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Computable Delay Margins for Adaptive
Systems With State Variables Accessible
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Abstract—Robust adaptive control of plants whose state
variables are accessible in the presence of an input time de-
lay is established in this paper. It is shown that a standard
model reference adaptive controller modified with projec-
tion ensures global boundedness of the overall adaptive
system for a range of nonzero delays. The upper bound of
such delays, that is, the delay margin, is explicitly defined
and can be computed a priori.

Index Terms—Adaptive control, robust adaptive control,
time delay.

I. INTRODUCTION

ADAPTIVE control theory is a mature control discipline
that has evolved over the past four decades and rigorously

synthesized [1]–[3]. Researchers have made several attempts in
extending the robustness properties of adaptive systems to time
delays and unmodeled dynamics (see, for example, [4]–[8])
by introducing modifications to the underlying adaptive law.
These results are either 1) semi-global, or 2) global where
the delay margin can be shown to exist but is not otherwise
computable, or the results are restricted to a small class of
plants [8]. In contrast to such results, in this paper, we show
that an adaptive system comprised of a single input plant
whose states are accessible and an adaptive law modified with
projection has an explicitly computable delay margin. That
is, global boundedness of the overall adaptive system can be
achieved for the system depicted in Fig. 1.

Several successful adaptive control methods for time delay
systems can be found in robust adaptive control literature. One
of the first adaptive design methods is given in [9] for systems
with input delays and uncertain parameters. A simpler adaptive
controller for the same class of systems is proposed in [10]. In
[11], by explicitly using future state prediction in the controller
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Fig. 1. Adaptive control in the presence of an input time delay.

derivation and using partial states of the infinite dimensional
system in the Lyapunov function, some limiting assumptions
on plant dynamics such as the location and multiplicity of the
poles are removed. In [12], an adaptive controller is developed
for unknown input delays and uncertain parameters and in [13]
both state and input delays are addressed. A comprehensive
survey on the control of time delay systems, for literature before
2003, can be found in [14]. Extensions of predictor feedback to
nonlinear and delay-adaptive systems with actuator dynamics
modeled by partial differential equations can be found in [15].

The main contribution of this paper is a proof of robustness
of an adaptive controller, for plants whose states are accessible,
in the presence of time delays. This adaptive controller uses a
conventional control architecture as in [4], an adaptive law that
is modified using projection [6]–[8], [16], [17], and is shown
to result in globally bounded solutions. Unlike [4] and [5], no
normalization is used in the adaptive law. In this paper, unlike
[9]–[15], we propose an adaptive controller that is robust to
time delays rather than explicitly compensating for the effect
of delays. Unlike the standard practice of Lyapunov function-
based arguments which suffice for robustness with bounded
disturbances, extensive arguments based on first principles are
employed in order to prove boundedness. A preliminary version
of this result appeared in [18], where the overall approach was
first described. Unlike [18], our stability result here is complete,
with clear insights provided on the delay margin.

In Section II, we pose the problem and describe the adaptive
controller and the projection-based adaptive law. The main result
is stated in Section III-E along with a few preliminaries, with its
proof in Section IV. A detailed comparison of the main result
with earlier work (for example, [5]) is provided in Section V.
A numerical example with simulation studies is provided in
Section VI to validate the result.

II. PROBLEM STATEMENT

An nth order plant with a scalar input and a parametric un-
certainty is given by

ẋp(t) = Apxp(t) + bm u(t − τ) (1)
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where Ap is unknown, bm is known, and τ ≥ 0 is an unknown
time delay. A reference model is chosen as

ẋm (t) = Am xm (t) + bm r(t) (2)

where Am is Hurwitz, xm (t) specifies the desired response, and
r(t) is a bounded reference input. We suppose that a standard
adaptive control input [4] is chosen as

u(t) = θ�(t)xp(t) + r(t). (3)

When no delays are present, it has been shown that the standard
adaptive law

θ̇(t) = −Γxp(t)b�m Pe(t) (4)

ensures global boundedness and convergence of xp(t) to xm (t),
where Γ = Γ� > 0, P is the solution of the Lyapunov equation
A�

m P + PAm = −qI , and e(t) = xp(t) − xm (t) is the track-
ing error. The goal, in this paper, is to vary θ(t) so that the
closed-loop adaptive system remains bounded for any initial
conditions, in the presence of τ , and for xp(t) to track xm (t).

It is well known, from investigations in robust adaptive con-
trol over the past thirty years, that the standard adaptive law (4)
does not suffice in guaranteeing robustness of adaptive systems
to nonparametric perturbations such as external disturbances,
unmodeled dynamics, and time delay. Several robustness mod-
ifications to the adaptive law were proposed in response (see,
for example, [19]). The modification we propose utilizes the
projection algorithm and is described in Section II-A.

A. Projection Algorithm

Let Ω0 and Ω1 be defined as

Ω0 =
{
Θ ∈ R1 | − θ′max ≤ Θ ≤ θ′max

}

Ω1 =
{
Θ ∈ R1 | − θmax ≤ Θ ≤ θmax

}
(5)

where θmax > θ′max are positive constants. We let ε = θmax −
θ′max . A scalar projection algorithm Proj(•, •), can be
defined as

Proj(Θ, y) =

⎧
⎨

⎩

θ2
max − Θ2

θ2
max − θ′2max

y if [Θ ∈ Ω1\Ω0 ∧ yΘ > 0]

y otherwise.
(6)

The projection algorithm for a scalar Θ is then given by

Θ̇ = Proj(Θ, y). (7)

The following property can now be derived.
Lemma 1: For any time-varying piecewise continuous scalar

y, if Θ(t0) ∈ Ω1 and Θ̇ is updated using the projection algorithm
in (5)–(7), then Θ(t) ∈ Ω1 for all t ≥ t0 .

Remark 1: Lemma 1 implies that the solutions of (7) satisfy

|Θ(t0)| ≤ θmax ⇒ |Θ(t)| ≤ θmax , ∀t ≥ t0 . (8)

That is, the projection algorithm in (7) guarantees the bounded-
ness of the parameter Θ(t) independent of the system dynamics.
We refer the reader to [7] and [20] for the proof of Lemma 1.
In the subsequent section, we will describe how the projection
algorithm in (7) is used to update the parameter θ(t) in (3).

III. GUARANTEED DELAY MARGINS FOR ADAPTIVE SYSTEMS

WITH STATE VARIABLES ACCESSIBLE

The following notations are used throughout: For a matrix
A ∈ Rn×n , we define

λA � min
i

|
 (λi(A))|

λA � max
i

|
(λi(A))|

where λi is the ith eigenvalue of A and 
(λi) denotes its real
part. For any vector x ∈ Rn×1 , we refer to the ith component as
xi for each i = {0, . . . , n − 1} and define

x � max
t

‖x(t)‖

where ‖ · ‖ = ‖ · ‖2 represents the Euclidean norm. Similarly,
for any scalar xi ∈ R, we denote xi � maxt |xi(t)|. Lastly, the
n − 1 subvector of x shall be defined as

x′ ≡ [x1 x2 · · ·xn−1 ]�.

Before we proceed with the main theorem, we first present
the specific adaptive law used to adjust the parameter θ(t) in
(3). The adaptive update law used herein applies projection to a
set of transformed states. The reason for this stems from the fact
that the transformation collapses the analysis of an nth order
system into only two key scalars, one each in e(t) and θ(t), that
are central to the proof of global boundedness. This transfor-
mation is presented in Section III-A. The adaptive law modified
with projection is then introduced in Section III-B in light of
the transformation. In Section III-C, a similarity transforma-
tion is employed on the reference model and its corresponding
properties are discussed. The choice of projection parameters
for the adaptive law is discussed in Section III-D. The main
result is stated in Section III-E. Before proving the main result,
which is done in Section IV, we present a few preliminaries in
Section III-F and derive a few properties of the closed-loop
adaptive system in Section III-G using the transformation in
Section III-A.

A. Nonsingular Transformation

In this section, we will derive the nonsingular transformation
matrices C and M that define the transformed error E(t) and
transformed parameter ϑ(t) as

E(t) ≡ Ce(t), (9)

ϑ(t) ≡ Mθ(t). (10)

We recall that we will refer to the ith components of the
transformed states as Ei(t) and ϑi(t), respectively, for i =
{0, 1, . . . , n − 1}. The introduction of C and M are needed
in order to identify crucial scalar states that capture the domi-
nant effect of the time delay. We now describe the construction
of C and M .

First, we begin with the vector

c0 =
Pbm

pbb
(11)

where P is the solution of the Lyapunov equation A�
m P +

PAm = −Q and pbb ≡
√

b�m Pbm . We note that

c�0 bm =
b�m P

pbb
bm = pbb . (12)
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We then construct the n − 1 vectors ci for i = {1, 2, . . . , n − 1},
such that

c�i P−1cj =
{

0 i 
= j,

1 i = j
(13)

where j = {0, 1, . . . , n − 1}. We therefore note that

c�i bm = c�i P−1c0pbb = 0 for i = 1, 2, . . . , n − 1. (14)

Therefore, an invertible matrix C is obtained by defining

C =
[
c�0 c�1 · · · c�n−1

]�
. (15)

From (11), (13), and (15), it can be shown that

CP−1C� = I (16)

Lastly, using P and C in (15), we choose M as

M = pbbCP−1 . (17)

B. Modified Adaptive Law with the Projection Algorithm

The adaptive law we propose is of the form1

θ̇ = M−1w (18)

where w = [w1 w2 . . . wn ]� and

wi = Proj
(
{Mθ}i ,−{MΓxpb

�
m Pe}i

)
(19)

with M in (17), and for the sake of simplicity, let Γ = γP . The
projection operator Proj(•, •), in (19), produces a scalar output
with scalar arguments and is defined in (5)–(7). When projection
is not active (Proj(Θ, y) = y), the adaptive law given by (18)
and (19) reduces to the standard adaptive law (4).

