level-k” game theory)—that is used to model intelligent
agent interactions, and reinforcement learning (RL), which is
used to evolve these interactions in a time-extended (multi-
move) scenario. The core ideas are synergistic with the frame-
work of “semi network-form games,” [24], [25] and help us
to obtain the probable outcomes of a complex traffic scenario
driven by multiple interactions. To the authors’ knowledge,
such an approach has not been previously exploited for auto-
motive traffic modeling.

Other game theoretic approaches, in particular, based on
Stackelberg games, have been studied for application to vehi-
cle highway driving problems in [15] and [16]. Although these
approaches represent driver interactions in traffic using a game
theoretic setting, they do not consider dynamic (multimove)
scenarios. The latter are considered in [26] for hybrid electric
vehicle energy management where the driver and the power-
train are considered to be two players in a game. However,
increasing the number of players (drivers, in our case) beyond
three complicates computing a Stackelberg solution, especially
in a time-extended (multimove) scenario. On the other hand,
the hierarchical reasoning-based game theoretic approach
exploited in this paper is easily scalable. Indeed, an implemen-
tation of the proposed framework for modeling human pilot-
to-unmanned aerial vehicle interactions with 50 players and
with 180 players can be found in [27] and [28], and scenarios
with up to 30 road vehicles are handled in this paper.

The proposed game theoretic model in this paper makes it
possible to conduct a quantitative analysis of the traffic. For
example, 1) the increase in the number of incidents based
on the traffic density can be assessed; 2) various autonomous
vehicle control algorithms can be tested and compared quan-
titatively in a multivehicle time-extended scenario based on
certain safety and performance metrics; 3) the effect of a
certain parameter value in an autonomous vehicle control
algorithm on the safety of the vehicle, e.g., quantified by the
number of incidents, can be determined; and 4) optimization of
parameter values based on a cost function that reflects safety
and performance can be evaluated.

To summarize, the contributions of this paper are as
follows.

1) We develop a novel and scalable-to-multiple-vehicles
traffic model and simulation environment based on a
specific game theoretic modeling framework.

2) Our approach allows the representation of driver inter-
actions for many-move, many-vehicle traffic scenar-
ios using a computationally tractable game theoretic
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Fig. 2. Example scenario: Traffic in a 3-lane highway.

approach, whereas many existing methods consider only
one-move interaction between two vehicles.

3) We demonstrate that autonomous vehicle control algo-
rithms can be quantitatively evaluated in our simulator
and compared based on safety and performance metrics
applied to simulation outcomes; two policies proposed
in the literature serve as case studies, while other
autonomous driving algorithms could also be easily
integrated and tested.

4) We provide a case study to demonstrate that probabilistic
simulation outcomes of traffic scenarios can be utilized
to obtain the optimal calibration for an autonomous
vehicle controller.

Preliminary results have appeared in [29] and [30]. Differ-
ently from [29] and [30], in this paper, 1) we incorporate a
more realistic action space including harder brakes and faster
accelerations; 2) we develop a more realistic traffic model
with more representative distance constraint violation rates via
improvements in the RL procedure; and 3) we demonstrate that
optimal parameter values for an autonomous vehicle control
algorithm can be obtained using a cost function based on
safety and performance. Furthermore, this paper has additional
details and interpretations that are not found in our preliminary
conference papers.

This paper is organized as follows. In Section II, we define
the problem being treated in this paper and the vehicle model
being used. In Section III, we present level-k game theory
and the RL approach to obtain the policies. In Section IV,
we introduce two autonomous vehicle control algorithms that
will be tested by our simulator. In Section V, we describe our
simulator and its implementation results. We then summarize
the key developments in this paper in Section VI.

II. PROBLEM DEFINITION

The problem we treat is to model the interactive behavior
of drivers in a traffic scenario where the cars are driven on a
multilane highway. We later demonstrate that such models can
be used in simulators to evaluate autonomous vehicle control
policies. Fig. 2 shows an example scenario with three lanes
and six cars. Note that this is not a restriction of the proposed
method and that scenarios with more cars and lanes can be
handled. Simulated cars are assumed to be traveling in the
same direction and to be driven by human drivers who obey
the general traffic laws.

A. Physical Models

We use the following discrete-time equations of
motion (EOM) to model each vehicle during forward motion

and lane changes

x(t + 1) = x(t) + vx (t)�t

vx (t + 1) = vx (t) + a(t)�t

y(t + 1) = y(t) + vy(t)�t (1)

where x and y are the vehicle longitudinal and lateral
positions, respectively, vx and vy are the vehicle longitu-
dinal and lateral velocities, respectively, a is the vehicle
longitudinal acceleration, and �t is the time step size. The
longitudinal acceleration a(t) and the lateral velocity vy(t)
are the two control inputs determined by the driver’s action
decisions. We assume that all cars accelerate and decel-
erate at either ±a1[m/s2] or ±a2[m/s2]. The nominal val-
ues, ±a1[m/s2], reflect the acceleration/deceleration a human
driver would apply in normal situations, while the hard
accelerations/decelerations of ±a2[m/s2] reflect the values
used in urgent situations based on the maximum accelera-
tion/deceleration capability of a vehicle. We also assume that
lane changes occur with constant lateral velocity such that
the total time to change lanes is tcl [s]. During lane changes,
the longitudinal velocity remains constant, and once a lane
change begins, it always continues to completion.

The method proposed in this paper can naturally be applied
to more complicated models, which may include higher fidelity
representations for vehicle dynamics, or incorporate more
acceleration/deceleration levels. Although employing a sim-
plified or a more complicated model affects the computational
cost, we remark that the computational efficiency of the
proposed approach does not originate from some simplifying
assumptions on the dynamics, but mainly comes from the
hierarchical reasoning game theoretic framework exploited
in this paper (see Section III). Within this setting, contin-
uous observation/action spaces can also be handled by an
implementation of continuous RL and without an increase
in the computational load if appropriate function approxima-
tion techniques are applied. Utilizing continuous RL is not
pursued in this paper because it has its own issues such as
lack of convergence guarantees in certain applications. Its
investigation is left to our future work. We note that although
the method proposed in this paper can be implemented with
more complicated models, the model we use represents a rea-
sonable approximation. For instance, we consider two levels
for acceleration/deceleration—one for comfort driving and the
other for safety—based on [31] and [32]. Further explanations
about the use of discrete observation/action spaces are pro-
vided in the following sections.

