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ABSTRACT

In this study, we propose a post-disaster assessment strategy as part of response opera-
tionsin which effective and fastreliefrouting are of utmostimportance. In particular, the
road segments and the population points to perform assessment activitieson are selected
based onthe value they add to the consecutive response operations. To this end, we de-
velopabi-objective mathematical model that providesdamageinformationin the affected
region by considering both the importance of population centers and road segments on
the transportation network through using aerial and ground vehicles (drones and motor-
cycles).Thefirstobjectiveaimstomaximizethetotalvalueadded bytheassessmentofthe
road segments(arcs)whereasthe second maximizesthetotal profitgeneratedbyassessing
points of interests (nodes). Bi-objectivity of the problem is studied with the e-constraint
method. Since obtaining solutions as fastas possibleis crucial in the post-disaster condi-
tion, heuristicmethodsare also proposed.To test the mathematical model and the heuris-
tic methods, a data set belonging to Kartal district of Istanbul is used. Computational ex-
periments demonstrate that the use of drones in post-disaster assessment contributes to
theassessmentofalargerareadue toitsangular pointofview.Also, the proposed heuris-
tic methods not only can find a high-quality approximation of the Pareto front but also
mitigatesthe solution timedifficulties ofthe mathematical model.

© 2018ElsevierLtd. Allrightsreserved.

1. Motivation and problem definition

In the course of the last 70 years, disasters have grown exponentially both in number and magnitude (Ozdamar and
Ertem, 2015). As put forward by the International Federation of Red Cross and Red Crescent Societies (IFRC) in the 2016
World Disasters Report, “humanitarian needs are growing at an extraordinary pace - a historical pace -and are outstripping
the resources thatare required to respond.” (FRC,2016).

Humanitarian logistics which compromise of logistics activities while focusing on alleviating the suffering of vulner-
able people is considered as one of the imperfect areas to invest in for both academics and practitioners (Kovacs and
Spens, 2007). In that framework, as part of humanitarian logistics, Disaster Operations Management (DOM), is defined as
activities that are performed before, during, and after a disaster to prevent loss of human life, reduce its impact, and re-
gain thenormalcy (Altay and Green,2006). Thelife cycle of disaster operationsis divided into three categories, pre-disaster,
response and recovery operations. Pre-disaster operations -mitigation and preparedness- include taking measures to avoid
disaster or to reduce the impact and to gain the ability to respond to the disaster. Response is the stage where resources
are utilized to reach the disaster area, save lives and prevent further damage. Recovery activities are post-disaster opera-
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tions that aim to re-establish a normal state. Although measures and precautions are taken, disasters are not preventable
and predictable. Thus, planning disaster relief operations in advance, and implementing them in disaster and post-disaster
phases are significant to mitigate the destructiveimpact of disasters.

In case of disasters, availability of shelter, food, and water may be disrupted and even worse, people may be in need
of urgent medical attention. Therefore, after disasters, logistics operations need to be conducted mainly for providing relief
goods,suchasfood,and shelter tothe disaster-affectedregions, evacuating people from the dangerzones, alleviating human
suffering, and most importantly, saving lives. Having capable resources to handle the situation and reaching and activating
them on time to alleviate the disaster impact on population and infrastructure are some of the challenges of humanitarian
disaster relief operations. Moreover, logistics operations often have to be carried out in an environment with destructed
transportation infrastructures (Long, 1997). Disrupted roads and debris blocking the roads are main sources of difficulty in
terms of both aid distribution to disaster victims and re-establishing normal state in disaster-affected areas. In addition, the
unpredictable nature of the disaster and demand uncertainty may complicate handling and distribution operations. In that
perspective, assessing damage atearly stages of the disaster playsa crucial role in the activation of resources.

The damage assessment module of any disaster should include the information on the death toll, location of casualties,
and the extent of damage to roads, arteries and critical facilities like hospitals and schools. The information for these can
be collected from various channels, which may include mobile teams, drones, and various other reports. The information
collected allows disaster management operation coordinators to determine immediate actions necessary to respond to the
effects of the damage with the effective use ofresources.

Damage assessment can be divided into two categories based on its focus; it could focus onareas with the concentrated
population (node module) and the road segments connecting them (arc module). Efficient disaster management operations
should consider both elements of damage assessment simultaneously. In that perspective, post-disaster assessment opera-
tions should mainly concentrate on assessment of critical population points and critical road segments. Densely populated
population points are candidates for critical and should be prioritized. Early assessment of those points results with a bet-
ter understanding of essential needs such as the number of vehicles for evacuation, the number of ambulances/search and
rescue teams to be dispatched orany type of relief items and their quantities.

Besides the assessment of critical points, ground network conditions have to be assessed in order to determine the
available transportation routes and the roads that have to be unblocked by removing debris. The critical points, such as
hospitals and schools, should remain accessible by the disaster victims. Furthermore, critical points may be in need of
emergency relief item supply. Hence, to be able to maintain access to these points, assessing the disaster impact on the
ground transportation network is important. The two components of damage assessment are complementary; therefore,
both of them should be taken intoaccount simultaneously during disaster assessment phase.

The main purpose of this paper isto provide aframework that considers early damage assessmentregardingthe severity
ofthe disasterimpactand the urgency of the need for reliefon road network and population areas. The reason for the early
damage assessment is to find the most effective strategy for further disaster operations. Also, to ensure the connectivity of
disaster network, by estimating the amount of debris on the roads, immediate debris removal actions can be determined
to unblock the disrupted road segments. Since damage assessment operations must be completed quickly, the assessment
teams are not required to assess all of the affected regions and the transportation network. Therefore the population points
and the roads to be assessed are selected based on their importancein the network.

In this study, we focus on developing a systematic method that can be used by municipalities or local relief agencies
to determine disaster impact on their region. We assume that the critical network elements of the area are known. The
criticality of population points and road segments are determined by the amount of population and the related distances.
The assessment teams like motorcycles and/or drones assumed to be present at potential starting points, the depots. As
there will possibly be debris or destruction onthe roads, post-disaster transportation network is considered to be off-road.
Itis assumed that the motorcycles can only conduct an assessment of the road segments and points that lie in their paths.
Whereas, as drones can fly at certain altitudes, flying over certainroad segments with drones will enable the assessment of
other roads and nodesintheir point of view. The vehicles start their tours just afterthe disaster hitsand theyassess critical
population centers and critical roads in the predetermined time frame and after the vehicles complete their tours, disaster
information is reported to the depots (disaster management centers). Then, given the set of importance carried by each
network element and the assumptions, we define the Post-disaster Assessment Routing Problem (PDARP) that determines:
(i) the population points to visit, (ii) road segments to traverse, and (iii) the vehicle routes while considering maximum
assessmentin (i)and (ii)within the assessment period.

Asweaimtohaveinformationonbotharcsand nodes,the problemcanbeconsideredas avariantofthe GeneralRouting
Problem (GRP) with profits. Aiming to assess critical population points may hinder the assessment of the critical roads in
a given time period. On the other hand, aiming to assess the critical roads in limited time may result in an assessment of
lesser population points but assessing/visiting them multiple times. Due to the nature of the problem, monitoring critical
nodesand critical arcs at the same time, the standard requirement of the classical routing problems, thateachnodeis tobe
visited exactly once, isno longervalid. Allowing multiple node passages,combining two objectivesin abi-objective manner,
utilizing a heterogeneous set of vehicles and enabling a wider view, raise a new problem that we refer as Post-Disaster
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whichcan provide a wider point of view. Allowing node/arc passages multiple times, which canbe helpfulin capturing the
extend ofdamagein the disasteraftermath, is another special feature of the model proposed. By developinga mathematical
model for PDARP and by using real data from Istanbul, we highlight the importance of considering both network elements
and using drones and motorcycles for developing an appropriate assessment strategy.

2. Related literaturereview

As our study revolves around relief routing and assessment, the primary focus will be on those studies in the literature
review. The relief routing models will be categorized according to the application areas and the problem characteristics.
Then, PDARP’s connections to GRP and its variants will be reviewed with a focus on the pioneering works. Finally, we will
consider drone applications inrouting/delivery and dataacquisition.

2.1. Reliefrouting literature

Especially with the beginning of the 21st century, the increase in attention to humanitarian logistics by both aca-
demics and practitioners is followed by an increase in the number of studies (Kovacs and Spens, 2007). Hence, various
literature reviews are conducted on humanitarian logistics. Altay and Green (2006) Galindo and Batta (2013) Kovacs and
Spens (2007) and Celik et al. (2012) evaluate disaster management and relief operations literature, respectively, based on
disastertimeline, typesand application areas together with the solution methodologies.Caunhyeetal.(2012) categorize op-
timization problemsarise inthe emergencylogisticsin terms of objectives, prominent constraints,and decisions they make.
Further, Celik et al. (2012) provide case studies to reflect the important aspect of the different humanitarian problems. The
survey conducted by Ozdamar and Ertem (2015) includes the models of response and recovery planning phases of disaster
with the information system applications. Most recently, Karaand Savaser (2017 ) survey operations research (OR) problems
encounteredin therelief and development logistics.

Relief routing literature mainly focused on evacuation problems, relief item distribution, and debris removal problems.
Evacuation problems focus on the safe and rapid transfer of disaster-affected people to the healthcare centers and shel-
ters Bayram and Yaman, 2015). Relief item distribution problem aims to find an efficient and effective distribution of
pre-positioned relief items to people in need. Campbell et al. (2008) Houming et al. (2008) Ozkapici et al. (2016) tackle
minimization of total delivery time or latest arrival of a vehicle in a deterministic setting. Camacho-Vallejo et al. (2015}
Tzenget al. (2007) consider minimization of the cost of most efficient relief item distribution while considering cost and
fairness,respectively.Besidesreliefitemdistribution, Yanand Shih(2009)incorporateemergencyroad repair to the problem
and Ozdamar (2011) studies reliefitem distribution and evacuation at the same time with helicopters.

Debris removal aspect of relief logistics literature considers reaching critical nodes and restoring network connectivity.
Sahinetal. (2016) and Berktas et al. (2016) route debris removal vehicles to assure accessibility to critical points like hos-
pitals and schools after anearthquake. Akbari and Salman(2017) work on the post-earthquake network to sustain the con-
nectivity in a short period of time. Hua and Sheu (2013) aim to remove debris with the least cost. Celiket al. (2015) study
the debris clearance problemin astochastic settingand the aim is to maximize the total satisfied demand.