The implications of Lemma 1 on the boundedness of the
control parameter θ are obvious. If the adaptive law is chosen as
in (11)–(19), it follows from (8) that if |{Mθ(t0)}i | ≤ θi,max ,
then {Mθ}i is bounded (|{Mθ(t)}i | ≤ θi,max) for all t ≥ t0 .

C. Properties of the Reference Model

In this section, we define the transformed reference model and
its corresponding properties using the transformation matrices
given in the previous section. Let the scalars αij be defined as

αij ≡ c�i Am P−1cj , i, j = {0, . . . , n − 1} (20)

and an (n × n) matrix

Am = CAm P−1C�. (21)

We partition Am as

Am =
[

α00 a�
1

a0 A′
m

]
(22)

where A′
m is an (n − 1) × (n − 1) matrix. From (16), it follows

that

P−1C� = C−1 (23)

which implies that (21) can be rewritten as

Am = CAm C−1 . (24)

1For ease of exposition, we suppress the argument “t” in what follows.

It follows immediately from (24) that the eigenvalues of
Am and those of Am are identical since det(sI −Am ) =
det(C) det(sI − Am ) det(C−1) and det(C) 
= 0. Since Am is
Hurwitz, this implies that Am is also Hurwitz.

In the following lemma, we will show that A′
m in (22) is

Hurwitz.
Lemma 2: A′

m is Hurwitz.
We refer the reader to Appendix A for the proof of this lemma.
Remark 2: Am , as shown in (21), has a special structure with

C chosen using (11), (13), and (15). While, in general, a Hurwitz
matrix X need not have a Hurwitz submatrix X ′, because of the
special structure of Am , it is proven in Appendix A that A′

m is
Hurwitz.

D. Choice of Projection Algorithm Parameters

The adaptive update law modified with the projection algo-
rithm in (19) requires θi,max and θ′i,max to be specified. The
former is defined as θi,max = θ′i,max + εi , where εi > 0. The
following discussion addresses the selection of θ′i,max .

It is assumed that Am in (2) is chosen such that there exists a
θ� satisfying

Ap + bpθ
�� = Am (25)

for the plant in (1). In addition to that, the size of admissible
parametric variation in Ap is assumed to be known (see, for ex-
ample, (97) in Section VI). That is, we have a priori knowledge
on the upper and lower bounds of the elements of θ� . Therefore,
we define such bounds in the transformed parameter space as

θ�
i,max = max

θ�

∣
∣ϑ�

i

∣
∣ (26)

where ϑ� = Mθ� with M in (17) and θ� satisfying (25).
We then choose the parameter bounds θ′i,max for i =

{0, 1, . . . , n − 1}, such that

θ′i,max ≥ θ�
i,max . (27)

It is important to note that (27) implies θ�
i,max ∈ Ω0 (5). For

i = 0,

θ′0,max > θ�
0,max + α00 +

(‖P ′a0‖ + (‖a1‖ + φ′
max)pϕ )2

2pϕλQ ′

(28)

must be satisfied in addition to (27), where the constants α00 ,
a0 , and a1 are defined in (22), P ′ is the solution of

A′�
m P ′ + P ′A′

m = −Q′ (29)

with Q′ = Q′� > 0,

φ′
max ≡

√√
√
√

n−1∑

1

(
θi,max + θ�

i,max

)2
(30)

and pϕ is an arbitrary positive constant. It should be noted that
choosing projection bounds that satisfy (28) is always possible
by taking sufficiently large θ′0,max . The derivation of the second
inequality constraint (28) on the choice of θ′0,max will become
clear in Section IV-C. Lastly, we define

Θmax ≡

√√
√
√

n−1∑

i=0

θ2
i,max (31)
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Fig. 2. Phases I–III of the trajectory, z, with boundary regions defined in Definition 1 and Definition 2. (a) Phase I: Entering the boundary.
(b) Phase II: In the boundary region, B . (c) Phase III: Exiting the boundary.

and

φmax ≡

√√
√
√

n−1∑

i=0

(
θi,max + θ�

i,max

)2
. (32)

E. Main Result

Theorem 1: There exists a τ� such that the closed-loop adap-
tive system with the plant in (1), reference model in (2), control
law in (3), and adaptive law in (11)–(19) with projection param-
eters satisfying (27) and (28) has globally bounded solutions for
all τ ∈ [0, τ � ] and any initial conditions xp(t) = χ(t), θ(t) =
χθ (t), t ∈ [t0 − τ, t0 ], where χ(t) : R → Rn , χθ (t) : R → Ω1 .

Theorem 1 implies that the overall adaptive system with the
projection algorithm in the adaptive law has a nonzero time delay
margin τ� . The proof of Theorem 1 is given in Section IV and
consists of four phases denoted I through IV. The corresponding
proof for the scalar case can be found in [21] and uses the same
steps outlined in Section IV-A.

The main idea of the proof is as follows: There are two errors,
the state error and the parameter error, that completely describe
the adaptive system. The latter is guaranteed to be bounded
by virtue of the projection algorithm, irrespective of the delay.
Global boundedness of the state error, which is the main con-
tribution of this paper, is proven using two major properties of
the adaptive system. The first pertains to the behavior of the
system trajectories when the parameter is in the boundary of
the projection algorithm. The second considers the solutions
of the system when the parameter is away from the projection
boundary. In the second case, one can guarantee that the parame-
ter will reach the boundary in finite time, which is the first major
property. Once inside the projection boundary, the trajectories
cannot become unbounded due to the stability of the under-
lying linear time-varying delay system, which is the second
property. Together, these properties are shown to lead to global
boundedness for all delays less than a certain bound which is
the delay margin.

Before we proceed to the proof, we rewrite the closed-
loop adaptive system using the transformation introduced in
Section III-A. A few preliminaries are first presented.

F. Preliminaries

Prior to proving Theorem 1, we include a few definitions and
specify a condition the trajectory will be shown to satisfy.

Definition 1. We define regions A, B, and B′ as follows (see
Fig. 2): Let z(t) = [E�(t) ϑ�(t)]�

A =
{
z ∈ R2n | − θ′0,max ≤ ϑ0 ≤ θ′0,max

}

B =
{
z ∈ R2n | − θ0,max ≤ ϑ0 < −θ′0,max

}

B′ =
{
z ∈ R2n |θ′0,max < ϑ0 ≤ θ0,max

}
.

Definition 2. We further divide the boundary region B into
two regions as follows (see Fig. 2):

BL =
{
z ∈ R2n | − θ0,max ≤ ϑ0 ≤ −(θ′0,max + ε0/2)

}

BU =
{
z ∈ R2n | − (θ′0,max + ε0/2) ≤ ϑ0 < −θ′0,max

}
.

We note that B = BL ∪ BU , and that A, BL , BU , and B′

are all regions in R2n that lie between two hyperplanes. All
of these hyperplanes are specified using only one scalar state
variable ϑ0 .

Let positive constants δ and E0 be defined by

δ ∈ (0, 1] (33)

and

E0 = max
(

max
t∈[t0 −τ ,t0 ]

|E0(t)| + δ,
16
δγ

(Θ2
max + γ)(1 + m0), β

)

(34)

where m0 ≡ maxt≥t0

∣
∣c�0 xm (t)

∣
∣ and β > 0 is specified later in

Lemma 4. From the definitions of E0 and δ, it can be shown
that E0 − 2δ > m0 . We also define a positive constant E′ as

E ′ = max

⎛

⎝

√
λP ′

λP ′
max

t∈[t0 −τ ,t0 ]
‖E(t)‖,

√
�2rp

1 − �2rp
E0

⎞

⎠ (35)

where rp > 1 and positive constant �, which is specified later

in Proposition 1, satisfies
√

�2 rp

1−�2 rp
< 1. From the definition of

E ′, it follows that

E ′ < E0 . (36)

Using rp , E0 , and E ′, we further define

E =
√

rp

√
E2

0 + E ′2 . (37)
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Since rp > 1, it is obvious that

E > E0 . (38)

Also from the definitions of E′ and E, it can be proven that

�E ≤ E ′. (39)

Condition 1. Given τ > 0, π(t) ∈ Rn is said to satisfy Con-
dition 1 at time ta ≥ t0 if the following conditions

|π0(t)| ≤ E ∀t ∈ [ta − τ, ta ], (40)

|π0(ta)| = E0 − δ, (41)

π′�(ta − τ)P ′π′(ta − τ) ≤ λP ′E ′2 (42)

are satisfied, where P ′ is the solution to (29), E0 ∈ R is given
in (34), δ in (33), and E ′ ∈ R as in (35) are positive constants
with E0 − δ > 0.

G. Transformed Adaptive System Dynamics

We now return to the overall adaptive system. The closed-
loop adaptive system with the plant in (1), reference model in
(2), and control law in (3) has error dynamics equivalent to

ė = Am e + bm

(
(θ� − θ��)(e + xm ) + η

)
(43)

where η represents the perturbation due to the time delay and is
defined as

η(t) = u(t − τ) − u(t). (44)

The adaptive update law in (18) and (19) can be rewritten as

{Mθ̇}i = Proj
(
{Mθ}i ,−{MΓ(e + xm )b�m Pe}i

)
. (45)

We first note that since |χθi(t)| ≤ θi,max , it follows from
Lemma 1 that |ϑi(t)| ≤ θi,max ∀t ≥ t0 . Theorem 1 is therefore
proved if the global boundedness of e is demonstrated. In the
following sections, Sections III-G1 and III-G2, the transformed
error and parameter dynamics are further discussed.

