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Abstract
Research on  H2 production has recently been directed to the development of cost-efficient and robust heterogeneous cata-
lysts for hydrogen evolution reaction (HER). Given the promising catalytic activities of several cobalt-based systems and 
the robustness of Prussian blue analogues in harsh catalytic processes including water oxidation, a Co–Co Prussian blue 
analogue was investigated as a HER catalyst for the first time. Co–Co Prussian Blue modified fluorine doped tin oxide (FTO) 
electrode demonstrated a significant HER activity with an onset overpotential of 257 mV, a Tafel slope of 80 mV dec−1, and 
a turnover frequency of 0.090 s−1 at an overpotential of 250 mV. Comparative XPS, Infrared, and XRD studies performed 
on pristine and post-catalytic electrodes confirm the stability of the catalyst.
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1 Introduction

Exponential increase in global energy demand and adverse 
climatic changes triggered by extensive usage of carbon-
based fossil fuels stress the importance of clean and sus-
tainable alternative energy sources [1–3]. Hydrogen, with 
a high energy density, appears to be a promising energy 
carrier without any harmful by-products [4, 5]. Produc-
tion of hydrogen from water, however, has emerged to be 
a significant challenge due to lack of efficient and cost-
friendly water reduction catalysts [6–10].  H2 production 
with electrochemical and photochemical water reduction has 
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attained considerable attention over past few decades [11, 
12]. Although platinum and iridium based materials were 
reported to show efficient catalytic activity in reducing water 
at relatively low overpotentials, being precious metals and 
low abundance limit their application in bulk  H2 production 
[13–15]. Hence, the main focus in this field has currently 
been given to the development of water reduction catalysts 
incorporating abundantly-available first row transition metal 
ions [16–19]. Much emphasis has been given to cobalt con-
taining compounds as catalysts for hydrogen evolution reac-
tion (HER) over the past decade for their versatile redox 
chemistry, ease in preparation, and robustness [20–24]. The 
investigation of a molecular pentapyridyl cobalt complex as 
a HER catalyst in water buffered at pH 7 exhibits an onset 
overpotential of 660 mV at Faradaic efficiency close to 100% 
with carbon-free by-products [25]. Cobo et al. reported the 
investigation of cobalt-based catalytic material  (H2-Cocat) 
for electrocatalytic reduction of water at pH 7, exhibiting 
catalytic onset overpotential of 50 mV with 100% Faradaic 
efficiency [26]. Similar investigation by Sun et al. studying 
electrodeposited cobalt-sulfide catalyst for electrochemical 
and photochemical  H2 generation from water reported a low 
catalytic onset overpotential of only 43 mV and near 100% 
Faradaic efficiency in phosphate buffer at pH 7 [27]. Moreo-
ver, Khnayzer et al. performed a comprehensive investiga-
tion of visible-light photo-generation of  H2 from water using 
cobalt(II) polypyridyl complexes as catalysts, [Ru(bpy)3]2+ 
as a photosensitizer (PS), and ascorbic acid/ascorbate as an 
electron source, achieving a turnover number (TON) of 4200 
 (H2/Co) and a turnover frequency (TOF) of 3200  (H2/Co per 
h) under simulated sunlight at pH 4 [28].

Prussian Blue analogues (PBAs) with cubic structured 
M[M′(CN)6] framework have recently been investigated to 
address critical steps of hydrogen economy including  H2 
storage and water oxidation [29, 30]. The relatively high sta-
bility of this family of coordination compounds over a wide 
range of pH and easy synthesis together with their porous 
nature and the availability of electroactive metal sites make 
them promising candidates for various applications rang-
ing from selective gas adsorption to catalysis. Several stud-
ies focusing on the water-oxidation performance of PBAs 
clearly show that cobalt sites on the surface could be used for 
water oxidation process and that cyanide based coordination 
compounds can retain their three-dimensional structure even 
under harsh catalytic conditions [31, 32].

A Prussian blue analogue,  K4Fe4[Fe(CN)6]3, has also 
been investigated as a water reduction catalyst in 1997 with 
a low catalytic activity [33], and hence no in-detailed studies 
have been carried-out further on other PBAs. Taking into 
consideration the efficiency of cobalt-based water-reduction 
catalysts, and no apparent investigations reporting the appli-
cation of PBA derivatives in water-reduction, the current 
article aims to re-evaluate the application of a Prussian Blue 

analogue, cobalt hexacyanocobaltate, as a HER catalyst. 
Metal hexacyanocobaltates incorporating Co and Zn ions 
were synthesized by previously reported methods [34, 35].

