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Summary
In this paper, a nonlinear hierarchical adaptive control framework is proposed for
the control of a quad tilt-wing unmanned aerial vehicle (UAV). An outer loop model
reference adaptive controller with robustifying terms creates required forces to be
able to move the UAV on a reference trajectory, and an inner loop nonlinear adaptive
controller realizes the required attitude angles to achieve these forces. A rigorous sta-
bility analysis is provided showing the boundedness of all the signals in this cascaded
controller structure. The development and the stability analysis of the controller do
not use any linearizations and use the full nonlinear UAV dynamics. The controller
is implemented on a high-fidelity nonlinear tilt-wing quadrotor model in the pres-
ence of uncertainties, wind disturbances, and measurement noise as well as actuator
and structural failures. In this work, in addition to earlier modeling studies, the effect
of wing-angle variations, actuator failures, and structural failures and their effect
on the center of gravity of the UAV are rigorously and systematically investigated
and reflected in the model. Simulation results showing the performance of the pro-
posed controller and a comparison with the fixed controller used in earlier studies
are presented in the paper.
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1 INTRODUCTION

Significant progress has been made in the design, modeling,
and control of unmanned aerial vehicles (UAVs) in the last
decade, and much recent work has been devoted to the inves-
tigation of hybrid-wing UAVs. Hybrid-wing UAVs are plat-
forms where the advantages of rotary-wing and fixed-wing
UAVs are combined: They can achieve vertical takeoff and

Nomenclature: m, mass, kg; Ib, inertia matrix in the body frame, kg· m2; Vw, linear velocity in the world frame, m/s; Ωb, angular velocity in the body
frame, rad/s; Ωw, angular velocity in the world frame, rad/s; Ft, net force, N; Mt, net moment, N·m; X, Y, Z, coordinates of the center of mass in the world
frame, m; p, q, r, angular velocities in the body frame, rad/s; Φ, Θ, Ψ, roll, pitch and yaw angles in the world frame, rad; 𝜔i, rotational speed of the ith rotor,
rad/s; M, inertia matrix; 𝜁 , vector defined as [

̇

X,
̇

Y ,
̇

Z, p, q, r]T ; 𝜉, vector defined as [X, Y, Z, Φ, Θ, Ψ]T; C(𝜁), Coriolis-centripetal matrix; G, gravity
vector, m· s−2; Ixx, Iyy, Izz, moments of inertia around the body axes, kg· m2; O(𝜁 ,𝜔i), gyroscopic term; E(𝜉, 𝜔2

i ), actuator vector; 𝜃f, front wing angle, rad;
k, motor thrust constant, N· s2· rad−2; ls, rotor distance to center of mass along y axis, m; ll, rotor distance to center of mass along x axis, m; 𝜆, torque/force
ratio; W(𝜉), wing force vector, N; Rbw, rotation matrix representing the orientation of the body frame w.r.t. world frame; FD,FL, drag and lift forces, N;
vx, vy, vz, linear velocities in the body frame, m/s; Ẋ, Ẏ ,

̇

Z, linear velocities in the world frame, m/s; v𝛼 , variable defined as
√

v2
x + v2

z ; 𝜃i, wing angle of attack
w.r.t. body x axis, rad; 𝛼i, effective angle of attack of the wing w.r.t. air flow, rad; 𝜌, air density, kg· m−3; A, wing planform area, m2; R(𝜃i−𝛼i), rotation
matrix around body y axis; 𝛼w, vector defined as [Φ, Θ, Ψ]T; E(𝛼w), velocity transformation matrix between from the world frame to the body frame.

landing (VTOL) without the assistance of any special infras-
tructure, and they can fly for extended periods with high
speed. A subclass under the hybrid-wing UAVs is tilt-rotor
UAVs, which constitute the characteristic of efficient energy
use.1,2 In this subclass, one can find dual tilt-rotor3 and dual
tilt-wing UAVs.4 Quad-tilt wing UAVs5,6 form another cate-
gory, which do not show the disadvantage of cyclic control
requirement that can be seen in its dual tilt-rotor counterparts.
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The couplings between the translational and rotary motions,
highly nonlinear multi-input multioutput system dynamics,
uncertainty sources such as unpredictable damages, and actu-
ator malfunctions7 are challenges that make the control of
tilt-wing UAVs a difficult task, which requires advanced con-
trollers if high performance throughout a large flight envelope
is demanded. There exists a rich literature on the closed-loop
control of rotary UAVs offering a variety of controllers to
handle these challenges. Some examples of controllers pro-
posed in the literature are proportional-integral-derivative
(PID)–type controllers,8-11 PD2 controllers where a propor-
tional and 2 derivative actions are used,12 linear quadratic
regulator controllers,9,13-15 sliding mode observers with feed-
back linearization,16 H∞ controllers,17 feedback linearization
approaches,18 nonlinear model predictive control,19 dynamic
inversion with 𝜇 synthesis,20 nested nonlinear controllers,21

backstepping approaches,22-24 and some other nonlinear con-
trol techniques.25 There are other control methods proposed in
the literature that use a hierarchical structure26-30 with various
types of controllers for rotational and translational dynamics.
An excellent comprehensive literature survey about the guid-
ance, navigation, and control of rotary UAVs can be found in
1 study.31

All the above-mentioned control approaches proved suc-
cessful in simulation and experimental environments for spe-
cific operating conditions. The proposed controller in this
paper is built upon these earlier works by eliminating the
precise plant model requirement for the optimization-based
and classical approaches and by eliminating the conservatism
introduced by the robust control approaches. This is achieved
by using a hierarchical nonlinear adaptive controller where
adaptive controllers are used both for the translational and
rotational motion control and thus providing adaptation in
all 6 degrees of freedom, together with a rigorous stability
analysis for the overall cascaded closed-loop system. There
exist other adaptive control approaches in the literature for the
control of rotary UAVs such as the ones proposed in previ-
ous studies32-35 and a very recent one in the work of Dydek
et al.7 However, the hierarchical adaptive control framework
proposed in this paper is different from them: Unlike in
the work of Johnson and Kannan,32 the proposed control
framework does not use any neural networks and therefore

computationally less expensive; unlike this study,33 no small
angle or slowly varying parameter assumptions are made;
unlike another study,34 no fuzzy approximators are used and
again, computationally cheaper; unlike another study,35 uncer-
tainties in both the translational and rotational motion are
addressed, and finally, unlike this study,7 no linearization
is conducted on plant dynamics. In addition, none of these
mentioned adaptive control approaches are implemented on a
tilt-wing UAV.

It is known that the problem of nonlinear controllers, in gen-
eral, is computational complexity.36 The focus of this paper
is the design of a high-performance, practical controller that
is easy to implement with low computational cost but at the
same time theoretically sound that does not need any lin-
earization approximation of the plant dynamics and that has
a rigorous overall stability proof. In addition, the proposed
controller is able to compensate the uncertainties in plant
dynamics, due to online wing-angle variations, damages, and
unexpected component failures. All these features are realized
by using 2 adaptive controllers in cascade: A model refer-
ence adaptive control (MRAC) design for the translational
dynamics and a nonlinear adaptive controller for the rotational
dynamics. Although these approaches are well known, their
cascaded implementation in a hierarchical framework for the
hybrid-wing UAVs has not been shown to result in a stable
closed-loop system before, to the best of authors’ knowledge.
The proof of stability of this overall closed-loop system is
achieved by the help of lumping the inner loop errors as a
disturbance term and using robustifying terms in the adaptive
controller design. Therefore, the implementation of 2 com-
putationally cheap adaptive controllers in a cascaded form
together with a stability proof provides the well-needed con-
trol framework, which is practical, adaptive, and theoretically
sound at the same time.

The proposed control framework is implemented for the
control of a novel quad tilt-wing UAV (SUAVI: Sabanci Uni-
versity Unmanned Aerial Vehicle), shown in Figure 1. The
characteristics that make SUAVI a novel quad tilt-wing UAV
and its advantages over existing designs can be found in 1
study.37 Sabanci University Unmanned Aerial Vehicle was
previously designed, manufactured, and flight tested by Unel
et al, and earlier research results have been published about

FIGURE 1 Quad tilt-wing unmanned aerial vehicle (Sabanci University Unmanned Aerial Vehicle) with 2 different wing-angle configurations. [Colour
figure can be viewed at wileyonlinelibrary.com]
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the aerodynamic and mechanical design, prototyping, con-
trol system design, and flight tests.37-40 However, in those
studies, the effects of wing-angle variations, component fail-
ures, and unexpected damages on system uncertainty were
not investigated and the controller was not tested against
these adverse conditions. The designed controller was a fixed
controller without any adaptation capability and thus had lim-
ited capabilities to compensate for uncertainties. In addition,
although showed promising results in flight tests, the overall
closed-loop control system did not have a rigorous stabil-
ity proof and relied on the time-scale separation between
the inner and outer loop controllers. In this paper, SUAVI
is tested, via a high-fidelity simulation model, which was
used during the development of the actual prototype, for
the above-mentioned adverse conditions using a theoretically
sound controller. Especially, the effect of wing-angle vari-
ations on system dynamics is rigorously analyzed and the
uncertainty it produces when combined with possible asym-
metry between the wings and probable failures is quantified.
A systematic study of wing-angle variations for tilt-wing
UAVs and its effect on the adaptive closed loop control sys-
tem was not rigorously investigated before. This is especially
important during the transition phase between the vertical and
the horizontal motions where the wings move from a vertical
position (quadrotor behavior, Figure 1, left picture) to almost
horizontal position (fixed-wing behavior, Figure 1, right pic-
ture). This investigation also proposes a method of transition
from the quadrotor mode to fixed-wing mode. In addition,
energy conservation, compared to conventional quadrotors,
with the help of lift creation with wings during horizontal
flight is quantified.