B. Observation Space

In real traffic flow, a driver can neither observe nor process
all the information about all cars on the road. A human
can possibly observe and use the information he/she obtains
from the cars in a certain vicinity of their own. In particular,
a human driver can hardly measure his/her exact distances
from other cars. He/she can only estimate the distances and
specify them as “close,” “far,” and so on. The same applies to
the relative velocities of other cars. Therefore, we assign the
following observation space for the drivers:
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1) the longitudinal distance from the ego car to the car
directly in front, called range, quantified as “close”
(distance ≤ dc[m]), “nominal” (dc[m] < distance ≤
d f [m]) or “far” (distance > d f [m]);

2) the range to the car in front and in the left lane,
quantified as “close,” “nominal,” or “far”;

3) the range to the car in front and in the right lane,
quantified as “close,” “nominal,” or “far”;

4) the range to the car in the rear and in the left lane,
quantified as “close”, “nominal,” or “far”;

5) the range to the car in the rear and in the right lane,
quantified as “close,” “nominal,” or “far”;

6) the range rate (the time rate of change of the range) to
the car in front, quantified as “approaching” (distance
decreasing), “stable” (distance not changing), or “mov-
ing away” (distance increasing);

7) the range rate to the car in the front left, quantified as
“approaching,” “stable,” or “moving away”;

8) the range rate to the car in the front right, quantified as
“approaching,” “stable,” or “moving away”;

9) the range rate to the car in the rear left, quantified as
“approaching,” “stable,” or “moving away”;

10) the range rate to the car in the rear right, quantified as
“approaching,” “stable,” or “moving away”;

11) the lane index of the ego car, quantified as “lane 1,”
“lane 2,” or “lane 3.”

Note that this discrete representation of the observation space
is based on the “logic-based” human-driver models (see [33]),
and it reflects the uncertainty (or noise) present in real-life
driver observations. Further discussions on the employment
of a discrete observation space can be found in [31] and [32].

Larger observation spaces and finer meshes can be treated
in a similar way. In particular, we do not consider the
vehicle directly in the back because, in general, it plays a
less important role in decision-making when drivers drive on
the highway—human drivers usually assume the car directly
behind them behaves rationally, that is, it will not rear-end
them intentionally. This assumption appears to be adopted by
almost all car-following models in the literature (see [33]).

C. Action Space

Drivers are modeled to have seven basic actions:
1) “Maintain” current lane and speed.
2) “Accelerate” at rate = a1[m/s2], provided velocity does

not exceed vmax[km/h].
3) “Decelerate” at rate = −a1[m/s2], provided velocity is

above vmin[km/h].
4) “Hard accelerate” at rate = a2[m/s2], provided velocity

does not exceed vmax[km/h].
5) “Hard decelerate” at rate = −a2[m/s2], provided veloc-

ity is above vmin[km/h].
6) Change lane to the left, provided there is a lane on the

left.
7) Change lane to the right, provided there is a lane on the

right.
This discrete representation of the drivers’ action space
is based on the “action point” models (see [34], [35]).

These seven actions represent a reasonable approximation
to the set of human drivers’ action decisions in highway
traffic [31], [32], although a larger action space can be
incorporated without changing the proposed algorithm.

D. Reward Function
A “reward function” is a mathematical representation of the

goals of a driver. Basic goals of the drivers in real traffic
are: 1) not to have an accident, such as a car crash (safety);
2) to minimize the time needed to reach the destination (per-
formance); 3) to keep a reasonable headway from preced-
ing cars (safety and comfort); and 4) to minimize driving
effort (comfort).

These goals can be reflected in the reward function that is
given as

R = w1c + w2v + w3h + w4e (2)

where wi , i = 1, 2, 3, 4, is the weight for each term and c, v, h,
and e represent “constraint violation,” “velocity,” “headway,”
and “effort” metrics. In particular, we define a safe zone for
each car (a rectangular area that overbounds the geometric
contour of the car with a safety margin) whose boundaries are
treated as distance constraints to represent the safety of the
car.

The weighting terms, wi , may change depending on the
aggressiveness of the driver, but, intuitively, to avoid distance
constraint violation should be of most importance, hence

w1 � w2, w3, w4. (3)

The terms, c, v, h, e, are explained as follows.
Constraint Violation (c): The term c is assigned a value

of −1 when a distance constraint violation occurs and a value
of 0 otherwise.

Velocity (v): The term v is assigned the value

v = vx − vnominal

a1
, vnominal = vmin + vmax

2
. (4)

Here the reason for dividing by a1 is to make this term of the
same order of magnitude as the other terms, to facilitate the
choice of weights.

Headway (h): The term h takes the following values depend-
ing on the headway distance (the range to the car directly in
front):

h =

⎧
⎪⎨

⎪⎩

−1 if headway ∈ “close,”

0 if headway ∈ “nominal,”

1 if headway ∈ “far.”

(5)

Effort (e): The term e takes the value 0 if the driver’s
action is “maintain,” e2 = −5 if the driver’s action is “hard
accelerate” or “hard decelerate,” and e1 = −1 otherwise.
This term discourages the driver from making unnecessary
maneuvers. In particular, a higher penalty discourages the
driver from unnecessarily applying “hard accelerate” or “hard
decelerate.” But in the case where another maneuver cannot
avoid a constraint violation, the driver would apply “hard
accelerate” or “hard decelerate” to keep safe. Note that the
ratio between e1 and e2 depends on the driver’s behavior
and could be tuned to match the driving behavior of different
human drivers.
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E. Constraints

The reward function (2) already reflects the penalty for dis-
tance constraint violations, which may be viewed as imposing
soft constraints on the control. For some combinations of states
and actions that obviously lead to constraint violations, we can
also impose hard constraints to avoid the occurrence of such
combinations. In particular, we introduce the following hard
constraints, which make certain actions unavailable in certain
situations.