1) Transformed Error Dynamics: In order to prove
global boundedness of e, we will utilize the transformed error
E introduced in (9). It is obvious that the global boundedness
of e is demonstrated if the global boundedness of E is shown.
In this section, we will derive the dynamics of E . We note
that c�i is the ith row vector of C. It follows from (9) that for
i = {0, 1, . . . , n − 1}

Ėi = c�i ė. (46)

Using the properties in (14) and (16), we can rewrite P in
quadratic form as

n−1∑

j=0

cj c
�
j = P. (47)

It then follows from (43) and (47), with some algebraic manip-
ulation, that

Ėi = c�i Am Ie = c�i Am P−1

⎛

⎝
n−1∑

j=0

cj c
�
j

⎞

⎠ e (48)

for i = {1, 2, . . . , n − 1}. Noting the definition of αij in (20),
(48) can be rewritten as Ėi =

∑n−1
j=1 αijEj + αi0E0 . The defini-

tion of A′
m in (21) and a0 in (22) imply that the subvector E′ of

E given by E′ ≡ [E1 E2 . . . En−1 ] satisfies the error dynamics

Ė ′ = A′
mE′ + a0E0 . (49)

We now return to (46) and consider the special case when
i = 0. Using the property in (12) and the definition of αij in
(20), the dynamics of the critical state error E0 can be obtained
from (43) as

Ė0 = c�0 Am e + pbb

(
θ� − θ��) (e + xm ) + pbbη

=
n−1∑

j=0

α0jEj + pbb

(
θ� − θ��) (e + xm ) + pbbη. (50)

Defining

mi ≡ c�i xm (51)

and from (47) and (10), the error equation (50) can be rewritten
as

Ė0 =
n−1∑

j=0

α0jEj +
n−1∑

j=0

(
ϑj − ϑ�

j

)(
Ej + mj

)
+ pbbη

=
(
α00 + ϑ0 − ϑ�

0
)
E0 +

(
ϑ0 − ϑ�

0
)
m0 + pbbη

+
(
a1 + ϑ′ − ϑ′�)�E′ +

(
ϑ′ − ϑ′�)�m′. (52)

Since xm (t) is known to be bounded, boundedness of mi(t) is
straightforward from (51).

Equations (49) and (52) represent the transformed tracking
error dynamics E . These equations show that the perturbation η
due to the time delay τ appears only in the dynamics of E0 and
not in Ei for all i = {1, 2, . . . , n − 1}.

In what follows, we will relate the boundedness of E′ to that
of E0 using Lemma 2.

Proposition 1: Suppose

|E0(t)| ≤ W, t ∈ Ts = [ts , tss ] (53)

where tss > ts ≥ t0 . Then

V ′(t) ≤ max
(
V ′(ts), 1

2 λP ′ (�W )2
)

∀t ∈ Ts (54)

where the quadratic function V ′(t) is defined as

V ′(t) = 1
2 E

′�(t)P ′E ′(t) (55)

with P ′ > 0 satisfying (29) and positive constant � defined as

� =
2λ

2
P ′ ‖a0‖

λP ′λQ ′
. (56)

Proof: Since A′
m is Hurwitz, for any positive definite sym-

metric matrix Q′ there exists P ′ = P ′� > 0 which satisfies
the Lyapunov equation in (29). Considering the Lyapunov-like
function in (55), and taking the derivative with respect to time,
we obtain

V̇ ′ ≤ − 1
2 min

i

(


(
λi(Q′)

))
‖E′‖2 + ‖P ′a0‖W‖E′‖. (57)

Noting that
1
2 λP ′ ‖E′(t)‖2 ≤ V ′(t) ≤ 1

2 λP ′ ‖E′(t)‖2 (58)

(57) can be simplified as V̇ ′ ≤ −k1V
′ + k2

√
V ′, where k1 =

λQ ′

λP ′
, k2 =

√
2λP ′ ‖a0 ‖W√

λP ′
. Defining Δ1 = k1

2 and Δ2 = k 2
2

(4Δ1 ) =
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k 2
2

(2k1 ) , Δ1V
′ + Δ2 ≥ k2

√
V ′ and therefore we obtain

V̇ ′ ≤ −k1

2
V ′ +

k2
2

2k1
. (59)

Equation (59) implies that V̇ ′(t) ≤ 0 if V ′(t) ≥ K1 , where
K1 = ( k2

k1
)2 = 1

2 λP ′ (�W )2 . This proves Proposition 1. �
Corollary 1.1. Suppose (53) is satisfied, where tss > ts ≥ t0 .

Then

λP ′ ‖E′(t)‖2 ≤ max
(
E′�(ts)P ′E ′(ts), λP ′ (�W )2

)
∀t ∈ Ts .

(60)

Proof: From Proposition 1 and (58), (60) follows. �
2) Transformed Parameter Error Dynamics: Similar

to Section III-G1, we now focus on the transformed param-
eter error ϑ(t) in (10). From (45), letting Γ be defined as
Γ = γP , and noting that {Mθ}i = ϑi with M in (17), we
obtain

ϑ̇i = Proj
(
ϑi,−γpbbc

�
i (e + xm )b�m Pe

)

= γpbb Proj
(
ϑi,−(Ei + mi)b�m Pe

)

for i = {0, . . . , n − 1}. We also note that b�m Pe = pbbc
�
0 e =

pbbE0 from (9) and (11). Therefore,

ϑ̇i = γ′ Proj
(
ϑi,−(Ei + mi)E0

)
, i = {0, . . . , n − 1}

(61)

where γ′ = γp2
bb . We further examine (61) for i = 0 in more

detail since it was observed in the previous section that E0
contains η, making the zeroth states of particular interest. From
(6), it follows that

ϑ̇0 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−
ϑ2

0,max − ϑ2
0

ϑ2
0,max − ϑ′ 2

0,max
γ′(E0 + m0)E0

if [z0 ∈(B ∪ B) ∧ −(E0 + m0)E0ϑ0 > 0]

−γ′(E0 + m0)E0 otherwise.
(62)

It is observed that ϑ̇0 < 0 when |E0 | > m0 with m0 in (51).
Equation (61) for i = {1, 2, . . . , n − 1} and (62) constitute the
complete adaptive law.

IV. PROOF OF THE MAIN RESULT

From the discussions in Section III-G, it is clear that the
overall adaptive system dynamics can be defined with the
transformed error E and the transformer parameter ϑ. The for-
mer is given by (49) and (51)–(52), and the latter by (61).

Of the 2n states E and ϑ, two scalar states E0 and ϑ0 are shown
to be crucial in achieving global boundedness. The reason for
this is because η appears explicitly in the dynamics of E0 only.
That is, η does not explicitly appear in the dynamics ofEi ∀i ≥ 1.
Another interesting observation can be made when considering
the parameter dynamics. It follows from (61) that for all i ≥ 1,
ϑ̇i depends linearly on E0 . That is, ϑ̇0 is the only parameter
that depends nonlinearly on E0 . The effect of such features is
prominently used throughout the proof and will become clear in
the following sections.

A. Outline of the Proof

The proof is completed using the following four phases.
(I) The transformed error E(t) satisfies Condition 1 for

some t = ta ; this implies that the state z has to enter
B at tb ∈ (ta , ta + ΔTin,max), where ΔTin,max > 0 is
a finite constant [see Fig. 2(a)].

(II) When the trajectory enters B, the parameter enters the
boundary of the projection algorithm; E is shown to
be bounded by making use of the underlying linear
time-varying system [see Fig. 2(b)].

(III) There exists ΔTout,min , such that the trajectory reen-
ters A at tc > tb + ΔTout,min with |E0(tc)| < m0 [see
Fig. 2(c)].

(IV) The trajectory has only two options: (A) |E0(t)| <
E0 − δ ∀t > tc proving Theorem 1, or (B) E0(t) sat-
isfies Condition 1 for some td > tc . If the latter case
holds, we replace ta by td and repeat Phases I through
IV.

In the following sections, we prove Phases I–IV in detail.
Lemmas and propositions are introduced as needed in order
to prove these phases. Proofs of lemmas are provided in the
Appendix, unless otherwise noted, while proofs of propositions
are retained in the main text.

B. Proof of Phase I: Entering the Boundary B.

We will prove the following proposition in this section.
Proposition 2: Let E(t) satisfy Condition 1 at t = ta with

δ, E0 , E ′ given in (33), (34), (35), respectively and z(ta) ∈ A

where z =
[
E� ϑ�]�. Then

(i) |E0(t)| < E0 , ∀t ∈ [ta , ta + ΔT ]
(ii) ∃t′b ∈ [ta , ta + ΔT ], such that z(t′b) ∈ BL

where

ΔT =
δ

b0E + b1
(63)

with

b0 = B + B′

b1 =
(

φmax + 2
λc

λc

Θmax

)
m + 2pbbr

(64)

B = |α00 | + |ϑ�
0 | +

(
1 + 2

λc

λc

)
Θmax

B′ = ‖a1‖ + ‖ϑ′�‖ +
(

1 + 2
λc

λc

)
Θmax .