2  Experimental

2.1  Materials

All of the reagents were procured from Sigma-Aldrich 
and used without any further processing; Co(NO3)·6H2O 
(99.99%), Zn(NO3)2·6H2O (98%),  K3Co(CN)6 (≥ 97.0%). 
All solutions were prepared with Millipore deionized water 
with the resistivity of 18.2 mΩ cm.

2.2  Bulk Catalyst Preparation

0.2 M 25 ml solutions of Co(NO3)2·6H2O and  K3Co(CN)6 in 
water were prepared separately at room temperature. Co(II) 
solution was added drop wise to [Co(CN)6]3− solution. The 
reaction mixture was left under stirring for 1 h and then aged 
overnight. The precipitate was filtrated under suction and 
stored in a desiccator. The resulting powder was pink in col-
our. Same procedure was applied to Zn–Co PBA. The start-
ing materials were the solutions of 0.2 M Zn(NO3)2·6H2O 
and  K3Co(CN)6. The colour of powder Zn–Co PB is white.

2.3  Material Characterization

FTIR spectra of bulk Co–Co and Zn–Co PBA were meas-
ured using Bruker ALPHA Platinum-ATR spectrometer 
in the wave number range 4000–400 cm−1. Powder X-ray 
diffraction (XRD) patterns were recorded by Panalytical 
X’PertPro Multipurpose X-Ray Diffractometer (MPD) 
employing Cu Kα X-ray radiation (λ = 1.5418 Å). Energy-
dispersive X-ray spectroscopy (EDX) analysis was carried 
out at 30 kV using FEI-Quanta 200 FEG ESEM. Thin film 
X-ray diffraction (GI-XRD) patterns of Co–Co and Zn–Co 
PBA coated fluorine doped tin oxide coated glass (FTO) 
electrodes were recorded by Panalytical X’Pert3 MRD 
Material Research Diffractometer (MRD) employing Cu Kα 
X-ray radiation (λ = 1.5418 Å) at an incident (w) angle of 
0.5°. X-ray photoelectron spectroscopy (XPS) studies were 
performed using Thermo Scientific K-Alpha X-Ray Photo-
electron Spectrometer system operating with Al Kα micro-
focused monochromator source (hʋ-1486.6 eV and 400 mm 
spot size) along with a flood gun for charge neutralization, 
pass energy 200 eV was used for survey scan and 30 eV 
individual element scans. Origin Pro 8.5 was used to plot 
and analyze all the graphs.
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2.4  Catalyst Modified FTO Electrodes

FTO electrodes (1 × 2 cm, 2 mm with 7 Ω sq−1 surface resis-
tivity and ~ 80% transmittance) were washed by sonication 
for 10 min in basic soapy solution, deionized water and iso-
propanol, followed by annealing at 400 °C for 30 min. A 
two-step in-situ method was used to prepare the electrodes, 
which includes spin coating the hexacyanocobaltate precur-
sor onto the FTO surface followed by dipping it in a cobalt, 
or zinc solution. Solutions of 0.2 M Co(NO3)2·6H2O and 
0.2 M  K3[Co(CN)6] were prepared with Millipore water. 
 K3[Co(CN)6] solution was spin-coated onto FTO elec-
trodes at 1500 rpm for 3 min, after that, the electrodes were 
immersed in a solution of Co(NO3)2·6H2O for 5 min. Both 
steps were repeated three times. The electrodes were kept 
in a vacuum desiccator until further use. The electrodes 
were rinsed with deionized water prior to use. Similar 
coatings were made onto FTO electrodes (at 1500 rpm for 
3 min) using solutions of 0.2 M Zn(NO3)2·6H2O, 0.2 M 
 K3[Co(CN)6], and 0.2 M Co(NO3)2·6H2O.