From these studies, we observe that although the damage on roads and the needs of disaster victims are considered in
some relief routing problems, collecting information about the extent of damage is not received much attention. Although
need assessment problem is investigated by Tatham (2009) it is not covered in an OR context. In some studies, needs
assessment of disaster victims is conducted using sampling techniques. Johnson and Wilfert (2008) use cluster sampling
technique whichdivides the disaster-affected region intodisjoint clusters. In Daley et al. (2001) geography-based sampling
scheme is provided. Huang et al. (2013 ) determine the routes for vehicles to assess needs of all communities in a disaster
region such that the total arrival timesis minimized via continuous approximation. A recent study of Balcik(2017) consid-
ers needs assessment of community groups where communities to conduct assessment are selected based on community
characteristics using purposive sampling.In that study, routing policies are developed such thateach community group and
each arc can be traversed at most once by each team. The study of Balcik (2017) is the closest relative to PDARP in the
humanitarianlogistics domain that developsrouting strategies and selects communities toassess. The problem discussedin
Balcik(2017)and PDARPdifferinthe objectivesand assumptions. While Balcik (2017) focuses onmonitoring disasterimpact
on population centers, assuming each community/road can be visited at most once, in this paper, we relax that assumption
and provide an assessmentstrategy thatfocuses both on population pointsand road segments.

2.2. Generalrouting literature

The GRP aimstofind aleast-costroute thatstarts and ends at the same node and visits the required nodes by traversing
through the required edges at least once Orloff, 1974). There is a variant of GRP -Undirected Capacitated GRP with Profits
(UCGRP with profits) (Archetti et al., 2017) and Bus Touring Problem (BTP) Deitch and Ladany, 2000)- that does not have
required nodes or edges to be traversed. In UCGRP with profits, there is a fleet of homogeneous vehicles to serve the
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BTP, cost of traversal is not considered as an objective and there is a single vehicle available which aims to maximize the
total attractiveness (profit) of the tour by selecting nodes to be visited and arcs to be travelled while having side constraints,
such asroute duration or cost. Profit terms appear on the objective of both problems include node and arc profit; however,
their effects onone another isnot studied ina bi-objective fashion.

Since, GRP includes both node and arc routing aspects, node routing and arc routing problems can be considered as
special cases of GRP. Due to their closeness to the proposed problem, we study both the node (vehicle) routing problems
(VRP) and the arc routing problems (ARP).

If there is a subset of nodes required to be visited with an empty required edge set, the GRP reduces to the Travelling
Salesman Problem (TSP) or its multi-vehicle version VRP (Dantzig et al., 1954; Dantzig and Ramser, 1959). Travelling Pur-
chaser Problem is defined as a generalization of TSP, in which, in contrast to TSP, nodes to be visited are not pre-specified
and differentselections are possible (Golden etal., 1981).

Node routing problems where the vehicle(s) performing a profit-maximizing tour with selecting customers to visit, are
classified under the TSP with profits name (Feillet et al., 2005). TSPs with profits are further classified according to how
they tackle the bi-objective nature of the problem, namely collected profit and travel costs. Finding a tour that maximizes
the difference between the profit gained by visiting nodes and the travel cost -by subtracting the cost from the profit-
are categorized as Profitable Tour Problems (Dell’Amico et al., 1995; Archetti et al., 2009; Malandraki and Daskin, 1993).
Other variants can be characterized based on their profit-maximizing objective while having limited time, capacity or cost
constraint. Those problems are usually defined as variants of Orienteering Problem (OP) (I'siligirides, 1984; Laporte and
Martello, 1990; Kataoka and Morito, 1988; Awerbuch et al., 1998; Ramesh and Brown, 1991; Chao et al., 1996; Archetti
etal., 2009; Butt and Cavalier, 1994). Another alternative for dealing with the bi-objective nature of the TSP with profits is
by introducing cost minimization as an objective and profit as a constraint. This category is defined as Prize-Collecting TSP
(PCTSP) by Balas (1989) In PCTSP, the aim is to minimize cost while visiting enough points to have pre-defined profit. As
the profit for each vertex can be collected at most once and there is a cost associated with travel, in all node routing with
profits problems, a constraint isimposed so thateach customeris visited at mostonce.

Routing problems where customers are located at arcs on a directed network are categorized under ARPs Guan (1962}
Orloff (1974)Inparallelto Feilletetal. (2005) ARPs that concern with findinga profit-maximizing tour while selecting arcs
to traverse can be gathered under the ARP with profits. Finding a tour that maximizes the difference between the profit
gained by traversing arcs and the travel cost -by subtracting the cost from the profit- can be categorized as Profitable Arc
Tour Problems (Feillet et al., 2005; Malandraki and Daskin, 1993; Araoz et al., 2006). Where the goal is to find a maximum
profitarctour under limited time, capacity or costconsideration providesotherversions of ARP with profits. Those problems
are usually variants of ArcOP Souffriauetal.,2011; Archetti etal.,2014; 2010).

The minimization of the total cost, the total distance, the number of vehicles used, and maximizing the profit or qual-
ity/customer satisfaction, and balancing the workload are the prevalent objectives in multi-objective routing problems
(ozefowiez et al., 2008). In this context, problems discussed above are implicitly multi-objective, in which objectives of
profit maximization and cost minimization are present. The closest relatives of PDARP are BTP and UCGRP with prof-
its. BTP maximizes the profit collected from visited nodes and arcs and treats cost objective as a constraint (Deitch and
Ladany, 2000). The later one considers the maximization of the difference between the profit collected from visited nodes
and arcs,and the cost of traversal (Archettiet al.,2017).

The proposed problem in this study, PDARP does not have required nodes or edges to be traversed, and the problem
has the goals of assessing nodes and monitoring arcs. Two goals may have conflicting interests and the value of assessing
an arc or node is not comparable with a single metric. Hence, the problem can be taken as a variant of bi-criteria GRP
with profits. Allowing multiple node passages with the heterogeneous set of vehicles and combining two objectives in a
bi-objective manner raise a new problem to the literature we refer as PDARP. As bi-objectivity of the problem is handled
with the e-constraint method, PDARP can be considered as a variant of both TSP with profits and ARP with profits; but,
contrary to both, PDARP does not have cost concerns.

2.3. Droneapplications

As the use of motorcycles and/or drones are considered in the proposed problem, the application areas of the drone
systems and the studies in theliterature, inwhich dronesare used, will be investigated.

Drone systems are primarily developed for military applications. Unmanned surveillance, inspection, and mapping areas
arethe leading aims for the usage of drones for the military. Recently, drones have become popularfor deliveryand civilian
dataacquisition.Largeorganizationslike Amazon, Deutsche Post DHL, Google,the United Arab Emirates have showninterest
in drone delivery (Amazon, 2016; DHL, 2014; Google, 2014; UAE, 2014). To date, there have been numbers of studies on
this issue (Murray and Chu, 2015; Agatz et al., 2016; Ha et al., 2018). In Scott and Scott (2017) use of drone delivery
for healthcare is discussed and mathematical models are developed to facilitate timely and efficient delivery in the non-
commercial setting.

Some civilian data acquisition applications are for agriculture, forestry, archaeology, environment, emergency manage-
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application after a typhoon, while Haarbrink and Koers (2006) focus on rapid response operations such as traffic in-
cidents. Molina et al. (2012) investigate the utilization of drones for searching the lost people. Two recent articles by
Huang et al. (2017) and Giordan et al. (2017) investigates the usage of unmanned aerial vehicles in post-disaster assess-
ment. Huang et al. (2017) claim that the drones can be used effectively in any stage of the disaster management. Further-
more,since dronesdo notrequire any on-sitework, the examplesofusing dronesforassessment of naturaldisastersprovide
an ease ingathering informationin lesstime ata lowrisk (Giordan et al.,2017).

Although drone applications in the emergency management are started to be studied, they are not covered with OR
perspective,rathertheyfocusonthe technicalitiesofsuch applications.Hence, as the usefulness of thedronesinthe disaster
managementis putforward, this necessitatesa further study that develops effective routing policies and models to support
assessment effors.

To the best of our knowledge, there is no study that develops bi-objective routing policies and models for joint use of
motorcycles and drones to support assessment efforts that focuses on both transportation network and disaster victims
needs inreliefoperations.

’

3. Model development

Consideradisaster-affectedregion as adirected,incomplete graph. Districts constitute nodes and roads constitute edges.
Districts can be classified into two categories, the ones that require assessment and the ones who provide necessary forces
forassessmentoperations,namely depotsor disaster managementcenters. Further classification of districts can bemade ac-
cording to population and type of facilities they have. The ones which have facilities like hospitals, schools or haverelatively
high populations constitutes critical nodes.Ina similar fashion, roads connecting critical nodes or the ones thatblockage on
itcausesa significantincreasein the distance travelled by disaster victims constitutes criticaledges.The aim istoreach and
assesscritical nodes together with critical edgesas soonas possible by traversing along paths thatmayeveninclude debris-
blocked edges.To do so, the vehicles, which are suitable for off-road conditions such as drones, motorcyclesare dispatched
froma depotnode. Vehiclestravel to reach and assess the criticalnodes and the arcsin alimited time frame.

LetG =(N, E be a networkwhere Nrepresentsthe nodesand Erepresentsthe edges. A={(i,j)U(j,) :i,jeE} consti-
tutes the arc set of the network. The node set contains the supply node s and critical nodes. Also, it is worth noting that
evenifthe arcsaredirected, the parametersettings of arcs(,j)and §, i) are symmetric.If eitherof (,j) or (j, ) is traversed,
itis assumed that the condition of edge (, ) is assessed. Let d j Tepresent the distance between node ieN and node jeN
We also define a parameter, E for the existence of arcs.If arc(, j) isin the transportation network, then E ij=1. E ;=0 means
arc (i, ) doesnot exist.

Weights are introduced in order to present the criticality of nodes and arcs. Weight for each node in N denotes impor-
tance and we assume populations will provide a good estimate for the weights. Potential population levels for the critical
points like hospitals and schools are estimated by the nearest assignment of the neighbouring points’ population. Node
weights,p ;, arecalculated withrespect to the modified populations of the nodes.

The weight of arc (, j), which is denoted as ¢ jj» characterizes the importance of road connecting node i to node j. It is
calculated with respect to the criticality of the road segment and population points it connects. We define the criticality of
aroad segment by the total percentage change inthe distance travelled by populations when the road is blocked.

Let M and D represent the sets of motorcycles and drones, respectively, available at the disaster management center
(depot).Vehicles inrespective sets M and D are considered to be identical and cardinality of these sets are ] and [J. Let
Vrepresentthe setofall vehiclesavailable at the disaster management center (depot).Note that set V consistsof vehiclesin
MandDinanordered fashionwhere firstnmvehiclesare motorcycles.As previouslydiscussed, candidate vehiclesare taken
asoff-roadmotorcyclesand/ordrones.Average velocityvis givenaccordingly. Theoutput of the model will benm+nd tours
each of which starts their tour and returns to the depot within a predetermined time bound T

If the vehicle is in the set of motorcycles, M assessment of arcs and nodes is only possible by traversing them. If the
vehicleisin the set of drones, D as drones have angular point of view; flying over arc(, ) may result with also assessment
of nodes m, n and arcs (, m), @, n), §, m), §, n), (m, n). Parameters a gj and b f}“ are introduced to denote node and arc
monitoring capabilities of drones over each arc. If drone flying over arc (, j) can monitor node [ then a f j=l.a f j=0means
drone cannot assess nodel through flying over arc(, j). Similarly, if drone flying over arc(, j can make assessmenton arc
(, m),thenb f;" =1.b Z“:O means drone cannotassess node [ through flying over arc(, j). Assessment capabilities of drones,

afj and bf;”l are calculated with respect to the distances from nodes [ and m to arc (, ). If the distances from nodes | and

m to arc (i, j) are below some threshold, it is assumed that a gj and b f;" take value 1. For example, as in Fig. 1, consider a
drone flying over arc (1,2), the shaded area around the traversed arc marks the assessment region of the drone. The nodes
and the arcs thatlie entirely inthe shaded region are considered to be assessed by flying over arc(1,2).