To summarize, the contributions of this study are the fol-
lowing. On the theory side, a novel nonlinear hierarchical
adaptive controller is proposed where (1) each controller
is computationally cheap, (2) both the overall hierarchical
framework and individual controllers are easy to implement,
(3) no linearization is needed in plant dynamics, and (4) over-
all closed-loop stability proof is provided. To the best of
authors’ knowledge, no such combination of adaptive con-
trollers for a hierarchical control framework is used in earlier
studies, especially with a rigorous stability proof. On the
practical side, the proposed controller is implemented on a
high-fidelity model of a novel quad tilt-wing UAV developed
by the authors, where (1) uncertainties emanating from a com-
bination of wing asymmetry, component failure, and unex-
pected damages are quantified, (2) the effect of wing-angle
variation during the transition phase on plant dynamics is
quantified in a systematic manner, and (3) an approach is
proposed for transition between the quadrotor phase (verti-
cal wing) and the fixed-wing phase (almost horizontal wing).
No earlier study exists about the adaptive control of quad
tilt-wing UAVs that considers all these phenomena at the
same time.

Preliminary simulation results of this study are presented
in 1 study.41 Different from the work of Yildiz et al,41 in this

study, a rigorous stability analysis, implementation results
with disturbances and noise, and a rigorous quantification
of uncertainties due to wing movements and failures are
presented.

The organization of the paper is as follows: System model
is presented in Section 2. Controller design and stability
investigation are presented in Section 3. Implementation
scenario together with uncertainty quantification and trajec-
tory generation is presented in Section 4. Simulation results
are presented in Section 5, and a summary is given in
Section 6.

2 SYSTEM MODEL

Equations of motion for the quad tilt-wing UAV are briefly
presented in this section. A more detailed analysis can be
found in 1 study.37 Overall dynamic equations of the system
are given as[

mI3×3 03×3
03×3 Ib

] [
V̇w
Ω̇b

]
+
[

0
Ωb × (IbΩb)

]
=
[

Ft
Mt

]
, (1)

where m and Ib represent the mass and the diagonal inertia
matrix in the body frame and Vw and Ωb represent the linear
and the angular velocities of the vehicle in the world and body
frames, respectively. The net force and the moment applied
on the vehicle are represented by Ft and Mt, respectively (see
Figure 2). It should be noted that for tilt-wing quadrotors,
these forces and moments are functions of the rotor trusts and
wing angles.

Using vector-matrix notation, Equation 1 can be rewritten
as follows:

M�̇� + C(𝜁)𝜁 = G + O(𝜁, 𝜔i) + E(𝜉, 𝜔2
i ) + W(𝜉), (2)

where,

𝜁 = [Ẋ, Ẏ ,Z, p, q, r]T , (3)

and

𝜉 = [X,Y ,Z,Φ,Θ,Ψ]T , (4)

where X, Y, and Z are the coordinates of the center
of mass with respect to the world frame, p, q, and r are the
angular velocities in the body frame, Φ, Θ, and Ψ are the
roll, pitch, and yaw angles of the vehicle expressed in the
world frame, and 𝜔i, i = 1, 2, 3, 4 represents the rotor rota-
tional speeds. M, the inertia matrix, C, Coriolis-centripetal
matrix, and G, the gravity term, are given as
follows:

M =
[

mI3×3 03×3
03×3 diag (Ixx, Iyy, Izz)

]
, (5)
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FIGURE 2 Forces and moments on the quad tilt-wing unmanned aerial vehicle

C(𝜁) =

⎡⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 Izzr −Iyyq
0 0 0 −Izzr 0 Ixxp
0 0 0 Iyyq −Ixxp 0

⎤⎥⎥⎥⎥⎥⎦
, (6)

G = [0, 0,mg, 0, 0, 0]T , (7)

where, Ixx, Iyy, and Izz are the moments of inertia around the
body axes. The gyroscopic term, O(𝜁, 𝜔), is given as

O(𝜁, 𝜔i) = Jprop

⎛⎜⎜⎜⎝
03×1

4∑
i=1

[𝜂iΩb ×

[ c𝜃i
0

−s𝜃i

]
𝜔i

⎞⎟⎟⎟⎠ , (8)

where, 𝜂(1,2,3,4) = 1,−1,−1, 1 and c𝜃i and s𝜃i represent cosine
and sine of the wing angles, respectively. When 2 simplifying
assumptions are used, namely, neglecting the aerodynamic
downwash effect of the front wings on the rear wings and
using same angles for the front and rear wings, system actua-
tor vector, E(𝜉, 𝜔2), can be given as

E(𝜉, 𝜔2
i ) =

⎡⎢⎢⎢⎢⎢⎢⎣

(cΨcΘc𝜃f − (cΦsΘcΨ + sΦsΨ)s𝜃f )u1

(sΨcΘc𝜃f − (cΦsΘsΨ − sΦcΨ)s𝜃f )u1

(−sΘc𝜃f − cΦcΘs𝜃f )u1

s𝜃f u2 − c𝜃f u4

s𝜃f u3

c𝜃f u2 + s𝜃f u4

⎤⎥⎥⎥⎥⎥⎥⎦
, (9)

where 𝜃f represents front wing angle against the UAV body
x-axis. Inputs u1, u2, u3, and u4 in Equation 9 are given as

u1 = k(𝜔2
1 + 𝜔2

2 + 𝜔2
3 + 𝜔2

4), (10)

u2 = kls(𝜔2
1 − 𝜔2

2 + 𝜔2
3 − 𝜔2

4), (11)

u3 = kll(𝜔2
1 + 𝜔2

2 − 𝜔2
3 − 𝜔2

4), (12)

u4 = k𝜆(𝜔2
1 − 𝜔2

2 − 𝜔2
3 + 𝜔2

4), (13)

where k, ls, ll, and 𝜆 are the motor thrust constant, rotor dis-
tance to center of mass along y-axis, rotor distance to center
of mass along x-axis, and torque/force ratio, respectively.

The wing forces W(𝜉), lift and drag, and the moments they
create on the UAV are given as

W(𝜁) =

⎡⎢⎢⎢⎢⎢⎢⎣
Rbw

⎡⎢⎢⎣
F1

D + F2
D + F3

D + F4
D

0
F1

L + F2
L + F3

L + F4
L

⎤⎥⎥⎦
0

ll
(
F1

L + F2
L − F3

L − F4
L

)
0

⎤⎥⎥⎥⎥⎥⎥⎦
, (14)

where Rbw is the rotation matrix representing the orientation
of the body frame with respect to world frame. The drag and
lift forces, Fi

D = Fi
D(𝜃f , vx, vz) and Fi

L = Fi
L(𝜃f , vx, vz), are

given as

⎡⎢⎢⎣
Fi

D
0

Fi
L

⎤⎥⎥⎦ = R(𝜃i − 𝛼i)
⎡⎢⎢⎣
− 1

2
cD(𝛼i)𝜌Av2

𝛼

0
− 1

2
cL(𝛼i)𝜌Av2

𝛼

⎤⎥⎥⎦ , (15)

where v𝛼 =
√

v2
x + v2

z and 𝛼i = 𝜃i − (−atan2(vz, vx)). Here,
𝜌 is the air density, A is the wing planform area and 𝛼i is the
effective angle of attack of the wing with respect to the air
flow, and 𝜃i is the wing angle of attack with respect to the
body x-axis. R(𝜃i − 𝛼i) is the rotation matrix around y-axis
that decomposes the forces on the wings on the body axis.