Proof of Proposition 2(i): We note from (52) that

|Ė0(t)| ≤ |a00 + ϑ0(t) − ϑ�
0 ||E0(t)| + |ϑ0(t) − ϑ�

0 ||m0(t)|

+pbb |η(t)| + ‖a1 + ϑ′(t) − ϑ′�‖‖E′(t)‖

+‖ϑ′(t) − ϑ′�‖‖m′(t)‖.
(65)

From (44) and (3) it can be shown that

|η(t)| ≤ 2
pbb

λc

λc

Θmax

(
max
[t−τ ,t]

‖E(t)‖ + m

)
+ 2r. (66)
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From (65) together with (66), it follows after elaborate algebraic
manipulations that

|Ė0(t)| ≤ BÊ0 + B′Ê ′ + b1∀t ∈ [ta , ta + ΔT ] (67)

where

Ê0 = max
t∈[ta−τ ,ta+ΔT ]

|E0(t)|, Ê ′= max
t∈[ta−τ ,ta+ΔT ]

‖E′(t)‖. (68)

By applying Proposition 1, with ta − τ replacing ts , ta + ΔT

replacing tss , and Ê0 replacing W, we obtain that

E′�(t)P ′E ′(t) ≤ max
(
E′�(ta − τ)P ′E ′(ta − τ), λP ′(�Ê0)2

)

(69)

∀t ∈ [ta − τ, ta + ΔT ]. Since E(t) satisfies Condition 1
(42) at t = ta , the right-hand side can be simplified to
obtain E′�(t)P ′E ′(t) ≤ max(λP ′E ′2 , λP ′(�Ê0)2) for all t ∈
[ta − τ, ta + ΔT ]. Noting the definition of Ê ′ in (68), we there-
fore obtain

Ê ′ ≤
√

1
λP ′

max
(
λP ′E ′2 , λP ′(�Ê0)2

)
.

Since � < 1 and E′ < E0 (36), it follows that

Ê ′ ≤ max
(
E0 , Ê0

)
. (70)

From (70), it can be shown that there are two possible cases:
(A) E0 ≤ Ê0 and (B) E0 > Ê0 .

Case (A): Condition of case (A) and (70) implies that Ê ′ ≤ Ê0 .
This allows us to simplify (67) as

|Ė0(t)| ≤ b0 Ê0 + b1∀t ∈ [ta , ta + ΔT ] (71)

where b0 ≡ B + B′. Noting that ∀Δt ∈ [0,ΔT ]

|E0(ta + Δt)| ≤ |E0(ta)| + max
t∈[ta ,ta +ΔT ]

|Ė0(t)|ΔT. (72)

From (71), the definition of ΔT in (63), and (41) in
Condition 1 which is satisfied for t = ta , it follows that

|E0(ta + Δt)| ≤ (E0 − δ) + δ(1 + b0 (Ê0 −E )
b0 E+b1

). Therefore

max
t∈[ta ,ta +ΔT ]

|E0(t)| ≤ E0 + b0ΔT (Ê0 − E). (73)

Noting the definition of Ê0 in (68) and since E0(t) satis-
fies (40), Ê0 = max{E,maxt∈[ta ,ta +ΔT ] |E0(t)|} and therefore

there are only two possible cases: (A-a) Ê0 = E and (A-b)
Ê0 > E.

If (A-a) holds, it immediately implies from (73) that Propo-
sition 2(i) is true. If we suppose case (A-b) holds, it im-
plies Ê0 = maxt∈[ta ,ta +ΔT ] |E0(t)| and from (73) it follows that

(1 − b0ΔT )Ê0 ≤ E0 − b0ΔTE. Noting E > E0 and 1 −
b0ΔT > 0, we can therefore obtain Ê0 < 1−b0 ΔT

1−b0 ΔT E0 = E0 <
E. This contradicts the condition of the case and therefore we
obtain Ê0 = E.

Case (B): Condition of case (B) and (70) implies that Ê ′ ≤ E0 .
This allows us to simplify (67) as

|Ė0(t)| ≤ b0E0 + b1 , ∀t ∈ [ta , ta + ΔT ].

Noting that (72) ∀Δt ∈ [0,ΔT ], we therefore obtain using (63)
and (41) that

|E0(ta + Δt)| ≤ (E0 − δ) + δ
b0E0 + b1

b0E + b1
< E0

which again implies that Proposition 2(i) is true. �
Proof of Proposition 2(ii): Equation (67) together with (70)

gives

|Ė0(t)| ≤ b0 max
(
E0 , Ê0

)
+ b1 , ∀t ∈ [ta , ta + ΔT ].

Thus, since E ≥ max(E0 , Ê0) from the proof of Proposition
2(i), |E0(t)| ≥ |E0(ta)| − (b0E + b1)ΔT for all t ∈ [ta , ta +
ΔT ] which can be simplified, using the fact that E0(t) satis-
fies (41), as |E0(t)| ≥ E0 − 2δ for all t ∈ [ta , ta + ΔT ]. From
the choices of δ and E0 in (33) and (34), it can be shown that
E0 − 2δ > m0 . Hence,

|E0(t)| > m0 , ∀t ∈ [ta , ta + ΔT ].

From (62), this in turn implies that ϑ̇0(t) is negative and

−ϑ̇0(t) ≥ γ′|E0(t)|(|E0(t)| − |m0(t)|)

≥ γ′(E0 − 2δ)((E0 − 2δ) − m0), ∀t ∈ TA (74)

where TA is defined as TA : {t | z(t) ∈A and t ∈ [ta , ta +
ΔT ]}. From (74), it follows that

ϑ0(ta) − ϑ0(ta + Δt) ≥ γ′(E0 − 2δ)(E0 − 2δ − m0)Δt
(75)

for all Δt ∈ [0,ΔT ] satisfying [ta , ta + Δt] ⊂ TA . Hence,
defining

ΔTin,max =
2θ0,max

γ′(E0 − 2δ)(E0 − 2δ − m0)
(76)

and if ΔTin,max ≤ ΔT , from (75), (8) and the definition of
regions A and B, it follows that z(t) enters B at tb ∈ (ta , ta +
ΔTin,max).

We now show that z(t) enters BL at t < ta + ΔT ′
in,max

for some ΔT ′
in,max > ΔTin,max . First, it can be proven that

|Proj(θ, y)| > 1
2 |y| ∀z ∈ BU . Using similar arguments as

above, it can be shown that

− ϑ̇0(t) > γ ′

2 (E0 − 2δ)(E0 − 2δ − m0) ∀t ∈ TBU (77)

where TBU is defined as TBU : {t | z(t) ∈ BU and t ∈ [ta , ta +
ΔT ]}. Noting Definition 2, the maximum time that z(t) can
spend in BU can be derived, using (77), to be {ε0/2}/{ γ ′

2 (E0 −
2δ)(E0 − 2δ − m0)}. This implies that z(t) enters region BL

at t ∈ (ta , ta + ΔT ′
in,max) where

ΔT ′
in,max = ΔTin,max +

ε0/2
γ′(E0 − 2δ)(E0 − 2δ − m0)/2

=
2θ0,max + ε0

γ′(E0 − 2δ)(E0 − 2δ − m0)

if ΔT ′
in,max ≤ ΔT , since then (77) is satisfied for all t

∈ (tb , ta + ΔT ′
in,max]. From (34) E0 ≥ 16

δγ ′ (θ2
0,max + γ′)(1 +

m0) and together with (33), it can be shown using algebraic
manipulations that ΔT ′

in,max < ΔT is implied. This proves
Proposition 2(ii). �
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C. Proof of Phase II: In the Boundary Region B.

We return to the overall adaptive system. The closed-loop
error dynamics in (43) can be rewritten in the transformed
space as

Ė = CAm C−1E + Cbm

(
θ� − θ��)C−1(E + m) + Cbm η.

(78)

From (9), (10), (21), and noting that θ� = p−1
bb ϑ�C from (17)

and 1
pb b

Cbm = [1 01×(n−1) ]� from (12) and (14), (78) can be
rewritten as

Ė = M0E + M1E(t − τ) + R (79)

where the matrices M0 , M1 , and the vector R are defined as

M0 ≡ Am − cI ϑ
��

M1 ≡ cI ϑ
�(t − τ)

R ≡ cI ϑ
�(t − τ)m(t − τ) − cI ϑ

��m + pbbcI (r(t − τ) − r)

cI = [1 0 · · · 0 ]�. (80)

Using the error dynamics derived above (79), we continue with
the proof of Theorem 1, Phase II.

When the trajectory enters B, the i = 0 parameter is in the
boundary of the projection algorithm. Let the trajectory stay in
B for t ∈ (tb , tc) for some tc > tb . From the definition of B, it
follows that

ϑ0(t) = −θ′0,max − ε(t), ∀t ∈ (tb , tc) (81)

where ε(t) ∈ (0, ε0 ].
We show below that E(t) is guaranteed to converge to a

bounded set if the trajectory remains in B. Before we proceed
to this result, we study the properties of M0 + M1 while in B.
Let us define the following set: ΩB = {(M0 ,M1) | z ∈ B}.

Lemma 3: There exists a q > 0 such that

(M0 + M1)�P + P(M0 + M1) < −qI (82)

is satisfied for all (M0 ,M1) ∈ ΩB , whereP is a constant matrix
defined as

P = I�RI (83)

with

R =
[

P ′ 0
0 pϕ

]
, I =

[
01×(n−1) 1

I(n−1)×(n−1) 0(n−1)×1

]
(84)

where P ′ satisfies (29) and pϕ is an arbitrary positive constant.
The choice of the projection parameters satisfying (28) is

used to prove this lemma (see Appendix A). Lemma 3 proves a
key property, (3), of the time-varying system (79)–(81).

Lemma 4: Consider the uncertain time-varying system (79)–
(81) with the selection of the projection parameters satisfying
(28). Let the solutions of the system lie in B for t ∈ (tb , tc).
Then there exists τ and β > 0, such that for any τ ≤ τ

V (E(t)) ≤ max
{
V (E(tb)), λPβ2} , ∀t ∈ (tb , tc) (85)

where

V (E) = E�PE . (86)

Lemma 4 is a vector version of [21, Theorem 2] and its proof is
built upon [22, Proposition 6.7] which utilizes Lemma 3, model

transformation, and the Razumikhin Theorem. See Appendix A
for the proof of Lemma 4.

