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In this study, we propose a post-disaster assessment strategy as part of response opera- 
tions in which effective and fast relief routing are of utmost importance. In particular, the 
road segments and the population points to perform assessment activities on are selected 
based on the they value  add to the consecutive response operations. To this end, we de- 
velop a bi-objective mathematical model that provides damage information in the affected 
region road  
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the transportation  network through  using aerial and ground vehicles (drones and motor- 
cycles). The first objective aims to maximize the total value added by the assessment of the 
road segments (arcs) whereas the second maximizes the total profit generated by assessing 
points of  interests (nodes). Bi-objectivity of the problem is studied with the -constraint 
method. Since obtaining solutions as fast as possible is crucial in the post-disaster condi- 
tion, heuristic methods are also proposed. To test the mathematical model and the heuris- 
tic methods, a data set belonging to Kartal district of Istanbul is used. Computational ex- 
periments demonstrate that the use of drones in post-disaster assessment contributes to 
the assessment of a larger area due to its angular point of view. Also, the proposed heuris- 
tic methods not a high-quality  only can find   approximation of the front Pareto  
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mitigates the solution time difficulties of the mathematical model. 

© 2018 Elsevier Ltd. All rights reserved. 

1.  

 

 

 

 

 

 

 

 Motivation and problem definition 

In  

 

 

 

 

 

 

 

 the the grown  

 

 

 

 

 

 

 

 course  

 

 

 

 

 

 

 

 of  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 last  

 

 

 

 

 

 

 

 70  

 

 

 

 

 

 

 

 years,  

 

 

 

 

 

 

 

 disasters  

 

 

 

 

 

 

 

 have  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 exponentially  

 

 

 

 

 

 

 

 both  

 

 

 

 

 

 

 

 in and  

 

 

 

 

 

 

 

 number  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 magnitude  

 

 

 

 

 

 

 

 ( Ozdamar  

 

 

 

 

 

 

 

 and 

Ertem,  

 

 

 

 

 

 

 

 2015 ).  

 

 

 

 

 

 

 

 As put  

 

 

 

 

 

 

 

 forward  

 

 

 

 

 

 

 

 by  

 

 

 

 

 

 

 

 the  

 

 

 

 

 

 

 

 International Federation  

 

 

 

 

 

 

 

 of  

 

 

 

 

 

 

 

 Red  

 

 

 

 

 

 

 

 Cross  

 

 

 

 

 

 

 

 and  

 

 

 

 

 

 

 

 Red  

 

 

 

 

 

 

 

 Crescent Societies  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 (IFRC)  

 

 

 

 

 

 

 

 in  

 

 

 

 

 

 

 

 the  

 

 

 

 

 

 

 

 2016 
World Disasters Report, “humanitarian needs are  growing at an extraordinary pace - a historical pace - and are outstripping 

the resources that are required to respond.” 

 

 

 

 

 

 

 

 ( IFRC, 2016 ). 

Humanitarian alleviating  

 

 

 

 

 

 

 

 logistics compromise logistics  

 

 

 

 

 

 

 

 which  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 of  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 activities  

 

 

 

 

 

 

 

 while  

 

 

 

 

 

 

 

 focusing  

 

 

 

 

 

 

 

 on  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 the  

 

 

 

 

 

 

 

 suffering  

 

 

 

 

 

 

 

 of  

 

 

 

 

 

 

 

 vulner- 
able as areas  

 

 

 

 

 

 

 

 people  

 

 

 

 

 

 

 

 is  

 

 

 

 

 

 

 

 considered  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 one  

 

 

 

 

 

 

 

 of  

 

 

 

 

 

 

 

 the  

 

 

 

 

 

 

 

 imperfect  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 to  

 

 

 

 

 

 

 

 invest in and  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 for  

 

 

 

 

 

 

 

 both  

 

 

 

 

 

 

 

 academics  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 practitioners  

 

 

 

 

 

 

 

 ( Kovács  

 

 

 

 

 

 

 

 and 

Spens, 2007 ). that  

 

 

 

 

 

 

 

 In  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 framework, as  

 

 

 

 

 

 

 

 part  

 

 

 

 

 

 

 

 of  

 

 

 

 

 

 

 

 humanitarian  

 

 

 

 

 

 

 

 logistics,  

 

 

 

 

 

 

 

 Disaster Operations Management  

 

 

 

 

 

 

 

 (DOM),  

 

 

 

 

 

 

 

 is  

 

 

 

 

 

 

 

 defined  

 

 

 

 

 

 

 

 as 
activities that  

 

 

 

 

 

 

 

 are performed  

 

 

 

 

 

 

 

 before, during, human  

 

 

 

 

 

 

 

 and prevent after a  

 

 

 

 

 

 

 

 disaster to  

 

 

 

 

 

 

 

  loss of  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 life,  

 

 

 

 

 

 

 

 reduce re-  

 

 

 

 

 

 

 

 its and  

 

 

 

 

 

 

 

 impact,  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

  

gain the normalcy ( Altay and Green, 2006 ). The life cycle of disaster operations is divided into three categories, pre-disaster, 

response operations. include and recovery  Pre-disaster -mitigation operations  and preparedness-  taking measures to  

 

 

 

 

 

 

 

 avoid 
disaster impact respond disaster. or to  

 

 

 

 

 

 

 

 reduce  

 

 

 

 

 

 

 

 the  and  

 

 

 

 

 

 

 

 to to gain  

 

 

 

 

 

 

 

 the ability  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

  to the  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 Response is the stage  

 

 

 

 

 

 

 

 where resources 

are area, are utilized  

 

 

 

 

 

 

 

 to  

 

 

 

 

 

 

 

 reach  

 

 

 

 

 

 

 

 the  

 

 

 

 

 

 

 

 disaster  

 

 

 

 

 

 

 

  save activities lives and  

 

 

 

 

 

 

 

 prevent further  

 

 

 

 

 

 

 

 damage. Recovery  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

  post-disaster opera-  

∗ Corresponding author. 
E-mail addresses: buseeyluloruc@bilkent.edu.tr (B.E. Oruc), bkara@bilkent.edu.tr (B.Y. Kara). 

https://doi.org/10.1016/j.trb.2018.08.002 
0191-2615/© 

 

 

 

 

 

 

 

 2018 

 

 

 

 

 

 

 

 Elsevier 

 

 

 

 

 

 

 

 Ltd. 

 

 

 

 

 

 

 

 All 

 

 

 

 

 

 

 

 rights 

 

 

 

 

 

 

 

 reserved. 



B.E. Oruc, B.Y. Kara / Transportation Research Part B 116 

 

 

 

 

 

 

 

  (2018) 76–102  

 

 

 

 

 

 

 

  77

tions normal that re-establish  

 

 

 

 

 

 

 

 aim  

 

 

 

 

 

 

 

 to  

 

 

 

 

 

 

 

  a   

 

 

 

 

 

 

 

 state. Although  

 

 

 

 

 

 

 

 measures and  

 

 

 

 

 

 

 

 precautions are taken,  

 

 

 

 

 

 

 

 disasters are not preventable 

and planning predictable. Thus,  disaster relief operations    in advance, and implementing them in and disaster  post-disaster 
phases are significant to mitigate the destructive impact of disasters. 