1) If a car in the left lane is in a parallel position, the ego
car cannot change lane to the left.

2) If a car in the right lane is in a parallel position, the ego
car cannot change lane to the right.

3) If a car in the left lane is “close” and “approaching,” the
ego car cannot change lane to the left.

4) If a car in the right lane is “close” and “approaching,”
the ego car cannot change lane to the right.

Note that two cars are assumed to be in a parallel position if
the safe zones of these two cars intersect in the longitudinal
direction. The use of these hard constraints eliminates the
clearly undesirable behaviors better than through penalizing
them in the reward function, and also increases the learning
speed during training.

III. DRIVER INTERACTION MODEL

The driver interaction model developed in this paper enables
the modeling of driver-to-driver and driver-to-autonomous
vehicle interactions through the use of hierarchical reasoning
decision-making and RL. The model is a “policy,” which is
a stochastic map from the observation space of the driver
to his/her action space (see Section II). In other words, this
map assigns a probability distribution over possible actions for
every observation. In the following sections, we explain how
this model is generated.

A. Hierarchical Reasoning Decision-Making

The developed interaction model is premised on the idea
that intelligent agents (such as drivers) have different levels
of reasoning. A level-0 agent does not consider probable
actions or reactions of other agents that he/she is interacting
with but rather behaves reflexively. For example, when a driver
observes a jam in his/her lane, he/she may make a lane change,
trying to bypass the jam, without considering how the other
cars would react to this situation. This behavior is referred
to as a level-0 behavior and the driver is referred to as a
level-0 driver. On the other hand, if a driver assumes that
the other drivers are level-0—they would make lane changes
as reactions to a jam, such that a heavier jam in the adjacent
lane may be caused while the jam in the current lane may
vanish as consequences—he/she may therefore decide to stay
in the current lane. Then this driver is referred to as a level-1
driver. Similarly, if a driver assumes that the other drivers are
level-1 and takes actions accordingly, this driver is a level-2
driver. Higher level driver behavior can be modeled using
the same logic. A detailed explanation of this hierarchical
reasoning decision-making is given in [36] and [37].

Numerous experimental results from psychology, cognition,
and economics have suggested this hierarchical structure in
human reasoning (see also [38] and [39]). In [27] and [28],
hierarchical reasoning decision-making was exploited to pre-
dict pilot behavior, and reasonable predictions were observed.
In this paper, we employ this formalism to model driver
interactions in traffic, and will show some validations of the
developed driver models in Section V.

To obtain higher level policies, one needs to start by defining
a level-0 policy. There are various ways to do this, such as
selecting each possible action with equal probability regardless
of the observation or constructing a very simple policy, which
provides a minimally reasonable behavior for a range of
observations.

In this paper, a level-0 policy is formulated as follows:

actionl0 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

“Decelerate,” if the car in front is “nomi-

-nal” and “approaching,”

or is “close” and “stable,”

“Hard decelerate,” if the car in front is “close”

and “approaching,”

“Maintain,” otherwise.

(6)

We remark that a driver using this level-0 policy only monitors
the motion of the car directly in front without considering
the cars in adjacent lanes. If there is a car performing a lane
change to the level-0 driver’s lane, it becomes a new “front
car” once it enters the lane.

B. Reinforcement Learning to Solve the Partially
Observable Markov Decision Process

The problem treated in this paper is a multiagent decision-
making problem. We use an RL algorithm to determine the
policies for each agent based on the reward function defined
in Section II-D. To achieve the maximum reward, the RL algo-
rithm exploits two steps including: 1) “policy evaluation,”
where the state-action pairs are assigned values based on the
cumulative rewards they gain and 2) “policy improvement,”
where the probability of choosing the actions that have higher
reward values are increased. For more details on RL see [40].

Conventional RL algorithms require the process to be
Markov for convergence guarantees. Note that although the
underlying dynamics of the highway problem studied in this
paper is Markov, each agent (driver) can observe only a
subspace of the whole state space (see Section II-B) and,
therefore, has to solve a POMDP problem. In the RL literature,
the observations are commonly referred to as “messages.”
In this paper, we employ the Jaakkola RL algorithm [41],
which distinguishes itself from conventional approaches by
guaranteeing to converge at least to a local maximum in terms
of average rewards, when the problem is of POMDP type.
Below, the Jaakkola RL algorithm is summarized. See [41]
for further details.

The following steps are followed to obtain the driver policies
using the Jaakkola RL algorithm:

Step 1: Evaluate the value function for the mes-
sages V (m|π t ) and Q-values for the message-action pairs
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Q(m, a|π t ) associated with the driver policy π t at step t , using
the following equations:

β t
m(m) =

(

1 − χ t
m(m)

K t
m(m)

)

γ (t)β t−1
m (m) + χ t

m(m)

K t
m(m)

V (m|π t ) =
(

1 − χ t
m(m)

K t
m(m)

)

V (m|π t−1)

+ β t
m(m)[Rt − R̄(π t )]

β t
a(m, a) =

(

1 − χ t
a(m, a)

K t
a(m, a)

)

γ (t)β t−1
a (m, a) + χ t

a(m, a)

K t
a(m, a)

Q(m, a|π t ) =
(

1 − χ t
a(m, a)

K t
a(m, a)

)

Q(m, a|π t−1)

+ β t
a(m, a)[Rt − R̄(π t )] (7)

where m and a designate “message” (the vector contain-
ing the 11 observation variables listed in Section II-B) and
“action” (one of the seven actions listed in Section II-C),
respectively, the superscript t refers to the time step, while the
subscript (m or a) indicates whether the function is associated
with messages or with message-action pairs. The function
χ is an indicator function, taking the value 1 if the message/
message-action pair is visited and 0 otherwise. The function K
represents the number of times a particular message/message-
action pair is visited. The positive sequence γ (t) represents a
discount factor and is converging to 1 in the limit as t → ∞.
The Rt is the one-step reward obtained at the current time
instant t , while R̄(π t ) is the average reward associated with
the policy π t , i.e., if this policy were executed for an infinite
period of time [42].