We conclude this section with the following proposition.
Proposition 3: If τ ≤ τ , then ‖E(t)‖ < E for all t ∈ [tb , tc).
Proof: From Lemma 4, for all t ∈ [tb , tc)

V (E(t)) ≤ max
{
V (E(tb)), λPβ2}

≤ max
{
λP

(
E0(tb)2 + ‖E′(tb)‖2) , λPβ2} .(87)

We note from Proposition 2 that |E0(tb)| < E0 . Also applying
Corollary 1.1 (60) with ts = ta − τ , tss = tb , W = E0 and
noting that Condition 1 (42) is satisfied at t = ta , it can be
shown that ‖E′(tb)‖ ≤ max(E ′, �E0). Therefore, (87) can be
simplified as

V (E(t)) ≤ λP max
{(

E2
0 + max(E ′2 , �2E2

0 )
)
, β2} .

Furthermore, from the definition of E0 (34), E0 ≥ β. Also from
(38) and (39), E′ > �E0 . Therefore, we obtain

V (t) ≤ λP
(
E2

0 + E ′2) , ∀t ∈ [tb , tc). (88)

Noting that λP‖E(t)‖2 ≤ V (t) ≤ λP‖E(t)‖2 , (88) implies that

‖E(t)‖ ≤

√
λP (E2

0 + E ′2)
λP

, ∀t ∈ [tb , tc).

By taking rp ≡ λP
λP

, it can be concluded that ‖E(t)‖ ≤ E for all
t ∈ [tb , tc).

D. Proof of Phase III: Exiting From the Boundary B.

We have thus far shown that the trajectory will enter the
boundary region B at tb ∈ (ta , ta + ΔTin,max) where ΔTin,max
is finite. It was further proven that there exists a finite t′b > tb ,
such that z(t′b) ∈ BL . For t > t′b , either (i) z(t) ∈ B for all
t > t′b , or (ii) z reenters A at t = tc for some tc > t′b .

In the former case, it follows immediately from Proposition
3 with tc → ∞ that ‖E(t)‖ < E, proving global boundedness.
The latter case is addressed in the following proposition.

Proposition 4: Let z(t) ∈ B for all t ∈ [t′b , tc) and z(tc) ∈ A
for some tc > t′b . Then

tc − t′b ≥ ΔTexit,min (89)

where

ΔTexit,min =
2ε0

γ′m2
0
, (90)

and

|E0(tc)| < m0 . (91)

Proof: From the definition of regions A and BL in
Definition 1 and Definition 2, it follows that

ϑ0(t′b) ≤ −(θ′0,max + ε0/2), ϑ0(tc) ≥ −θ′0,max .

In addition, from (62) ϑ̇0(t) ≤ 1
4 γ′m2

0 ∀ t. Hence, tc − t′b ≥
2ε0

γ ′m 2
0

, completing the proof of (89).
We now prove (91) as follows. The conditions of case (ii)

imply

ϑ0(tc − Δtc) < −θ′0,max , ϑ0(tc) ≥ −θ′0,max
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for any Δtc ∈ (0, tc − t′b ]. Letting Δtc tend to zero from the
right-hand side, it follows that ϑ̇0(tc) > 0. This in turn implies,
from (62), that |E0(tc)| < |m0(t)|, proving (91). �

E. Proof of Phase IV: Return to Condition 1.

So far, we have shown the following:
(I) If at t = ta , E(t) satisfies Condition 1, then z(tb) ∈

BL for tb < ta + ΔT ′
in,max , with |E0(t)| < E0 ∀t ∈

[ta , ta + ΔT ].
(II) z(t) ∈ B ∀t ∈ [tb , tc). If τ ≤ τ , then ‖E(t)‖ < E ∀t ∈

[tb , tc).
(III) Either (a) tc = ∞ or (b) tc ≥ tb + ΔTexit,min where

z(tc) ∈ A and |E0(tc)| < m0 .
The following proposition contains the main result of this

section.
Proposition 5: Either E(t) returns to Condition 1 for some

t = td or the boundedness of E(t) is immediate.
Proof: In case (a) of Phase III, the boundedness of E(t) is

guaranteed since Phase II implies that ‖E(t)‖ < E ∀t ≥ tb . In
Phase III, case (b), noting (91) and that E0 − δ > m0 from (34),
there are only two possibilities:

(A) |E0(t)| < E0 − δ for all t ≥ tc , or
(B) there exists td > tc such that |E0(td)| = E0 − δ and

|E0(t)| < E0 − δ ∀t ∈ [tc , td).
Case (A): In case (A), applying Corollary 1.1 with ts = tc ,

tss = ∞, and W = E0 − δ, it can be shown from (60) that

‖E′(t)‖ ≤ max

⎛

⎝

√
λP ′

λP ′
‖E′(tc)‖, �(E0 − δ)

⎞

⎠

for all t ≥ tc . This implies that E(t) and therefore z(t) is
bounded.

Case (B): If case (B) holds, then the condition of the case
immediately implies that E(t) satisfies (41) in Condition 1 for
t = td . We note that for all t ∈ [tb , tc), z(t) ∈ B with ‖E(t)‖ ≤
E. This together with the condition of the case |E0(t)| ≤ E0 − δ
∀t ∈ [tc , td ] implies that

|E0(t)| ≤ E, ∀t ∈ [tb , td ]

since |E0(t)| ≤ ‖E(t)‖ and E > E0 . Hence, if τ ≤ ΔTexit,min ,
it follows that E0(t) satisfies (40) in Condition 1 for t = td .
Furthermore, since E0(t) satisfies (40) in Condition 1 at t = ta ,
and from Phase I |E0(t)| < E0 ∀t ∈ [ta , ta + ΔT ], we obtain

|E0(t)| < E, ∀t ∈ [ta − τ, td ].

Then, applying Proposition 1 with ts = ta − τ , tss = td − τ
and W = E, it follows that

V ′(td − τ) ≤ max
(

V ′(ta − τ),
1
2
λP ′ (�E)2

)
.

Noting that (42) in Condition 1 is satisfied by E′(t) for t = ta ,
and using (39), we obtain

V ′(td − τ) ≤ max
(

1
2
λP ′E ′2 ,

1
2
λP ′E ′2

)
=

1
2
λP ′E ′2 .

Hence, ‖E′(t)‖ satisfies Condition 1 (42) for t = td . This implies
that E(t) satisfies Condition 1 for t = td . �

F. Summary

The above phases imply that starting with t = ta , there are
three possibilities:

(i) The trajectory stays in Phase II for all t ≥ tb .
(ii) The trajectory stays in Phase IV, case (A) for all t ≥ tc .

(iii) The trajectory visits all four phases infinitely often.
The discussions in Sections IV-B–IV-E imply that in all
three cases (i)–(iii), E(t) always remains bounded, proving
Theorem 1. In particular, it follows from Proposition 2(i),
Lemma 4, and (91) that in all cases, if τ ≤ τ� with τ�

defined as

τ� = min
[
ΔTexit,min , τ

]
(92)

then

|E0(t)| ≤ E, ∀t ≥ t0 .

Again, applying Proposition 1 with ts = ta − τ and W = E0 ,
we obtain

V ′(t) ≤ max
(

1
2
λP ′E ′2 ,

1
2
λP ′ (�E0)

2
)

, ∀t ≥ ta − τ.

Noting (38) and (39), it follows that

‖E′(t)‖ ≤ E′, ∀t ≥ ta − τ.

Hence

|z(t)| ≤
√

E2 + max
(
E ′, max

[t0 ,ta −τ ]
‖E′(t)‖

)2 + Θ2
max

for all t ≥ t0 , proving global boundedness.
From (C.141), (90), and (92), we obtain that the solutions of

the overall adaptive system are bounded for all τ ≤ τ� . Hence,
the delay margin is given by τ� , with

τ� < min

[
2ε0

γp2
bbm

2
0
,

q

4Θ2
max

√
λP

λ
3
P

]

(93)

where ε0 ∈ (0, θ0,max − θ�
0,max) with θ�

0,max in (27), γ > 0 an
arbitrary and finite constant, pbb defined in Section III-A, m0 =
maxt

∣
∣c�0 xm

∣
∣, Θmax in (31), P in (83), and q satisfying (82).

Remark 3: The results of Theorem 1 represent an important
step in robust adaptive control. From establishing global bound-
edness in the presence of disturbances and unmodeled dynam-
ics, this paper takes the next step in robust adaptive control and
extends it to time delays for a class of adaptive systems. A com-
putable delay margin is demonstrated to exist, thereby providing
a theoretical framework for verification of adaptive control sys-
tems in flight as well in other applications. The most important
point to note is the absence of any Lyapunov function, a fixture
in most adaptive control proofs. A first principles approach was
used instead in this paper to ensure the global boundedness of
the tracking errors, which is a distinctly different type of proof
than those employed in robust adaptive control to date. As can
be seen in the proof of Theorem 1, the two most crucial pieces
of the proof involve the boundary of the projection algorithm
in the adaptive law. The first says that the trajectory will hit the
boundary in a finite time (Phase I). The second is that once it hits
the boundary, it cannot become unbounded while remaining on
the boundary. These two were central points that helped estab-
lish global boundedness in this challenging problem. Needless
to say, more complexities had to be dealt with in the vector case
due to the higher dimensions of the errors.
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Remark 4: In this paper, for the sake of simplicity, we as-
sumed that bp is known and let bm ≡ bp . However, it is expected
that the result can be extended straightforwardly for the case
bp = λbm , where λ > 0 is an unknown parameter.

Remark 5: The matching condition (25) appears limiting but
has common and practical use in real-world control problems.
For example, in flight control, the structure of the matrix Ap is
known and the reference model parameters are chosen so that
there exist ideal control parameters that satisfy the matching
condition.

Remark 6: The analytic approach presented above can be
applied to stability and robustness investigations for a larger
class of systems beyond the robust adaptive control problem.
Independent of such an applicability, the impact of the presented
work lies in that it is the first study that rigorously proves that the
standard adaptive law modified with a suitably tuned projection
algorithm introduces a computable delay margin, even without
any delay compensation method such as predictive feedback.