In the context of general routing with profit, Archetti et al. (2017) prove that every directed arc in the graph can be
traversed at most twice by vehicle k. We will make use of this result in our model. Similar to the Fig. 1, a basic node-arc

diagram of the proposed model can be provided (See Fig. 2). Consider a disaster network as depicted in the Fig. Za. With
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(a) An example disaster network diagram (b) An example routes of a proposed model
for 1 drone and 1 motorcycle on a given
network

Fig.2. Anexamplenode-arcdiagramand possibleroutesof proposed model.

followingnodes insequence, 1, 2,3, 2,4, 5,6, 7,8 and motorcyclevisit 10, 11,12, 13, 14, 15, 13, 16 and 17,then theyreturn
to thedepot node.

As in Fig. 1, the shaded region around the black coloured arc marks the assessment region of the drone. The nodes and
the arcs that lie entirely in the shaded region are being assessed by flying over a given route. Assessed network elements
that lie inthe shaded region are the nodes9 and 10, and thearcs (1,10),(2,10) and (8,9). However, only the nodes and arcs
that lie in the motorcycle route, coloured grey, are considered to be assessed. There are two non-depot nodes in the figure
which are visited multiple times, node 2 and 13. Also, node 10 which lies in the shaded region around the drone route is
visited along the motorcycle route. Although its assessment can be conducted with the visit of the motorcycle, assessment
of the arcs emerging from it that lie in the shaded region is only possible with the drone (assessment of the arcs (1,10)
and (2,10)). In the figure, nodes with dots represent the nodes being assessed by either of the vehicles. It is important to
note that the twice traversal of anarc isnot depicted in the figure to avoid complications arising from the superposition of
routes.

3.1. Mathematical model

81

In this section, we introduce a bi-objective mixed-integer linear programming model which determines the paths of

the vehicles with the €-constraint method. Three-step solution approach is constructed for the problem. At first, only the
weights of the assessed arcs are maximized within a period of time and this problem is called arc profit PDARP. Then, in
parallel, only the weights of the monitored nodes are maximized innode profit PDARP while respecting the time bounds of
vehicles.Asafinal step, toaddress bothissues simultaneously, arc profit ismaximized in the objective while collected node
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N Setofallnodes.

A Setofallarcs.

M  Setofmotorcycles.

D  Setofdrones.

Vv Setofvehicles.V=MuD

Note thatVisan ordered setof Mand D

Depotnode isdenoted by seN
Parameters

E
d; i
Di

dij
T

ij

al

Im

1 ifarc(i,j)eAexistsintransportation network,
0 otherwise.

:distancefromnodeieN tonode jeN.

:gainfromassessingnodeieN.

:gainfromassessingarc  (i,j)eA

:timebound foreachvehicle.

:drivingspeed of motorcycleandflight speed ofdrone
1 ifnodeleNcanbe monitored by passingthrougharc (i,j) €A,
0 otherwise.
1 ifarc (I,meAcanbe monitored by passingthrougharc (i,j) €A
0 otherwise.

The decisions to be made canbe represented by the following sets of variables:

Decision Variables

2 ifvehiclekeV traversesthrougharc (i,j) eAtwice,
Xij + 1 ifvehiclekeV traversesthrougharc (i.j)eAonce,
Q otherwise.
1 ifnode jeNismonitored,
Y; : .
J Q otherwise.
7 .1 ifarc(i,j)eAismonitored,
y " Q otherwise.
Wy -connectivityvariable forvehiclekeV overarc (i.j)eA

The following mixed integer linear program for PDARP cannow be proposed:

maximize f1,f2

subject to
fl= qij - Zij
i<j

(i,J A
f2= p;-Y

jeN
Xijk <2 Eij Mi,j)eANkeV
Zij <1-Ej Wi, j)eA

Xijk—  Xji =0 VjeN,YkeV

iN iN
Yj =< ( Xijk + alJl 'Xilk) \Vf]EN

iN M IN kD
Yz S X W(i.j) €A ke M

|
Y; >al - =X

Wi.l)eA.NieNNMeD

(8)
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1 e

Zij > 57 Xijk +Xik) Vi, j).(j.)eAkeM (10)
Zij = % ) @;{n 'lek) V(i,j),(l,m)eA,‘vkeD (11)

Xige =1 VkeV (12)
iN

Xsjk =1 YkeV (13)
jeN

dij -Xijk < T VeV (14)

(i,j)A

(Wi — Uj)—  dij - Xije =0 MeN\{gWkeV (15)
jeN jaN
usjk :dsj 'ijk WEN\{S}’\W{EV (16)
Ug < -T-X g MeN\ {5, VeV (17)
Uijk = ( -T—d jS)'Xijk V(l’.]) EA’J#S’\VkGV (18)
Uj = max{ -T—d .0 Mi,j)eA, j=#sYkeV (19)

1 .. .

Uijk = (dsi +d l]) i ')<ijk V(I’J)EA’I#S’\VREV (20)
Xijk €012} Mi,j)eANkeV (21)
Z;j €01}, Vi, j)eA (22)
Y, €01} VjeN (23)

The objective function (0) maximizes the total importanceof arcs and nodes assessed. We remind here that although we
areworking ona directed graph, assessments are made through monitoring either direction.

As X i, Z;; are defined for each node pair, constraints (3) and (4) are imposed to guarantee that each arc tra-
versed/assessed exists inthe ground transportation network. Constraint (5) specifies the flow balance conditions forvehicle
k Constraints (6 ¥ 8) monitor the assessment of nodej by any of the vehicles. Constraints(9}-(11)checkifarc(, j) ismoni-
tored by any vehicles ineither direction. Constraints(12)and (13) ensureall vehiclesleave the depot once and return once.
Total distance bound is given by the constraint (14) Constraint (15) ensures the connectivity of the tour for each vehicle k
Constraint(16) calculates the distance travelled by vehicle k leaving the depot. By constraints(17 }-(19)an upperbound on
non-depot entering connectivity variable is imposed. To explain further, constraint(17) bounds the ones entering the depot
by the total travel distance limit. Constraint (18) bounds the non-depot entering ones by considering the travel distance
limit and the distance which has to be travelled to return the depot. Constraint (19) imposes a positive distance bound
on the non-depot entering connectivity variables. By constraint (20) we ensure that connectivity variables take a positive
value whenavehicle traverses that particular network element. Therefore,disconnected tours areeliminated via nstraimts
(15%20) Note that when X ;; =Q they force u , to be 0; while they forceu , to be between (d ¢ +d ;;)- 5-X ik and
( -T—d j) whenX >0 for i In this way, multiple visits to nodes are allowed while avoiding disconnected sub-tours.
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Table1
e-constrained mathematical models.
ArcProfitPDARP Node Profit PDARP
maximize f maximize 2
subjectto subjectto
(1)-(23) (1)-(23)

f2> ¢ (e2=v+€)(24) fl=e 1 (e =p)(25)

frontier may have Pareto efficient solutions which cannot be found using weighted-sum scalarization technique. Addition-
ally, weighted-sum scalarization with fixed weights would return only one of the Pareto-efficient points. Since assessment
of the node or arc have distinct implications on the disaster management operations, and their importance is calculated
using different metrics, we prefer to utilize a bi-objective methodology. The following additional parameters are defined for
the e-constraint method.

v :lowerboundonthetotalassessed node profit.
ol :lowerbound onthe totalassessed arc profit.
€ :increment

For the Arc Profit PDARP, objective fl is taken as the objective and 2 is considered as a constraint. For the Node Profit
PDARP, objective function fl is replaced by objective 2 and €-constraint (24) is replaced with the constraint (25). The
mathematical models are givenin Table 1.

Initially, Arc Profit PDARPis solved without the e -constraintand € 1 issettoitsoptimal objective functionvalue f  ¥.Then,
Node Profit PDARP is solved in order to find the best objective function value having the same f 1 value.Letssay f 5 isthe
objective function value. The resulting objective values for f 1 and f 3 arerecorded as one of the Pareto efficient solutions.
After this, e ; isequatedto f 5 +€ in order to find the next Pareto efficient solution by solving Arc Profit PDARP again and
following the similar procedure as the initial step. These algorithmic steps arerepeated until the infeasibility in solving Arc
Profit PDARP occurs.

Inorder to justify the utilization of € -constraintmethod, we show that optimal solutions of Table 1 problems are at least
weakly efficient. We first need to provide some definitions.

LetI" be the domain defined by the constraints (1%23) and the respective € -constraint,(24) or(25).

A feasible solution X eI is called efficient or Pareto optimal if there is no XeI' such that f(x)> f( X)If X isefficient,
f(X) isanon-dominated point. i
Afeasible solution X eI is called weakly efficient (weakly Pareto optimal) if there is no Xel'such that f(X)> f( X) i.e.
fiX)>f jX) forall j=12Thepoint f( X) is then called weakly non-dominated
Proposition1. Let X bean optimalsolution ofone ofthe problemsin Table 1 for someje{1, 2}, then X isweakly efficient.
Proof. Assume X is not weakly efficient. Then e{1, 2} and XeI' such that f kX)>f (X Letussay f ;(X)>f ; (X) for
I the solution X is feasible for one of the problemsin Table 1 for some je{1, 2}. This contradicts to X being anoptimal

solution of one of the problems inTable 1 for somejef1, 2}.

Corollary 1. Let XeI" be a solution of one of the problems in Table 1 with an optimality gap, then Pareto optimality of the
solution X cannotbe asserted. Thus, f) is called Pareto approximate.

Remark 1. In one of the iterations, if optimal solution to the problems in Table 1 can be found, then optimal solution is
weakly optimal Pareto point. If it cannot be found at that iteration, the best solution found so far is called approximate
Pareto point.

Remark 2. If thereis atleast one approximate Pareto pointin aninstance, thenthe resulting Pareto front is called approx-
imate.