The relationship between the linear velocities in body frame
vx, vy, vz and linear velocities in the world frame Ẋ, Ẏ ,Z is
given as [ vx

vy
vz

]
= Rwb(Φ,Θ,Ψ)

[ Ẋ
Ẏ
Z

]
. (16)

Using Equation 1, the following rotational dynamics, that is,
in a form suitable for attitude controller design, is obtained:

M(𝛼w)Ω̇w + C(𝛼w,Ωw)Ωw = ETMt, (17)
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where 𝛼w = [Φ,Θ,Ψ]T, Ωw = [Φ̇, Θ̇, Ψ̇] and E(𝛼w) is the
velocity transformation matrix, which is given as

E(𝛼w) =

[
1 0 −sΘ
0 cΦ sΦcΘ
0 −sΦ cΦcΘ

]
. (18)

The relationship between the angular velocity of the UAV in
the body frame, Ωb, and in the world frame, Ωw, is given as

Ωb =

[ p
q
r

]
= E(𝛼w)Ωw. (19)

The contents of the modified inertia matrix M(𝛼w) in
Equation 17 and their derivation can be found in previous
study.41

3 CONTROLLER DESIGN

To control the position of the tilt-wing UAV, whose nonlinear
dynamics was provided in Section 2, we used a hierarchi-
cal nonlinear control approach that can adapt its parameters
online. On the upper level, an MRAC is designed that pro-
vides virtual control inputs to control the position of the UAV.
These control inputs are converted to desired attitude angles,
which are then fed to the lower-level attitude controller. A
nonlinear adaptive controller is designed as the attitude con-
troller so that uncertainties can be compensated without the
need for linearization of system dynamics. Closed-loop con-
trol system structure is presented in Figure 3, and upper and
lower level controllers are described below.

3.1 MRAC design

An MRAC, that resides in the upper level of the hierarchy,
is designed to control the position of the vehicle, assuming
that the system is a simple mass. This controller calculates
the required forces that need to be created, by the lower-level
nonlinear controller, in the X, Y, and Z directions, to make
the UAV follow the desired trajectory. No information is used
about the actual mass of the UAV during the design, and this
uncertainty in the mass is handled by online modification of
control parameters based on the trajectory error. It is noted
that the uncertainties in moment of inertia are handled by the

lower-level attitude controller, which is explained in the next
section.

Consider the following system dynamics, which is obtained
using the translational part of Equation 2 and assuming that it
is possible to implement control forces parallel to the x-axis,
y-axis, and z-axis of the world frame:

Ẋ(t) = AX(t) + BnΛ(uMRAC(t) + D + Wld + 𝜋(t)),
y(t) = CX(t),

(20)

where X = [X,Y ,Z, Ẋ, Ẏ ,X]T ∈ ℜ6 is the state vector,
uMRAC ∈ ℜ3 is the position controller signal (see Figure 3),
Wld ≡ [WxWyWz]T ∈ ℜ3 is the lift and drag forces, which
are given in the first 3 rows of Equation 14, 𝜋(t) ∈ ℜ3 is a
bounded, time-varying, unknown disturbance, and y ∈ ℜ3 is
the plant output.

A =
[

03×3 I3×3
03×3 03×3

]
, (21)

Bn =
[

03×3
I3×3

]
1

mn
, (22)

Λ = mn

m
, (23)

D =
[

02×1
mg

]
, (24)

C =
[

I3×3 03×3
]
, (25)

where m is the actual mass of the UAV that is assumed to be
unknown, mn is the nominal mass, g is the gravitational accel-
eration, and 𝛬 represents the uncertainty in the UAV mass.
It is noted that from now on, time dependence of the param-
eters will not be emphasized unless necessary and therefore
“t” will be dropped from the expressions.

Remark 1. The model introduced in Equation 20 represents a
simple mass being controlled via virtual control inputs acting
in the direction of 3 axes of the world frame in the presence
of gravity, lift and drag forces, and unknown and bounded
time-varying disturbances. It is noted that this representation
would be accurate if the inner loop controller, which controls
the attitude of the UAV, had infinite bandwidth, which is not
the case. The errors due to the dynamics of the inner loop con-
troller and their effects on the boundedness of the solutions of

FIGURE 3 Closed-loop control system block diagram. MRAC, model reference adaptive control; UAV, unmanned aerial vehicle. [Colour figure can be
viewed at wileyonlinelibrary.com]

wileyonlinelibrary.com
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the overall cascaded closed-loop system are investigated later
in the paper.

Remark 2. The lift and drag coefficients required to compute
the wing forces in Equation 20, Wld, are obtained via nonlin-
ear regression using the real data generated from wind-tunnel
tests (see previous study38). In the controller design, these
forces will be cancelled directly, and in the rest of the devel-
opment, it will be assumed that this cancellation is already
performed. The uncertainty occurring due to the computa-
tion of these forces are incorporated into the time-varying
disturbance term 𝜋(t).

3.1.1 Reference model design
Consider the following control law, which is to be used for
the nominal system dynamics, where 𝛬 = 1, D = Dn =
[01×2mng]T and 𝜋(t) = 0:

un = KT
x X + KT

r r − Dn, (26)

where r ∈ ℜ3, Kx ∈ ℜ6×3, and Kr ∈ R3×3 are the ref-
erence input (Xr, Yr, and Zr), control gain for the states,
and control gain for the reference input, respectively. When
Equation 26 is used for the nominal system, the nominal
closed-loop dynamics is obtained, which is given below:

Ẋn = (A + BnKT
x )Xn + BnKT

r r. (27)

In Equation 27, Kx can be determined by any linear control
design method, such as pole placement or linear quadratic
regulator. Defining Am = A + BnKT

x , nominal plant output is
obtained as

yn = C(sI − Am)−1BnKT
r r. (28)

For a constant r, the steady-state plant output can be calcu-
lated as

yss = −CA−1
m BnKT

r r. (29)

Using KT
r = −(CA−1

m Bn)−1, it is obtained that

lim
t→∞

(yn − r) = 0. (30)

As a result, the reference model dynamics is determined as

Ẋm = AmXm + Bmr, (31)

where

Am = A + BnKT
x , (32)

and

Bm = BnKT
r (33)

= −Bn
(
CA−1

m Bn
)−1

. (34)

3.1.2 Adaptive controller design
When uncertainties are considered in the system dynam-
ics (Equation 20), the fixed controller gains introduced in

Equation 26 must be replaced with their corresponding adap-
tive estimates:

uMRAC = K̂T
x X + K̂T

r r + D̂, (35)

with the adaptive laws given below that can be shown to result
in a stable closed-loop system,42,43

̇̂Kx = −Γx
(
XeTPBn + 𝜎x||e||K̂x

)
, (36)

̇̂Kr = −Γr
(
reTPBn + 𝜎r||e||K̂r

)
, (37)

̇̂D
T
= −ΓD

(
eTPBn + 𝜎D||e||D̂) , (38)

where e = X − Xm, 𝛤x ∈ ℜ6×6, 𝛤r ∈ ℜ3×3, and 𝛤D ∈ ℜ
are adaptive gains, 𝜎x, 𝜎r, and 𝜎D are positive scalar gains of
e-modification terms, and P ∈ ℜ6×6 is the symmetric solution
of the Lyapunov equation

AT
mP + PAm = −Q, (39)

where Q ∈ ℜ6×6 is a positive definite matrix. However, it
is noted that in this formulation, as mentioned earlier, it is
assumed that the inner loop controller is perfect, and thus,
no additional error terms appear in system dynamics due the
transients of the inner loop. This assumption is violated in
practice, and the attitude error dynamics from the inner loop
will enter as additional disturbances to the dynamics provided
in Equation 20. In the overall stability analysis of the cascaded
control framework, it will be shown that with an additional
quadratic e-modification robustifying term in one of the adap-
tive laws, the boundedness of all closed-loop system signals
can be shown. The resulting adaptive laws are given as

̇̂Kx = −Γx
(
XeTPBn + 𝜎x||e||K̂x + 𝛾x||e||2K̂x

)
, (40)

̇̂Kr = −Γr
(
reTPBn + 𝜎r||e||K̂r

)
, (41)

̇̂D
T
= −ΓD

(
eTPBn + 𝜎D||e||D̂) , (42)

where the term 𝛾x, used in the modified adaptive law
(Equation 40), is a positive scalar. It is noted that the use of
the newly added term “𝛾x||e||2K̂x” will be clear in the overall
stability analysis.