In the implementation of the above algorithm, the true
average reward R̄(π t ) is replaced with an estimate, which is
computed as an average reward over a past window, making
use of the fact that the policy is slowly varying in time.

Step 2: Update the driver policy π , which is a probabilistic
mapping from observations (messages) to actions, using the
following equation:

π t+1(a|m) = (1 − ε)π t (a|m) + επ̂ t (a|m) (8)

where 0 < ε < 1 is the learning rate and π̂ t is chosen such
that J (m|π̂ t) = max

a

(
Q(m, a|π t )− V (m|π t )

)
. For any policy

π(a|m), J (m|π) is defined as

J (m|π) =
∑

a
π(a|m)

(
Q(m, a|π) − V (m|π)

)
. (9)

Note that based on the process defined above, π̂ t should be
defined in such a way that it has probability 1 for picking
the action a that has the highest Q(m, a|π t ) value and
probability 0 for picking the other actions.

Going through steps 1 and 2 at each time t , the driver
model, or the converged policy, denoted by π∗, is obtained
once the policy converges during the iterative process.
The convergence criterion is based on the convergence of the
average reward, i.e., the absolute value of the change in the
average reward within a given number of steps being less than
a specified tolerance.

C. Role of Hierarchical Reasoning Decision-Making in
Obtaining Driver Policies

The process of obtaining driver policies is called “training,”
where the driver being trained is a learner and the other
vehicles and automation constitute the environment. During
the training process, the model of the environment is needed
to obtain state transitions as a result of driver actions, where
the hierarchical reasoning decision-making approach plays a
crucial rule: for the training of a level-k driver policy, all of the
traffic but the trained driver are assigned level-(k-1) policies.
The process starts with the determination of a level-0 policy
(see Section III-A), which represents the lowest level, where
the drivers do not consider interactions with other drivers and
do not explicitly take into account their possible actions. Once
a level-0 policy is determined, the RL algorithm is run by
assigning level-0 policies to all of the vehicles except the
one that is being trained. At the end of the training process,
a level-1 policy is obtained. Similarly, while training a level-2
policy, all of the vehicles but the trained vehicle are assigned
level-1 policies. This hierarchical assignment continues until
the desired highest level is obtained. In experimental stud-
ies [37], it is shown that in human interactions, level-3 players
are very rarely encountered and, therefore, in our results we
trained policies up to and including level-2.

We remark that the computational efficiency of the proposed
framework mainly originates from this hierarchical structure of
level-k driver policies. The framework permits the determina-
tion of each level-k policy by training a single decision maker,
while considering all the other vehicles as part of the envi-
ronment (because the policies they are using, i.e., level-(k-1),
have already been obtained). In this way, two things are simul-
taneously achieved: 1) the policies are trained in a sequential
manner (first the level-0 policy is determined, then the level-1
policy, and so on) and 2) once the level-k policies are deter-
mined, the simulations are constructed by incorporating mul-
tiple drivers using these policies. Note that in this framework
all of the drivers are decision makers and can have different
reasoning levels.

IV. AUTONOMOUS DRIVING CONTROL APPROACHES

The proposed traffic model has been employed to build
a simulator to test and evaluate the performance of
autonomous driving control algorithms. As specific examples,
two autonomous driving approaches, based on Stackelberg
policies and decision trees, will be evaluated and compared
using a simulator in which the traffic, other than the host
vehicle, consists of drivers modeled using our game theoretic
policies. In this section, the control algorithms that will be
tested are briefly explained and in the next section simulation
evaluations are provided.

The Stackelberg policies and the decision tree policies
that are compared in this paper were originally developed
in [10], [15], and [16]. Since these policies were developed
under assumptions representing a simpler traffic environ-
ment, some necessary modifications were made to let the
autonomous vehicle, which will employ these policies, be able
to operate in the traffic environment investigated in this paper.
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Fig. 3. No solution for the red car by only changing lanes.

For example, the originally proposed Stackelberg and decision
tree policies consider only lane change actions. To make
them more compatible with the test environment, acceler-
ation/deceleration actions are added to their action spaces.
Fig. 3 shows the necessity of this modification, where each
rectangle represents a car and the arrows represent both the
driving direction and velocity (the longer the arrow, the larger
the velocity). In the figure, three yellow cars are in front of
the red test car and since the speed of the test car is larger
than that of the yellow cars, there is a danger of collision that
cannot be resolved only with a lane change.

A. Stackelberg Policies
To obtain the Stackelberg policies for the host vehicle,

a path planner is used to choose the actions. At every time step,
it considers a game with three vehicles as players – the host
vehicle and two other vehicles immediately following it, while
the rest of the vehicles are considered to be the environment.
The three players are assigned roles as the “leader,” the “first
follower,” and the “second follower,” and they choose their
actions from the action space in Section II-C sequentially: the
leader chooses its action first, followed by the first follower,
and, finally, the second follower. Each player evaluates their
actions according to a utility function that consists of two
parts. The first part, referred to as the positive utility, is defined
as follows:

Upos =
{

min(d�, dv ), if there is a vehicle ahead

dv , otherwise
(10)

where d� is the distance to the car directly in front, i.e., the
headway distance, and dv is the maximum visibility distance.
The second part of the utility is referred to as the negative
utility and is defined by

Uneg = d∇ − vr T − dmin (11)

where d∇ and vr are the distance and the relative velocity of
the car immediately behind, T is a prediction time window,
and dmin is the minimum distance required to allow a lane
change; here, dmin is set to the car’s safe zone length. Thus,
overtaking vehicles are taken into consideration, and lane
changes that cut off overtaking vehicles are discouraged.