2.5  Electrochemical Studies

Electrochemical studies were performed at room tempera-
ture under inert conditions  (N2 atmosphere) using Gamry 
Instruments Interface 1000 Potentiostat/Galvanostat. A 
conventional three-electrode electrochemical cell with Ag/
AgCl (3.5 M KCl) as a reference electrode, Pt wire as a 
counter electrode, and FTO as a working electrode were 
used. All potentials were measured versus Ag/AgCl refer-
ence electrode and were reported versus the normal hydro-
gen electrode (NHE) using the equation of E(NHE) = E(Ag/
AgCl) + 0.205 V. Linear sweep voltammetry (LSV) meas-
urements of Co–Co PBA modified FTO electrode (denoted 
as [CoCo(CN)6@FTO] throughout the manuscript), Zn–Co 
PBA modified FTO electrode (denoted as [ZnCo(CN)6@
FTO] throughout the manuscript), and bare FTO were 
recorded in 50 mM KPi (pH 7.0) containing 1 M  KNO3 as 
electrolyte between 0 and − 1 V (vs NHE) with a scan rate 
of 5 mV s−1. Neutral phosphate buffer solution was pre-
pared using  K2HPO4 and  KH2PO4 (KPi) while  H3PO4 and 
KOH were used to regulate pH. Prior to the studies, the 
electrodes were dipped into the buffer solution and the solu-
tion was purged with  N2 gas for 15 min to remove dissolved 
 O2. The gas generated during the electrolysis was analyzed 
with an Agilent 7820A gas chromatograph equipped with a 
Molesieve GC column (30 m × 0.53 mm × 25 µm) thermo-
stated at 40 °C and a TCD detector thermostated at 100 °C 
to detect hydrogen  (H2). Argon was used as the carrier gas. 
To avoid cross contamination, the electrochemical cell was 
purged with nitrogen for 20 min prior to the experiment. 
100 µL aliquots of gas were collected from the headspace 
of the electrochemical cell over 10-min intervals with a 

gas-tight Hamilton syringe. The retention time of hydrogen 
was recorded as 0.77 min.

3  Results and Discussion

3.1  Material Characterization

Infrared studies performed on the as synthesized Co–Co PBA 
reveal strong bands at 2169, 444, and 1607 cm−1 correspond-
ing to the vibrational stretches ʋ(CN), ʋ(CoII–NC–CoIII), 
and bending stretch ʋ(H–O–H), respectively (Fig. 1). Simi-
larly, ATR spectrum of Zn–Co PBA reveals strong bands at 
2171, 440, and 1609 cm−1 corresponding to the vibrational 
stretches ʋ(CN), ʋ(ZnII–NC–CoIII), and bending stretch 
ʋ(H–O–H), respectively (Fig. 1). Zinc to cobalt ratio in 
Zn–Co PBA was confirmed to be 1.6:1 by EDX. The pow-
der X-ray diffraction patterns (Supporting Fig. S1) of Co–Co 
and Zn–Co PBA crystallites correspond well with the previ-
ously reported PBAs. All the peaks indexed by comparing 
to the reported PBAs confirm face-centered cubic unit cell 
assuming a Fm3m space group [34, 36].

3.2  Electrochemical Studies

Figure 2 shows Linear sweep voltammetry (LSV) curves 
of [ZnCo(CN)6@FTO] and [CoCo(CN)6@FTO]. As seen 
Fig. 2, [CoCo(CN)6@FTO] exhibits a significant HER activ-
ity with an onset overpotential of 257 mV, which is extracted 
from Tafel plot. A non-unique way to determine the onset 
overpotential was employed where the beginning of linear 
regime in the Tafel plot with low current densities is used 
[37]. LSV of [ZnCo(CN)6@FTO] and that of bare electrode 
are identical indicating that the origin of HER activity in 

Fig. 1  FTIR spectra of bulk Co–Co (black) and Zn–Co (red) PBA. 
Inset: ν(CN) stretches of Co–Co and Zn–Co PBA
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[CoCo(CN)6@FTO] is only due to  CoII sites surrounded 
with nitrogen atoms  (CoN6) of nitrile group and that  CoIII 
centers in hexacyanocobaltate units do not participate in 
catalytic water reduction process.