3.2 Attitude reference calculation

Using the translational part (first 3 rows) of Equations 2 to 9
and incorporating the disturbance term 𝜋(t), we obtain that

mẌ = (cΨcΘc𝜃f − (cΦsΘcΨ + sΦsΨ)s𝜃f )u1 + Wx + 𝜋x(t), (43)

mŸ = (sΨcΘc𝜃f − (cΦsΘsΨ − sΦcΨ)s𝜃f )u1 + Wy + 𝜋y(t), (44)

mZ̈ = (−sΘc𝜃f − cΦcΘs𝜃f )u1 + mg + Wz + 𝜋z(t), (45)

where Wx, Wy, and Wz are the components of the lift-drag
forces along 3 axes, which are given in Equation 14.
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Similary, 𝜋x, 𝜋y, and 𝜋z are the components of the disturbance
term along these axes. It is important to note that, as stated in
Remark 2, the wing forces are computable and therefore will
be canceled in the controller implementation. Accordingly,
the applied control inputs will be calculated as ui

MRAC − Ŵj,
where i = 1, 2, 3, j = x, y, z, and Ŵ refers to the computed val-
ues of the wing forces. As seen from Equations 20 and 43 to
45, these calculated control inputs will correspond to the pro-
jections of the total thrust u1 on the x-axis, y-axis, and z-axis:

u1
MRAC − Ŵx = (cΨcΘc𝜃f − (cΦsΘcΨ + sΦsΨ)s𝜃f )u1, (46)

u2
MRAC − Ŵy = (sΨcΘc𝜃f − (cΦsΘsΨ − sΦcΨ)s𝜃f )u1, (47)

u3
MRAC − Ŵz = (−sΘc𝜃f − cΦcΘs𝜃f )u1. (48)

It is important to note that the D term in Equation 20 addresses
the gravitational force mg. In light of Equations 14 and 15,
it is clear that Wx, Wy, and Wz (and therefore their computed
values) are dependent on the attitude of the vehicle, ie,[Wx

Wy
Wz

]
= Rbw

⎡⎢⎢⎣
F1

D + F2
D + F3

D + F4
D

0
F1

L + F2
L + F3

L + F4
L

⎤⎥⎥⎦ , (49)

where the lift and drag forces, Fi
L and Fi

D, are given in
Equation 15.

The total thrust u1 and the desired attitude angles Φd and
Θd can be found using Equations 46 to 48 as

u1 =
√(

u1
MRAC − Ŵx

)2 +
(
u2

MRAC − Ŵy
)2 +

(
u3

MRAC − Ŵz
)2
,

(50)

Φd = arcsin

(
−𝜌1

u1s𝜃f

)
, (51)

Θd = arcsin
⎛⎜⎜⎝
−
(
u3

MRAC − Ŵz
)

u1c𝜃f − u1𝜌2s𝜃f cΦd

(𝜌2)2 +
(
u3

MRAC − Ŵz
)2

⎞⎟⎟⎠ , (52)

where

𝜌1 =
(
u1

MRAC − Ŵx
)

sΨd −
(
u2

MRAC − Ŵy
)

cΨd , (53)

𝜌2 =
(
u1

MRAC − Ŵx
)

cΨd +
(
u2

MRAC − Ŵy
)

sΨd . (54)

One may obtain singular or degenerate configurations for cer-
tain Φ and Θ values, since both sides of Equations 46 to 48
are functions of the vehicle attitude due to the existence of lift
and drag force terms. Since the flight trajectory of the vehi-
cle in this study necessitates a VTOL motion followed by a
transition to horizontal flight and then back to VTOL mode
for landing, throughout the study and simulations, the solu-
tions given by Equations 50 to 52 is used to calculate the total
thrust and desired attitude angles. In addition, in simulation
studies, we used hard limits for the desired attitude angles to

prevent feeding excessively large angles as references to the
inner control loop. We leave the singular or degenerate con-
figurations for which Φd and Θd can not be obtained uniquely
as a future work.

It is noted that, different from similar works in the liter-
ature, the desired attitude angles are functions of the wing
angles. The desired yaw angle, Ψd, can be chosen by the UAV
operator that would be appropriate for the mission at hand.
These required attitude angles are given to the lower-level atti-
tude controller as references. The nonlinear adaptive attitude
controller is described in the next section.

3.3 Nonlinear adaptive control design

To force the UAV to follow the requested attitude angles,
in the presence of uncertainties, we used a nonlinear adap-
tive controller similar to 1 study.44 Defining u′ = ETMt,
Equation 17 can be rewritten as

M(𝛼w)Ω̇w + C(𝛼w,Ωw)Ωw = u′. (55)

Equation 55, which describes the rotational dynamics of the
vehicle, can be parameterized in a way such that the vector
consisting of the diagonal elements of the moment of inertia
of the UAV, IUAV = [Ixx, Iyy, Izz]T, appears linearly. This trans-
formation is needed so that the uncertain moment of inertia
terms appears in a form that is suitable for the adaptive control
design:

Y(𝛼w, �̇�w, �̈�w)IUAV = u′. (56)

Consider the following definition

s = ̇̃𝛼w + Λs�̃�w, (57)

where �̃�w = 𝛼w −𝛼wd, 𝛼wd is the desired value of 𝛼w and 𝛬s ∈
ℜ3×3 is a symmetric positive definite matrix. Equation 57 can
be modified as

s = �̇�w − �̇�wr, (58)

where

�̇�wr = �̇�wd − Λs�̃�w. (59)

A matrix Y ′ = Y ′(𝛼w, �̇�w, �̇�wr, �̈�wr) can be defined, to be used
in linear parameterization of Equation 55, as in the case of
Equation 56, such that

M(𝛼w)�̈�wr + C(𝛼w,Ωw)�̇�r = Y ′(𝛼w, �̇�w, �̇�wr, �̈�wr)IUAV . (60)

It can be shown that the following nonlinear controller,

uNadp ≡ u′ = Y ′ÎUAV − KDs, (61)

where KD ∈ ℜ3×3 is positive definite matrix and ÎUAV is an
estimate of the uncertain parameter I, with an adaptive law

̇ÎUAV = −ΓIY ′Ts, (62)

where 𝛤I is the adaptation rate, stabilizes the rotational
closed-loop system, and makes the error �̃�w converge to 0.
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The total thrust u1 is provided in Equation 50. The rest of
the control inputs in Equation 9 can be calculated as in the
previous study37 by first defining u′′ =

(
E(𝛼w)T

)−1u′ and
performing the following operations:

u3 =
u′′

2

s𝜃f

, (63)

[
u2
u4

]
=
[

s𝜃f −c𝜃f

c𝜃f s𝜃f

]−1 [ u′′
1

u′′
3

]
. (64)

Once these control inputs are determined, the thrusts created
by the rotors can be calculated using linear relationships given
in Equations 10 to 13.

Remark 3. The required translational and rotational states
of the UAV can be obtained by the help of several onboard
sensors, such as Global Positioning System (GPS) antennas
and receivers and Inertial Measurement Unit (IMU) units,
processors, and algorithms, which form a full GPS Inertial
Navigation System. It is noted that no state observer that
needs exact plant dynamics is assumed to be available for the
development of the proposed control algorithm. The infor-
mation about the details of the UAV state measurements and
estimation can be obtained from the literature.45

3.4 Overall closed-loop stability

In this section, the stability of the tilt-wing UAV together
with the nonlinear hierarchical adaptive controller is investi-
gated. Before starting this investigation, system dynamics is
converted to a more suitable form for stability analysis, below.

Consider the closed-loop dynamics given in Equation 20,
where it is assumed that the UAV is a simple mass and is
controlled via the control input uMRAC in the presence of para-
metric uncertainty, lift and drag forces, gravity, and unknown
external disturbances. (Note that in the implementation, the
computed lift and drag forces are canceled in the control sig-
nal and the uncertainty in this computation is incorporated in
the disturbance term, as stated in Remark 2.) Adaptive con-
trol input uMRAC is designed based on this assumption. This
assumption is valid except that the realization of uMRAC is
imperfect: The inner loop controller is used to achieve the nec-
essary attitude angles that would result in the realization of
uMRAC, and since the inner loop controller does not have infi-
nite bandwidth, uMRAC is realized with certain errors. Specif-
ically, introducing attitude-tracking errors in Equation 46 to
48, the realization of uMRAC is given as

u1
MRAC =

(
cΨd+eΨcΘd+eΘcΘf −(

cΦd+eΦsΘd+eΘcΨd+eΨ + sΦd+eΦsΨd+eΨ
)

s𝜃f

)
u1,

(65)

u2
MRAC =

(
sΨd+eΨcΘd+eΘc𝜃f

−
(
cΦd+eΦsΘd+eΘsΨd+eΨ − sΦd+eΦcΨd+eΨ

)
s𝜃f

)
u1,

(66)

u3
MRAC = (−sΘd+eΘc𝜃f − cΦd+eΦcΘ+eΘs𝜃f )u1, (67)

where Φd, Θd, and Ψd are the desired attitude angles and eΦ,
eΘ, and eΨ are the attitude errors. It is noted that there is no
error term introduced to u1 since the calculated desired thrust
is directly used without further realization by the inner loop
controller.

Consider the following trigonometric relationships:

sin(a + b) = sin(a) + sin(b∕2)cos(a + b∕2),
cos(a + b) = cos(a) − sin(b∕2)sin(a + b∕2).