In  

 

 

 

 

 

 

 

 case  

 

 

 

 

 

 

 

 of  

 

 

 

 

 

 

 

 disasters,  

 

 

 

 

 

 

 

 availability of  

 

 

 

 

 

 

 

 shelter, people food,  

 

 

 

 

 

 

 

 and and water  

 

 

 

 

 

 

 

 may disrupted  

 

 

 

 

 

 

 

 be  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 even  

 

 

 

 

 

 

 

 worse,  

 

 

 

 

 

 

 

  may  

 

 

 

 

 

 

 

 be  

 

 

 

 

 

 

 

 in  

 

 

 

 

 

 

 

 need 

of urgent medical attention.  Therefore, after disasters, logistics operations need to be conducted mainly for providing relief 
goods, such as food, and shelter to the disaster-affected regions, evacuating people from the danger zones, alleviating human 

suffering, and most importantly, saving lives. Having capable resources to handle the situation  and reaching and   activating 
them on time to alleviate the disaster impact  on population and infrastructure are some of the challenges of humanitarian 

disaster relief  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 operations.  

 

 

 

 

 

 

 

 Moreover,  

 

 

 

 

 

 

 

 logistics  

 

 

 

 

 

 

 

 operations  

 

 

 

 

 

 

 

 often  

 

 

 

 

 

 

 

 have  

 

 

 

 

 

 

 

 to  

 

 

 

 

 

 

 

 be  

 

 

 

 

 

 

 

 carried  

 

 

 

 

 

 

 

 out  

 

 

 

 

 

 

 

 in  

 

 

 

 

 

 

 

 an  

 

 

 

 

 

 

 

 environment  

 

 

 

 

 

 

 

 with  

 

 

 

 

 

 

 

 destructed 

transportation infrastructures (  Long, 1997 ). debris Disrupted roads and  blocking the roads are main sources of difficulty in 
terms of both aid distribution to disaster victims and re-establishing normal state in disaster-affected areas. In addition, the 

unpredictable nature of the disaster and demand uncertainty may complicate handling and distribution operations. In that 
perspective, assessing damage at early stages of the disaster plays a crucial  role in the activation of resources. 

The damage assessment module of any disaster should include  the information on the death toll, location of casualties, 

and and and the extent  

 

 

 

 

 

 

 

 of damage to  

 

 

 

 

 

 

 

 roads, arteries   

 

 

 

 

 

 

 

 critical facilities like hospitals    

 

 

 

 

 

 

 

 schools. The information  

 

 

 

 

 

 

 

 for these  

 

 

 

 

 

 

 

 can 
be collected  

 

 

 

 

 

 

 

 from  

 

 

 

 

 

 

 

 various  

 

 

 

 

 

 

 

 channels,  

 

 

 

 

 

 

 

 which and may  

 

 

 

 

 

 

 

 include  

 

 

 

 

 

 

 

 mobile  

 

 

 

 

 

 

 

 teams,  

 

 

 

 

 

 

 

 drones,  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 various  

 

 

 

 

 

 

 

 other  

 

 

 

 

 

 

 

 reports.  

 

 

 

 

 

 

 

 The information 

collected allows disaster management operation actions necessary coordinators to determine immediate   to to respond   

 

 

 

 

 

 

 

 the 
effects of the damage with the effective use of  resources. 

Damage assessment can be divided into two categories based on its focus; it could focus on areas with the concentrated 

population (node module) and the road segments connecting them (arc module). Efficient disaster management operations 
should consider  both elements damage assessment of  

 

 

 

 

 

 

 

   simultaneously.  

 

 

 

 

 

 

 

 In that post-disaster assessment opera- perspective,    

tions should  mainly concentrate on of assessment  critical population  points and critical road segments. Densely populated  
population points are candidates for critical and should be  prioritized. Early assessment of those points results with a bet- 

ter understanding of essential needs such as the number of vehicles for evacuation, the number of ambulances/search and 

rescue teams to be dispatched or any type of relief items and their quantities. 
Besides assessment points,  

 

 

 

 

 

 

 

 the  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 of  

 

 

 

 

 

 

 

 critical  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 ground  

 

 

 

 

 

 

 

 network  

 

 

 

 

 

 

 

 conditions assessed  

 

 

 

 

 

 

 

 have  

 

 

 

 

 

 

 

 to  

 

 

 

 

 

 

 

 be  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 in  

 

 

 

 

 

 

 

 order the  

 

 

 

 

 

 

 

 to  

 

 

 

 

 

 

 

 determine  

 

 

 

 

 

 

 

  

available  

 

 

 

 

 

 

 

 transportation  

 

 

 

 

 

 

 

 routes roads  

 

 

 

 

 

 

 

 and  

 

 

 

 

 

 

 

 the  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 that  

 

 

 

 

 

 

 

 have  

 

 

 

 

 

 

 

 to  

 

 

 

 

 

 

 

 be  

 

 

 

 

 

 

 

 unblocked  

 

 

 

 

 

 

 

 by  

 

 

 

 

 

 

 

 removing  

 

 

 

 

 

 

 

 debris.  

 

 

 

 

 

 

 

 The  

 

 

 

 

 

 

 

 critical  

 

 

 

 

 

 

 

 points,  

 

 

 

 

 

 

 

 such  

 

 

 

 

 

 

 

 as 
hospitals points need  

 

 

 

 

 

 

 

 and  

 

 

 

 

 

 

 

 schools, the victims.  

 

 

 

 

 

 

 

 should  

 

 

 

 

 

 

 

 remain  

 

 

 

 

 

 

 

 accessible  

 

 

 

 

 

 

 

 by  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 disaster  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 Furthermore,  

 

 

 

 

 

 

 

 critical  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 may  

 

 

 

 

 

 

 

 be  

 

 

 

 

 

 

 

 in  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 of 

emergency relief  

 

 

 

 

 

 

 

 item  

 

 

 

 

 

 

 

 supply. Hence, points, assessing disaster impact  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 to to to  

 

 

 

 

 

 

 

 be  

 

 

 

 

 

 

 

 able  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 maintain  

 

 

 

 

 

 

 

 access  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 these  

 

 

 

 

 

 

 

    

 

 

 

 

 

 

 

 the  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 on  

 

 

 

 

 

 

 

 the 

ground The components  

 

 

 

 

 

 

 

 transportation network  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 is  

 

 

 

 

 

 

 

 important.  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 two  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 of  

 

 

 

 

 

 

 

 damage assessment  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 are  

 

 

 

 

 

 

 

 complementary;  

 

 

 

 

 

 

 

 therefore, 
both of them should be taken into account simultaneously during disaster  assessment phase. 

The main purpose of this paper is to provide a framework that considers early damage assessment regarding the severity 
of the disaster impact and the urgency of the need for relief on road network and population areas. The reason for the early 

damage assessment is to find the most effective strategy for further disaster operations. Also, to ensure the connectivity  of 

disaster network,  

 

 

 

 

 

 

 

 by  

 

 

 

 

 

 

 

 estimating debris immediate debris the  

 

 

 

 

 

 

 

 amount  

 

 

 

 

 

 

 

 of  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 on  

 

 

 

 

 

 

 

 the roads,    

 

 

 

 

 

 

 

 removal actions  

 

 

 

 

 

 

 

 can  

 

 

 

 

 

 

 

 be determined 
to unblock the disrupted completed the   

 

 

 

 

 

 

 

  road  

 

 

 

 

 

 

 

 segments. Since damage assessment  

 

 

 

 

 

 

 

 operations must be  quickly,  

 

 

 

 

 

 

 

  assessment 

teams are not required to assess all of the affected regions and the transportation network. Therefore the population points 
and the roads to be assessed are selected based on their importance in the network. 