The actions chosen by the leader, the first follower, and
the second follower, denoted by γ�, γ f 1, and γ f 2, respectively,
are the Stackelberg equilibrium actions, i.e., the leader chooses
its actions to maximize its utility for the worst case situation
it may face due to the actions chosen by the two followers.
Thus, the leader chooses

γ ∗
� ∈ argmax

γ�

min
γ f 1,γ f 2

[
U ′

pos + U ′
neg

]
(12)

Fig. 4. Decision tree diagram. The black arrows show the relative velocities
of the yellow cars with respect to the red test car.

where U ′
pos and U ′

neg are the utilities that correspond to
a specific set of actions {γ�, γ f 1, γ f 2}. The two followers
maximize their own utilities with the known choice of γ�.

In this paper, when constructing the Stackelberg policies,
the host vehicle is the “leader” in the game, and the first two
cars in its rear (they can be in any lanes) are the followers.
An alternative choice in which the host vehicle is one of the
followers instead of the leader can be treated similarly. Note
that this game lives only in the host vehicle’s path planner. The
host vehicle will apply the obtained Stackelberg equilibrium
action, while the two following cars will choose actions based
on their own control policies (in our simulations, the level-
k policies), which may be different from their corresponding
Stackelberg equilibrium actions.

We remark that in [15] and [16], the considered vehicle
dynamics model was different from the one used in this paper.
Furthermore, some aspects of the modeling, such as uncertain-
ties in measuring distance, side-viewing, and response delays
that were considered in these references are omitted here to
simplify the analysis but can be easily integrated.

B. Decision Tree Policies
In the decision tree approach to autonomous driving,

the host vehicle’s actions are determined by a path planner,
which chooses an action for the host vehicle to apply at each
time step by evaluating a specified number of preselected
action profiles. The path planner builds a tree of potential
action sequences (each sequence is referred to as an “action
profile”), and evaluates each branch according to a specified
metric.

In this paper, the decision tree consists of two lay-
ers, and each layer contains the seven actions listed in
Section II-C (see Fig. 4), that is, for the evaluation of an
action profile, the host vehicle is assumed to apply two
actions sequentially, one per layer, each of which is cho-
sen from the seven actions described in Section II-C. Thus,
each action profile consists of two actions, and therefore,
72 = 49 profiles are evaluated to determine the optimal
one. The evaluation metric is based on the reward func-
tion (2), which is also used for the training of the level-k
policies. In particular, the total reward is calculated as a
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Fig. 5. Triggering threshold.

weighted sum of the rewards obtained from the two layers

Rtotal = wl1 Rl1 + wl2 Rl2 (13)

where wl1, wl2 ∈ R
+ are the weighting terms, and Rl1 and Rl2

are the reward functions for layer 1 and layer 2, which are the
same as (2). After the evaluations, the host vehicle applies the
first-layer action of the profile that has the highest total reward
among all profiles. This procedure is repeated at every step.
When evaluating the action profiles, the host vehicle assumes
that all other vehicles would apply the action “maintain” over
its prediction horizon.

In [10], it was assumed that the environment evolves
deterministically, independently of the host vehicle’s actions.
However, in our simulator, not only does the host vehicle
respond to the traffic, but the traffic also responds to the host
vehicle’s actions using the level-k policies.

C. Path Planner Triggering Threshold

Both the Stackelberg and the decision tree policies are used
as path planners and triggered only when necessary and bene-
ficial. When the policies are not triggered, the vehicle follows
a predefined driving pattern. More specifically, referring to
Fig. 5, the driving algorithm can be explained as follows:

1) “Accelerate,” if there are no other cars in region A.
2) Path planner is triggered, if there are cars in region A,

but no cars in region B.
3) “Safe mode,” which in this paper is the same as the

level-0 policy, is applied if there are cars in region B.
It is clear that if there are no cars in region A, the host

vehicle may accelerate safely, while if there are cars in
region B, the host vehicle should decelerate to keep a reason-
able headway distance. The activation logic is designed: 1) to
increase the safety and 2) to reduce the computational cost
by preventing unnecessary action evaluations. In particular,
region A is designed to cover the center of adjacent lanes,
while region B is designed to cover the boundary lines of
the current lane, so that when some vehicle in the vicinity is
changing lanes into the host vehicle’s lane, the host vehicle
becomes aware of it before the other vehicle actually enters
its lane.

Note that the geometric parameters of these regions can be
optimized. The proposed simulator can help to calibrate these

parameters and find their optimal values. In Section V, we will
present one case study of using our simulator to optimize the
parameter values of given autonomous driving policies.

V. RESULTS

A. Environment and Setup

We model the environment as follows. The width of a lane is
3.6 m, and the safe zones around the cars, which should not be
violated, are modeled as 6 m × 2 m boxes. Cars always drive
at the center of a lane unless they are changing lanes. Cars
only accelerate or decelerate at ±a1 = ±2.5 m/s2 or ±a2 =
±5 m/s2, and lane changes occur with constant lateral velocity
such that the total time to change lanes is tcl = 2 s. During
lane changes, the longitudinal velocity remains constant and
once a lane change begins, it always continues to completion.
The longitudinal axis is called x , and its origin is collocated
with the car that is to be trained or evaluated.

To configure the simulation, the following values need to
be specified:

1) the number of lanes, n�;
2) the number of cars, nc;
3) the maximum allowable initialization distance, x0

max;
4) the simulation duration, t f .

The following procedure is employed to initialize a simula-
tion. A car is assigned to a lane that is determined randomly
based on the uniform distribution. The specific location of the
car within the assigned lane is determined randomly based
on the uniform distribution in [−x0

max, x0
max]. Then, the initial

longitudinal velocity of the car is given randomly based
on the uniform distribution within the range [vmin, vmax] =
[62, 98] km/h. The initial action is set as “maintain.” The car
is then assigned a policy to follow (level-0, 1, or 2). This
process is repeated until all cars are configured. While locating
each car, it is required that the minimum initial distance
between every pair of cars in the same lane be 30 m. Once
the initialization is completed, the simulation is run according
to Algorithm 1 as given below.