Duringour preliminary computational analysis, we observe that PDARPis acomputationally challenging problem. Warm-
starting Arc Profit PDARPis considered as a method to reduce the computation time. A slightly different optimization prob-
lem can be utilized toobtain aninitial pointfor the current problem for the warm-start procedure. Therefore, we proposea
version of the Arc Profit PDARP to find feasible starting point. Todo so, we redefine X so that second pass isnot allowed.
Updated Decision Variable
X - 1, ifvehiclek traverses through arc (i,j) €A
ijk " Q otherwise.
The following mixed integer linear program for Arc Profit 1-PDARP can now be proposed:

ijk

maximize f1
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/

Xii < Eij Mi,j)eA VeV (3a)
Y > X, Wi, j)eAYkeM (7a)
Y, > al X, Y(i,l)eA,NjeNYkeD (8a)
Zy = 5 - (X X Y(i,j) () eA ke M (10a)
Zij = bl X W(i,j) (I,m) eAVkeD (11a)
e > (dsi+d i) X W(i,j) €A its eV (20a)
X €01 Y(i.j) €A, WkeV (21a)

Proposition 2. A feasible solution to Arc Profit 1-PDARPis also feasible to the Arc Profit PDARP.

Proof. Take a feasible solution X of Arc Profit 1-PDARP The constraints (1), (2), (4¥6), (9), (12%19),(22), (23) (24) are
automatically satisfied as they are the same for both problems. The feasible solution X torestricted problemsatisfies X c X
where X ={ X;ji : Xijx Q1 Wi, j) €A, keV}andX ={X ijk ‘Xijk €Q12W(i,j) €A, WeV} Toprove Xsfeasibility for
the original problem, we need to check whether X satisfiesremaining constraints of the Arc Profit PDARP.

As E is a non-negative matrix, E ij <2-Ej Mi, €A For feasible X X; ik < Eij Mi, )€A is satisfied by the constraint

(3a)So, the following issatisfied ~ X;;, <2-E;; ¥i,)eAHence, X doesnot violate the constraint (3)

The constraint (7a)Y ; >X;jx Y, JeA WeM s satisfied by feasible Xand Xjj = 5 - (Xijk) Wi )eA WkeM for X
Hence, the constraint(7)Y ; > 5 -Xijk Wi, )eA WkeM holds.
Forany X, Xjyx > 5 - X i, DeA VkeDissatisfied.Y j=al -Xge Vi )eAWkeDforfeasible X by the constraint(8a)

Considering two ineqL}alities together,Y ;> a{l -)Zi,k > aljl : ‘2 : )Z,-,k Mi, DeA Vel So, the constraint (8) is not violated
by feasible solution X

Take constraint (10a)Z ;; > % (X i+ )_(jl-k) MG, ), i, )eA WkeM This constraint is satisfied with feasible solution X.
Andforany X 3. (Xj +Xj)= - Kije + X)) Wi.). (, 9eA WeM Hence, feasible solution X willalso satisfy the
constraint(10)whichisZ ;; = ﬁ - Kijk+X i) ML), §, )eA WkeM

For feasible solution X, constraint (11a) holds. Thatis,Z ~ ; > b -Xjp, M), (, meA WkeD For feasible solution X
and non-negative matrix b the following inequality holds: b 'lfm Xk = % : b;{n KXimk Vi, ), @, meA WkeD So, the
followingis satisfiedZ ;> 3 - b - Xy Vi.J, (, meA WkeD Thus, X doesnot violate the constraint (11)

The constraint (20aju i, > (ds;i+d jj)- Xjjk Wi, )eA WeV is satisfied by feasible Xand (d s +d ij)- Xijk = (ds; +d i)-
5 Xije Wi, )eA VeV for X So, theconstraint (20)u 5 > (dsj +d)- 5 -Xijk Wi, )eA eV holds for X

Remark 3. Feasible region of the arc profit 1-PDARP s tighter than the arc profit PDARP.

Hence, the feasible solution X found for the model that restricts traversal of arcs by at most once provide a feasible
solution to Arc Profit PDARR Thus, we first formulated the single pass version of the problem and warm-started the PDARP
with the paths we generated with the single-pass one.Inthis way,branch-and-boundingprocessis speeded up by providing
a good starting point and eliminating the possibly inferior solutions.

4. Heuristic solution methodologies for PDARP

Experiments we conducted with the mathematical model has shown thatas the bound on node criticality increase, it is
harder to reach the optimal solution inthe course ofa reasonable time frame. It may take hours to find the Pareto optimal
solution for some instances. However, due to the problem characteristics, immediate decisions are required. Therefore, we

decided to develop a heuristic solution methodology, which can find a set of good Pareto solutions within the scope of
solution quality and time trade-off.
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4.1. Construction

BRH constructs paths that start from the depot node and return inan allowed time frame.The algorithmuses the short-
est path network between each critical node calculated over the existing networkvia Dijkstra’s algorithm. For each vehicle,
the first node is selected as the one with the most profit among the feasible ones. At each step, one additional node is
inserted into each path among the most profitable ones without violating time bound. Then, until the time limit violation,
the same steps are applied. When no shortest path satisfying time condition is found, the last inserted path segment is
removed and a path to thedepot isadded.

It is assumed that vehicles assess the nodes and edges of this constructed path (motorcycle, drone) or assesses the
nodes and edges nearby (drone). Since after anode or edge s assessed, it cannot be assessed again. Hence, the assessment
operationisnotconductedifitis traversed by motorcycleor itis in pointof view of adrone again. While calculating profits
to be collected, this assumption is taken into consideration. Only the new assessments are considered in profit calculations.

A node to be inserted in the path is determined based on one of the 4 profit definitions. The profit can be a value
added by traversing arc/node, or a ratio of value added by traversing arc/node per distance. The value added by traversing
a network element corresponds to a change in either objective function value. Heuristic solution methods rely on those
4 construction methods and apply the consecutive improvement operations on the corresponding constructed paths. An
illustrative example ofthe construction algorithmcan be found at Appendix A

4.2. Random improvement

In a broad sense, random improvement heuristic searches for a new solution by generating random solutions from the
currentsolution.During the search,itrecordseachresultfound thatdoesnotviolatethe time constraint. After some number
ofiterations,dominated solutions are eliminated from the pool ofrecords.Then thealgorithm returns allthe non-dominated
paths in the solution pool.

Ourimprovement heuristic consistsof fiverandom improvementalgorithms: swap, insertion, reversion,add and remove-
add. Ateach iteration,a new random solution is generated by randomly calling one of the five improvementalgorithms. As
we have multiple vehicles, there are multiple routes to considerin each improvement heuristics.

In each improvement algorithm applications, a route to apply the algorithm is determined randomly in multi-vehicle
problem instances. For each algorithm, Letdepot —-il - 2—8—...— j1— j2— j3—depot be the givenroute. If the
operation specific conditions are not met, the operation rerun till success or till reaching the maximum number of trials.

4.2.1. Swap
The swap algorithm randomly chooses two non-depot nodes on the route and exchanges their positions. Let us say
algorithm chooses 2 and 2 nodes from the route. If arcs {l, 2), @, B), (1, 2), and @, B) exist in the transportation
network, the swap operation is successfully done. Then, the new route is depot - il - j2—-B—...— jl-2— j3—
depot.

4.2.2. Insertion

Twolocations onagivenroute are randomly chosen, then,a nodein theleftlocationis moved to anotherlocationin the
right by shifting subsequent elements of the paths to left. Let us say algorithm chooses locations of 2 and 2 on the route
and 2 is subjected to move. If A3, A2, 243 and arcs (i, B), 2, 2), @, B) exist in the transportation network,
insertion can be successfully performed. Then, thenew route isdepot - il - 8—...— j1— j2—2— j3—depot.

4.2.3. Reversion

The algorithm randomly chooses two non-depot nodes on the route and reverses the path segment in between. Let
us say algorithm chooses 2 and 2 nodes from the route. If arcs (1, 2), and @, B) exist in the transportation network,
reversion operation is successfully done. Then algorithm returns the new route, depot - il — j2— jl1—» .- B—>2—
j3—depot.

4.2.4. Add

In the algorithm, a non-depot node from N and a location to add the new node on a given route are randomly chosen.
Let us say algorithm chooses a non-depot node Kl and a location of 2 on the route. There are two conditions that lead to
success. First, if KiAl, K2, and arcs (, K1), (4, 2) exist in the transportation network, add operation can be success-
fully performed. Then, the new route is depot -il -k -2 —B8— ...— jl— j2— j3—depot. The other condition
for successful operationishaving jb42, and arc (1, 2)'s existence in the transportation network. Then, the resulting route
isdepot -l -2—-K —->2—-B—...—jl— j2— j3—depot.
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andarcs(l, K ), K, 8)existin the transportation network, the remove-add operation can be successfully performed. Then,
theresultingrouteisdepot - il — j1—-B8— ...— j1— j2— j3—depot.
A detailed pseudo-code combining the construction, BRH, and random improvement heuristic is given in Algorithm 1.

Algorithm1 Outline of therandom improvementheuristic solution methodology.

1: paths < Construct (#f ehicles, #ofdrones,dist E,a,hp,q
2: storedpaths < paths
3: counter <1
4: whiletime<Timelimit do
5 i< randominteger frontl,.,5}
6: ifi=1 then paths <~Swap(pathsE)
7: elseifi=2 then paths < Insertion (pathsE)
8 else ifi=3 then paths < Reversion (pathsE)
9: elseif i=4 then paths < Add (pathsE)
10: elseif i=5 then paths < Remove-Add (pathsE)

11: iftotldistunceo f path< Tx - then
12: counter <—counter+1
13: stored paths counter <— paths

14: fori=1— counter docalculate two objective values (arcand node)
15: remove dominated paths from the stored paths

The integral part of the algorithmlies inthe construction of the initial paths. Algorithm 2 performs this task. Improvement

Algorithm2 Base Route Heuristic.

procedure CONSTRUCTHo f ehicles #ofdrones dist,E, a,b p, q)

2: forn =1—#of ehiclesdo
constructedpath, =Iq
4: totaldist, =0
while totaldist, <T- do
6: fori=1— N|and s do
shortestpath; < shortest path from constructedpath , (lastindex) toi using Dijkstra(E)
8: shortestdist; < shortest distance from constructedpath , (lastindex) toi using Dijkstra(E)
returnpath; < shortest path fromito s using Dijkstra(E)
10: returndist; < shortest distance from i to s using Dijkstra(E)
if totaldist , +shortestdist ; +returndist; <T- then
12: profit; =increase in arc objective per distance travelled by traversing fromn toi (orin-

crease in arc/node objective or increase in node objective per distance travelled by traversing fromn to
)
if ming {totaldist, +shortestdist ; +returndist;}>T- then

14: exit while loop
if[=argmax ga profit; then
16: pre iousconstructedpath , <-constructedpath ,
constructedpath, <« |constructedpath , ,shortestpath ||
18: preioustotaldist , <totaldist,
otaldist, <totaldist , +shortestdist
20: if totaldist, >T- then
constructedpath, < preiousconstructedpath
22: totaldist,, < preioustotaldist ,
constructedpath, < |constructedpath , ,returnpath]
24; otaldist, <totaldist , +returndst ;

heuristics are visualized inthe Fig. 3

4.3. Purposiveimprovement
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cation of node 72 and node k1 node 72 and node k1l

Fig.3. lllustrativeexample oftheimprovementalgorithms.