(68)

Using Equation 68 and following the same procedure given
in another study,46 Equations 65 to 67 can be rewritten as

u1
MRAC = (cΨd cΘd c𝜃f − (cΦd sΘd cΨd + sΦd sΨd )s𝜃f

+ g1(Φd,Θd,Ψd, eΦ, eΘ, eΨ, 𝜃f ))u1

= u1
Md + u1g1(.),

(69)

u2
MRAC = (sΨd cΘd c𝜃f − (cΦd sΘd sΨd − sΦd cΨd )s𝜃f

+ g2(Φd,Θd,Ψd, eΦ, eΘ, eΨ, 𝜃f ))u1

= u2
Md + u1g2(.),

(70)

u3
MRAC = (−sΘd c𝜃f − cΦd cΘd s𝜃f + g3(Φd,Θd, eΦ, eΘ, 𝜃f ))u1

= u3
Md + u1g3(.),

(71)
where the terms ui

Md, i = 1, 2, and3, refer to the ith desired
MRAC control input and the terms u1gi(.) are the errors,
which consist of sine and cosine functions of the desired
attitude angles, attitude errors, and the front wing angle,
in the realization of the control inputs. Defining ud

MRAC =
[u1

Md u2
Md u3

Md]
T and using Equations 69 to 71, and noting

that the total thrust u1 is equal to ||ud
MRAC||, Equation 20 can

be rewritten as

Ẋ = AX + BnΛ

(
ud

MRAC + ||ud
MRAC||

[ g1(.)
g2(.)
g3(.)

]
+ D + 𝜋(t)

)
.

(72)
The following lemma, regarding an upper bound on ||ud

MRAC||,
will be useful in providing a proof for the main theorem of
this paper.

Lemma 1. For a bounded reference r,||ud
MRAC|| ⩽ c1 +

c2||e|| + c3||K̃x|| + ||K̃x||||e|| + c4||K̃r|| + ||D̃||, where ci
are positive scalars, e ∈ ℜ6 is the error vector between the
reference model states and the system states, and

K̃x = K̂x − K∗
x ,

K̃r = K̂r − K∗
r ,

D̃ = D̂ − D∗,

(73)

with (.)* being the “ideal value” and ̂(.) being the estimated
value of a parameter.

It is noted that here and in the rest of the paper, Frobenius
norm is used.
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Remark 4. As explained earlier, the control signal given in
Equation 35 is the desired control input provided by the posi-
tion controller. Since in the controller development, it was
assumed that this signal is realized perfectly; the superscript
“d” was not used. In the stability proof, however, the position
control input is represented with ud

MRAC, which removes this
assumption.

Proof. (Proof of lemma 1)
Using Equation 73, Equation 35 can be rewritten as

ud
MRAC = K∗T

x X + K̃xX + K∗T
r r + K̃rr + D∗ + D̃. (74)

Using the fact that e=X − Xm, Equation 74 can be rewritten as

ud
MRAC = K∗T

x Xm +K∗T
x e+ K̃xXm + K̃xe+K∗T

r r+ K̃rr+D∗ + D̃.

(75)
Taking the norm of both sides of Equation 75 and using the
triangular inequality, it is obtained that||ud

MRAC|| ⩽ ||K∗T
x ||||Xm|| + ||K∗T

x ||||e|| + ||K̃x||||Xm||
+ ||K̃x||||e|| + ||K∗T

r ||||r|| + ||K̃r||||r||
+ ||D∗|| + ||D̃||.

(76)
K∗

x , K∗
r , and D* are constant matrices. Also, it is known that

the states of the reference model Xm are bounded. Defining||K∗
x || ≡ k1, ||K∗

r || ≡ k2, ||D*|| ≡ k3, ||r|| ≡ k4, and ||Xm|| ≡
k5, Equation 76 can be rewritten as||ud

MRAC|| ⩽ k1k5 + k1||e|| + k5||K̃x|| + ||K̃x||||e|| + k2k4

+ k4||K̃r|| + k3 + ||D̃||.
(77)

Defining c1 ≡ k1k5 + k2k4 + k3, c2 ≡ k1, c3 ≡ k5, and c4 ≡ k4,
it is obtained that

||ud
MRAC|| ⩽ c1+c2||e||+c3||%K

x
||+||%K

x
||||e||+c4||%K

r
||+|| %D ||.

(78)
This completes the proof of Lemma 1.

The following lemma will also be instrumental in proving
the main theorem of this work.

Lemma 2. Ḡ ⩽ k||�̃�𝜔||, where �̃�𝜔 is the attitude-tracking
error vector and k is a positive constant.

Remark 5. A classical hierarchical controller is designed in
previous study36 for a similar plant, where the errors intro-
duced by the inner loop controller is investigated. It is noted
that regardless of the controller type, the same error terms will
appear as disturbances in the outer loop controller. A proof
of Lemma 2 is given in another study,36 and thus, the proof is
omitted here.

Theorem 1. All the signals in the closed-loop system, con-
sisting of the UAV dynamics (Equation 72), the reference
model (Equation 31), MRAC (Equations 35-42), and nonlin-
ear adaptive controller (Equations 61 and 62), are uniformly
ultimately bounded (UUB), which indicates that the bound
on the signals does not depend on the initial time t0 and

that this uniform bound holds after a certain time T, ie, for
t ⩾ t0 + T. It is noted that in UUB, unlike Lyapunov sta-
bility, the bound on the signals cannot be made arbitrarily
small with proper initial conditions. In practice, this bound
is a function of uncertainties and disturbances.42 In addition,
defining G(.) = [g1(.)g2(.)g3(.)] T , the following are true:

lim
t→∞

G(.) = 0, (79)

sup ||G(.)|| ⩽ k||Λ−1
s ||

×
((

K − 𝜆min(Γ−1) × ||ĨUAV ||2) ∕�̄�max(M)
)1∕2

,

(80)
where 0 ∈ ℜ3 is a vector of zeros, k ∈ ℜ+ is a constant, “sup”
refers to “supremum,” �̄�max is the bound on the maximum
eigenvalue of M, and

K = 1
2

(
s(0)TM(0)s(0) + ĨUAV (0)TΓ−1

I ĨUAV (0)
)
. (81)

Proof. (Proof of Theorem 1:)
In light of Remark 4, substituting the control input
Equation 35 into Equation 72, it is obtained that

Ẋ =
(
A + BnΛK̂T

x
)

X

+ BnΛ

(
K̂T

r r + D̂ + ||ud
MRAC||

[ g1(.)
g2(.)
g3(.)

]
+ D + 𝜋(t)

)
.

(82)
Assuming that there exist K∗

x and K∗
r such that

A + BnΛK∗T
x = Am,

BnΛK∗T
r = Bm,

(83)

and defining K̂x = K∗
x + K̃x, K̂r = K∗

r + K̃r and D̂ = D∗ + D̃ =
−D + D̃, Equation 82 can be rewritten as

Ẋ = AmX + Bmr + BnΛK̃T
x X + BnΛK̃T

r r

+ BnΛD̃ + BnΛ||ud
MRAC||

[ g1(.)
g2(.)
g3(.)

]
+ BnΛ𝜋(t).

(84)

Subtracting the reference model Equation 31 from
Equation 84, it is obtained that

ė = Ame + BnΛK̃T
x X + BnΛK̃T

r r + BnΛD̃

+ BnΛ||ud
MRAC||

[ g1(.)
g2(.)
g3(.)

]
+ BnΛ𝜋(t),

(85)

where e = X − Xm.
Consider the following Lyapunov function candidate

V = eTPe+ tr
([

K̃T
x Γ−1

x K̃x + K̃T
r Γ−1

r K̃r + D̃TΓ−1
D D̃

]
Λ
)
, (86)

where “tr” refers to the trace operation and P is a symmetric
positive definite matrix that is the solution of the Lyapunov
equation
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AT
mP + PAm = −Q, (87)

where Q ∈ ℜ6×6 is a symmetric positive definite matrix. Tak-
ing the derivative of both sides of Equation 86, it is obtained
that

V̇ = ėTPe + eTPė

+ 2tr
([

K̃T
x Γ−1

x
̇̃Kx + K̃T

r Γ−1
r

̇̃Kr + D̃TΓ−1
D

̇̃D
]
Λ
)

=
(
eTAT

m + XTK̃xΛBT
n + rTK̃rΛBT

n + D̃TΛBT
n

+G(.)T ||ud
MRAC||ΛBT

n + 𝜋(t)TΛBT
n
)

Pe
+ eTP

(
Ame + BnΛK̃T

x X + BnΛK̃T
r r + BnΛD̃

+BnΛ||ud
MRAC||G(.) + BnΛ𝜋(t)

)
+ 2tr

([
K̃T

x Γ−1
x

̇̃Kx + K̃T
r Γ−1

r
̇̃Kr + D̃TΓ−1

D
̇̃D
]
Λ
)

= eT (AT
mP + PAm

)
e + 2eTPBnΛ

(
K̃T

x X + K̃T
r r + D̃

+||ud
MRAC||G(.) + 𝜋(t)

)
+ 2tr

([
K̃T

x Γ−1
x

̇̃Kx + K̃T
r Γ−1

r
̇̃Kr + D̃TΓ−1

D
̇̃D
]
Λ
)

= −eTQe + 2eTPBnΛK̃T
x X + 2tr

([
K̃T

x Γ−1
x

̇̃Kx

]
Λ
)

+ 2eTPBnΛK̃T
r r + 2tr

([
K̃T

r Γ−1
r

̇̃Kr

]
Λ
)
+ 2eTPBnΛD̃

+ 2tr
([

D̃TΓ−1
D

̇̃D
]
Λ
)
+ 2eTPBnΛ||ud

MRAC||G(.)