Five cars are observable by the ego car, as described in
Section II-B, and a car is considered “close” if its relative
longitudinal position satisfies |xr | ≤ dc = 21 m, “nominal" if
dc < |xr | ≤ d f = 42 m, and “far” if d f < |xr | ≤ dv = 63 m,
where dv is the maximum visibility distance. Cars farther away
than dv [m] are considered to be out of visual range and
unobservable. If no car can be observed in a position, this
is considered equivalent to a car that is “far” and “moving
away.” Note that dc = 21 m is determined by considering the
minimum distance needed for a car to safely avoid a distance
constraint violation by braking with the maximum allowable
deceleration in the worst case scenario where a car in front
is approaching with maximum relative speed and entering the
“close” range.

Fig. 6 shows a snapshot of an example simulation setup with
three lanes. The rectangles represent the safe zones around the
cars, and the arrows attached to the rectangles show the relative
velocities of the cars with respect to the ego car, that is located
in the center lane at x = 0. Specific observations by the ego
car are given as follows:
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Algorithm 1 Single Episode Simulation

Fig. 6. Simulation environment.

1) front left: close, moving away;
2) front center: far, moving away;
3) front right: far, approaching;
4) rear left: nominal, approaching;
5) rear right: nominal, stable;
6) lane index: lane 2.

Note that two cars in Fig. 6 are unobservable: The car in
the front center position is beyond the visual range—so the
corresponding observed range rate status is “moving away”
even though the car is actually “stable”; and the car in the
rear right “far” position is hidden by the car in the rear
right “nominal” position. These limitations in the observation
space reflect the POMDP nature of the problem, as discussed
previously.

B. Level-0 Driver Behavior

In this section, we present simulation results to show the
driving behavior of a level-0 car. Furthermore, we present the
simulator user interface.

In Fig. 7, the red car in the center is the trainee/test vehicle,
while the yellow cars make up the traffic environment. The
red arrow in front of the red car indicates its travel direction,
and arrow length indicates how fast the car is traveling. The
panel on the left is a speedometer, and the steering wheel on
the right indicates the lateral motion of the car. The green box

Fig. 7. Level-0 simulation results. Snapshots of the simulation at (a) 40 s,
(b) 42 s, and (c) 44 s, respectively.

and red box in the middle indicate the gas pedal and the brake
pedal, respectively, and turning blue indicates that the pedal
is pressed. The coordinate axis is fixed on the test car and
the motions of the other cars can be tracked by their relative
distances to the red car. In Fig. 7(a), a yellow car directly in
front of the red car (“far”) is “approaching” because the red
car is faster. At this moment, neither the gas pedal nor the
brake pedal is pressed. In Fig. 7(b), the yellow car enters
the “nominal” range, and consistently with the level-0 policy,
the red car brakes and decreases its speed. In Fig. 7(c), the red
car gets to a lower speed, and the yellow car is now “stable.”

C. Training Process

When training a new policy, the observation value func-
tion, V , for observed message m, and the action value function,
Q, for message-action pair (m, a), are initialized as follows:

∀m, V (m) = 0

∀m, ∀a, Q(m, a) = 0. (14)

For each observation, the actions are assigned equal prob-
ability of selection at initialization, and during each policy
improvement step, if

max
a

Q(m, a) > V (m) (15)

then 0.01 is added to the probability of selecting
argmaxa Q(m, a), after which the action probabilities are nor-
malized. We remark that this procedure is one way of realizing
(8) that corresponds to using a time-varying ε. An alternative
way is to use a constant ε at each step.
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Algorithm 2 Training Process

Fig. 8. Evolution of the estimated average reward during level-1 and level-2
training.

The observation space described in Section II-B has 311 dif-
ferent observations. In order to ensure that the learning
algorithm is exposed to a large portion of the observation
space, the trainee needs to be exposed to a range of traffic
environments. Therefore, during training, the number of cars
in the environment is selected randomly, based on the uniform
distribution, where 0 ≤ nc ≤ nmax

c . The maximum number of
cars, nmax

c , is chosen based on the number of lanes and x0
max,

such that if nmax
c cars are placed in the environment, the road

is near full capacity.
Finally, after sufficient training time, the level-0 policy

is assigned to the observations (messages) that are still not
visited enough during training, so that conservative actions
are performed in such rarely encountered cases.

Training then proceeds according to Algorithm 2, as given
above:

Fig. 8 shows the evolution of the estimated average reward
during level-1 and level-2 training. As can be observed from
the figure, the algorithm does converge in both cases. The
reward function weights are chosen as: w1 = 10 000, w2 = 5,
w3 = w4 = 1. These weights can be tuned manually or cal-
ibrated using traffic data through approaches such as inverse
optimal control [43] or inverse RL [44]. This is left to the
future work.

D. Level-k Driver Interactions
We first present simulation results to show the driving

behavior of a level-1 car in a level-0 traffic environ-
ment (Fig. 9), and then of a level-2 car in a level-1 traffic
environment (Fig. 10). It is noted that in both figures, the traffic

Fig. 9. Level-1 versus level-0 simulation results. Snapshots of the simulation
at (a) 178 s, (b) 179 s, (c) 180 s, (d) 181 s, (e) 184 s, and (f) 188 s, respectively.

is moving toward the right. The test vehicle is red and the rest
of the vehicles are yellow.

In Fig. 9(a), the yellow car directly in front of the red car
is “approaching” with a large relative speed and enters the
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Fig. 10. Level-2 versus level-1 simulation results. Snapshots of the simulation
at (a) 60 s, (b) 66 s, (c) 79 s, and (d) 80 s, respectively.

“far” distance range. In Fig. 9(b), the red car decelerates and
begins to steer. In Fig. 9(c), the red car starts to move into
the lane to its left. In Fig. 9(d), the lane change is completed,
after 2 s, while another yellow car in front approaches the
red car. In Fig. 9(e), the red car decelerates until it keeps a
stable headway, which is shown in Fig. 9(f). All these actions
represent a reasonable driving behavior.