Table2
Featuresofthedataset.
Kartal municipality
Numberof Nodes 45
Symmetricdistancematrix Yes
Groundtransportationnetwork Yes
Depotnode(node number) 16

Numberofschools(node numbers) 3(14,21,22)
Numberofhospitals(nodenumbers)  4(26,33,41,43)

seeks the best improvement on both objectives under a random number of iterations using all of the improvement algo-
rithms. During the search, procedure records the two best results in terms of arc, and node assessment objectives found
that does not violate the time constraint. After a predetermined number of iterations, dominated solutions are eliminated
fromthe pool of solutions. Then the algorithm returns all the non-dominated routes in the solution pool.

The proposed purposive improvement heuristic consists of the same five improvement algorithms: swap, insertion, re-
version,add and remove-add asin theimprovement heuristic. Ateach iteration, five new solutions are generated by calling
the five improvement algorithms. Note here that there are multiple routes to consider in each improvement heuristics due
to the multiple number of vehicles.

Recall the fiveimprovementalgorithms, this time the randomnessin theimprovementalgorithmsiseliminated, meaning,
the improvement algorithms are called with the same parameters. Note here that there are multiple routes to consider in
eachimprovementheuristics due to the multiple number of vehicles. The first parameterisaroute toapply the algorithmin
multi-vehicle probleminstances. The others are the twolocations 2, 2 from the route, and a node, KleN If the operation
specific conditions are not met for all of the algorithms, the same operation isrepeated with new parameters till success.

A detailed pseudo-code combining the construction, and purposive improvement heuristics is given in Algorithm 3
Algorithm 2 performsan integral partof the Algorithm 3 whichis theinitial path’s construction.

5. Computational analysis
5.1. Data

To measure the effectiveness of the developed mathematical model, and the heuristic solution methodology, we used
a data set from Turkey based on Istanbul’s Kartal district (<ilci et al., 2018). Kartal is specified as the 11th most crowded
district amongthe 39 districts ofIstanbul and hasnearly 425,00 inhabitants.

There are 20 sub-districts in Kartal and the population of each is assumed to be concentrated in its center. Moreover,
there are 25 points of interests (POI) which are determined as emergency rallying points. These POIs include school yards,
mall parkinglotsand some other appropriate points. The locations of45 nodesare presented in Fig. 4 Sub-districts together
with POlIs are taken as population points as POIs have the possibility of being densely populated during the disaster. There
are 7 POIs containing schools and hospitals. Those are illustrated with yellow squares and green stars, respectively, while
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Algorithm3 Outline of the purposive heuristic solution methodology.

paths < Construct (#f ehicles,#ofdrones,dist,E,a,hp,q
stored paths < paths
3: counter <1
state<1
while time <Timelimit do
6: fori={1,...,.5}do
checker; <0
while 1'.5=0 checker;=0do
9: ehicle <randominteger fronfl,. . .#of ehicles}
2 < randominteger fronfl,. . ,lengthofstoredpaths state}
j2 «<randominteger fronfl,. . ,lengthofstoredpaths state }
12: Kl «<randominteger fronfl,.. ,N}
path1 < Swap (storedpaths stqte, E, ehicle,2 j2)
path, < Insertion (storedpaths stqte,E, ehicle,2 j2)
15: paths < Reversion (storedpaths ¢ g, E, ehicle,2 j2)
path4 < Add (storedpaths gqee, E, ehicle,2Kl)
paths < Remove-Add (storedpaths stqte, E, €ehicle,2Kl)
18: fori={1,....5}do
iftotmldistanceofpath ; < Tx- then
checker; <1

21: calculate two objective values (arc and node)
Select the bestimprovements onboth objectives
counter <—counter+1

24: add bestnode objectiveto stored paths  counter
counter <—counter+1
add bestarc objective tostoredpaths  counter

27: state<state+1

fori=1— counter docalculate two objectivevalues (arcand node)
remove dominated pathsfrom thestored paths
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Fig.4. Thelocationofdepotand criticalnodesinKartalmunicipality (<ilcietal.,2015).

In order to determine the critical elements of a network, certain weights are assigned to the nodes and arcs. For nodes,
the weights are determined based on the number of people livingin adistrict. To give a relatively higher importance to the
points like hospitals and schools, potential population levels are determined. To do so, the populations of the districts are
aggregated and assigned to each nearest hospital and school. Node weights (p ;) are calculated with respect to the resulted
aggregated populations and reduced to the [0, 1] interval.

On the other hand, the importance of roads is determined based on the population of the points that it connects and
criticality of the road. If blockage on the road causes a significant increase in the distance travelled by disaster victims and
the weights of the nodes connected by that road are high, then the importance of the arcincreases along with the weight
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Table3

Test parametersofthe model.
Driving/FlightSpeed 40km/hr
Epsilon( €) 0.001, 0.01, 0.1
Numberof Drones 1, 2
Numberof Motorcycles 1, 2, 3
Timebound 2hr

Table4
Weights ofnodesandarcs forsolutions with 1 motorcycle,0drone.

Solutiona  Solutionb  Solutionc

TotalweightsofAssessedNodes  5.826 6.220 6.015
Totalweightsof Assessed Arcs 5.737 4.995 5.383

The number of vehicles available for assessment operations considered to be at most 2 drones and 3 motorcycles. The
reasonis that aftera disaster,resources are scarce and available vehiclesmaybe allocated toother response operations. Due
to its endurance and camera specifications, Aeromapper Talon model of Aeromao Inc. is considered as a candidate vehicle
(Aeromao, 2014). It has a cruise speed of 50km/h, considering take-off and landing, average drone speed assumed is about
40km/h. Additionally, for the motorcycles, the vehicle speed is considered to be again about 40km/h, which is suitable for
off-road capable motorcycles. As the first hours after adisaster is critical for response operations, time-window for vehicles
is set to 2 hours in order to make the assessmentin a short period of time. This 2 hours time limit is also in line with the
endurance of the Aeromapper Talon drone. Therange is another property to be considered in utilizing drones; Aeromapper
Talon has arange of 30 + which underlinesits usefulness in assessment. Under this parameter setting, it is not required to
include a constraintregarding range properties.

Maximum flight altitude for adroneis restricted inmost countries by 120m. Chosen drone, AeromapperTalon, has Sony
A6000 model camera mounted on it (Aeromao, 2014). Sony A6000 camera can have a focal length ranging from 16mm to
50mm. As focal length gets smaller, the field of view increases, so the focal length setting is taken as 16mm. With the
focal length of 16mm and a flight altitude of 120m, it is possible to monitor all the points within a circle of 75-80m
radius. In this study, we take this radius as 75m. Considering a densely populated city such as Istanbul, using drones for
assessment purposes promises evaluation of nearby points and roads while passing through a particular path. To that end,
we introduced parameters for node and arc monitoring capabilities of drones over each arc. If a point m is within 75m
distance to any point on arc (, j), its assessment can be done while flying over arc (, ). Similarly, each arc connecting the
points liewithin 75m of distance to any pointon arc (, ) canbe assessed by traversing through arc(, ) by drone.

Since mathematical model accounts for e-value, it is determined by the smallest weight difference between population
points and it is taken as 0.001. Larger €-values, 0.1 and 0.01, are also used in order to compare the resulting frontiers in
terms of quality, how well they approximate the Pareto front, and the computational requirement of the overall procedure.
In Table 3 the parameters of the model are summarized.

5.2. Computation experiments

All computationsare performed ona 4XxAMD OpteronInterlagos 2.6GHz processorand 96 GBRAM computer with Linux
operating system.The MIPmodel is solved using CPLEX 12.6. The heuristic algorithms were coded in Matlab R2015b on the
Intel Core i7-4702MQ, 2.2GHz processor with 8 GB RAM computer with Windows 10 operating system.

To illustrate the computational results of the PDARP, routes of a sample instance are given in Fig. 5 which consists of
1 motorcycle and no drones, under € =001 In the Fig. 5a, Pareto efficient solutions obtained by solving the bi-objective
model iteratively is illustrated. Solution a corresponds to the arc profit PDARP where v and € value are set to 0. Solution
b corresponds to the node profit PDARP in which € takes the highest possible value so that the model acts as if the node
profitismaximized withoutanyviolationor itcan be obtained by solvingnode profit PDARPmodel. Solutioncis one of the
non-dominated solutions in the Pareto frontier. The routes of a motorcycle inthese three solutions can be found in Fig. D,
¢,and drespectively.

In solution g it is observed that certain nodes like node 43 are visited multiple times to traverse critical arcs as much
as possible in 2 hours. Node 43 is a hospital; therefore, it is logical to traverse that node multiple times and route on the
arcs connected toitas they have higher weights.On the other hand, in solutionh itis recognized that each nodeis visited
at mostonce tobe able to increase the overall node profits. Therefore, even ifthe multiple passages are allowed, the model
performs as if it is a classical routing problem. Finally, in solution ¢ the number of nodes visited and overall node profit
collected are higher than solution a while multiple passages through some nodes are observed contrary to solution h This
indicates that the bi-objective solution clearly demonstrates the characteristics of both single-objective solution approaches.
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Fig.6. Assessingnearbynodesand arcsby usingdronesforassessment purposes.

Using drones for assessment purposes ensure assessment of the nearby points and roads. This characteristic can be
observedinthe Fig. 6 where the routes of 2drones and no motorcyclesinstance are given.In the figure, the solid lines(red,
black) indicate the arcs lie in the flight paths of drones, while the dashed lines reflect the assessed arcs that do not liein
the flight paths. For example, taking the figure into consideration, arcs (43,17), (10,11) are not in any of the drones’ paths,
but they are monitored through flying over arcs (9,43), (17,45). Similarly, roads (9,11), (11,43), and (37,36) are assessed by
flyingover theroads parallel to them.