It should be noted that the computable delay margin τ� in (93)
is quite conservative. This is understandable given the complex
nonlinear nature of the underlying adaptive system. One of the
main reasons for this can be attributed to (82) which is fairly
restrictive.

Remark 7: The class of plants addressed in this paper has
considered a scalar input. Extensions to the multiple-input case
can be carried out in a similar manner. The main property that
needs to be established is the dynamics of the transformed error
states E and ϑ which in turn are dictated by C and M in (15)
and (17), respectively.

V. COMPARISON TO EARLIER WORK

In this section, we distinguish the results presented in this
paper from earlier work (for example, [5], [23]). As the results
in [5] employed both unnormalized and normalized adaptive
laws, we provide the comparison by considering these cases
separately.

Let us first consider the case of direct model reference adap-
tive control with unnormalized adaptive laws in [5]. We begin
by considering a plant of the form

yp = G0(s) (1 + Δm (s)) u (94)

where G0(s) represents the nominal plant, and Δm (s) is an
unknown multiplicative perturbation. Without loss of generality,
we assume a scalar plant and reference model with a modified
adaptive law defined as in [5, Section 9.3.2]. It follows that the
closed-loop dynamics can be written as

y = W (s)(θ̃y + bm r) (95)

where

W (s) =
1 + Δm (s)

s + am − θ�Δm (s)
. (96)

It is shown in [5] that if W (s) is strictly positive real (SPR)
then global boundedness of the overall adaptive system can
be concluded. However, if W (s) is not SPR only semi-global
stability can be shown. We refer the reader to [5] for details of
the proof.

For the problem under consideration, Δm (s) can be addressed
either as (i) Δm (s) = e−τ s − 1, or (ii) Δm (s) ≈ −τ s

1+ τ
2 s using a

first-order Padé approximation of e−τ s .

In both (i) and (ii), W (s) in (96) is not SPR. Therefore,
one can use the results in [5] to conclude that the closed-loop
adaptive system is semi-globally stable. In contrast, we note that
this paper demonstrates global boundedness, which is a stronger
result.

We now consider the case of normalized adaptive laws treated
in [5], which is addressed in Theorem 9.3.2. This theorem states
that all signals of the closed-loop plant are bounded if the overall
plant transfer function in (94) is strictly proper and Δm (s)
satisfies the following conditions.

1) Δm (s) is analytic in 
{s} ≥ δ0
2 for some δ0 > 0;

2) There exists a strictly proper transfer function W (s) ana-
lytic in 
{s} ≥ δ0

2 and such that W (s)Δm (s) is strictly
proper;

in addition to the stability bounds given in [5, (9.3.64)]. The
stability bounds in (9.3.64) characterize the class of Δm (s)
for which global boundedness can be guaranteed. The question
therefore is, when Δm (s) = e−τ s − 1, whether τ� can be quan-
titatively determined for which the bounds in (9.3.64) can be
guaranteed. This, however, is an exceedingly difficult task and
is not obvious from the deliberations in [5] or [23]. Unlike the
above, as will be shown below, a straightforward computation
of τ� that satisfies (93) can be provided using the results of this
paper. This is the main contribution of this paper. A secondary
point is that the unnormalized adaptive law (19) proposed here
is significantly less complex than the normalized adaptive law
in [5].

VI. SECOND-ORDER EXAMPLE

Let us consider the plant in (1) with

Ap =
[

0 1
−ω2

p −2ζpωp

]
, bp =

[
0
kp

]
(97)

with 0 < ωp ≤ ω and |ζp | ≤ ζ where ω and ζ are known positive
constants. Similarly

Am =
[

0 1
−ω2

m −2ζm ωm

]
, bm =

[
0

km

]
(98)

with ζm , ωm > 0 define the reference model in (2). Clearly,
from (97) and (98), it follows that the matching condition (25)
is satisfied.

To compute τ� , we begin with P . For the reference model in
(2) and (98) and taking Q = I2×2 , it can be shown that

P =

⎡

⎢
⎢
⎢
⎣

4ζm
2 + ω2

m + 1
4ζm ωm

1
2ω2

m

1
2ω2

m

ω2
m + 1

4ζm ω3
m

⎤

⎥
⎥
⎥
⎦

(99)

is the solution of the Lyapunov equation A�
m P + PAm = −Q.

Second, we proceed to the projection parameters in (27) and
(28). These require the θ�

i,max ,A′
m , and P ′ which in turn requires

θ� and the transformation matrices M and C. For the plant in
(97) and reference model in (98), it follows that the unknown
parameter θ∗ in (25) is given by

θ� =

[
ω2

p − ω2
m

kp
− 2(ζm ωm − ζpωp)

kp

]�

. (100)
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We note that bounds on the elements of (100), however, are
known since 0 < ωp ≤ ω and |ζp | ≤ ζ and positive constants
ζ, ω are known. Thus, in order to compute θ�

i,max in (26) all that
remains is the transformation matrix M .

Following the construction of C and M detailed in
Section III-A, we obtain

C =

⎡

⎢
⎢
⎢
⎣

√
ζm

ω3
m + ωm

pbb

km

√
dm

4ζm (ω3
m + ωm )

0

⎤

⎥
⎥
⎥
⎦

(101)

and

M =

⎡

⎢
⎣

0 km

(
ω2

m + 1
)
km

ωm

√
dm

−2ζm km√
dm

⎤

⎥
⎦ (102)

where

pbb =
1
2

√
(ω2

m + 1) k2
m

ζm ω3
m

(103)

and dm = ω4
m +

(
4ζm

2 + 2
)
ω2

m + 1. Combining (100) and
(102) with all admissible values of ζp and ωp , the bounds on
the elements of the uncertain parameter in the transformed pa-
rameter space θ�

i,max can be determined from (26) for all i =
{0, 1, . . . , n − 1}. This in turn implies that the projection bound
θ′i,max can be determined from (27) for i = {1, 2, . . . , n − 1}.
Lastly, to choose θ′0,max , the condition in (28) must also be eval-
uated. This leads to the computation of Am and P ′ as follows.

For the reference model in (2) and (98), it can be shown that
Am in (21) and (22) is such that

α00 = −2ζm ω3
m

ω2
m + 1

a1 = −
ωm

(
ω4

m +
(
2 − 4ζm

2)ω2
m + 1

)

(ω2
m + 1)

√
dm

a0 =
ωm

√
dm

ω2
m + 1

A′
m = −2ζm ωm

ω2
m + 1

(104)

from C in (101). We observe that since ζm , ωm > 0, it can
directly be shown that det(Am ) > 0 and Trace(Am ) < 0 which
implies that Am is Hurwitz. Additionally, it is obvious from
(104) thatA′

m < 0, validating Lemma 2. Hence, for any Q′ > 0,
it follows that the solution of (29) simplifies to P ′ = − Q ′

2A′
m

.

Thus, combining θ�
0,max with P ′ = − Q ′

2A′
m

and α00 , a0 , a1 ,
and A′

m in (104), the projection bound θ′0,max can be deter-
mined from the inequalities in (27) and (28). From the defini-
tion of θ′i,max = θi,max − εi , where εi > 0 is an arbitrary finite
constant, we have determined all of the projection algorithm
parameters needed to define the complete adaptive update law
in (61) and Θmax in (31).

The third quantity we determine is P . With A′
m in (104) and

Q′ > 0, we obtain

P =

⎡

⎢
⎣

pϕ 0

0
Q′ (ω2 + 1

)

4ζω

⎤

⎥
⎦ (105)

from (83) and (84) where pϕ > 0 is an arbitrary constant.
With the above three computations, we have thus far de-

termined pbb (103), Θmax , P (105), and m0 since m0 =
−c�0 A−1

m bm r and C is defined in (15) and (101). The positive
constants γ and ε0 ∈ (0, θ0,max − θ�

0,max) are design parame-
ters that can be chosen arbitrarily. Therefore, q, which needs to
satisfy (82) of Lemma 3, is the only quantity that remains to be
computed.

To compute q, we begin with Q defined as Q � (M0 +
M1)�P + P(M0 + M1), where M0 and M1 are defined in (80)
and P in (105). It follows from (82) that q satisfies λQ > q. That
is, one needs to find a q such that

max
i

λi

(
Q(ζp , ωp ,−θ0,max + ε(t), ϑ1(t))

)
< −q (106)

for all admissible ζp and ωp with ε(t) ∈ [0, ε0 ], where 0 < ε0 <
θ0,max − θ�

0,max . The existence of the solution to (106) is guar-
anteed by the choice of projection parameters satisfying (28)
and is proved in Lemma 3 (See Appendix A for details). The
reason for this is because M1 is the only term in Q dependent
on the projection parameters. This is shown below.

From A′
m in (104), M in (102) and (27) with θ� in

(100), (80) yields Equation (107) as shown at the bottom of
this page and

M1 =
[−θ0,max + ε(t − τ) ϑ1(t − τ)

0 0

]
.

Suppose we choose Q′ = −2A′
m and pϕ = 1. It follows then

that P = I2×2 from (105). Thus, Q simplifies to Q = (M0 +
M1)� + (M0 + M1) and is given by

Q =
[

2 (M01 1 − θ0,max + ε(t − τ)) M01 2 + M02 1 + ϑ1(t − τ)
M01 2 + M02 1 + ϑ1(t − τ) 2M02 2

]

(108)

where M0j k
denotes the elements of M0 in (107). It is now

clear that there exists a q that satisfies (106) since it can easily
be shown that Trace(Q) < 0 and det(Q) > 0 are implicitly
satisfied with θ′0,max in (28) and 0 < ε0 < θ0,max − θ�

0,max . It
is important to note that the ease in which the stability condition
in (28) is derived is largely due to the fact that no cross-coupling
between ϑ0 and ϑ1 is observed in any of the elements of Q.
Furthermore, any numerical procedure can be used to find the
solution q of (106).