Similarly, Fig. 10 shows a simulation result of a level-2 car
in a level-1 traffic environment. In Fig. 10(a), the yellow car in
the middle lane is “approaching” the red car, while the yellow
car in the left lane is “moving away,” so the red car decides
to change lane to the left. In Fig. 10(b), the yellow car in
the middle lane starts to change lane to the left (because of
some cars in its front, which are not shown in this figure),
so the red car needs to brake. In Fig. 10(c), there is no car
directly in front of the red car, in which case a level-1 car
would accelerate. However, because the longitudinal distance
of the yellow car in the middle lane to the red car is too small
and the red car has no confidence that the yellow car will not
change lane to the left, in which case the red car’s acceleration

Fig. 11. Validation of level-1 (left column) and level-2 (right column) driver
models. The red car uses a level-k policy, and the blue box represents the
behavior of a real driver.

would lead to a distance constraint violation, so the red car
decides to maintain its current speed. In Fig. 10(d), there is a
car in the traffic moving into the red car’s lane, which forces
the red car to decelerate.

Different driving patterns of level-1 and level-2 cars,
in similar situations, reflect different levels of reasoning in
decision-making. It is noted that in Fig. 10, the cars in
the environment (yellow) also change lanes, unlike the ones
in Fig. 9, because their actions are based on the level-1 policy,
which allows lane changes.

To validate our level-k driver models, we compare the
model behavior with the human driver behavior in similar
decision-making situations using real traffic data. Specifically,
we replace one car in traffic flow data by a car controlled by
our level-k policy and compare the level-k car future trajectory
with the original car’s trajectory. The data we use is from the
Next Generation Simulation program [45], and is accessible on
the U.S. Department of Transportation’s website. In Fig. 11,
we present two examples where the level-k driver makes the
same action decision as the original human driver, although
there is a slight mismatch in the exact motion, which is most
likely due to a difference between our EOM and the actual
dynamics of that specific vehicle. In the left column, the level-
1 test car (the red car) and the original car in the data (indicated
by the blue box) both make a lane change from the right
lane to the left lane, because the front car in the right lane
is approaching fast. In the right column, the level-2 test car
and the original car in the data both make a lane change from
the middle lane to the right lane, because the front car in the
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Fig. 12. Constraint violation rates of the level-1 and level-2 policies.

Fig. 13. Constraint violation rates of the level-0, level-1, and level-2 policies
in the same mixed traffic.

middle lane is approaching, while the front car in the right
lane is moving away.

It is worth mentioning that it is in general very difficult to
come to conclusions about the validity of driver models [33].
However, reasonable maneuver behaviors are observed in our
simulations of the level-k driver models. More comprehensive
validation of the model is left to the future work.

Fig. 12 shows the constraint violation rates of the level-1
and level-2 test cars for varying numbers of cars in the
traffic. Here, “constraint violation” refers to a violation of
the safe zone of the test car by any of the vehicles in the
simulations. To obtain these rates, 10 000 simulations are run
for each case (i.e., for each value of the number of cars).
Each simulation lasts 200 s and the rates are provided as
the percentage of simulation runs during which safe zones
are violated. Note that the level-2 test car is placed in traffic
formed of level-1 vehicles, and the level-1 test car is placed in
an environment of level-0 vehicles. It is seen that the level-2
test car experiences higher violation rates than the level-1 test
car in this experiment. One explanation for this is that the
traffic flow consisting of level-1 cars, where the level-2 policy
is evaluated, is much harder to predict compared with the one
consisting of level-0 cars, where the level-1 policy is tested.

Fig. 13 shows the constraint violation rates of the level-0,
level-1, and level-2 test cars in the same traffic environment.

Fig. 14. Constraint violation rates of the Stackelberg and decision tree
policies.

The traffic is modeled by mixing 10% level-0 drivers, 60%
level-1 drivers, and 30% level-2 drivers (the same traffic
environment used for testing the Stackelberg and decision
tree policies in the next section). We observe that the level-0
policy has the lowest constraint violation rates. This is due
to the fact that the level-0 policy in Section III-A is based
on a very conservative control logic, e.g., never making lane
changes or accelerations to overtake other cars. Comparing
the level-1 policy and the level-2 policy, we can observe that
the level-2 policy has better safety performance in this mixed
traffic. One explanation for this is that the level-2 policy is
trained in a more complicated traffic flow of level-1 cars
compared with the traffic flow of level-0 cars used to train
the level-1 policy. As a result, a level-2 driver may be able to
handle unfamiliar traffic flows better than a level-1 driver.

E. Comparative Quantitative Evaluation of Stackelberg
and Decision Tree Policies

At first, we test the Stackelberg and the decision tree policies
in a traffic consisting of only level-0 vehicles. A defining
feature of the level-0 policy is that the vehicles do not change
lanes. It is observed that both the Stackelberg and the decision
tree policies perform well in this environment, i.e., constraint
violations are not observed. This is also in agreement with the
results in [10], [15], and [16]. The figures are omitted as they
provide no additional information.

Next, we consider a simulated traffic environment where
10% of the drivers make decisions based on level-0 policies,
60% of the drivers act based on level-1 policies, and 30%
use level-2 policies. These percentages of various levels are
assumed based on an experimental study conducted in [37].
Fig. 14 shows the distance constraint violation rates for the
Stackelberg and decision tree policies versus the number
of cars in the traffic. Each simulation is 200 s long, and
10 000 simulations are run for each case (i.e., for each value
of the number of cars).

As seen in Fig. 14, both approaches exhibit significant
distance constraint violation percentages. Note that these viola-
tions could also be caused by our level-k drivers, but as shown
in Figs. 12 and 13, compared with the numbers in Fig. 14,
the constraint violation rates of the level-k policies are small.
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Fig. 15. Scenarios for distance constraint violation. (a) A constraint violation
scenario on a two-lane highway. (b) A constraint violation scenario on a three-
lane highway.

The main reason for the distance constraint violations is that
the developed traffic model with interacting drivers is more
complex than the traffic models used for the development
of the Stackelberg and decision tree algorithms. To the best
of our knowledge, few works addressing the development of
autonomous vehicle control policies consider traffic of similar
complexity.