+ 2eTPBnΛ𝜋(t),
(88)

where G(.) = [g1(.)g2(.)g3(.)]T. Using the property of the
trace operator, aTb = tr(baT), where a and b are vectors,
Equation 88 can be rewritten as

V̇ = −eTQe + 2tr
([

K̃T
x Γ−1

x
̇̃Kx + K̃T

x XeTPBn

]
Λ
)

+ 2tr
([

K̃T
r Γ−1

r
̇̃Kr + K̃T

r reTPBn

]
Λ
)

+ 2tr
([

D̃TΓ−1
D

̇̃D + D̃TeTPBn

]
Λ
)

+ 2eTPBnΛ||ud
MRAC||G(.) + 2eTPBnΛ𝜋(t).

(89)

Substituting Equations 40 to 42 in Equation 89, it is obtained
that

V̇ = −eTQe + 2tr
([
−𝜎xK̃T

x ||e||K̂x − 𝛾xK̃T
x ||e||2K̂x

]
Λ
)

+ 2tr
(
−𝜎rK̃T

r ||e||K̂rΛ
)
+ 2tr

(
−𝜎DD̃T ||e||D̂Λ

)
+ 2eTPBnΛ||ud

MRAC||G(.) + 2eTPBnΛ𝜋(t)

⩽ −||e||2𝜆min(Q) + 2 tr
([
−𝜎xK̃T

x ||e||K̂x − 𝛾xK̃T
x ||e||2K̂x

−𝜎rK̃T
r ||e||K̂r − 𝜎DD̃T ||e||D̂]Λ)

+ 2||e||||PBnΛ||||ud
MRAC||||G(.)|| + 2||e||||PBnΛ||�̄�,

(90)

where 𝜆min(Q) refers to the minimum eigenvalue of the matrix
Q and �̄� is the upper bound of 𝜋(t). Using the fact that
the norm of the vector G(.) is bounded by a constant Ḡ,

since the vector terms consist of sines and cosines, and using
Lemma 1, it is obtained from Equation 90 that

V̇ ⩽ −||e||2𝜆min(Q) + 2 tr
([
−𝜎xK̃T

x ||e||K̂x − 𝛾xK̃T
x ||e||2K̂x

−𝜎rK̃T
r ||e||K̂r − 𝜎DD̃T ||e||D̂]Λ)

+ 2Ḡ||e||||PBnΛ|| (c1 + c2||e|| + c3||K̃x|| + ||K̃x||||e||
+c4||K̃r|| + ||D̃||) + 2||e||||PBnΛ||�̄�.

(91)
Completing the square, the first term in the trace operation
parenthesis can be rewritten as follows:

tr
([
−𝜎xK̃T

x ||e||K̂x
]
Λ
)
⩽ 𝜆min(Λ) × tr

(
−𝜎xK̃T

x ||e|| (K∗
x + K̃x

))
= −𝜎x||e||𝜆min(Λ)

(
K∗

x

2
+ K̃x

2

−
K∗

x

2

2)
⩽ −𝜎x||e||𝜆min(Λ)

(
K̃x

2 − K∗
x

2
)
.

(92)
Using the same procedure, Equation 91 can be rewritten as

V̇ ⩽ −||e||2𝜆min(Q) − 𝜎x||e||𝜆min(Λ) K̃x
2

+ 𝜎x||e||𝜆min(Λ)K∗
x

2

− 𝛾x||e||2𝜆min(Λ) K̃x
2 + 𝛾x||e||2𝜆min(Λ)K∗

x
2

− 𝜎r||e||𝜆min(Λ) K̃r
2 + 𝜎r||e||𝜆min(Λ)K∗

r
2

− 𝜎D||e||𝜆min(Λ) D̃ 2 + 𝜎D||e||𝜆min(Λ)D∗ 2

+ 2Ḡ||e||||PBnΛ|| (c1 + c2||e|| + c3||K̃x|| + ||K̃x||||e||
+c4||K̃r|| + ||D̃||) + 2||e||||PBnΛ||�̄�

= −||e||(||e||{𝜆min(Q) + 𝛾x𝜆min(Λ) K̃x
2

− 𝛾x𝜆min(Λ)K∗
x

2 − 2Ḡ||PBnΛ||||K̃x||
− 2Ḡ||PBnΛ||c2

}
+ 𝜎x𝜆min(Λ) K̃x

2 − 𝜎x𝜆min(Λ)K∗
x

2

+ 𝜎r𝜆min(Λ) K̃r
2 − 𝜎r𝜆min(Λ)K∗

r
2 + 𝜎D𝜆min(Λ) D̃ 2

− 𝜎D𝜆min(Λ)D∗ 2 − 2Ḡ||PBnΛ||c1

− 2Ḡ||PBnΛ||c3||K̃x|| − 2Ḡ||PBnΛ||c4||K̃r||
− 2Ḡ||PBnΛ||||D̃|| − 2||PBnΛ||�̄�).

(93)
Assume that there exists an 𝜀 > 0 such that

𝜆min(Q) + 𝛾x𝜆min(Λ) K̃x
2 − 𝛾x𝜆min(Λ)K∗

x
2 − 2Ḡ||PBnΛ||||K̃x||

− 2Ḡ||PBnΛ||c2 − 𝜀 > 0.
(94)

Using Equation 94, it can be concluded that V̇ ⩽ 0 in the
complement of the set S, where S is defined as

S ≡

{(
e, K̃x, K̃r

) ||𝜀||e|| + 𝜎x𝜆min(Λ) K̃x
2

− 𝜎x𝜆min(Λ)K∗
x

2 + 𝜎r𝜆min(Λ) K̃r
2

− 𝜎r𝜆min(Λ)K∗
r

2 + 𝜎D𝜆min(Λ) D̃ 2

− 𝜎D𝜆min(Λ)D∗ 2 − 2Ḡ||PBnΛ||c1

− 2Ḡ||PBnΛ||c3||K̃x|| − 2Ḡ||PBnΛ||c4||K̃r||
− 2Ḡ||PBnΛ||||D̃|| − 2||PBnΛ||�̄� ⩽ 0

}
.

(95)
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Therefore, using standard arguments, it can be shown43 that
all the solutions are UBB. This completes the proof of the
first part of Theorem 1. It is noted that the inclusion of the
quadratic e-modification robustifying term in Equation 40
is beneficial in obtaining a negative semidefinite Lyapunov
function derivative.

It is noted that the assumed system property (Equation 94)
can be investigated further by completing the square and
rewriting the inequality as

𝜆min(Q) +

(√
𝛾x𝜆min(Λ) K̃x − Ḡ||PBnΛ||√

𝛾x𝜆min(Λ)

)2

− 𝛾x𝜆min(Λ)K∗
x

2 − Ḡ2||PBnΛ||2
𝛾x𝜆min(Λ)

− 2Ḡ||PBnΛ||c2 − 𝜀 > 0.

(96)

A sufficient condition to satisfy this inequality is given as

𝜆min(Q)−𝛾x𝜆min(Λ)K∗
x

2
>

Ḡ2||PBnΛ||2
𝛾x𝜆min(Λ)

+2Ḡ||PBnΛ||c2+𝜀.