It is important to recall Corollary 1 at this point. Thus; when a solution is obtained with a gap during the €-constraint
procedure, resulting Pareto front is called as approximate. In Table 5 model performances are summarized for e =Q0001 It
can be seen that in 8 instances out of 11, we could not find exact Pareto fronts for PDARP while allocating 2 hours to arc
profit 1-PDARP and 4 hours to arc profit PDARP as a solution time for finding each Pareto solution. In 6 of the instances,
the mathematical model was able to find some of the exact Pareto optimal solutions but not all of them. Average solution
time required for an exact/approximate Pareto solutionisover 3 hours in 7 of theinstances and is more than 4.5 hoursin 6
of them. When the number ofdrones is 1 or 0, the total number of Pareto solutions tends to be much higher compared to
the 2 drone cases. Additionally, having 3 or more vehicles at hand result with approximate Pareto solutions where allowed
solution time is mostly consumed.
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Table5
Model performancesofKartalinstancesunder € =®01
Instance([},M) NumberofTotal Numberof Exact Numberof TotalSolutionTime Average GAP (%)
ParetoSolutions ParetoSolutions ApproximatePareto perParetosolution
Solutions (hours)
(0,1) 11 11 - 0.05 0.00
(0,2) 70 47 23 3.07 1.33
(0,3) 25 - 25 5.84 3.97
(1,0) 19 18 1 1.66 0.06
(1,1) 22 22 - 0.94 0.00
(1,2) 10 - 10 5.98 1.76
(1,3) 4 - 4 6.00 1.50
(2,0) 8 8 - 0.58 0.00
(2,1) 6 2 4 4.83 0.70
(2,2) 4 - 4 6.00 149
(2,3) 1 - 1 6.00 1.10
Table6
Model performancesunder ¢ values:0.001,0.01,0.1.
Instance(},M) € values NumberofPareto NumberofExact TotalCPU (hours)  Total CPU perPareto Average GAP (%)
Solutions ParetoSolutions solution(hours)
(0,1) 0.001 11 1 0.46 0.06 0.00
0.01 9 9 0.43 0.05 0.00
0.1 4 4 0.29 0.07 0.00
(0,2) 0.001 70 47 21491 3.07 1.33
0.01 55 47 115.99 211 0.40
0.1 13 11 27.73 213 0.20
(0,3) 0.001 25 - 146.03 5.84 3.97
0.01 21 - 125.29 5.97 312
0.1 10 - 59.29 5.93 2.51
(1,0) 0.001 19 18 31.51 1.66 0.06
0.01 16 16 23.66 148 0.00
0.1 8 8 12.09 1.51 0.00
(1,1) 0.001 22 22 20.67 0.94 0.00
0.01 16 16 7.40 0.46 0.00
0.1 6 6 3.06 0.51 0.00
(1,2) 0.001 10 - 60.00 6.00 1.76
0.01 10 - 40.00 6.00 1.18
0.1 4 - 24.00 6.00 1.08
(1,3) 0.001 4 - 24.00 6.00 1.50
0.01 3 - 18.00 6.00 1.59
0.1 2 - 12.00 6.00 1.54
(2,0) 0.001 8 8 4.69 0.58 0.00
0.01 6 6 313 0.52 0.00
0.1 3 3 0.86 0.29 0.00
(2,1) 0.001 6 2 28.98 4.83 0.70
0.01 5 2 22.67 4.53 0.66
0.1 3 2 8.72 2.90 0.37
(2,2) 0.001 4 - 24.00 6.00 1.49
0.01 4 - 24.00 6.00 1.16
0.1 2 - 12.00 6.00 113
(2,3) 0.001 1 - 6.00 6.00 1.10
0.01 1 - 6.00 6.00 1.10
0.1 1 - 6.00 6.00 1.10

ments,and solution gaparereported. As expected, withlargere values, the Pareto frontis approximated inashorter period
oftime atthe expense of obtainingless Pareto points. By usinge =001, 19% of the Pareto points arelost while the compu-
tational time is decreased by 31%. Taking € as 0.1 enables us to spend 70% less time on computation; however, inturn, we

lose 69% of the Pareto points. Beside total computational time benefits, larger € values turn out to be effective in decreas-
ing the average solution gap and total CPU time per each Pareto solution. As it can be observed in Table 7 utilizing larger

epsilonvalues providesa greatbenefit indecreasing computational timerequirements at the expense of finding a worse off
Pareto frontapproximation.Heuristicapproaches’ performance inreducing the computational effort requirement stands out,
as the heuristics provide a CPU time reduction up to 99.5%. Although heuristic approaches show a significant performance
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Table7
Decrease(%)inCPUtimerequirementswiththemathematicalmodelsunder € =M1¢ =0 andheuris-
ticswithrandom and purposiveimprovementin CPU time requirement.

Instance([,M)
(0,1) (0,2) (03) (1,00 (1,1) (1,2) (1,3) (2,00 (21 (22) (23)

€=0.01 4.4 460 142 249 642 333 250 333 218 00 0.0

€=0.1 369 871 594 616 854 600 500 817 699 500 0.0
Random - 995 993 968 952 983 958 787 965 958 833
Purposive - 995 993 968 952 983 958 787 965 958 833

measures are used, which are spacing metric (S)Schott, 1995), maximum spread metric (MS)Hyun et al., 1998), and set
coverage (SC)(Zitzler and Thiele, 1998). These three metrics can be used with approximate Pareto solutions set.

Spacing(S): Tomeasure the spread uniformity of the solutions set this measurecan be used. The definition of this metric
isas follows:

-
S= - d; —d 2 26
&1
m ' ]
di=min 0} -0/| 1ij=12..n (27)
T e

wherenisthe numberofnon-dominated solutionsinthe solution pool,misthenumberofobjectives,O ;{ isthek th objective
value ofa solutioniand  d isthe mean value of alld i Gchott, 1995). WhenS isclose to zero, it meansall the points spread

uniformly. Thatis, the smaller Svalue is betterin terms of diversity.

Maximum Spread (MS): This metric measures the maximum extension covered by the non-dominated solution set, i.e.,
the maximum Euclidean distance between a solution and other non-dominated solutions in that set (Hyun et al., 1998).
Mathematically, itis defined by the following equation:

-
| . :
MS= max (|07 -07]) (28)
o1
H
where |0 ! — 0V|| is the Euclidian distance between objective values of O  and O/ in the solution set of heuristic or mathe-

matical model. Inthis equation, nindicates the number of non-dominated solutions in the set.
Set Coverage (SC): This metric is used to compare two sets of non-dominated solutions found by two different meth-
ods Zitzler and Thiele, 1998). Let methodl and method be sets of solutions found by two different methods. SGnethodl,

methoc?) is the ratio of points that are dominated by or equal to at least one point in method1. It is expressed by the
following equation:

{07 emethod2] D J emethod1:0 ' < 0}
method?2]

If SC(method1,method2)=1, all points in method are dominated by or equal to some points in methodl, while the
SC(method1,method2)=0 implies the opposite. As there are intersections between these sets, both SGmethodl, method)
and S@metho®, methodl ) should be considered. We can say that second methodis betterthan the firstin terms ofaccuracy
ifand only if SC (method1method2) =0 and SC (method2method1)=1 {itzler and Thiele, 1998).

Average Maximum Spread (AMS): As MS is heavily affected by the number of non-dominated solutions found by the
method, Average Maximum Spread measure is proposed which is equal to Maximum Spread per non-dominated solutions
found. Larger the AMS value is, the better the solution set is because higher AMS value indicates the solutions are more
spread and the set isable to cover further edges of the Pareto front.

Both heuristicsand mathematical models’results and performance measure values are summarized inTable8 9 1Q0The
solution times of the random and purposive heuristicsare around 1 hfor eachinstance.

In Table § the performances of the mathematical models under different epsilon values are compared in terms of spac-
ing, maximum spread, and average maximum spread. Spacing metric measures the deviation distance from the average
solution, which is higher in the model with € =01 than the models with other epsilon values. The reason for this can be
the following: the number of points returned by the model with € =001 is larger and those points are located close to
eachother, thus thedeviation (S)is lower. Hence,the model withe =001 is performingbetterby having lower deviation.

SC(method1,method2 )= (29)
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Table8

Performance analysisof mathematicalmodels with € =001 ¢ =M1ande =0 using performance metrics.

Instance Spacing Maximum Spread AverageMaximumSpread
D M Model Model Model Model Model Model Model Model Model
(€=0.001) €=0.01) €=0.1) €=0.001) €=0.01) €=0.1) €=0.001) €=0.01) €=0.1)
0 1 0.008 0.008 0.001 2.585 2.370 1.600 0.235 0.263 0.400
0 2 0.008 0.006 0.025 14.362 12.780 5.613 0.205 0.232 0.432
0 3 0.003 0.002 0.005 6.205 5.702 3.999 0.248 0.272 0.400
1 0 0.007 0.007 0.237 7.264 6.625 4,708 0.382 0.414 0.588
1 1 0.005 0.027 0.089 5.227 4.501 2.899 0.238 0.281 0.483
1 2 0.005 0.005 0.012 2.394 2.391 1.327 0.239 0.239 0.332
1 3 0.003 0.0D 0.0 0.766 0.685 0.482 0.192 0.228 0.241
2 0 0.001 0.022 0.020 2.645 2.243 1.348 0.331 0.374 0.449
2 1 0.004 0.001 0.005 1.700 1.592 1.062 0.283 0.318 0.354
2 2 0.002 0.001 0.0 0.755 0.737 0.583 0.189 0.184 0.291
2 3 NAN NAN NAN 0.0 0.0 0.00 0.a0 0.0 0.0
Table9
Performance analysis of mathematical models and heuristics with random and purposive improvement using set coverage
metric.
Instance ([}, M)
(01) (02) (03) (1L0) (11) (12) (13) (200 (21) (22) (23)
€=0.1 044 0218 0429 0500 0375 0400 0667 0500 0.600 0500 1.0D
€=0.01 1@ 0923 0700 10 1@®M 100 10» 10» 100 10D 100
€=0.1 0364 0.186 0480 0421 0273 0364 0500 0375 0500 0500 100
€=0.001 1@ 100 090 10 1@ 1 1.0 1.®» 1. 0500 10D
€=0.01 0818 0.757 0.680 0.842 0.727 1.0 0750 0.750 0.833 10» 10D
€=0.001 140 0964 0762 1@ 1.0 0800 1.0 100 1G0 0.500 1.00D
random 00 O00» o000 OO O00p 0000 0.0 0@ 0O 000 0 0.00
model(e=0.001) 100 1@ 100 0800 1.0 100 1.00 0875 100 100 10D
purposive 000 O0G 0.00 0526 000 000 0.0D 000 000 0.0 0.0D
model(e=0.001) 100 1@ 100 0583 1.0 100 1.00 0722 1@ 1 1060
random 1.0p 1.00 10D 0167 0235 0875 0250 0333 1.0 0.700 1.0 00]
purposive 00 06 0.0 0600 0714 0@ 0125 0375 0060 O 0.0»
Table10
Performance analysis of mathematical model with € =01 and heuristics with random and purposive improvement using perfor-
mance metrics.
Instance Spacing Maximum Spread Average Maximum Spread
Random Purposive Random Purposive Random Purposive
D M Model Heuristic Heuristic Model Heuristic Heuristic Model Heuristic Heuristic
0 1 0.008 0.579 0.413 2.585 2.802 2435 0.235 0.700 0.812
0 2 0.008 0.021 1.038 14.362 3.749 3.461 0.205 0.536 0.865
0 3 0.003 0.015 0.0 6.205 8.622 3.015 0.248 0.375 1.507
1 0 0.007 0.009 0.029 7.264 1.803 5.150 0.382 0.361 0.429
1 1 0.005 0.011 0.006 5.227 3.509 8.543 0.238 0.501 0.503
1 2 0.005 0.067 0.051 2.394 4.334 6.284 0.239 0.619 0.785
1 3 0.003 0.006 0.003 0.766 3.035 5.932 0.192 0.379 1.483
2 0 0.001 0.241 0.113 2.645 4.530 8.788 0.331 0.566 0.488
2 1 0.004 0.012 0.031 1.700 2.160 7.090 0.283 0.432 0.788
2 2 0.002 0.032 0.077 0.755 1.991 6.031 0.189 0.498 0.603
2 3 - 0.012 0.006 0.0 2.100 1.300 0.aD 0.525 0.325

Set Coverage (SC)provides acomparative analysis and it measures the ratio of (weakly) domination by the other set.SC
metrics show how betteran algorithm is than one another. The closer the SCvalue to 1, the better the solutionis. If points
of the method A dominate all points ofthe method B, then by the definition SC(A,B) equals to 1. However, thisinformation
aloneis notenough to compare A andB. Both SC(A,B) and SC(B,A) values should be considered to determine which method
is better, due to intersections between the two sets.