M0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

2ζm ωm

ω2
m + 1

−2ζpωp
−4ζ2

m ωm

(ω2
m + 1)

√
dm

+
4ζm ζpωp −

(
ω2

m + 1
) ω2

p

ωm√
dm

ωm

√
dm

ω2
m + 1

−2ζm ωm

ω2
m + 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(107)
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Fig. 3. Density plot of maxi 
(λi ((M0 + M1 )�P + P(M0 + M1 ))) in
(82) for the plant and reference model given in Section VI-A. This plot
numerically illustrates the value of −q as a function of −θ0 ,m ax + ε(t)
and ϑ1 , illustrated by the boxed region, for both stable and unstable plant
with ωp = ω.

A. Numerical Example

We choose the plant and reference model as in (97) and (98)
with

(|ζp |, ω) = (1, 0.133), (ζm , ωm ) = (1, 0.4) (109)

and km = kp = ω2
m . That is, we consider both the case when

ζp = 1 (stable plant) and ζp = −1 (unstable plant). The control
input

u = p−1
bb ϑ�Cxp + r (110)

and adaptive update law

ϑ̇i = γ′ Proj (ϑi,−(Ei + mi)E0) (111)

for each i = {0, 1}, presented in Section III-G2, are imple-
mented. We recall that E , ϑ, and m are the transformed state
error, parameter, and reference state, as introduced in (9), (10),
and (51), respectively, with transformation matrices C and M
in (101) and (102).2

To find q, a numerical scheme was applied to (106) with Q in
(108), the results of which are shown in Fig. 3. As can be seen
from the rectangular regions in this figure, q depends both on
the projection bounds and on the plant parameters ζp and ωp .
We now have incurred all necessary components of τ� .

We now revisit the delay margin expression in (93). We let
the adaptation gain γ be γ = kγ θ0,max , where kγ > 0 and ε0 =
kε0 θ0,max . With our choice of Q′ and pϕ from P in (105), the
delay margin simplifies to

τ� < min

[(
2

p2
bbm

2
0

)
kε0

kγ
,

q

4(θ2
0,max + θ2

1,max)

]

(112)

since λP = λP = 1. We now compute the delay margin in what
follows.

It can be shown that (27) and (28) are satisfied for θmax =
[6 1.4]� and ε = 0.1θmax since θ�

max = [1.07 1.22]� and

A′
m =

[−0.110 −0.173
0.486 −0.690

]
.

Additionally, from Fig. 3, it follows that q > 0.727 in (82).
From (103) with (109), we obtain pbb = 0.341. Lastly, from
c�0 (15), (101), and the reference model (98), (109), the def-
inition in (51) implies m0 = −c�0 A−1

m bm r = (1.46)r. We let

2We note that (110) is (3) rewritten with θ� = ϑ�C
pb b

.

kγ = 1/6. Hence, it follows directly from (112) that τ� <

min
[ 4.8

r 2 , 0.00478
]
s. Therefore, for r <

√
4.8

0.00478 , we obtain

τ� = 4.78 ms (113)

as the delay margin of the adaptive system.
It is important to review the qualitative implications of tuning

the design parameters (θi,max , ε0 , kγ ) on the delay margin τ� .
In (112), the design tradeoff between the size of the parameter
bounds and the delay margin can be seen quite readily. The
bracketed term in (112) contains two elements. The first term
is primarily dependent on the magnitude of the reference input
(m0), whereas the second term depends largely on the parameter
bounds and the corresponding lower bound of the measure of
closed-loop LTV stability (q), while ϑ0 is in its lower projection
boundary (Phase II, Lemma 3). With that being said, we will
refer to the former term as τ�

r and the latter as τ�
Θ . We discuss

the design tradeoffs in more detail in what follows.
The objective is to find the solution to the optimization prob-

lem, maxθm a x τ� . We begin by investigating the design tradeoffs
for τ�

r as introduced above. Since τ�
r = O

(
ε0
γ

)
, it is obvious that

increasing ε0 and decreasing γ are optimizing. That is, choos-
ing ε0 and γ in such a way results in the largest τ�

r . The latter
is not surprising since it is well known in the adaptive control
community that a high gain on the adaption rate can lead to
undesirable closed-loop phenomena. As for the former, increas-
ing ε0 implies increasing θ0,max since ε0 < θ0,max − θ�

0,max .
In doing so, τ�

Θ is inversely effected. The reason for this is
twofold. First, it can be observed from Fig. 3 that for any
ϑ0 , q is maximized for sufficiently small θ1,max . Second, it
can be shown that limϑ0 →−∞ λQ = 1.38 for any ϑ1 . There-
fore, τ�

Θ = O
(
‖θmax‖−1). Hence, maximizing τ�

r by choosing
θ0,max sufficiently large, inadvertently minimizes τ�

Θ . Similarly,
the solution to the zero-input optimization problem maxθm a x τ�

Θ
minimizes τ�

r . In this case, however, we can counteract such phe-
nomena since τ�

r includes an additional degree of freedom, γ.
The chosen parameter bounds θmax = [6 1.4]� for the par-

ticular numerical example presented earlier in this section, in
context with the discussion above, are near optimal in the
sense that they are approximately the solution to the zero-
input optimization problem, max

θx max
τ�
Θ for all possible values of

ζp and ωp .
It is important to note that our discussion here is a result of a

design process that yields one particularly clear vantage point.
In other words, choosing Q = I2×2 , Q′ = −2A′

m and pϕ = 1
provides τ� in (112) and invokes the design tradeoff clarity
above. Determining the optimal delay margin, however, requires
the solution of a complete nonlinear constrained optimization
problem.

B. Simulation Studies

In this section, we carry out simulation studies of the adap-
tive system defined by the plant in (97) in the presence of an
input time delay satisfying (113), with the reference model in
(98), the controller in (110) and the adaptive law in (111) with
θmax = (6, 1.4), εi = 0.1θi,max and γ = 1. With these choices
in addition to r < 31, the adaptive controller in (111) and (110)
guarantees globally bounded solutions for any initial conditions
xp(0) and θ(0) with ‖θ(0)‖ ≤ θmax for any τ < τ� in (113).



HUSSAIN et al.: COMPUTABLE DELAY MARGINS FOR ADAPTIVE SYSTEMS WITH STATE VARIABLES ACCESSIBLE 5051

Fig. 4. Simulation of plant in Section VI in the presence of an input
delay with τ = 0.0047 s, adaptive law in (111), and r(t) in (114). The
points (•) represent tb , t′b , and tc which correspond to Phases I, II, and
III as outlined in Section IV-A.

The resulting transformed error E and transformed parameter,
ϑ are illustrated in Fig. 4 for the reference input

r(t) = 30, t ≥ −τ (114)

time delay τ = 4.7 ms, and initial conditions E(χ) = [82 −
120]�, θ(χ) = [θ0,max θ1,max]�, ζp(χ) = 1, and ωp(χ) = 0.133
for all χ ∈ [−τ, 0]. It was also observed that the error became
unbounded when the projection bound was removed and when
the input delay exceeded τ = 245 ms (see Appendix B). In com-
parison, the analytically computed delay margin was a couple
of orders of magnitude smaller.

The numerical simulations show that the behavior of the adap-
tive system, in terms of which of the four phases reported in
Section IV-A occur, is directly dependent on the nature of the
reference input and the initial conditions.

VII. SUMMARY

In this paper, robust adaptive control of a class of plants in
the presence of an input time delay is investigated. It is shown
through analytic methods and validated by simulation results
that a projection algorithm in the standard adaptive control law
achieves global boundedness of the overall adaptive system for
delays less than the computable delay margin. The delay margin
bound and the projection bounds are explicitly calculated and
demonstrated using a general second-order system with para-
metric uncertainty.

APPENDIX A
PROOF OF LEMMAS

A. Proof of Lemma 2

Proof: From (24) and (23)

A�
m P + PAm = C� (

Am + A�
m

)
C = PC−1 (Am + A�

m

)
C.

Noting P > 0 and A�
m P + PAm = −Q, where Q � qIn×n ,

we obtain C−1
(
Am + A�

m

)
C = −P−1Q. Since −P−1Q =

−qP−1 < 0, C−1(A�
m + Am )C < 0. Hence, with (22)

(A�
m + Am ) =

[
2α00 a�

0 + a�
1

a0 + a1 A′�
m + A′

m

]

< 0. (A.115)

SinceA′�
m + A′

m is the (n − 1) × (n − 1) trailing principal sub-
matrix of (A.115), it can be shown using a suitable permutation
similarity of A�

m + Am and Sylvester’s Minorant Criterion that
A′�

m + A′
m is negative definite which further implies A′

m is
Hurwitz, proving Lemma 2. �

B Proof of Lemma 3

Proof: From (80), it is shown that

M0 + M1 = Am +

[
ϑ�(t − τ) − ϑ��

0

]

. (A.116)

From (83), (A.116), and (22), we obtain that

M(t) ≡ I(M0 + M1)I� =
[

A′
m a0

a�
1 + ϕ′�(t − τ) α00 + ϕ0(t − τ)

]

(A.117)

where ϕ0 ∈ R, ϕ′ ∈ Rn−1 and are given by [ϕ0(t) ϕ′�(t)]� =
ϑ(t) − ϑ� .

Defining a symmetric matrix function S(•) as

S(M) = −
(
RM + M�R

)

=

[
Q′ −qd(ϕ′)

−q�d (ϕ′) −2pϕ (α00 + ϕ0(t − τ))

]

(A.118)

where qd(ϕ′) ≡ P ′a0 + (a1 + ϕ′(t − τ))pϕ , we can show that
S(M) is positive definite for all M(t) if z(t) ∈ B as follows.