In  

 

 

 

 

 

 

 

 this  

 

 

 

 

 

 

 

 study,  

 

 

 

 

 

 

 

 we  

 

 

 

 

 

 

 

 focus  

 

 

 

 

 

 

 

 on used or  

 

 

 

 

 

 

 

 developing that  

 

 

 

 

 

 

 

 a  

 

 

 

 

 

 

 

 systematic method  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 can  

 

 

 

 

 

 

 

 be   

 

 

 

 

 

 

 

 by  

 

 

 

 

 

 

 

 municipalities  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 local relief  

 

 

 

 

 

 

 

 agencies 

to  

 

 

 

 

 

 

 

 determine disaster impact their region. that  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 on  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

  We  

 

 

 

 

 

 

 

 assume  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 the  

 

 

 

 

 

 

 

 critical  

 

 

 

 

 

 

 

 network  

 

 

 

 

 

 

 

 elements known.  

 

 

 

 

 

 

 

 of  

 

 

 

 

 

 

 

 the  

 

 

 

 

 

 

 

 area  

 

 

 

 

 

 

 

 are  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 The 
criticality the the of population points and road segments are determined by   

 

 

 

 

 

 

 

 amount of population and   

 

 

 

 

 

 

 

 related distances. 

The motorcycles and/or drones  

 

 

 

 

 

 

 

 assessment  

 

 

 

 

 

 

 

 teams  

 

 

 

 

 

 

 

 like  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 assumed  

 

 

 

 

 

 

 

 to  

 

 

 

 

 

 

 

 be  

 

 

 

 

 

 

 

 present  

 

 

 

 

 

 

 

 at  

 

 

 

 

 

 

 

 potential  

 

 

 

 

 

 

 

 starting  

 

 

 

 

 

 

 

 points,  

 

 

 

 

 

 

 

 the  

 

 

 

 

 

 

 

 depots. As  

 

 

 

 

 

 

 

  
there will possibly be debris or destruction on the roads, post-disaster transportation network is considered to be off-road. 

It is assumed that the motorcycles can only conduct an assessment of the road segments and points that lie in their paths. 

Whereas, as drones can fly at certain altitudes, flying over certain road segments with drones will enable the assessment of 
other roads and nodes in their point of view. The vehicles start their tours just after the disaster hits and they assess critical 

population centers  and critical roads in the predetermined time frame and after the vehicles complete their disaster tours,  
information  

 

 

 

 

 

 

 

 is  

 

 

 

 

 

 

 

 reported  

 

 

 

 

 

 

 

 to  

 

 

 

 

 

 

 

 the given the set  

 

 

 

 

 

 

 

 depots  

 

 

 

 

 

 

 

 (disaster  

 

 

 

 

 

 

 

 management  

 

 

 

 

 

 

 

 centers).  

 

 

 

 

 

 

 

 Then,  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 of  

 

 

 

 

 

 

 

 importance  

 

 

 

 

 

 

 

 carried  

 

 

 

 

 

 

 

 by  

 

 

 

 

 

 

 

 each 

network element and the assumptions, the  we define  Post-disaster Assessment Routing  Problem (PDARP) that determines: 
(i) (ii)  

 

 

 

 

 

 

 

 the visit,  

 

 

 

 

 

 

 

 population  

 

 

 

 

 

 

 

 points  

 

 

 

 

 

 

 

 to  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 road  

 

 

 

 

 

 

 

 segments  

 

 

 

 

 

 

 

 to  

 

 

 

 

 

 

 

 traverse, and (iii)  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 the maximum  

 

 

 

 

 

 

 

 vehicle routes  

 

 

 

 

 

 

 

 while  

 

 

 

 

 

 

 

 considering  

 

 

 

 

 

 

 

  

assessment in (i) and (ii)  within the assessment period.  

As we aim to have information on both arcs and nodes, the problem can be considered as a variant of the General Routing 
Problem (GRP) with may the the profits. Aiming to assess critical  

 

 

 

 

 

 

 

 population points  hinder   

 

 

 

 

 

 

 

 assessment of   

 

 

 

 

 

 

 

 critical roads in 

a given time   period. On the the other hand, aiming to assess  critical roads in limited timemay  result in an assessment of 
lesser population themmultiple critical   

 

 

 

 

 

 

 

 points but  

 

 

 

 

 

 

 

 assessing/visiting  

 

 

 

 

 

 

 

    

 

 

 

 

 

 

 

 times. the nature the  

 

 

 

 

 

 

 

 Due to   

 

 

 

 

 

 

 

  of  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 problem, monitoring  

nodes and critical arcs at the same time, the standard requirement of the classical routing problems, that each node is to be 

visited exactly once, is no longer valid. Allowing multiple node passages, combining two objectives in a bi-objective manner, 
utilizing heterogeneous vehicles view, problem that Post-Disaster  

 

 

 

 

 

 

 

 a  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 set  

 

 

 

 

 

 

 

 of  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 and  

 

 

 

 

 

 

 

 enabling wider  

 

 

 

 

 

 

 

 a  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 raise  

 

 

 

 

 

 

 

 a  

 

 

 

 

 

 

 

 new  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 we  

 

 

 

 

 

 

 

 refer  

 

 

 

 

 

 

 

 as  

 

 

 

 

 

 

 

  

Assessment Routing Problem (PDARP). 
In this study, we propose a different modelling perspective for the post-disaster assessment problem. We consider the as- 

sessment of population points and road segments through utilizing a heterogeneous set of vehicles, motorcycles, and drones 



78  

 

 

 

 

 

 

 

  B.E.Oruc, B.Y. Kara / Transportation Research Part B 116 

 

 

 

 

 

 

 

  (2018) 76–102 

which can provide a wider point of view. Allowing node/arc passages multiple times, which can be helpful in capturing the 

extend of damage in the disaster aftermath, is another special feature of the model proposed. By developing a mathematical 
model for PDARP and by using real data from Istanbul, we highlight the importance of considering both network elements 

and using drones and motorcycles for developing an appropriate assessment strategy. 
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ment. Huang et al. (2017) claim that  the effectively drones can be used  in any stage of the disaster management. Further- 

more, since drones do not require any on-site work, the examples of using drones for assessment of natural disasters provide 
an ease in gathering information in less time at a low risk ( Giordan et al., 2017 ). 
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perspective, rather they focus on the technicalities of such applications. Hence, as the usefulness of the drones in the disaster 

management is put forward, this necessitates a further study that develops effective routing policies and models to support 

assessment effort s. 
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 Model development 

Consider a disaster-affected region as a directed, incomplete graph. Districts constitute nodes and roads constitute edges. 

Districts can be classified into two categories, the ones that require assessment and the ones who provide necessary forces 

for assessment operations, namely depots or disaster management centers. Further classification of districts can be made ac- 
cording to population and type of facilities they have. The ones which have facilities like hospitals, schools or have relatively 

high populations constitutes critical nodes. In a similar fashion, roads connecting critical nodes or the ones that blockage on 
it causes a significant increase in the distance travelled by disaster victims constitutes critical edges. The aim is to reach and 

assess critical nodes together with critical edges as soon as possible by traversing along paths that may even include debris- 

blocked edges. To do so, the vehicles, which are suitable for off-road conditions such as drones, motorcycles are dispatched 
from a depot node. Vehicles travel to reach and assess the critical nodes and the arcs in a limited time frame. 

Let G = ( N, E ) be a network where N represents the nodes and E represents the edges. A = { (i, j) ∪ ( 

 

 

 

 

 

 

 

 j, i ) : i, j ∈ E} consti- 
tutes the set the arc  of  network. The node node  set the contains  supply   s, and critical nodes. Also, it is worth noting that 

even if the arcs are directed, the parameter settings of arcs ( i, j ) and ( j, i ) are symmetric. If either of ( i, j ) or ( j, i ) is traversed, 
it is  assumed the condition that   of edge ( i, j ) is assessed. Let d 

ij represent the between distance  node i ∈ N j and node  ∈ N . 