(97)

Remark 6. Both the bound on the tracking error in
Equation 95 and the restriction on system parameters given
in Equation 97 are directly related to the size of the param-
eter Ḡ, which is an upper bound for the vector G(.), which
consists of elements that are sine and cosine functions of the
attitude-tracking errors. These elements were introduced in
Equation 69 to 71. In the above development, a conservative
approach is taken about this upper bound by simply stating
that since these vector elements are sine and cosine func-
tions of the attitude errors, the vector norm has to be bounded
by some constant Ḡ. Below, in the second and third parts of
the proof, the vector G(.) is investigated further to show that
(1) limt→∞G(.) = 0, (2) the supremum norm of the vector
G(.) can be made arbitrarily small by choosing the nonlin-
ear adaptive controller constant 𝛬s large enough. In practice,
this choice of 𝛬s is limited by the high-frequency unmodeled
dynamics of the system together with measurement noise.47

From the first part of Theorem 1, which is proven above,
it is known that the states X,Y, Z, and the adaptive param-
eter errors K̃x, K̃r, and D̃ are bounded. Therefore, for a
bounded reference r, the control input (Equation 35) is
bounded. This implies that the total thrust u1 determined
in Equation 50 is bounded, which shows that the desired
attitude angles Φd and Θd, calculated in Equations 51 and
52, which are passed to the inner loop controller as refer-
ence inputs, are also bounded. Therefore, the attitude control
loop, explained in subsection 3.3 can be shown to be asymp-
totically stable,47 meaning that the attitude-tracking error
�̃�𝜔 = [(Φd − Φ) (Θd − Θ) (Ψd − Ψ)]T converges to zero
asymptotically. Once this is established, it is straightforward
to see that limt→∞G(t) = 0 ∈ ℜ3. This completes the proof
of the second part of Theorem 1.

It can be shown that the derivative of the following Lya-
punov function,

V1(t) =
1
2

[
sTMs + ĨUAVΓ−1

I ĨUAV
]
, (98)

is negative semidefinite.47 This implies that

1
2

[
s(t)TM(t)s(t) + ĨUAV (t)Γ−1

I ĨUAV (t)
]

⩽ 1
2

(
s(0)TM(0)s(0) + ĨUAV (0)TΓ−1

I ĨUAV (0)
)
,∀t ⩾ 0.

(99)
After some manipulation, it is obtained from Equation 100
that

1
2

[
s(t)TM(t)s(t) + ĨUAV (t)Γ−1

I ĨUAV (t)
]

⩽ 1
2

(
s(0)TM(0)s(0) + ĨUAV (0)TΓ−1

I ĨUAV (0)
)
,∀t ⩾ 0.

(100)
After some manipulation, it is obtained from Equation 100
that||s(t)|| ⩽ ((K − 𝜆min(Γ−1

I )||ĨUAV ||2) ∕�̄�max(M)
)1∕2

, (101)

where

K = 1
2

(
s(0)TM(0)s(0) + ĨUAV (0)TΓ−1

I ĨUAV (0)
)
. (102)

From the definition of s given in Equation 57, it is obtained
that ||�̃�𝜔|| ⩽ ||s(t)|| Λ−1

s (I − e−tΛs) ⩽ ||s(t)|| Λ−1
s . (103)

Using Lemma 2 and Equations 101 and 103, it is straightfor-
ward to prove the third part of Theorem 1. This completes the
proof of the third part of Theorem 1.

Remark 7. The implication of Equation 79 is that the “distur-
bance” [g1(.)g2(.)g3(.)]T introduced to the closed-loop system
(Equation 82), because of the dynamics of the attitude con-
trol loop, converges to zero. The speed of convergence is
determined by the selection of the nonlinear adaptive con-
trol parameters. For all practical purposes, the convergence
of the disturbance to zero means that the origin remains to be
an equilibrium point of the proposed closed-loop control sys-
tem structure even though robustfiying terms are used in the
adaptive control laws (Equations 36-38).

Remark 8. The implication of Equation 80 is that the suf-
ficiency condition (Equation 97) is not too restrictive since
Ḡ can be made small with a large enough 𝛬s. As mentioned
earlier, the size of 𝛬s is limited by measurement noise and
unmodeled high frequency dynamics.

4 IMPLEMENTATION SCENARIO

To examine the behavior of the tilt-wing UAV, during
takeoff (quadrotor mode), horizontal flight (fixed wing
mode), and transitions between these modes, we created a
flight scenario as shown in Figure 4. The UAV takes off
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vertically with 90◦ wing angles (0-10 seconds), and after
reaching a desired altitude, it changes its wing angles to 20◦

(10-20 seconds). After flying in horizontal mode for about
650 m (20-65 seconds), it changes its wing angles back to
90◦, while slowing down (65-100 seconds). Then, it lands
as a quadrotor (100-110 seconds). It is noted that during

level flight, at t = 61 seconds, 2 batteries, wing covers and
winglets, fall, all from the right wing. Furthermore, Dryden
wind gust model48 is used to create external disturbances.
Below, the changes in mass, moment of inertia, and center
of gravity are investigated because of wing movements and
failures. Also, a trajectory generation method is given.

FIGURE 4 Flight scenario. [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 Inertia variations during transition from quadrotor mode to fixed-wing mode, before the failure. [Colour figure can be viewed at
wileyonlinelibrary.com]

wileyonlinelibrary.com
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Remark 9. The above trajectory description also explains
the proposed method for the transitions between quadrotor
and fixed-wing modes: After a vertical takeoff with 90◦ wing
angles, the first transition occurs from the quadrotor mode to
fixed-wing mode, where the altitude is kept fixed and wing
angles are moved from 90◦ to 20◦. During this transition, the
aircraft pitch angle increases to prevent the loss of the lift
force. After the wings obtain 20◦ angle, the aircraft moves for-
ward horizontally as a fixed-wing aircraft causing the pitch
angle to go back to 0◦. As the aircraft gets closer to the tar-
get destination, wings start to move from 20◦ angle to 90◦ and
the aircraft starts to slow down until it comes to a full stop in
the air while keeping the altitude constant. When the aircraft
stops its horizontal movement, the wing angles reach 90◦ and
then the aircraft, now in the quadrotor mode, lands on the
ground vertically. The pitch and wing-angle variations during
these transitions can be seen more clearly in the simulation
results in Section 5.

4.1 Moment of inertia variations during transition
stages

The vehicle’s computer-aided design model generated in
SolidWorks was used to extract the principal moment of
inertia changes during the transition. For the transition from

quadrotor mode to fixed-wing mode, wing angles were
changed from 90◦ to 0◦ with 5◦ intervals, and for each interval,
principal moment of inertias was calculated in SolidWorks.
Then, cubic polynomials are used for curve fitting. The result-
ing curves can be seen in Figure 5.

The same procedure is used to calculate the variations in the
moment of inertias during the transition from the fixed-wing
mode to quadrotor mode. However, during this transition, the
UAV model is different than the one in the first transition
because of the missing parts that are lost at the moment of
failure at t = 61 seconds. The resulting curves are presented
in Figure 6.

In the simulations, these curves were used to obtain the
parameter changes during the transition stages and during
the failure. Percent changes in these system parameters are
presented in Table 1.

4.2 Center of gravity variation due to the failure

In addition to moment of inertia and mass changes, center
of gravity of UAV changes with the failure. This change is
modeled as an external disturbance to UAV position dynam-
ics, which consists of the moments Mx, My, and Mz that are
calculated as

FIGURE 6 Inertia variations during transition from fixed-wing mode to quadrotor mode, after the failure. [Colour figure can be viewed at wileyonlinelibrary.
com]

wileyonlinelibrary.com
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TABLE 1 Percent changes of principal moment of inertias and mass

I xx, I xx, I xx, Mass,
kg/m2 kg/m2 kg/m2 kg

Percent change, %

(After first failure) 15.65 7 7.93 7.48

Percent change, %

(Overall) 22.2 6.55 8.78 7.48

[Mx
My
Mz

]
=

[ rx
ry
rz

]
×

[ Fx
Fy
Fz

]
,

[ Fx
Fy
Fz

]
= Rbw

[
0
0

maf g

]
,

(104)

where Rbw is the rotation matrix that gives orientation of the
body frame with respect to the world frame, g is the grav-
itational accelaration, maf is the mass of the UAV after the
failure, and rx, ry, and rz are distances of the center of grav-
ity to the original position before the failure, measured along
the axes.

4.3 Trajectory generation

4.3.1 Forward velocity determination
Tilt-wing UAV tilts its wings during long-duration flights to
benefit from the lift forces and flies like a fixed-wing UAV
as presented in Figure 1, right picture. However, position ref-
erence along the x-axis of world coordinate frame may force
the vehicle to fly with relatively slow velocities, which results
in a dramatic increase at the pitch angle. Therefore, a min-
imum forward velocity should be identified that results in a
reduced pitch angle during horizontal flight. In this study, a
zero-degree pitch angle is targeted.