From (29), we have that Q′ > 0. Therefore, all k leading
principal minors of S are positive for k = 1, 2, . . . , n − 1. Also,
noting from (B.118) that

det(S) = det(Q′) (−2pϕ (α00 + ϕ0(t − τ))

−q�d (ϕ′)Q′−1qd(ϕ′)
)

(A.119)

and the design of the projection algorithm (28) which implies

ϕ0(t − τ) < −α00 −
1

2pϕ
q�d (ϕ′)Q′−1qd(ϕ′) if z ∈ B

we obtain det{S} > 0 if z ∈ B. Since all the leading principal
minors of S are positive, we obtain that S is positive definite
while z ∈ B.

Noting the definition of M in (B.117) and from the fact that
I� = I−1 , we obtain

−I�SI = I�RMI + I�M�RI

= (I�RI)(M0 + M1) + (M0 + M1)�(I�RI).
(A.120)

Equation (B.120) serves as a Lyapunov equation for M0 + M1 ,
since it can be rewritten into the form of

Q = P(M0 + M1) + (M0 + M1)�P (A.121)

with P ≡ I�RI and Q ≡ −I�SI. From the definition, P is
symmetric and positive definite since R is a symmetric positive
definite matrix. In the same manner, it can be shown that −Q is
symmetric and positive definite for all (M0 ,M1) ∈ ΩB since the
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symmetric matrix function S is positive definite while z ∈ B.
This proves Lemma 3.

C. Proof of Lemma 4

Proof: Using

E(t − τ) = E(t) −
∫ 0

−τ

Ė(t + ζ)dζ (A.122)

with Ė(t + ζ) replaced by the right-hand side of the system
equation (79) with appropriate time shift, and substituting the
resulting expression for E(t − τ) back in to (79), we obtain the
following transformed error dynamics:

Ė(t) =
(
M0 + M1(t)

)
E(t) + R(t)

− M1(t)
∫ 0

−τ

(
M0E(t + ζ) + M1(t + ζ)E(t + ζ − τ)

+ R(t + ζ)
)
dζ (A.123)

with M0 and M1(t) defined in (80). Equation (C.123) can be
rewritten compactly as

Ė(t) = M 0E(t) +
∫ 0

−2τ

M(t, ζ)E(t + ζ)dζ + R(t)

(A.124)

for all
(
M 0(t),M(t, ζ)

)
∈ Ω, where M 0 , M(t, ζ), Ω, and R(t)

are defined as

M 0 = M0 + M1(t)

M(t, ζ) =

{
−M1(t)M0 −τ ≤ ζ < 0

−M1(t)M1(ζ+τ ) −2τ ≤ ζ < −τ

Ω =
{(

M 0 ,M(t, ζ)
)
|M1(t) ∈ ΩB ∧ M1(ζ+τ ) ∈ ΩB

}

(A.125)

and

M1ζ (t) = M1(t + ζ)

R(t) ≡ R(t) − M1(t)
∫ 0

−τ

R(t + ζ)dζ. (A.126)

We note that R(t) is bounded since R(t) and M1(t) are bounded.
That is, there exists a scalar Rmax such that ‖PR(t)‖ ≤ Rmax
∀t ≥ t0 . Equation (C.124) represents a system with distributed
delays, whose stability can be shown using the Razumikhin
method, as shown below.

Define

V (Et) = max
ζ∈[−2τ ,0]

V (E(t + ζ)) (A.127)

and a set Ωt

Ωt ≡
{
t | t ∈ (tb , tc), V (E(t)) = V (Et)

}
. (A.128)

It follows that for all t ∈ (tb , tc), there are two cases, (a) t ∈ Ωt ,
(b) t ∈ (tb , tc)\Ωt . We provide the proof for each case sepa-
rately.

Case a: From the definitions in (C.127) and (C.128), it follows
that in this case

V (E(t + ζ)) ≤ V (E(t)), −2τ ≤ ζ ≤ 0. (A.129)

Hence, we obtain from (86) and (C.124) that

V̇ (E) ≤ 2E�(t)PM 0(t)E(t)

+2
∫ 0

−2τ

E�(t)PM(t, ζ)E(t + ζ)dζ + 2E�(t)PR(t)

+
∫ 0

−2τ

α(ζ)
[
E�(t)PE(t) − E�(t + ζ)PE(t + ζ)

]
dζ

(A.130)

with any scalar positive function α(ζ), since the last term then
becomes nonnegative due to (C.129). Equation (C.130) can be
simplified as

V̇ (E) ≤
∫ 0

−2τ

E�
ζ (t)Ψ(t, ζ)Eζ (t)dζ + 2Rmax‖E(t)‖

where

Ψ(t, ζ) ≡
[

Np(t, ζ) PM(t, ζ)
(
PM(t, ζ)

)� −α(ζ)P

]

,

Np(t, ζ) =
1
2τ

[P(M0 + M1) + (M0 + M1)�P] + α(ζ)P
(A.132)

and Eζ (t) = [E�(t) E�(t + ζ)]�. We take

α(ζ) = Θmax

√
λP
λP

·
{
‖M0ζ ‖ − τ < ζ ≤ 0

‖M1ζ ‖ − 2τ ≤ ζ ≤ −τ.
(A.133)

We now state and prove a sublemma.
Sublemma 5. There exists εv , τ such that Ψ(t, ζ) ≤ −εv I if

τ ≤ τ .
Proof: From (C.132), (C.133), and Lemma 3 (82), it can be

shown that if

τ <
1

2Θmax‖Mkζ ‖λP

√
λP
λP

q, k = 0, 1 (A.134)

then

Np(t, ζ) < 0, ∀t, ζ. (A.135)

Using (C.135), it can be then shown that for any vectors v1 ,
v2 ∈ Rn×1

[
v�

1 v�
2
]
Ψ(t, ζ)

[
v1

v2

]

≤ −λNp (t,ζ )

(

‖v1‖ −
‖PM1Mkζ ‖‖v2‖

λNp (t,ζ )

)2

+

(
‖PM1Mkζ ‖2

λNp (t,ζ )
− α(ζ)λP

)

‖v2‖2 (A.136)

and also noting (C.132) and (82)

λNp (t,ζ ) ≥ 1
2τ q − α(ζ)λP (A.137)



HUSSAIN et al.: COMPUTABLE DELAY MARGINS FOR ADAPTIVE SYSTEMS WITH STATE VARIABLES ACCESSIBLE 5053

holds. From the definition of Mk , k = {0, 1} given in (80) and
noting (25), it can be obtained that

‖Mk‖ ≤ Θmax . (A.138)

Therefore, noting that ‖PM1Mkζ ‖ ≤ λPΘmax‖Mkζ ‖, and in-
tegrating (C.137) into (C.136), we can further simplify the
inequality as

[
v�

1 v�
2
]
Ψ(t, ζ)

[
v1

v2

]

≤
(

(λPΘmax‖Mkζ ‖)2

1
2τ q − α(ζ)λP

− α(ζ)λP

)

‖v2‖2 (A.139)

where k = 0 if −τ < ζ ≤ 0 and k = 1 if −2τ ≤ ζ ≤ −τ . With
α substituted by (C.133), it is shown that the parenthesis in
(C.139) becomes negative which in turn implies that Ψ(t, ζ) < 0
for all t, ζ if

τ <
1

4Θmax‖Mkζ ‖λP

√
λP
λP

q, k = 0, 1. (A.140)

Noting (C.138) again, it can be shown that (C.134) and

(C.140) are satisfied if τ < 1
4Θ2

m a x λP

√
λP
λP

q. We let

τ ≡ 1
(4 + ς)Θ2

maxλP

√
λP
λP

q, ς > 0. (A.141)

Then, defining εv ≡ mint,ζ ,τ ∈[0,τ ](−eig(Ψ(t, ζ))), Ψ(t, ζ) ≤
−εv I is satisfied. This proves Sublemma 5 �.

(C.131) can therefore be simplified as

V̇ (E(t)) ≤ −εv‖E(t)‖2 + 2Rmax‖E(t)‖. (A.142)

From (C.142), V̇ (E(t)) < 0 ∀t ∈ Ωt\{t|‖E(t)‖ > β}, where

β = 2Rmax/εv . (A.143)

Since V (Et(t)) = V (E(t)) as we defined Ωt in (C.128), it can
be concluded that

V̇ (Et(t)) < 0, ∀t ∈ Ωt\{t|‖E(t)‖ > β}. (A.144)

Case (b): From the definitions in (C.127) and (C.128), it
follows that for any t in Case (b)

V (Et(t)) > V (E(t)). (A.145)

Suppose there exists a t = ts ∈ (tb , tc)\Ωt such that

V̇ (Et(ts)) > 0. Then, it follows that V (E(t+s )) > V (Et(ts))
from the definition of V (Et) in (C.127). This contradicts
(C.145), and therefore we can conclude that

V̇ (Et(t)) ≤ 0, ∀t ∈ (tb , tc)\Ωt . (A.146)

From cases (a) and (b) [(C.144) and (C.146)], with β as in
(C.143)

V̇ (Et(t)) ≤ 0, ∀t ∈ (tb , tc)\{t|‖E(t)‖ > β}.

Therefore,

V (Et(t)) ≤ max
{
V (Et(tb)), λPβ2} . (A.147)

Since V (E(t)) ≤ V (Et(t)) from the definition given by (C.127),
(C.147) implies that V (E(t)) ≤ max

{
V (E(tb)), λPβ2

}
for all

t ∈ (tb , tc), completing the proof.

APPENDIX B
SIMULATION STUDIES

See Fig. 5.

Fig. 5. Simulation of plant in Section VI in the presence of an input
delay with τ = 257 ms and r(t) = 0 for all time. It is observed that all of
the signals grow without bound as t → ∞.
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