We also define a parameter, E , for the existence of arcs. If arc ( i, j ) is in the transportation network, then E ij = 1.  E ij = 0 means 

arc ( i, j ) does not exist. 
Weights are  introduced order in  to present the criticality  of nodes arcs. and  Weight for each node in N denotes impor-  

tance and provide we assume populations will  
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weights, p i , are calculated with respect to the modified populations of the nodes. 

The weight arc of  ( i, j ), which is  denoted as   q ij , the i j. characterizes  importance of road  
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calculated with respect to the criticality of the road segment and population points it connects. We define the criticality of 

a road segment by the total percentage change in the distance travelled by populations when the road is blocked. 
Let  
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(depot). Vehicles in respective sets M and D , are considered to be identical and cardinality of these sets are | M | and | D |. Let 

V represent the set of all vehicles available at the disaster management center (depot). Note that set V consists of vehicles in 
M and D in an ordered fashion where first nm vehicles are motorcycles. As previously discussed, candidate vehicles are taken 

as off-road motorcycles and/or drones. Average velocity v is given accordingly. The output of the model will be nm + nd 
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drone cannot assess node l through flying over arc ( i, j ). Similarly, if drone flying over arc ( i, j ) can make assessment  on arc 
( l, m ), then b lm 

i j = 1.  b lm 
i j = 0 means drone cannot assess node  l through flying over arc ( i, j ). Assessment capabilities of drones, 
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drone flying over arc (1,2), the shaded area around the traversed arc marks the assessment region of the drone. The nodes  
and the arcs that lie entirely in the shaded region are considered to be assessed by flying over arc (1,2). 
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traversed most at  twice by vehicle k.              Wewill make use of this result in ourmodel. Similar to the Fig. 1 , a  basic node-arc 
diagram proposed of the  model can be provided (See Fig. 2 .). Consider  a disaster network as depicted in the Fig. 2 a. With 
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Fig. 1.  

 

 

 

 

 

 

 

 Illustrative example of angular point of view of a drone. 

Fig. 2.  

 

 

 

 

 

 

 

  Anexample node-arc diagram and possible routes of proposed model. 

following nodes in sequence, 1, 2, 3, 2, 4, 5, 6, 7, 8 and motorcycle visit 10, 11, 

 

 

 

 

 

 

 

  12, 13, 14, 15, 13, 16 and 17, then they return 

to the depot node. 
As in Fig. 1 , the shaded region around the black coloured arc marks the assessment region of the drone. The nodes and 

the arcs that lie entirely                 in the shaded region are being assessed by flying over a given route. Assessed network elements

that lie in the shaded region are the nodes 9 and 10, and the arcs (1,10), (2,10) and (8,9). However, only the nodes and arcs 

that lie in the motorcycle route, coloured grey, are considered to be  assessed. There are two non-depot nodes in the figure 

which are visited shaded around multiple node node times,  2 and 13. Also,  10 which in lies  the  region  the drone route is 
visited along  the motorcycle route. Although its assessment can be conducted with the visit of the motorcycle, assessment 
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note that the twice traversal of an arc is not depicted in the figure to avoid complications arising from the superposition of 

routes. 
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 in 

parallel, only the weights of the monitored nodes are maximized in node profit PDARP while respecting the time bounds of 
vehicles. As a final step, to address both issues simultaneously, arc profit is maximized in the objective while collected node 

weights is assured to be at least equal to predetermined ( ) level. 
Before presenting the optimizationmodel the   for  post-disaster assessment routing nomencla- problem, we provide the  

ture. 
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Sets : 
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 Set of all nodes. 
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  Setof all arcs. 
M 

 

 

 

 

 

 

 

 Set of motorcycles. 
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  Setof drones. 
V  

 

 

 

 

 

 

 

  Setof vehicles. V = M ∪ D . 

Note that V is an ordered set of  Mand  D. 

Depot node is denoted by  s∈ N . 
Parameters : 
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 if arc (i, j) ∈ A exists in transportation network, 
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 otherwise. 
d 
i j : distance from node i ∈ N 

 

 

 

 

 

 

 

 to node  j∈ N. 
p i : gain from assessing node i ∈ N. 
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i j : gain from assessing arc (i, j) ∈ A . 
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  :time bound for each vehicle. 
  

 

 

 

 

 

 

 

  :driving speed of motorcycle and flight speed of drone 

a l 
i j : 1  

 

 

 

 

 

 

 

 if node l ∈ N can be monitored by passing through arc (i, j) ∈ A, 
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 if arc (l, m ) ∈ A can be monitored by passing through arc (i, j) ∈ A , 
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 otherwise. 

The decisions to be made can  be represented by the following sets of variables: 

Decision Variables : 
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  ifvehicle k ∈ V traverses through arc (i, j) ∈ A twice, 
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i jk : connectivity variable for vehicle k ∈ V  overarc (i, j) ∈ A 

The following mixed integer linear program for PDARP can now be proposed: 
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The objective function (0) maximizes the total importance of arcs and nodes assessed. We remind here that although we 
are working on a directed  graph, assessments are made through monitoring either direction. 
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versed/assessed exists in the ground transportation network. Constraint (5) specifies the flow balance conditions for vehicle 
k . Constraints (6) - (8) monitor the assessment of node j by any of the vehicles. Constraints (9) –(11) check if arc ( i, j ) is moni- 

tored by any vehicles in either direction. Constraints (12) and (13) ensure all vehicles leave the depot once and return once. 
Total distance bound is given by the constraint (14) . Constraint (15) ensures the connectivity of the tour for each vehicle k . 

Constraint (16) calculates the distance travelled by vehicle k , leaving the depot. By constraints (17) –(19) , an upper bound on 

non-depot entering connectivity variable is imposed. To explain further, constraint (17) bounds the ones entering the depot 
by  
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Table 1 
-constrained mathematical models. 
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the -constraint method. 
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In order to justify the utilization of -constraint method, we show that optimal solutions of Table 1 problems are at least 
weakly efficient. We first need to provide some definitions. 
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 If there is at least one approximate Pareto point in an instance, then the resulting Pareto front is called approx- 
imate. 

During our preliminary computational analysis, we observe that PDARP is a computationally challenging problem. Warm- 

starting Arc Profit PDARP is considered as a method to reduce the computation time. A slightly different optimization prob- 

lem can be utilized to obtain an initial point for the current problem for the warm-start procedure. Therefore, we propose a 
version of the Arc Profit PDARP to find feasible starting point. To do so, we redefine X 

ijk so that second pass is not allowed. 
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BRH constructs paths that start from the depot node and return in an allowed time frame. The algorithm  uses the short- 
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 An 

illustrative example of the construction algorithm can be found at Appendix A . 

4.2.  

 

 

 

 

 

 

 

 Random improvement 

In a broad sense, random improvement heuristic searches generating for a new solution by  random solutions the from  

current solution. During the search, it records each result found that does not violate the time constraint. After some number 

of iterations, dominated solutions are eliminated from the pool of records. Then the algorithm returns all the non-dominated 
paths in the solution pool. 

Our improvement heuristic consists of five random improvement algorithms: swap, insertion, reversion, add and remove- 
add. At each iteration, a new random solution is generated by randomly calling one of the five improvement algorithms. As 

we have multiple vehicles, there are multiple routes to consider in each improvement heuristics. 
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problem instances. For each algorithm, Let depot → i 1 → i 2 → i 3 → . . . . → j1 →  
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 be the given route. If the 

operation specific conditions are not met, the operation rerun till success or till reaching the maximum number of trials. 
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4.2.2.  