Tafel plot of the catalyst, which was obtained from 
the LSV curve of [CoCo(CN)6@FTO] at a scan rate of 
5 mV sec−1, was used to extract two important electrochemi-
cal parameters; (i) Tafel slope (b) and (ii) exchange current 
density  (i0). Tafel slope, as shown in Fig. 2 Inset, was used 
for the specification of the overpotential required to raise 
the current density by one order of magnitude [38] and the 
prediction of mechanism for catalytic process. Tafel slope 
determined as 80 mV dec−1, was similar to the reported 
values for cobalt-sulfide film (Co–S/FTO) (93 mV dec−1) 
[27], and Co–P/CC NWs array (93 mV dec−1) [31]. This 
value was also found to be slightly higher than the ones 
reported for FeP/CC (70 mV dec−1) [39],  Ni0.33Co0.67S2 
(67.8 mV dec−1) [40], Co–P/Ti (58 mV dec−1) [41], and 
Co–30Ni–B (51  mV  dec−1) [38] at neutral conditions. 
From the Tafel plot a 2 step mechanism for HER was pre-
dicted to be initiated by proton discharge step (Volmer 
step, 120 mV dec−1) followed by electrochemical desorp-
tion (Heyrovsky step, 40 mV dec−1) or chemical desorption 
(Tafel step, 30 mV dec−1) [38, 42, 43]. HER involves a mul-
tistep reaction process, which can proceed with two possible 
mechanisms: Volmer–Tafel or Volmer–Heyrovsky. The ini-
tial step, proton discharge to form adsorbed H (Volmer step, 
120 mV dec−1), is the same for both mechanisms. It is then 
followed by either electrochemical desorption (Heyrovsky 
step, 40 mV dec−1) or chemical desorption to form  H2 (Tafel 
step, 30 mV dec−1) [44]. Since the latter mechanism requires 
two close H-atom adsorption sites, the Volmer–Tafel H 
recombination pathway is rare as an HER mechanism, 

except at active Pt [45]. Considering that cobalt sites in PB 
structure are well separated from each other (~ 10 Å) Volmer 
Heyrovsky pathway should be the mechanism. A Tafel slope 
of 80 mV dec−1 for [CoCo(CN)6@FTO] is also in line with a 
Volmer–Heyrovsky reaction mechanism [38, 42, 43].

Exchange current density  (j0) could also be deter-
mined at an overpotential of 0  V from Tafel analysis. 
The exchange current density for [CoCo(CN)6@FTO] 
in pH 7 was calculated to be 2.55 × 10−8 A cm−2, which 
was similar with 2 × 10−8  A  cm−2

geom for electropo-
lymerized Co(II) dibenzotetraaza(14) annulene system 
(CoTAA) [16], 5.9 × 10−8 A cm−2 for  CoSe2 films [46], and 
8.2 × 10−8 A cm−2 for  MoO3-MoS2/FTO electrode [47]. 
Since the stability of the catalyst is essential particularly 
for practical applications, chronopotentiometry measure-
ment was performed for [CoCo(CN)6@FTO] at a constant 
current density of 1 mA cm−2 for 2 h. The performance of 
[CoCo(CN)6@FTO] for hydrogen evolution showed very 
good durability for two hours with an overpotential of 
295 mV. No significant increase of the overpotential under 
this condition was observed, suggesting the stability of the 
catalyst throughout the experiment as shown in Fig. 3. Fur-
thermore, the similarity of LSV curve of the pristine catalyst 
and that of the catalyst after 2 h of chronopotentiometry 
experiment supports the claim on the superior stability of 
the modified electrode, as shown in Fig. 3 inset.

Figure 4 displays charge accumulated over time in a 
controlled potential electrolysis at − 0.8 V (vs. NHE) in the 
absence and presence of Co–Co PBA on FTO electrode in 
50 mM KPi buffer solution with 1 M  KNO3 as an electro-
lyte at pH 7.0. The catalyst affords a robust and essentially 
linear charge build-up over time with no significant loss in 

Fig. 2  LSV curves of [CoCo(CN)6@FTO] (black), [ZnCo(CN)6@
FTO] (red), and blank FTO (blue) electrodes recorded in a 50  mM 
KPi buffer solution with 1 M  KNO3 as electrolyte at pH 7.0 with a 
sweep rate of 5  mV  s−1. Inset: Tafel plot for [CoCo(CN)6@FTO] 
derived from the LSV curve (black line) and linear fitting curve (blue 
dotted) rendering a Tafel slope of 80.2 mV dec−1