Fig. 15 shows two cases of driver interactions that are
responsible for many distance constraint violations. The red
rectangle indicates the car being tested, while the yellow
rectangles are the cars in the traffic environment. The black
arrows indicate the longitudinal velocities of the cars, while
the green arrows indicate the lateral velocities. The left-hand
side presents the scenarios at time t , while the right-hand side
presents the scenarios at time t + 1. In Fig. 15(a), the red car
is starting to change lane to the left, trying to overtake the
front car, while at the same time the front car is also starting
to change the lane because of some other cars ahead of it (not
shown in this figure). As a result, both cars are changing lanes
while their longitudinal distance keeps decreasing until the
safe distance constraint is violated. Although the red car may
brake hard after the lane change, trying to avoid this distance
constraint violation, at that time its range is already too small.
In Fig. 15(b), the red car is starting to change lane to the left
to overtake the car in front of it. Although the car in front
remains in its own lane, there is another car in the leftmost
lane starting to move into the middle lane as well. As a result,
both the red car and the yellow car in the leftmost lane are
changing lanes to the middle and eventually violate the safe
distance constraint.

We note that challenging scenarios such as the ones above
can greatly facilitate the testing of autonomous driving control
algorithms. In fact, the above two cases are also dangerous
situations for a human driver. Many traffic accidents result
from the driver misjudging the potential actions of the sur-
rounding vehicles. According to the National Highway Traffic
Safety Administration’s 2008 National Motor Vehicle Crash

Fig. 16. Diagram of constraint violation rate.

Fig. 17. Average travel speed of the Stackelberg and decision tree policies.

Causation Survey, human error is the critical reason for 93%
of motor vehicle crashes [46].

Note also that the constraint violation rate first increases,
peaks, and then decreases as the number of cars in the environ-
ment, which reflects the traffic density, increases. As Fig. 16
shows, when the traffic is very sparse, cars on the road can
drive almost freely and have low chance of having a constraint
violation ( 1©). As the number of cars in the traffic increases,
the chance of experiencing an incident also increases ( 2©)
(until a peak 3©). When the traffic becomes very dense, for
instance, in a traffic jam, the average travel speed becomes low,
and at the same time each car mostly stays in its own lane and
has few lane change maneuvers. As a result, the probability
of having constraint violations becomes low again ( 4©). This
shape also matches the statistical results of the relationship
between car crash rates and traffic densities based on real
traffic data in [47].

Apart from using the constraint violation rate as a metric
to measure the safety and robustness of the Stackelberg
and decision tree policies, we also use the average travel
speed to measure the driving performance. It can be observed
from Fig. 17 that the decision tree policy has better driving
performance compared with the Stackelberg policy.

Fig. 18 compares the computational load of the two
autonomous driving control methods. The numbers shown in
the plot are the average time consumed to run the 200-s-long
simulation. Because the decision tree policy needs to evaluate
in total 49 two-layer action profiles, its required computational
effort is higher than that of the Stackelberg policy. As a
summary, our implementation of the decision tree algorithm
exhibits better safety and performance characteristics than our
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Fig. 18. Computational time of the Stackelberg and decision tree policies.

implementation of the Stackelberg algorithm, while the price
paid is the higher computational cost. The numbers in Fig. 18
are obtained using the Java System.nanoT ime() function, and
the simulations are run on a desktop with i7-4790 3.60GHz
CPU and with Eclipse Java Neon platform. Note also that
as Fig. 18 indicates, the simulator is quite fast: a 200-s-long
simulation of up to 30 interacting agents can be done within
tens to hundreds of milliseconds.

F. Optimal Autonomous Driving Controller Calibration

One of the potential uses of the proposed traffic modeling
approach is for calibrating parameter values in the autonomous
driving control algorithms. We illustrate this using the decision
tree policy as an example.

The optimization objective is defined by considering both
safety and performance: the goal is to maximize the following
reward function:

Robj = p1(−c̄) + p2
v̄x − vmin

vmax − vmin
(16)

where the weights p1 and p2 are determined by the user,
c̄ is the constraint violation rate defined as in Fig. 14, v̄x

is the average speed during the 200-s-simulations, and vmin
and vmax are the lower and the upper bounds of the test
vehicle’s speed, respectively. Note that this reward function
is designed such that each of its terms is dimensionless. The
parameters optimized in this example are the ratio (wl1)/(wl2),
representing the weighting of the two layers in the evaluation
metric function (13) in the decision tree evaluations, and xB ,
the size of region B in the longitudinal direction—a threshold
of triggering the path planner. These two parameters are
selected for optimization since they have indirect influence
on safety and performance, making them difficult to set from
intuition. Note that the influence of other parameters, for
example, w1, . . . , w4, in the decision tree evaluation metric
function, is more intuitive and they can be tuned more easily.

Fig. 19 shows the surface of the reward values as a function
of (wl1)/(wl2) and xB corresponding to different weight
selections p1 and p2, in the presence of a 20-car traffic. These
figures can be used to pick the best pair of (wl1)/(wl2) and
xB for a given reward function. For example, for maximum

Fig. 19. Parameter optimization results corresponding to different reward
function designs. (a) p1=1, p2 = 0. (b) p1 = 0, p2 = 1. (c) p1 = 0.7,
p2 = 0.3. (d) p1 = 0.6, p2 = 0.4.

safety (p1 = 1, p2 = 0), Fig. 19(a) shows that the best
pair is (2.5, 23). The rate of constraint violation with this
pair is 27.5%; while for the original selection (2, 21) in the
previous section, the corresponding violation rate is 31.8%.

VI. CONCLUSION

In this paper, a hierarchical reasoning game theory-based
approach to model interacting driver behavior in traffic was
presented. The proposed method provides an approach to
simulate interactive driver behavior under the given traffic
conditions.

A traffic simulator was developed using level-k driver
models. It can be used for testing and verification of
autonomous driving algorithms, and for discovery of challeng-
ing trajectories and scenarios that can facilitate the testing
of future autonomous vehicles. To illustrate the simulator
use, we have defined and tested two autonomous vehicle
control policies in terms of safety and performance. Our traffic
simulator can also be used for parameter calibration of these
policies by a simulation-based optimization approach.
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