 

 

 

 

 

 

 

 Insertion 

Two locations on a given route are randomly chosen, then, a node in the left location is moved to another location in the 
right by shifting subsequent elements of the paths to left. Let us say algorithm chooses locations of  i2 and j 2 the on  route 

and  
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insertion can be successfully performed. Then, the new route is depot → i 1 → i 3 → . . . . → j1 →  
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4.2.3.  
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reversion operation done. is successfully  Then algorithm returns the new route, depot → i 1 → j2 →  

 

 

 

 

 

 

 

 j1 → . . . . → i 3 → i 2 → 
j3 → depot. 

4.2.4.  

 

 

 

 

 

 

 

 Add 
In the algorithm, a non-depot node from  N and a location  to add the new node on a given  route are randomly chosen. 

Let us say algorithm chooses a non-depot node k 1 a and  location of i 2 the on  route. There are two conditions that lead to 

success. First, if k 1  = i 1,  k1  = i 2, and arcs ( i 1,  k1), ( k 1,  i2) exist in the transportation network, add operation can be  success-

fully  
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for successful operation is having j 1  = i 2, and arc ( j 1, i 2)’s existence in the transportation network. Then, the resulting route 
is depot → i 1 → i 2 → k 1 → i 2 → i 3 → . . . . → j1 →  

 

 

 

 

 

 

 

 j2 → j3 → depot. 

4.2.5.  

 

 

 

 

 

 

 

 Remove-Add 
In the remove-add algorithm, a non-depot node from N and a location to remove and add the new node on a given route 

are randomly chosen. Let us say algorithm chooses a non-depot node k 1 and a location  of i 2 on the route. If k 1  = i 1,  k1  = i 3, 
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and arcs ( i 1, k 1), ( k 1, i 3) exist in the transportation network, the remove-add operation can be successfully performed. Then, 

the resulting route is depot → i 1 → j1 → i 3 → . . . . → j1 → j2 →  
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Algorithm 1  

 

 

 

 

 

 

 

 Outline of the random improvement heuristic solution methodology. 

1:  

 

 

 

 

 

 

 

  paths← Construct (# of  ehicles, # ofdrones, dist, E, a, b , p, q ) 
2: stored 

 

 

 

 

 

 

 

 paths ← paths 
3: counter ← 1 

4: while time < T imelimit do 
5: i ← randominteger 

 

 

 

 

 

 

 

 f 

 

 

 

 

 

 

 

 rom { 1 , ., 5 } 

6: if i = 1 then paths ← Swap(paths , E) 
7: else if i = 2 then paths ← Insertion (paths , E) 
8:  

 

 

 

 

 

 

 

   else if i = 3 then paths ← Reversion (paths , E) 

9: else if i = 4 then paths ← Add (paths , E) 
10: else if i = 5 then paths ← Remove-Add (paths , E) 

11: if tot aldist anceo 
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 T ∗ ·   then

12: counter ← counter + 1 
13: stored 

 

 

 

 

 

 

 

 paths counter ← paths 

14: for i = 1 → counter do calculate two objective values (arc and node) 

15: remove dominated paths from the stored 

 

 

 

 

 

 

 

 paths 

The integral part of the algorithm lies in the construction of the initial paths. Algorithm 2 performs this task. Improvement 

Algorithm 2  

 

 

 

 

 

 

 

 Base Route Heuristic. 

procedure Construct ( # of  ehicles , #  of drones , dist , , E  a, b , ,  
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if totaldist n  + shortestdist i + returndist i < T  
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14: exit while loop  

if    I = argmax i ∈ N\ s pro 

 

 

 

 

 

 

 

 f  it i then 
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constructedpath n  ← [ constructedpath n  , returnpath I ] 

24: t ot 

 

 

 

 

 

 

 

 aldist n  ← t otald ist n  + returnd ist I 

heuristics are visualized in the Fig. 3 . 

4.3.  

 

 

 

 

 

 

 

 Purposive improvement 

Similar to the random improvement heuristic, the purposive improvement heuristic searches for new solutions by gener- 

ating random solutions the solution. from  current  Instead of randomly moving between solutions,  purposive improvement 
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Fig. 3.  

 

 

 

 

 

 

 

 Illustrative example of the improvement algorithms. 

Table 2 
Features of the data set. 
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from the pool  of solutions. Then the algorithm returns all the non-dominated routes in the solution pool. 
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 five  algorithms: swap, insertion, re- 

version, add and remove-add as in the improvement heuristic. At each iteration, five new solutions are generated by calling 
the five improvement algorithms. Note here that there are multiple routes to consider in each improvement heuristics due 

to the multiple number  of vehicles. 

Recall the five improvement algorithms, this time the randomness in the improvement algorithms is eliminated, meaning, 
the improvement algorithms called same parameters. there are  with the    Note here that  are multiple consider routes to  in 

each improvement heuristics due to the multiple number of vehicles. The first parameter is a route to apply the algorithm in 
multi-vehicle problem instances. The others are the two locations i 2,  j2 from the route, and a node, k 1 ∈ N . If the operation 

specific conditions are not met for all of the algorithms, the same operation is repeated with new parameters till success. 
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Algorithm 2 performs an integral  part of the Algorithm 3 which is the initial path’s construction. 
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   Moreover, 
there are 25 points interests   of  (POI) which are determined as emergency rallying points.  These POIs include  school yards, 

mall parking lots and some other appropriate points. The locations of 45 nodes are presented in Fig. 4 . Sub-districts together 

with POIs are taken as population points as POIs have the possibility of being densely populated during  the disaster. There  
are containing are 7  
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Kartal, is considered as a candidate depot for disaster relief operations and represented by a red triangle in Fig. 4 . Features 

of the data set are summarized in Table 2 . 
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Algorithm 3  

 

 

 

 

 

 

 

 Outline of the purposive heuristic solution methodology. 

paths ← Construct (# of  ehicles, # ofdrones, dist, E, a, b , p, q ) 
stored 

 

 

 

 

 

 

 

 paths ← paths 

3: counter ← 1 
state ← 1 

while time < T imelimit do 
6: for i={1, …,5} do 

checker i ← 0 

while 
 

5 
i =0 checker i = 0 do 

9:  ehicle ← randominteger 
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 rom { 1 , . . . , # of  ehicles } 
i 2 ← randominteger 
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j2 ← randominteger 
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12: k 1 ← randominteger 

 

 

 

 

 

 

 

 f 

 

 

 

 

 

 

 

 rom { 1 , . . . , N} 
path 1 ← Swap (stored 
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path 2 ← Insertion (stored 

 

 

 

 

 

 

 

 paths state , E,  ehicle, i 2 , j2) 
15: path 3 ← Reversion (stored 

 

 

 

 

 

 

 

 paths state , E,  ehicle, i 2 , j2) 

path 4 ← Add (stored 

 

 

 

 

 

 

 

 paths state , E,  ehicle, i 2 , k 1) 

path 5 ← Remove-Add (stored 

 

 

 

 

 

 

 

 paths state , E,  ehicle, i 2 , k 1) 
18: for i={1, …,5} do 

if tot  aldist anceo f 

 

 

 

 

 

 

 

 path i ≤ 

 

 

 

 

 

 

 

 T ∗ ·   then

checker i ← 1 

21: calculate two objective values (arc and node) 

Select the best improvements on both objectives 
counter ← counter + 1 

24: add best node objective to stored 

 

 

 

 

 

 

 

 paths counter 
counter ← counter + 1 

add best arc objective to stored 

 

 

 

 

 

 

 

 paths counter 
27: state ← state + 1 

for i = 1 → counter do calculate two objective values (arc and node) 

remove dominated paths from the stored 

 

 

 

 

 

 

 

 paths 

Fig. 4.  

 

 

 

 

 

 

 

 The location of depot and critical nodes in Kartal municipality ( Kilci et al., 2015 ). 