Now, the performance of the model under different € values, and the heuristic methodologies, provided in Table g will
bediscussed and compared using SC metric.If the performance of the mathematical models with differente valuesis com-
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Table 11
Improvementheuristics comparisonwithrespectto their contributiontoarcand node objectives.

Instance([},M) Heuristics Improvement%inArcObjective Improvement%inNodeObjective

(0,1) Random 20 22
Purposive 18 19
(0,2) Random 41 25
Purposive 28 24
(0,3) Random 49 19
Purposive 45 17
(1,0) Random 45 15
Purposive 54 17
(1,1) Random 46 14
Purposive 50 16
(1,2) Random 54 12
Purposive 54 11
(1,3) Random 50 7
Purposive 55 7
(2,0) Random 45 12
Purposive 53 13
(2,1) Random 59 7
Purposive 53 7
(2,2) Random 31 7
Purposive 33 6
(2,3) Random 43 3
Purposive 26 3

€ =0001. SC measure underlines the performance of the model with € =001 in approximating/finding Pareto frontier.
Additionally, in 2 instances, the model with € =Q1 was able to find a dominating solution to Pareto approximate solutions
of the model with € =001 The model with € =001 was able to find a dominating solution to Pareto approximate solu-
tions of the model with € =01 in 4 instances. These results emerge from the solutions found with € =0001 not being
optimal (See Corollary 1). As having € =001 provides a better Pareto front approximation, heuristics’ performances will
be examined withrespect to the model withe =0001 in the sequel.

In 9 out of 11 instances, model performanceis better than both heuristic methodologies when we consider set coverage
measure. Additionally, in 2 instances, the random and purposive heuristic methodologies were able to find a dominating
solution to Pareto approximate solutions of the model. When heuristic methodologies are compared with respect to each
other,onaverage 16%ofthe points obtained with the purposiveheuristiccandominate the pointsobtained with therandom
heuristics whereas 67% of the points obtained with the purposive heuristics can be dominated by the random heuristics.
Moreover, in 4 out of 11 instances, the purposive heuristic methodology was able to find a dominating solution to Pareto
approximate solutions of the random heuristics.

Table 10 provides a more detailed analysis on the performance of the heuristic solution methodologies compared to the
mathematical model with € =001 With respect to the spacing measure, model performance is better in all instances,
meaning that solution set of the model is more diverse. If we consider maximum spread measure, in 9 of the instances,
the heuristic methods yield a larger value, that is, heuristics were able to capture a larger spectrum of the Pareto front.
Additionally, in 6 of thoseinstances, the purposive heuristic outperforms both the modeland therandom heuristic.Only in
3 ofthe instances, therandom heuristic was betterin terms of coveringa larger spectrum of the Pareto front. Furthermore,
thePareto frontspectrum covered per non-dominatedsolutionislargerinall heuristicinstancesandin9 outof 11 instances,
the purposive heuristic captures alarger spectrum with a non-dominated solution. The reason for such an outcome can be
attributed toboth its performance withrespect to maximum spread metricand havinga fewer number of points generated
by the method. Hence, it canbe asserted that purposive improvement heuristic captures the Pareto front with less number
of points to approximate the Pareto front.

Inoverall, the performanceofthe heuristic solutionmethodologies arebetter than the modelundere =0001 intermsof
maximum spread, average maximum spread and computation time in comparison to mathematical modelunder € =(001;
however, in terms of spacing and set coverage heuristics are not performing well. The purposive improvement heuristic
methodology performs better compared the random improvement heuristics when maximum spread and average maxi-
mum spread measures are considered; however, when set coverage performances of two heuristics are compared, random
improvement heuristic outperforms the purposive improvement heuristic. This result can be attributed to the purposive
heuristics being stuck inlocal optimaand generating a fewer number of points.

Another analysis can be made based on how much the improvement methods improve the solution obtained in the
construction phase in terms of both arc and node objectives. Table 11 depicts the improvement percentages of both of the
heuristics in both objectives. The highest percentages are highlighted in the Table 11. It can be observed that random im-
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the time. Moreover, average improvement percentages underpin the success of random improvement heuristics; however,
the difference in percentagesis not that significant. On average, the random improvement heuristic can improve arc objec-
tive 43.9%, node objective 12.9%; on the other hand, these improvement percentages become 42.6% and 12.5%, respectively,
with the purposive improvement heuristic.

Asdiscussedvia Table 5-11, therandom and purposiveimprovementheuristics havereally good performance in terms of
the computational time, maximum spread and average maximum spread. Moreover, random improvement heuristic has an
advantage over the purposive improvement heuristic by providing larger improvements in both objectives and performing
betterthan purposiveimprovementheuristic withrespect tothe set coverage metric. Hence, considering the computational
requirements, improvement in both objectives and the performance with respect to set coverage, maximum and average
maximum spread metrics, random improvement heuristic is more suitable than the other methodologies. With respect to
spacing and set coverage metric, the mathematical model under ¢ =001 dominates the other methodologies; however,
the model’s computational time requirementremains asa challenge.

6. Extensions of PDARP

In the scope of this paper, the PDARP and its heuristic methodologies are considered to facilitate early assessment of
the disaster-affected region. Several extensions of the proposed model that incorporates assessment times into the model
can be developed. Those extensions can be considered as a detailed assessment of the disaster-affected region where these
assessments may require spending a certain amount of time on the node/arc being assessed. The proposed model in this
study can be modified to capture the need to spend a certain amount of time in the node/arc being assessed. We refer
new formulation as Post-disaster Assessment Routing with Assessment Time Problem (PDARATP). The following additional
parameters and decision variables need to be defined for the PDARATP.

Additional Parameters

Ki :timespentforassessingnodeieN.

Aij :time spentforassessingarc (i,j)eA

Additional Decision Variables

» 1 ifvehiclek monitors nodeieN,
Y. : )
ik * Q otherwise.

/1 ifvehiclek monitors arc (i,j) €A
ijk * Q otherwise.
The following mixed integer non-linear program for PDARATP can now be proposed:

maximize f1,f2

subject to
(1)—(13)
(21)— (23)
Y < Xige VjeN,YkeM (30)
iN
Yy < @ - X VjeNNYkeD (31)
iN N
1 ..
Y, > 5 - Xijk Vi,j)eANkeM (32)
/ 1 . :
Y > a, - 5 Xk Mi, ) eA,VjeNYceD (33)
Z;jlc =< (Xijk +X jik) V(l’.])’ (j’l) EA’V,(EM (34)
Z;‘jk = @ i[;‘n'xlmk)_i_ j&il 'Xmlk) V(l’.]) EA,W{ED (35)
(I, mA (m,lA
: 1 o
Zijk > ﬁ ’ ()<ijl< +X jik) V(I’J)’ (]’l) eAkeM (36)
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d" / /
el 'Xijk +)\4 ij °Zijk + K- Yik < T \VkEV (38)
(i,j)3A iN
d:; / /
(uijk — ujik)_ - 'Xijk +A ij °Zijk +Kj . ij =0 \VfEN\{S},\VkEV (39)
JN JjaN
d 7 / / o
Ugje = —2 - Xsjie +A 55 - Zgj K - Yy VieN\ {5 VkeV (40)
Uge <T-Xig MeN\{gWkeV (41)
djg o .
Ujk < (T— —)-Xijk Mi,j)eA, j+#s,%keV (42)
d.
Uy <maxl— =0 Y(i,j) €A, j=s,WkeV (43)
(dg; +d ;) , , / .. ,
Ujjk > % Xijk HKs - Yy +K - Y +A Ziik Mi,j) €A, i=#s,YkeV (44)
Zﬁ‘j <01}, V(i,j)cAVkeV (45)
Y}‘ c{01}, VjeNWkeV (46)

The problem has a similar structure as PDARP; however, in order to incorporate spending certain amount of time for
assessment, we need to detect which vehicle is responsible from the assessment of whichnodes/arcs. Constraints (30¥33)
monitor the assessment of node j by the vehicle k Constraints (30) and (31) are similar to constraint (6) As the new de-
cision variable, Y i;{ takes vehicle index into account, the constraint (6) is separated to capture which vehicle conducts the
assessment of node i Constraints(32) and (33)are similar to constraints (7)and (8) Constraints (34¥37)check if arc(, )
is monitored by the vehicle kin either direction. Constraints(34) and (35) are a version of the constraint (9) without sum-
mation over vehicle sets. Constraints (36) and (37) are similar to constraints (10) and (11) only difference is that the left
hand side of the constraints beara vehicleindex forarc assessment. Total time bound is given by the constraint(38) which
is similar to the constraint (14) Constraint (39) ensures the connectivity of the tour for each vehicle k considering assess-
ment time requirements. In parallel to constraint(16) constraint(40) assigns the time spent by leaving the depot but adds
the assessment time of nodes/arcs on the way to the connectivity variable. By constraints (41}(43) an upper bound on
connectivity variable is imposed. Those three constraints are indeed a version of (17}(19) where connectivity variable is
time-based. By constraint (44) we ensure that connectivity variable takes a positive value when a vehicle traverses that
particular network element. Therefore, disconnected tours are eliminated via constraints (39¥44)

To test thedeveloped mathematical model, we used the datasetKartal asdiscussed in Section 5.1 (Kilci etal., 2018). Test
parameter specifications of the PDARPare still valid for this problem.However, for this problem setting, we only consider 1
droneand 1 motorcycle. Additional parameters, k ,and A that representthe timerequired forassessment, are defined based
onnode weightsand distance values, respectively. k valuesassigned tothe nodesin away thatnode with the highest node
weight gets 10 minutes for assessment and the rest are assigned proportionally to their weight values. A is defined as 10%
of the travel time of the particular arc.