Fig. 3  Chronopotentiometry curve obtained for [CoCo(CN)6@FTO] 
at pH 7 and 1 mA cm−2. Inset shows the LSV comparison between 
the pristine (black) and post-catalytic (red) electrodes with a scan rate 
5 mV s−1
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activity over the course of at least 2 h. In contrast, negli-
gible charge was passed when a blank FTO electrode was 
used as the working electrode under the same conditions. 
Cyclic voltammogram (CV) at different scan rates was 
recorded in the range of 0.7–1.2 V versus NHE to determine 
the coverage of redox-active Co centers on the electrode 
(Supporting Fig. S2). The surface concentration, calculated 
to be 2.0 nmol cm−2, was used to determine the turnover 
frequency (TOF) for [CoCo(CN)6@FTO]. A TOF value of 
0.090 s−1 was calculated from Tafel plot at an overpotential 
of 250 mV, which is higher than that reported for Co-cat 
(0.022 s−1 at 385 mV) [26] and Co–S film (0.017 s−1) [27] 
at pH 7.0. The comparison of TOF for different systems 
suggests that cobalt sites surrounded with nitrogen atoms 
exhibit superior catalytic performance compared to the ones 
surrounded with oxygen and/or sulfur atoms.

Controlled potential electrolysis (CPE) experiment was 
performed to calculate faradaic efficiency (Fig. 4a) [16]. The 
charge measured during electrolysis was used to calculate 
the theoretical amount of evolved  H2 and the amount of 
evolved  H2 gas was detected with gas chromatography. A 
faradaic efficiency of ~ 98% was obtained, which indicates 
that the only origin of charge accumulated is due to catalytic 
 H2 evolution (Fig. 4b).

3.3  Electrode Characterization

Figure  5 represents XPS studies performed on the 
[CoCo(CN)6@FTO] before (pristine) and after (post-cat-
alytic) bulk electrolysis at − 0.8 V (vs. NHE). The Co2p 
spectrum of pristine Co–Co PBA shows sharp and distinc-
tive principle  Co2p3/2 and  Co2p1/2 signals, respectively, at 

784.38 and 799.48 eV [34, 36, 45] with scalable FWHM 
of ~ 2 eV while the post-catalytic electrode shows broad 
principle  Co2p3/2 and  Co2p1/2 signals at 782 and 797.68 eV, 
respectively, with relatively wider FWHM of ~ 3 eV. Fur-
thermore, weak but identifiable satellite signals at 788.38 
and 803.98 eV were observed for the post-catalytic elec-
trode corresponding to  Co2p3/2 and  Co2p1/2, respectively. 
The appearance of identifiable satellite signals in the post-
catalytic electrode suggests partial reduction of the cobalt 
sites. GI-XRD (grazing incidence) analysis was also per-
formed on [CoCo(CN)6@FTO] to investigate the change in 
crystallinity during electrolysis. No distinguishable change 
was observed between the pristine and post-catalytic elec-
trodes in the patterns as shown in Fig. 6, which indicates that 

Fig. 4  a Charge accumulated over time in a controlled potential 
electrolysis at − 0.8  V versus NHE in the absence (black line) and 
presence of Co–Co PBA on FTO electrode (red line) in 50 mM KPi 
buffer solution with 1 M  KNO3 as electrolyte at pH 7.0. (b)  H2 pro-

duced with Co–Co PBA versus time confirmed by GC. The quantity 
of  H2 (µmol) is integrated from gas chromatography (red spheres) and 
also from Faraday’s Law (black squares)

Fig. 5  XPS spectra of Co2p signals of Co–Co PBA
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the structure and the composition of the Co–Co PBA is not 
affected by the partial reduction of cobalt sites. The stability 
of Co–Co PBA has also been confirmed by comparisons of 
SEM images and EDX patterns of pristine and post-catalytic 
electrodes. From the SEM images (Figs. S4–S5) of pristine 
and post-catalytic [CoCo(CN)6@FTO], no distinguishable 
loss in catalyst surface can be observed, indicating that the 
catalyst is robust under the conditions subjected for elec-
trochemical measurements. EDX analysis of the pristine & 
post-catalytic electrodes reveals a mild hike in the atomic 
percentage of K, which is attributed to the critical role of 
potassium ions in providing charge neutrality of the catalyst 
during water reduction (Table S1). Water reduction involves 
a mechanism where cobalt sites are reduced to their lower 
valencies [48], which increases anionic character of the 
coordination framework. The charge neutrality of the Prus-
sian blue framework is then provided with the insertion of 
potassium ions available in the solution during such redox 
processes. The transport of potassium ions is reversible 
thanks to the microchannels in PB structure and this phe-
nomenon has been observed when PBAs are oxidized under 
anodic potentials as well [49].