In order to determine the critical elements of a network, certain weights are assigned to the nodes and arcs. For nodes, 

the weights are determined based on the number of people living in a district. To give a relatively higher importance to the 
points like hospitals potential are   and schools,  population levels  determined. To do populations so, the  of the districts are 

aggregated assigned and  to each nearest hospital   and school. ( Node weights  p i ) are calculated with respect to the resulted 
aggregated populations and reduced to the [0, 1] interval. 

On the the the the  
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 that it  

 

 

 

 

 

 

 

 connects  

 

 

 

 

 

 

 

 and 

criticality of the blockage road. If  on the road causes a significant increase in the distance travelled by disaster victims and 
the weights of the nodes connected by that road are high, then the importance of the arc increases along with the  weight 

value assigned to it. Hence, the weight assigned to the arc ( i, j ) is directly proportional to the shortest path distance change 
from node  i to j when ( i, j ) is blocked and the sum of  the populations at  iand  j and inversely proportional to the complete 

network distance. 
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Table 3 
Test parameters of the model. 

Driving/Flight Speed  

 

 

 

 

 

 

 

 40 km/hr 
Epsilon ( )  

 

 

 

 

 

 

 

 0.001, 0.01,  
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Number of Drones  
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Table 4 
Weights of nodes and arcs for solutions with 1 motorcycle, 0 drone. 
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Total weights of Assessed Nodes  

 

 

 

 

 

 

 

 5.826 6.220  
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reason is that after a disaster, resources are scarce and available vehicles may be allocated to other response operations. Due 

to its and endurance  camera specifications,  Aeromapper Talon model of Aeromao candidate vehicle Inc. considered is  as a  

 

 

 

 

 

 

 

   
( Aeromao, 2014 ). It has a cruise speed of 50 km/h, considering take-off 

 

 

 

 

 

 

 

 and landing, average drone speed assumed is about 

40 km/h. Additionally,  for the motorcycles, the vehicle speed is considered to be again about 40 km/h, which is suitable for 
off-road capable motorcycles. As the first hours after a disaster is critical for response operations, time-window for vehicles 

is set to 2 hours in order to make the assessment in a short period of time. This 2 hours time limit is also in line with the  

endurance of the Aeromapper Talon drone. The  range is another property to be considered in utilizing drones; Aeromapper 
Talon has a range of 30 + which underlines its usefulness in assessment. Under this parameter setting, it is not required to 

include a constraint regarding range properties. 
Maximum flight altitude for a drone is restricted in most countries by 120 m. Chosen drone, Aeromapper Talon, has Sony 

A60 0 0model mounted (  camera  on it  Aeromao, 2014 ). Sony A60 0 0 camera can have a focal length ranging from 16 mm to 
50 mm.  
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distance to any point  on arc ( i, j ), its assessment can be  donewhile flying over arc ( i, j ). Similarly, each arc connecting the 

points lie within 75  m of distance to any point on arc ( i, j ) can be assessed by traversing through arc ( i, j ) by drone. 

Since mathematical -value, model accounts for   it is  determined smallest by the   weight difference between population 
points as and it is  
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terms of quality, how well they approximate the Pareto front, and the computational requirement of the overall procedure. 
In Table 3 , the parameters of themodel  are summarized. 

5.2.  

 

 

 

 

 

 

 

 Computation experiments 

All computations are performed on a 4xAMD Opteron Interlagos 2.6GHz processor and 96 GB RAM computer with Linux 
operating system. The MIP model is solved using CPLEX 12.6. The heuristic algorithms were coded in Matlab R2015b on the 

Intel Core i7-4702MQ, 2.2 GHz processor with 8  GB RAM  computer with Windows 10 operating system. 
To  
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model iteratively is illustrated. Solution Solution  
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profit is maximized without any violation or it can be obtained by solving node profit PDARP model. Solution c is one of the 
non-dominated solutions in the Pareto frontier. The routes of a motorcycle in these three solutions can be found in Fig. 5 b, 

c, and d respectively. 

In solution  a, observed it is  

 

 

 

 

 

 

 

  that certain nodes like node 43 are visited multiple times to traverse critical arcs  as much 
as 43 hospital; possible in 2 hours.  Node  is a  therefore, it is  logical to traverse that nodemultiple times   and route on the 

arcs connected to it as they have higher weights. On the other hand, in solution b , it is recognized that each node is visited 
at most once to be able to increase the overall node profits. Therefore, even if the multiple passages are allowed, themodel  

performs as Finally,  
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collected are higher  than solution a while multiple passages through some  nodes are observed contrary  to solution b . This 
indicates that the bi-objective solution clearly demonstrates the characteristics of both single-objective solution approaches. 
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and node weight are obtained in solution a and b , respectively. Solution  c seems compensate to  for the drawbacks of both 

solutions and provides a somewhat balanced solution in terms of both objective values. 
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Fig. 5.  
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observed in the Fig. 6 where the routes of 2 drones and no motorcycles instance are given. In the figure, the solid lines (red, 

black) indicate the the arcs lie in  flight paths  of drones, while the the dashed lines reflect  assessed arcs do that  not lie in 

the the flight paths. For example, taking  figure into consideration, arcs  (43,17), (10,11) are any not in   of the drones’ paths, 
but they   
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flying over the roads parallel to them. 
It is important     to recall Corollary  1 at this point. Thus; a when  solution is obtained with a  gap during -constraint the   

procedure, resulting Pareto front is called as approximate. In Table 5 , model performances are summarized for  
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the model mathematical  was able to find some of the optimal solutions exact Pareto   but not all of them. Average solution 
time required for an exact/approximate Pareto solution is over 3 hours in 7 of the instances and is more than 4.5 hours in 6 

of them. When the number of drones is 1 0, or   thetotal number of Pareto solutions tends to be much higher compared to 

the 2  drone cases.  Additionally, having 3 or more vehicles at hand result with approximate Pareto solutions where allowed 
solution time is mostly consumed. 

As in the most of the cases, having exact Pareto solutions is computationally difficult, for this reason, we utilized larger 
-values heuristic and developed our  methodologies solutions. that quickly reach  
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Table 5 
Model performances of Kartal instances under  
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Table 6 
Model performances under  

 

 

 

 

 

 

 

 values: 0.001, 0.01, 0.1. 

Instance (| D |, | M |)  

 

 

 

 

 

 

 

  values  

 

 

 

 

 

 

 

 Number of Pareto 
Solutions 

Number of Exact 
Pareto Solutions 

Total CPU (hours)  

 

 

 

 

 

 

 

 Total CPU per Pareto 
solution (hours) 

Average GAP (%) 

(0,1)  

 

 

 

 

 

 

 

 0.001 0.06 0.00  

 

 

 

 

 

 

 

 11 11  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 0.46  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

  
0.01 0.00  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 9 9 0.43  

 

 

 

 

 

 

 

 0.05  

 

 

 

 

 

 

 

  
0.1  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 4 4 0.29  

 

 

 

 

 

 

 

 0.07 0.00  

 

 

 

 

 

 

 

  
(0,2)  

 

 

 

 

 

 

 

 0.001  

 

 

 

 

 

 

 

 70  

 

 

 

 

 

 

 

 47  

 

 

 

 

 

 

 

 214.91  

 

 

 

 

 

 

 

 3.07  

 

 

 

 

 

 

 

 1.33 
0.01  

 

 

 

 

 

 

 

 55  

 

 

 

 

 

 

 

 47  

 

 

 

 

 

 

 

 115.99  

 

 

 

 

 

 

 

 2.11 0.40  

 

 

 

 

 

 

 

  
0.1  

 

 

 

 

 

 

 

 13  

 

 

 

 

 

 

 

 11 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 27.73  

 

 

 

 

 

 

 

 2.13 0.20  

 

 

 

 

 

 

 