The performancesof the models are presented inTable 12 As the new model allocate an extra time for the assessment
effors, itis expected thatthe number of population points and the road segments assessed will decline. It isobserved that
when certain assessment times introduced for the network elements, in first two hours in the disaster aftermath approxi-
mately 36% of the time, 43 minutes, spent solely on assessing network elements, while the rest is spent on traversal and
the assessment. As two new binary variables are introduced to the problem and they appear in connectivity constraints,
PDARATP is computationally more challenging. Total solution time per Pareto solution and the average gap values reported
inTable 12

Since first hours in the disaster aftermath bear a great importance on the alleviation of the human suffering, one might
consider PDARP as an immediate assessment strategy and PDARATP as a more detailed assessment operation following
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Table12
Comparisonofthemodels PDARPand PDARATP.

D M (Criteria PDARP  PDARATP

0 1 Average Node objective 6.053 2.806
Average ArcObjective 5.328 3.675
Numberof ParetoSolutions 11 1
TotalSolution Time perParetoSolution 0.05 0.08
Average Gap 0.00 0.00
Required AssessmentTime overRouteDuration - 36

1 0 Average Node Objective 7.536 2.893
Average ArcObjective 7.050 4.299
Number of Pareto Solutions 19 1
TotalSolution Time per Pareto Solution 1.66 1.74
Average Gap 0.06 0.00
Required AssessmentTime overRouteDuration - 36

1 1 Average Node Objective 8.324 5.279
Average ArcObjective 11736  6.389
Numberof ParetoSolutions 22 4
TotalSolution Time per Pareto Solution 0.94 6.00
Average Gap 0.00 9.14
Required AssessmentTime overRouteDuration - 35

7. Managerial and policy implications

In this study, the post-disasterassessment strategy is developed asa tool to assistdisasterrelief operations by assessing
theseverityofthe disasterand the urgencyforrelief.Severalmanagerialinsights provided by thisresearch can be presented.

This study develops a model for the damage assessment in an aftermath of any disaster which focuses on population
points and road segments. Damage information obtained from both elements translate into resolved uncertainties in three
immediate logistics operations: evacuation, relief item distribution, and debris removal. The consecutive operations may
perform poorly with the unresolved uncertainties inthe demand. Thus, post-disaster assessments can facilitate more timely
relief by conducting early assessments to determine the severity of the disaster impact and urgency of the need for relief.
Hence, by assessing damage, disaster managers can distribute relief items and canalize their relief operations to the point
where they are needed most.

Assessment problems studied in theliterature largelyfocus onneedsassessment inpopulation points.In this study, with
having capable resources at hand, we observe that it is possible to conduct an assessment in not only population points
butalso onthe road segments. Toreach disaster victims, evacuate them from the affected region or supply them with relief
items in a short period, the situation of the transportation network should also be known. Also, in accordance with the
overview of the disaster assessment, disaster management authorities can plan debris removals in parallel to relief routing
operationsin orderto reach disaster victims ina timely manner.

The proposed model in this study presentsa way of narrowing down possible performance deficiencies in the response
phase operations through resolving uncertainties in the disaster aftermath. With preparing and implementing the post-
disaster assessment strategy, the disaster management authorities could produce more efficient responses; thus, mitigates
the pain and suffering of disaster victims, as early as possible.

8. Conclusion

Due to the importance of information in the post-disaster response phase, this study focuses on the damage assess-
ment processin an aftermath of adisaster and introduces a new problem that facilitates effectiveinformation gatheringon
population centers(nodes) and road segments(arcs) through deciding on assessment team routes.

In theliterature, there isa limited number of studies that focus onassessment operationsin the aftermath of adisaster.
Existing studies are solely focused onassessment of population points. To the best of our knowledge, there isno study that
considers assessment in both elements; although transportation network condition directly influences evacuation and relief
itemdistribution operations.

With this study, we highlight the importance of considering both networkelements in the assessment stage and develop
an appropriate assessment strategy. We develop a mathematical model that provides damage information in the affected
region by considering both the importance of population centers and road segments on the transportationnetwork through
using aerial and ground vehicles (drones and motorcycles). To assist post-disaster response phase operations by obtaining
information about the extent of damage in the area in a short period, a completion deadline isimposed via route duration
constraints. Additionally, as opposed to standard vehicle routing problems, we let population points to be visited multiple
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bi-objective approach to the problem is required. For this reason, we studied relief routing, multi-objective routing and
general routing problems in the literature with its variants. Then, we mathematically modeled bi-objective general routing
with profits problem considering arc and node profits as separate objectives. Bi-objectivity of the problem is handled with
€ —constraint method. The model returns assessment routes for vehicles where arcs and nodes to traverse are selected.
Additionally, the use of aerial vehicles contributes to the assessment of a possibly large number of arcs and nodes due to
its angular point of view. We presenta heuristic solution methodology to solve the PDARP. Our computational results show
thatthe proposed algorithm can find a high-quality approximation of Pareto front for the PDARP that mitigates the solution
time difficulties.

As damage assessment operations have not received much attention in humanitarian logistics or in OR literature yet,
there can be several research directions that focus on damage assessments in disaster aftermath. First, although this study
presents some results suggesting that the proposed heuristic methodologies may attain good solutions as it provides an
approximation of Pareto front in a short processing time, developing solution methodologies that can provide exact Pareto
fronts or better Pareto front approximation would be valuable to obtainbetter benchmark solutions to evaluate the perfor-
mance of the heuristics.

Future research direction can be related to characterizing the post-disaster uncertainties in developing an assessment
plan. Our study considers disaster network as an off-road network where off-road motorcycles are utilized with a certain
average speed; however, in the aftermath of a disaster, there can be some road segments which are severely disrupted and
some withlittletonodamage.Hence, itwould bevaluable toincorporate travel time uncertainties and terrain conditions in
routing decisions. Also, uncertainties may arise during the assessment process. Although the proposed model in this study
ismodified to spend a certain amountoftime in the node/arcbeing assessed, the node/arcassessment uncertainties cannot
be captured with the current model.

In the proposed problem, we assumed costis alinear function of the distance and we imposed adistance bound on the
total route duration. This can be considered as having a budget which is in line with many humanitarian research papers.
However,of course, costconcernscanalsobe incorporatedintothe modelasathird objectivewhich mayinclude thevehicle
and transportation costs.

Additionally, the current study considers information on the disaster impact is made available once the assessment ve-
hicles return to the depot (disaster management center). This can be counted asa valid assumption considering the disrup-
tions can occur in the information transmission infrastructure as a result of a disaster. However, one can consider relaxing
this assumption and incorporate spatial-temporal uncertainties that arise when the drones and motorcycles are conducting
assessments in collaboration given that the drones angular field of view can assist the motorcycle in assessment. We hope
that the model and algorithms proposedin this study will constitute anew angle for future research thatconsiders further
complexitiesin decision making for post-disaster damage assessments.

Appendix A. Illustration of the Constructive Heuristic Algorithm

For example, suppose we have a disaster network as demonstrated in the Fig. A.7 and 1 drone to be utilized in assess-
ment. On agiven network, it isimportant tonote that fourthnode canbe assessed by flyingover arc(3,9) and(9,3).

Assume thatthe profitis defined by the value added by traversing a node per distance travelled and thereis a distance
limitfor thedrone,and itis 20. We first start by evaluating the shortest paths of each node pairs. Then,among the feasible
paths (a vehicle can complete its tour within the distance limit), the one which yields the highest node profit per distance
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TableA.13
Shortest paths from the depot
nodetoothernodes.

From To ShortestPath

0 1 [01]

0 2 [02]

0 3 [03]

0 4 [04]

0 5 [05]

0 6 [06]

0 7 [027]

0 8 [038]

0 9 [039]
TableA.14
Shortest paths from the node 3
toothernodes.

From To  ShortestPath

3 0 [30]

3 1 [321]

3 2 [32]

3 4 [34]

3 5 [345]

3 6 [36]

3 7 [327]

3 8 [38]

3 9 [39]

isadded to the path. Let shortest path distances of the networkbe:

0 37 2 A & 63 48 4 6 7
37 M 14 383 & P & 19 5 b
32 14 @O B 71 & 7B 2 41 81
¥4 33 ¥ M 32 46 37 61 31 4
&2 & 71 32 W 14 34 9 6 35
68 P¥ & 46 14 0 20 17 77 2
48 & B 37 34 20 0 98 63 4l
¥ 19 2 61 B 10 BV 0 51 10
66 5 41 31 &8 7/ &6 31 00 57
/6 B 8 4L 3H 21 41 1B 5 00

In the Table A.13 the shortest paths emerging from the depot node to other nodes are indicated.
Moreover, let the following vector to be node weights of the corresponding nodes.

G @ @ B G 10 a a b o

It is observed that there is at least one node where a drone can go and come back to the depot. For each path emerging
fromthedepotnodetoothernodes, profits that can be collected are calculated. That is,values of nodes on the path divided
by the shortest path distance.

— (0189 @81 @94 (129 @38 @229 @241 @R2O0 @237

Since the path from the depot node, 0, to the node 3 yields the highest profit, we add [0,3] to the path. Total distance
traveled becomes 3.4. Then, from the node 3, we evaluate the profits of the feasible paths. In the Table A.14 the shortest
paths fromthe node 3 to other nodes are indicated.

For each path emerging from the node 3 to the other nodes, profits that can be collected are calculated based on the
profitdefinition. Thatis, values of not assessed nodes onthe pathdivided by the shortest path distance.

000 @38 0179 — (0156 326 0027 0131 a6l (@238

Asthe pathfromthe node 3 to thenode5 yields the highest profitand itdoes notviolate the total distance constraint, it is
considered as a candidate. Total tour distance 0f[0,3,4,5,0]is 14.3.Hence we add [3,4,5] tothe path. Total distance travelled
becomes 8.0. Then, from node 5 we evaluate the profits of the feasible paths.In the Table A.15 the shortest paths from the
node 5 to other nodesare indicated.

For earh nath emeaercino fronm the nnde & tn the nthar nndec nrafite that can he callacted ara calenilated haced nn the
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TableA.15
Shortest paths from the node 5
toothernodes.
From To  ShortestPath
5 0 [50]
5 1 [54321]
5 2 [5432]
5 3 [543]
5 4 [54]
5 6 [56]
5 7 [54327]
5 8 [5438]
5 9 [59]

Some of the paths are now infeasible. Those are the paths going to the nodes 2, 7, and 8. Among the feasible paths, the
path, from the node 5 to the node 9 yields the highest profit, and total tour distance of [0,3,4,5,9,0] is 17.7. Hence, we
append path [5,9] to the path. Total distance travelled becomes 10.1. Then, from the node 9, we evaluate the profits of the
feasible paths. The constructive algorithm procedure continues in this fashion, at each step, we aim to guarantee a vehicle

can return to thedepot. In this example, we used the node weight collected over distance traveled as the profitdefinition;
however, the other definitions discussed in Section4.1 can alsobe used.
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