To obtain the minimum forward velocity that will lead to a
zero-degree pitch angle during horizontal flight, we recalled
the aerial vehicle position dynamics along the z-axis:

Z̈ = 1
m
[
(−s𝜃c𝜃f − c𝜑c𝜃s𝜃f )u1 + mg + Wz

]
,

where sine and cosine of the angles are denoted by s and c,
respectively. There should be a zero net force along the z-axis
(ie, mZ̈ = 0) for a level flight. Additionally, pitch angle should
be set to zero, which results in

c𝜑s𝜃f u1 − mg = Wz. (105)

Aerodynamic forces along x-axis, y-axis, and z-axis of the
world coordinate frame can be defined as

W(𝜁) = [Wx,Wy,Wz]T

=
⎡⎢⎢⎣ Rwb

⎡⎢⎢⎣
2((Ff

D(𝜃f , vx, vz) + Fr
D(𝜃r, vx, vz))

0
2((Ff

L(𝜃f , vx, vz) + Fr
L(𝜃r, vx, vz))

⎤⎥⎥⎦
⎤⎥⎥⎦ ,

(106)
where Rwb is the rotation matrix between world and body
frame and Fi

L(𝜃f , vx, vz) and Fi
D(𝜃f , vx, vz) are the lift and drag

forces produced by the wings (i = f, r subscripts denote
front and rear angles, respectively). To simplify the analysis,

front and rear wing angles assumed to be equal (𝜃f = 𝜃r).
Therefore, lift and drag forces are defined as

Ff
L(𝜃f , vx, vz) = Fr

L(𝜃r, vx, vz) = FL,

Ff
D(𝜃f , vx, vz) = Fr

D(𝜃r, vx, vz) = FD.

From Equation 106, wing forces along z-axis becomes

Wz = −s𝜃(4FD) + c𝜑c𝜃(4FL).

If the pitch angle is zero, then Wz becomes

Wz = c𝜑(4FL).

Substituting Wz in Equation 105, the lift force that is necessary
for a level flight can be found as

FL =
c𝜑s𝜃f u1 − mg

4c𝜑
. (107)

The lift and drag forces are given as

⎡⎢⎢⎣
Fi

D
0

Fi
L

⎤⎥⎥⎦ = R(𝜃i − 𝛼i)
⎡⎢⎢⎣

1
2
CD(𝛼i)𝜌Av2

𝛼

0
1
2
CL(𝛼i)𝜌Av2

𝛼

⎤⎥⎥⎦ , (108)

where 𝜌 is the air density, A is the wing planform area, and
R(𝜃i − 𝛼i) is the rotation matrix for the rotation around y-axis
that decomposes the forces on the wings onto the body axes.
Defining 𝛽 = 𝜃i − 𝛼i, R(𝛽) becomes

R(𝛽) =

[ c𝛽 0 s𝛽
0 1 0

−s𝛽 0 c𝛽

]
.

v𝛼 is the airstream velocity, which is defined as

v𝛼 =
√

v2
x + v2

z , (109)

where vx and vz are UAV’s velocities along x-axis and y-axis
of the body coordinate frame. 𝛼i is the effective angle of
attack, which is defined as 𝛼i = 𝜃i − (−atan(vz, vx)). Using
Equations 107 and 108, it is obtained that

−2s𝛽CD𝜌Av2
𝛼 + 2c𝛽CL𝜌Av2

𝛼 =
c𝜑s𝜃f u1 − mg

c𝜑
. (110)

The minimum forward velocity in the body coordinate frame
that can achieve zero-degree pitch angle is obtained using
Equations 109 and 110 as

vx =

√
c𝜑s𝜃f u1 − mg

2c𝛽c𝜑CL𝜌A − 2s𝛽c𝜑CD𝜌A
− v2

z . (111)

Using the transformation of linear velocities between the body
and the world frames, Vw = RbwVb, minimum forward linear
velocity in the world frame that can achieve zero-degree pitch
angle can be identified as

Ẋ = c𝜓c𝜃vx + s𝜑s𝜃c𝜓vy − c𝜑s𝜓vy + c𝜑s𝜃c𝜓vz + s𝜑s𝜓vz. (112)
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FIGURE 7 X tracking. [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 8 Y tracking. [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 9 Z tracking. [Colour figure can be viewed at wileyonlinelibrary.com]

wileyonlinelibrary.com
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FIGURE 10 Φ tracking. [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 11 Θ tracking. [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 12 Ψ tracking. [Colour figure can be viewed at wileyonlinelibrary.com]

wileyonlinelibrary.com
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4.3.2 Velocity profile determination
If minimum velocity, which creates enough lift forces to sus-
tain level flight of the UAV, is not achieved, UAV starts to
increase its pitch angle. Therefore, a suitable trajectory is
generated along the x-axis by using so-called linear segments
with parabolic blends. This trajectory has a trapezoidal veloc-
ity profile where a constant velocity can be imposed between
predefined time instances, as well as linear (ramp) veloc-
ity variations. The resulting trajectory consists of quadratic
and linear polynomials with smooth blending between them.
A more detailed analysis of linear segments with parabolic
blends can be found in 1 study.49

Remark 10. In this study, we chose to provide a practical
approach for trajectory generation, where a horizontal flight
with minimum pitch angle is required. However, there may be
applications where the goal is minimizing energy consump-
tion and the resultant pitch angle and speed and wing angle
can be tolerated. In that case, the necessary wing angle and
forward speed combination that would result in maximum lift

to drag ratio should be calculated and a suitable trajectory
should be generated to achieve this combination.

5 SIMULATION RESULTS

In this section, the performance of the proposed adaptive con-
trol framework is investigated using the scenario explained in
the previous section. It is noted that all the simulations are
conducted using a high-fidelity simulation model, in the pres-
ence of uncertainties, disturbances, and measurement noise.
In addition to the changes in the mass, moment of inertia,
and center of gravity, due to the failure, a 10% uncertainty is
assumed in the actuator powers. Also, a 20% actuator power
loss is assumed because of the failure at t = 61 seconds where
2 batteries fall. The performance of the fixed controller used
in earlier studies,37 which is a cascade of a PID controller
(outer loop) and a feedback linearazition + PID controller
(inner loop), is also given as a comparison. As expected, the

FIGURE 13 Control inputs. [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 14 Wind disturbances. [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 15 Wing angles. [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 16 Wing forces. [Colour figure can be viewed at wileyonlinelibrary.com]

adaptive controller outperforms the fixed controller due to its
adaptability to uncertainties.

Figures 7 to 9 show the performance of the controllers for
the position trajectory tracking. The closed-loop system with
the adaptive controller deviates much less from the trajectory
compared with the fixed controller, especially after the failure
instant at t = 61 seconds.

Figures 10 to 12 show the attitude-tracking curves. As seen
from the figures, the system with the proposed controller can
keep its roll (Φ) and yaw (Ψ) angles close to zero. On the other
hand, UAV shows large roll and yaw-angle variations when
the fixed controller is in charge. The 2 controllers are compa-
rable in the variations in the pitch angle (Θ) until the failure
instant, but after the failure at t = 61 seconds, the pitch angle
varies more smoothly with the proposed controller compared
with the fixed controller.

It is noted that although its performance is not as good
as the adaptive controller, the fixed controller can still keep
the closed-loop system under the influence of parametric
uncertainties, center of gravity, mass and moment of inertia
changes as well as actuator power losses, wind disturbances,
and measurement noise. However, the fixed controller pays
the price by outputting very noisy control inputs. As seen
from Figure 13, especially between t = 30 − 60 seconds, the
fixed controller output have high-amplitude high-frequency
components. It is noted that at this time interval, the UAV’s
forward speed reaches its maximum value of ≈ 50 km/h. On
the other hand, the adaptive control inputs are smoother. The
wind disturbances can be seen in Figure 14, where the distur-
bances acting on the UAV are seen to be different at certain

time intervals for different controller implementations due to
speed, orientation, and altitude differences.

Figure 15 shows the movement of the wings during the
flight, and Figure 16 shows the resulting aerodynamic forces
acting on the wings. It is seen that a considerable amount of
lift is generated together with some drag force. For the energy
gain compared to a similar quadrotor without wings to be cal-
culated, it is assumed that the wingless quadrotor would need
less force in the x direction due to zero drag (from the wings)
and more force in the z direction due to the lack of lift. With
these considerations, it is calculated that the quad tilt-wing
UAV spends ≈ 33% less energy, compared with a conven-
tional wingless quadrotor, for the flight scenario used in this
study.

6 CONCLUSIONS

A nonlinear adaptive control framework that works in a
hierarchical structure is proposed for the control of a quad
tilt-wing UAV. The controller development does not need
any linearization of the UAV dynamics. Rigorous stability
analysis of the controller is provided. The controller is imple-
mented using a nonlinear, high-fidelity model of the tilt-wing
UAV, in the presence of uncertainties, actuator failures, struc-
tural failures, center of gravity changes due to these failures,
and the effect of wing-angle variations on moment of inertia.
The implementation results show that the proposed controller
works as intended and performs dramatically better than the
fixed controller used in earlier flight tests.

wileyonlinelibrary.com
wileyonlinelibrary.com
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