  
(0,3) -  

 

 

 

 

 

 

 

 0.001  

 

 

 

 

 

 

 

 25  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 146.03  

 

 

 

 

 

 

 

 5.84  

 

 

 

 

 

 

 

 3.97 
0.01  

 

 

 

 

 

 

 

 21  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 - 125.29  

 

 

 

 

 

 

 

 5.97  

 

 

 

 

 

 

 

 3.12  
0.1  

 

 

 

 

 

 

 

 10  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 - 59.29 5.93  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 2.51 
(1,0)  

 

 

 

 

 

 

 

 0.001 0.06  

 

 

 

 

 

 

 

 19  

 

 

 

 

 

 

 

 18  

 

 

 

 

 

 

 

 31.51  

 

 

 

 

 

 

 

 1.66  

 

 

 

 

 

 

 

  
0.01 0.00  

 

 

 

 

 

 

 

 16 16  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 23.66  

 

 

 

 

 

 

 

 1.48  

 

 

 

 

 

 

 

  
0.1  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 8 8 12.09  

 

 

 

 

 

 

 

 1.51  

 

 

 

 

 

 

 

 0.00 
(1,1) 0.001 0.94 0.00  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 22 22  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 20.67  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

  
0.01 0.00  

 

 

 

 

 

 

 

 16 16  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 7.40  

 

 

 

 

 

 

 

 0.46  

 

 

 

 

 

 

 

  
0.1  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 6 6 3.06  

 

 

 

 

 

 

 

 0.51 0.00  

 

 

 

 

 

 

 

  
(1,2)  

 

 

 

 

 

 

 

 0.001  

 

 

 

 

 

 

 

 10  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 - 60.00  

 

 

 

 

 

 

 

 6.00 1.76 
0.01  

 

 

 

 

 

 

 

 10  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 - 40.00  

 

 

 

 

 

 

 

 6.00  

 

 

 

 

 

 

 

 1.18 
0.1  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 4 - 24.00  

 

 

 

 

 

 

 

 6.00  

 

 

 

 

 

 

 

 1.08 
(1,3)  

 

 

 

 

 

 

 

 0.001  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 4 - 24.00  

 

 

 

 

 

 

 

 6.00  

 

 

 

 

 

 

 

 1.50 
0.01  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 3 - 18.0 

 

 

 

 

 

 

 

 0  

 

 

 

 

 

 

 

 6.00  

 

 

 

 

 

 

 

 1.59 
0.1  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 2 - 12.00  

 

 

 

 

 

 

 

 6.00  

 

 

 

 

 

 

 

 1.54 
(2,0)  

 

 

 

 

 

 

 

 0.001 0.00  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 8 8 4.69  

 

 

 

 

 

 

 

 0.58  

 

 

 

 

 

 

 

  
0.01  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 6 6 3.13 0.52  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 0.00 
0.1  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 3 3 0.86 0.29  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 0.00  
(2,1)  

 

 

 

 

 

 

 

 0.001 0.70  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 6 2 28.98 4.83  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

  
0.01 0.66  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 5 2 22.67 4.53  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

  
0.1  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 3 2 8.72  

 

 

 

 

 

 

 

 2.90  

 

 

 

 

 

 

 

 0.37 
(2,2)  

 

 

 

 

 

 

 

 0.001  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 4 - 24.00  

 

 

 

 

 

 

 

 6.00  

 

 

 

 

 

 

 

 1.49 
0.01  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 4 - 24.00  

 

 

 

 

 

 

 

 6.00  

 

 

 

 

 

 

 

 1.16 
0.1  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 2 - 12.00  

 

 

 

 

 

 

 

 6.00  

 

 

 

 

 

 

 

 1.13 
(2,3)  

 

 

 

 

 

 

 

 0.001  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 1 - 6.00 6.00  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 1.10 
0.01  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 1 - 6.00 6.00  

 

 

 

 

 

 

 

  1.10 
0.1  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 1 - 6.00 6.00  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 1.10 

ments, and solution gap are reported. As expected, with larger  values, the Pareto front is approximated in a shorter period 

of time at the expense of obtaining less Pareto points. By using  = 0 . 01 , 19% of the Pareto points are lost while the compu- 
tational time is decreased by 31%. Taking  

 

 

 

 

 

 

 

 as 0.1 enables us to spend 70% less time on computation; however, in  turn, we 

lose 69% of the time Pareto points. Beside total computational  benefits, larger  

 

 

 

 

 

 

 

 values turn out to be effective in decreas- 
ing and per the average solution gap  total CPU time  each Pareto solution. As it can be observed in Table 7 , utilizing larger 

epsilon values provides a great benefit in decreasing computational time requirements at the expense of finding a worse off

Pareto  front approximation. Heuristic approaches’ performance in reducing the computational effort requirement stands out, 
as the heuristics provide a CPU time reduction up to 99.5%. Although heuristic approaches show significant a  performance 

in terms of solution time, their performances’ should be further investigated. 
The performance of the larger -values and the heuristic algorithms should be evaluated and it is essential to use quan- 

titative performance metrics to evaluate the quality of the approximate Pareto front. To this end, three popular performance 
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Table 7 
Decrease (%) in CPU time requirements with the mathematical models under  
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coverage (SC) ( Zitzler and Thiele, 1998 ). These three metrics can be used with approximate Pareto solutions set. 

Spacing (S): To measure the spread uniformity of the solutions set this measure can be used. The definition of this metric 

is as
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where n is the number of non-dominated solutions in the solution pool, m is the number of objectives, O i 
k is the k th objective 

value of a solution i and d̄  is the mean value of all d i ( Schott, 1995 ). When S is close to zero, it means all the points spread 

uniformly. That is, the smaller S value is better in terms of diversity. 
Maximum Spread (MS): This metric measures the maximum extension covered by the non-dominated solution set, i.e., 

the maximum Euclidean between a  
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, it is defined by the following equation: 
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where  O i − 

 

 

 

 

 

 

 

 O j       is the Euclidian distance between objective values of  O i and  O j in the set solution  of heuristic or mathe- 

matical model. In this equation, n indicates the number of non-dominated solutions in the set. 
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spread and the set is able to cover further edges of the Pareto front. 

Both heuristics and mathematical models’ results and performance measure values are summarized in Table 8 , 9 , 10 . The 
solution times of the random and purposive heuristics are around 1 h  for each instance. 

In Table 8 , the  performances of the mathematical models under  different epsilon values are compared in terms of spac- 
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Table 8 
Performance analysis of mathematical models with  
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Table 9 
Performance analysis of mathematical models and heuristics with random and purposive improvement using set coverage 
metric. 
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Table 10 
Performance analysis of mathematical model with  
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Set Coverage (SC) provides a comparative analysis and it measures the ratio of (weakly) domination by the other set. SC 
metrics show how better an algorithm is than one another. The closer the SC value to 1, the better the solution is. If points 

of the method A dominate all points of the method B, then  by the definition SC(A,B) equals  to 1. However, this information 
alone is not  enough to compare A and B. Both SC(A,B) and SC(B,A) values should be considered to determine which method 

is better, due to intersections between the two sets. 

Now, the performance of themodel  under different  
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Table 11 
Improvement heuristics comparison with respect to their contribution to arc and node objectives. 
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Additionally, in 6 of those instances, the purposive heuristic outperforms both the model and the random heuristic. Only in 
3 of the instances, the random heuristic was better in terms of covering a larger spectrum of the Pareto front. Furthermore, 

the Pareto front spectrum covered per non-dominated solution is larger in all heuristic instances and in 9 out of 11 
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construction phase in terms of both arc and node objectives. Table 11 depicts the improvement percentages of both of the 
heuristics in both objectives. The highest percentages are highlighted   in the Table 11 . observed It can be  that random im- 

provement heuristic improves arc and node objective up to 59% and 25%, respectively. Purposive  improvement heuristic, on 
the other hand, contributes to improvement at most 55% in arc objective and in 24%  node objective. The random improve- 

ment heuristic is more successful  than the purposive improvement heuristic in finding  corners the of  Pareto front most of 
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tive 43.9%, node objective 12.9%; on the other hand, these improvement percentages become 42.6% and 12.5%, respectively, 

with the purposive improvement heuristic. 