Therefore, it can be assumed that the partial reduction 
in the cobalt sites is reversible. XPS studies of Co2p and 
Zn2p signals of both pristine and post-catalytic Zn–Co 
PBA were given in the Electronic Supporting informa-
tion (Supporting Fig. S3a and b). The pristine Zn–Co 
PBA shows sharp, distinctive principle  Co2p3/2 signal at 
786.08 eV and  Co2p1/2 signal at 801.08 eV, with scalable 
FWHM of ~ 3.5 eV. Where in the post-catalytic Zn–Co 
shows sharp principle  Co2p3/2 signal at 784.68 eV and 
 Co2p1/2 signal at 799.48 eV with a FWHM of ~ 3 eV. 
The pristine Zn–Co PBA shows sharp, intense princi-
ple  Zn2p3/2 signal at 1025.88 eV and  Zn2p1/2 signal at 

1048.98 eV with a FWHM of ~ 3 eV. The post-catalytic 
Zn–Co PBA shows broad but intense principle  Zn2p3/2 sig-
nal at 1024.18 eV and  Zn2p1/2 signal at 1047.08 eV with a 
FWHM of ~ 1.8 eV. The absence of any additional satellite 
signals in both Co2p and Zn2p lines of the Zn–Co PBA 
electrodes confirms that there is no change in the oxidation 
states suggesting the absence of electrochemical activity.

4  Conclusions

PBAs with their unique structural motives wherein metal 
ions are connected to each other with cyanide groups meet 
the requirements for an ideal electrocatalyst: easy synthe-
sis, superior robustness in a wide range of pH and at high 
cathodic potentials, and being composed of earth abun-
dant elements. Furthermore, Prussian Blue analogues have 
been studied in the fields of water oxidation and hydrogen 
peroxide sensing due to their interesting electrochemical 
properties. Where in this study, demonstrated for the first 
time that a Co–Co Prussian Blue analogue can be used as 
an efficient water reduction catalyst as well. Comparative 
electrochemical studies indicate that catalytic activity of 
Prussian Blue analogue is due to the cobalt(II) ions sur-
rounded by the nitrogen atoms of nitrile group. Co–Co 
Prussian Blue modified FTO electrode exhibits a signifi-
cant HER activity with an onset overpotential of 257 mV. 
The Tafel slope obtained from cyclic voltammetry of the 
electrode (80 mV sec−1) is in good accordance with the 
previously studied cobalt-based heterogeneous systems, 
which suggests a mechanism involving the formation 
of a metal-hydride intermediate followed by reaction of 
hydride and the proton of water resulting in  H2 evolu-
tion. The catalyst performs at a much higher turnover fre-
quency (0.090 s−1 at an overpotential 250 mV) compared 
to other cobalt-based systems. Long-term electrolysis stud-
ies together with comprehensive characterization studies 
confirm that the catalyst retains its structure throughout 
the catalytic process.

The diversity of cyanometalates provides several oppor-
tunities to enhance their catalytic activities further; (a) other 
metal hexacyanomatalates can be prepared to investigate the 
catalytic activity of other commonly studied 3d metal ions 
such as Fe and Ni, (b) pentacyanometalate precursors can 
be used to increase the surface concentration of cobalt sites 
as was done previously for cyanide-based water oxidation 
catalysts [50], and (c) composites consisting of PBAs and 
carbon nanotubes can be prepared. These studies are cur-
rently in progress. Since PBAs have recently been reported 
as efficient water oxidation electrocatalysts and photocata-
lysts, PBAs could also be used in further studies in both 
sides of water splitting to build a symmetric electrolytic cell.

Fig. 6  Thin film XRD for pristine (black) and post-catalytic (red) 
[CoCo(CN)6@FTO] electrodes
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