As discussed via Table 5 –11 , the random and purposive improvement heuristics have really good performance in terms of 
the computational time, maximum spread and average maximum spread. Moreover, random improvement heuristic has an 
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Table 12 
Comparison of the models PDARP and PDARATP. 
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 Managerial and policy implications 

In this study, the post-disaster assessment strategy is developed as a tool to assist disaster relief operations by assessing 
the severity of the disaster and the urgency for relief. Several managerial insights provided by this research can be presented. 

This an any  

 

 

 

 

 

 

 

 study  

 

 

 

 

 

 

 

 develops damage assessment a model the  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 for   

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 in  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 aftermath of  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 disaster which  

 

 

 

 

 

 

 

 focuses  

 

 

 

 

 

 

 

 on  

 

 

 

 

 

 

 

 population 
points obtained and road segments. Damage information  from both  elements translate into in resolved uncertainties  three 

immediate  

 

 

 

 

 

 

 

 logistics operations:  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 evacuation,  

 

 

 

 

 

 

 

 relief debris operations  

 

 

 

 

 

 

 

 item  

 

 

 

 

 

 

 

 distribution,  

 

 

 

 

 

 

 

 and  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 removal.  

 

 

 

 

 

 

 

 The  

 

 

 

 

 

 

 

 consecutive  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 may 

perform poorly with the unresolved uncertainties in the demand. Thus, post-disaster assessments can facilitate more timely 
relief by conducting early assessments to determine the severity of the disaster impact and urgency of the need for relief. 

Hence, assessing damage, disaster by   

 

 

 

 

 

 

 

   managers can distribute   relief canalize their relief operations items and     to the point 
where they are needed most. 

Assessment problems studied in the literature largely focus on needs assessment in population points. In this study, with 

having at hand, an points capable  

 

 

 

 

 

 

 

 resources  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 we  

 

 

 

 

 

 

 

 observe  

 

 

 

 

 

 

 

 that  

 

 

 

 

 

 

 

 it  

 

 

 

 

 

 

 

 is  

 

 

 

 

 

 

 

 possible to  

 

 

 

 

 

 

 

 conduct  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 assessment  

 

 

 

 

 

 

 

 in not   

 

 

 

 

 

 

 

 only population  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

  
but also on the road segments. To reach disaster victims, evacuate them from the affected region or supply them with relief 

items  

 

 

 

 

 

 

 

 in  

 

 

 

 

 

 

 

 a the situation the  

 

 

 

 

 

 

 

 short  

 

 

 

 

 

 

 

 period,  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 of  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 transportation network  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 should also  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 be  

 

 

 

 

 

 

 

 known.  

 

 

 

 

 

 

 

 Also,  

 

 

 

 

 

 

 

 in  

 

 

 

 

 

 

 

 accordance with the  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

  
overview of the disaster assessment, disaster management authorities can plan debris removals in parallel to relief routing 

operations in order to reach disaster victims in a timely manner. 

The proposed model in this   study presentsa way of narrowing down possible performance deficiencies in the response 
phase  

 

 

 

 

 

 

 

 operations resolving disaster aftermath. post-  

 

 

 

 

 

 

 

 through  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 uncertainties  

 

 

 

 

 

 

 

 in  

 

 

 

 

 

 

 

 the  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 With  

 

 

 

 

 

 

 

 preparing implementing  

 

 

 

 

 

 

 

 and  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 the  

 

 

 

 

 

 

 

  

disaster assessment  strategy, the authorities  

 

 

 

 

 

 

 

  disaster management   

 

 

 

 

 

 

 

 could produce more  

 

 

 

 

 

 

 

 efficient responses; thus,  

 

 

 

 

 

 

 

 mitigates 
the pain and suffering of disaster victims, as early as possible. 

8.  

 

 

 

 

 

 

 

 Conclusion 

Due  

 

 

 

 

 

 

 

 to  

 

 

 

 

 

 

 

 the  

 

 

 

 

 

 

 

 importance  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 of information in the post-disaster this damage  

 

 

 

 

 

 

 

 response  

 

 

 

 

 

 

 

 phase,  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 study  

 

 

 

 

 

 

 

 focuses  

 

 

 

 

 

 

 

 on  

 

 

 

 

 

 

 

 the  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 assess- 
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average speed; however, in  the aftermath of a disaster, there can be some road segments which are severely disrupted and 
some with little to no damage. Hence, it would be valuable to incorporate travel time uncertainties and terrain conditions in 

routing decisions.  Also, uncertainties may arise during the assessment process. Although the proposed model in this study 

is modified to spend a certain amount of time in the node/arc being assessed, the node/arc assessment uncertainties cannot 
be captured with the current model. 

In the proposed problem,  we assumed cost is a linear function of the distance and we imposed a distance bound  on the 
total route duration. This can be considered as having a budget which is in line    with many humanitarian papers.  research  

However, of course, cost concerns can also be incorporated into the model as a third objective which may include the vehicle 

and transportation costs. 
Additionally, considers the current study  information on the disaster impact is made available once the assessment ve- 

hicles return to the depot (disaster management center). This can be counted as a valid assumption considering the disrup- 
tions can  occur in the information transmission infrastructure as a result of a disaster. However, one can consider   relaxing 

this assumption and incorporate spatial-temporal uncertainties that arise when the drones and motorcycles are conducting 

assessments in collaboration given  that the drones angular field of view can assist the motorcycle assessment. in  We hope 
that the model and algorithms proposed in this study will constitute a new angle for future research that considers further 

complexities in decision making for post-disaster damage assessments. 
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 Illustration of the Constructive Heuristic Algorithm 

For example, suppose we have a disaster network as demonstrated in the Fig. A.7 and  1drone to be utilized assess- in  

ment. On a given network, it is  important to note that fourth node can  be assessed by flying over arc (3,9) and (9,3). 

Assume that the profit is defined by the value added by traversing a node per distance travelled and there is a distance 
limit for the drone, and it  is 20. We first start by evaluating the shortest paths of each node pairs. Then, among the feasible 

paths (a vehicle can complete its tour within the distance limit), the one which yields the highest node profit per distance 

Fig. A.7.  
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In the Table A.13 , the  shortest paths emerging from the depot node to other nodes are indicated. 
Moreover, let the following vector to be node weights of the corresponding nodes. 
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As the path from the node 3 to the node 5 yields the highest profit and it does not violate the total distance constraint, it is 

considered as a candidate. Total tour distance of [0,3,4,5,0] is 14.3. Hence we add [3,4,5] to the path. Total distance travelled 
becomes 8.0. Then, from node 5 we evaluate the profits of the feasible paths. In the Table A.15 , the shortest paths from the 

node 5 to other nodes are indicated. 
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Table A.15 
Shortest paths from the node 5 
to other nodes. 
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 we 
append path [5,9] path. to the  Total distance travelled becomes  10.1. Then, from the node 9, we evaluate the profits of the 

feasible paths. The  constructive algorithm procedure continues in this fashion, at each step, we aim to guarantee vehicle a  

can return to the depot. In this example, we used the node weight collected over distance traveled as the profit definition; 
however, the other definitions discussed in Section 4.1 can also be used. 
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